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a b s t r a c t

In this study, thermal performance analysis of a natural convection porous fin with temperature-
dependent thermal conductivity and internal heat generation is carried out using Galerkin’s method of
weighted residual. The developed symbolic heat transfer models are used to investigate the effects of
various parameters on the thermal performance of the porous fin. It is found that increase in porosity
parameter, Nusselt, Darcy and Rayleigh numbers and the thickness-length ratio of the fin increase the
rate of heat transfer from the base of the fin and consequently improve the efficiency of the fin. Also,
decreasing thermal conductivity parameter results in an increase in the rate of heat transfer from the
base of the fin. However, an optimum value is reached beyond which further increase in porosity,
Nusselt, Darcy and Rayleigh numbers, thermal conductivity ratio and thickness-length ratio has no sig-
nificant influence on the rate of heat transfer. For the purpose of verification of the results, exact analyt-
ical solutions are developed. The results of the Galerkin’s method for the second-order approximation
function are found to be in excellent agreements with the results of the exact analytical solutions and also
with that of the numerical methods and homotopy perturbation method.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer enhancement in extended surfaces has been a
subject of vital importance which has led to extensive research
on the use of porous fins. The pioneer work on the heat transfer
enhancement through the use of porous was carried out by Kiwan
and Al-Nimr [1]. They applied numerical method to investigate the
thermal analysis of porous fin while Kiwan [2–4] developed a sim-
ple method to study the performance of porous fins in natural con-
vection environment. Also, the same author investigated the
effects of radiative losses on the heat transfer from porous fins.
Gorla and Bakier [5] numerically carried out the thermal analysis
of natural convection and radiation in a rectangular porous fin.
Kundu and Bhanja [6] presented analytical model for the analysis
of performance and optimization of porous fins. Kundu et al. [7]
proposed a model for computing maximum heat transfer in porous
fins. Taklifi et al. [8] investigated the effects of magnetohydrody-
namics (MHD) on the performance of a rectangular porous fin. In
the work, the authors stated that by imposing MHD in system
except near the fin tip, heat transfer rate from the porous fin
decreases. Bhanja and Kundu [9] analytically investigated thermal
analysis of a constructal T-shape porous fin with radiation effects.
An increase in heat transfer is found by choosing porous medium
condition in the fin. Recently, Kundu et al. [10] studied the
performance and optimum design analysis of porous fin of various
profiles operating in convection environment transient heat trans-
fer analysis of variable section pin fins. Saedodin and Sadeghi [11]
analyzed the heat transfer in a cylindrical porous fin while
Saedodin and Olank [12] analyzed temperature distribution in por-
ous fin in a natural convection condition. Darvishi et al. [13] stud-
ied the thermal performance of a porous radial fin with natural
convection and radiative heat losses while Hatami and Ganji [14]
investigated the thermal performance of circular convective-
radiative porous fins with different section shapes and materials.
Hatami et al. [15–18] presented various heat transfer studies in
both dry and wet porous fins. All the previously cited studies on
porous fin are based on constant thermal conductivity. Such
assumption might be correct because, for ordinary fins problem,
the thermal conductivity of the fin might be taken to be constant.
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Nomenclature

ar aspect ratio of the porous fin base area to the surface
area

A cross sectional area of the fins, m2

Ab porous fin base area
As porous fin surface area
Bi Biot number
h heat transfer coefficient, W m�2 k�1

hb heat transfer coefficient at the base of the fin, Wm�2 k�1

cp specific heat of the fluid passing through porous fin
(J/kg-K)

Da Darcy number
g gravity constant (m/s2)
h heat transfer coefficient over the fin surface (W/m2 K)
H dimensionless heat transfer coefficient at the base of the

fin, Wm�2 k�1

k thermal conductivity of the fin material, W m�1 k�1

kb thermal conductivity of the fin material at the base of
the fin, Wm�1 k�1

keff effective thermal conductivity ratio
K permeability of the porous fin (m2)
L Length of the fin, m
m mass flow rate of fluid passing through porous fin (kg/s)
Nu Nusselt number
P perimeter of the fin (m)
Q dimensionless heat transfer rate per unit area
qb heat transfer rate per unit area at the base (W/m2)
Qb dimensionless heat transfer rate the base in porous fin
Qs dimensionless heat transfer rate the base in solid fin
Ra Rayleigh number
Sh Porosity parameter

t thickness of the fin
Tb base temperature (K)
T fin temperature (K)
Ta ambient temperature, K
Tb Temperature at the base of the fin, K
v average velocity of fluid passing through porous fin (m/s)
x axial length measured from fin tip (m)
X dimensionless length of the fin
w width of the fin
q internal heat generation in W/m3

Greek symbols
b thermal conductivity parameter or non-linear parameter
d thickness of the fin, m
db fin thickness at its base
c dimensionless internal heat generation parameter
h dimensionless temperature
hb dimensionless temperature at the base of the fin
g efficiency of the fin
e effectiveness of the fin
b0 coefficient of thermal expansion (K�1)
e porosity or void ratio
t kinematic viscosity (m2/s)
q density of the fluid (kg/m3)

Subscripts
S solid properties
F fluid properties
eff effective porous properties
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However, if large temperature difference exists within the fin, typ-
ically, between tip and the base of the fin, the thermal conductivity
is not constant but temperature-dependent. Also, in their work on
porous fins, Gorla et al. [19] and Moradi et al. [20] pointed out that
for most materials, the effective thermal conductivity increases
with temperature. Such consideration provides a better picture of
thermal behaviour or performance of the porous fin. Therefore,
while analyzing the fin, effects of the temperature-dependent ther-
mal conductivity must be taken into consideration. In carrying out
such analysis, the thermal conductivity may be modelled for such
and other many engineering applications by linear dependency on
temperature. Such dependency of thermal conductivity on temper-
ature renders the problem highly non-linear and difficult to solve
exactly. It is also very realistic to consider the temperature-
dependent internal heat generation in the fin (electric-current car-
rying conductor, nuclear rods or any other heat generating compo-
nents of thermal systems). In solving the heat transfer problem in
porous fin, Kundu [6–7,10] applied Adomian decomposition
method (ADM) on the performance and optimum design analysis
of the fins while Saedodin and Sadeghi [11], Kiwan [1–5] applied
Runge-Kutta for the thermal analysis in porous fin. Golar and Baker
[5] and Gorla et al. [19] applied Spectral collocation method (SCM)
to study the effects of variable thermal conductivity on the natural
convection and radiation in porous fin. Saedodin and Shahababaei
[21] adopted homotopy perturbation method (HPM) to analyse
heat transfer in longitudinal porous fins while Darvishi et al. [13]
and Moradi et al. [20] and Ha et al. [22] adopted homotopy analysis
method (HAM)to provide solution to the natural convection and
radiation in a porous and porous moving fins while Hoshyar
et al. [23] used homotopy perturbation method and collocation
method for thermal performance analysis of porous fins with
temperature-dependent heat generation. Hatami and Ganji [14]
applied least square method (LSM) to study the thermal behaviour
of convective-radiative in porous fin with different sections and
ceramic materials. Also, Rostamiyaan et al. [24] applied variational
iterative method (VIM) to provide analytical solution for heat
transfer in porous fin. Ghasemi et al. [25] used differential transfor-
mation method (DTM) for heat transfer analysis in porous and
solid fin. The approximate analytical methods as applied by past
researchers solve the differential equations without linearization,
discretization or no approximation, linearization restrictive
assumptions or perturbation, complexity of expansion of deriva-
tives and computation of derivatives symbolically. However, the
search for a particular value that will satisfy second the boundary
condition or the determination of auxiliary parameters necessi-
tated the use of software and such could result in additional com-
putational cost in the generation of solution to the problem. Also,
most of the approximate methods give accurate predictions only
when the nonlinearities are weak or for small values of the fin
thermo-geometric parameter, they fail to predict accurate solu-
tions for strong nonlinear models. Also, the methods often involved
complex mathematical analysis leading to analytic expression
involving a large number of terms and when they are routinely
implemented, they can sometimes lead to erroneous results
[26,27]. Moreover, in practice, approximate analytical solutions
with large number of terms are not convenient for use by designers
and engineers. Inevitably, simple yet accurate expressions are
required to determine the fin temperature distribution, efficiency,
effectiveness and the optimum parameter. Also, variational meth-
ods such as Ritz and Rayleigh-Ritz methods sometimes provide
powerful results, such as upper and lower bounds on quantities
of interest but require more mathematical manipulations than



Fig. 1. Schematic of the longitudinal porous fin geometry with the internal heat
generation.
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method of weighted residual and they are not applicable to all
problems, thus they suffer a lack of generality. Conversely, the
method of weighted residuals (MWR) can be used to obtain
answers of any desired accuracy. In many test cases, MWR com-
pares favorably to finite difference computations in that the
MWR results are either more accurate or require less computation
time to generate or both. The methods of weighted residual such as
collocation method, sub-domain method, Galerkin method and
least squares method are easy to apply. Among these methods,
the Galerkin method is the most preferable because of its equiva-
lence to the variational method, which gives more accurate values
of an eigenvalue. However, in most cases, the criterion can be cho-
sen based on convenience. Also, Lewis et al. [28] submitted that the
Galerkin method is the most accurate of the methods of weighted
residual. The Galerkin method of weighted residuals provides a
very powerful, novel and accurate approximate analytical solution
procedure that is applicable to a wide variety of linear and non-
linear problems and thus makes it unnecessary to search for vari-
ational formulations in order to apply the finite element method
for the problems [29]. In other to reduce the computation cost
and task in the analysis of such problem. It solves the nonlinear
equation directly without simplification, linearization, perturba-
tion, Taylor’s series expansion, mesh independent study and deter-
mination of auxiliary parameters and functions as carried out in
HPM, HAM, ADM, NM, VIM, and DTM [30]. It reaches final results
faster than numerical procedures. Hence, in this work, Galerkin’s
method of weighted residual is applied for the analysis the thermal
performance in porous fin with temperature-dependent thermal
conductivity and internal heat generation. The results obtained
by the method (for solving the problem under investigation) are
compared with the previous studies and excellent agreements
are established.

2. Problem formulation

Consider a straight porous fin of length L and thickness t
exposed on both faces to a convective environment at temperature
T1 as shown in Fig. 1.The dimension x pertains to the height coor-
dinate which has its origin at the fin tip and has a positive orienta-
tion from fin tip to fin base. In order to analyze the problem, the
following assumptions are made.

1. Porous medium is homogeneous, isotropic and saturated with a
single phase fluid

2. Physical properties of solid, as well as fluid are considered as
constant except density variation of liquid, which may affect
the buoyancy term where Boussinesq approximation is
employed.

3. Fluid and porous mediums are locally in thermodynamic equi-
librium in the domain.

4. Surface convection, radiative transfers, and non-Darcian effects
are negligible and only natural convection is considered. Heat is
transferred away from the fin base only through the pores i.e.
no convective heat transfer to the surrounding.

5. The temperature variation inside the fin is one-dimensional i.e.
temperature varies along the length only and remain constant
with time.

6. There is no thermal contact resistance at the fin base and the fin
tip is an adiabatic type.

Based on Darcy’s model and following the above assumptions,
the thermal energy balance could be expressed

qx � qx þ
dq
dx

dx
� �

¼ qcpvðxÞwðT � TcÞdxþ qint:ðTÞAcrdx ð1Þ
The velocity of the buoyancy driven flow v(x) at any location x
in the fin is obtained by applying the Darcy’s law:

vðxÞ ¼ gb0K
v f

ðT � T1Þ ð2Þ

qx � qx þ
dq
dx

dx
� �

¼ qcpgb0K
v f

wðT � T1Þ2dxþ qint:ðTÞAcrdx ð3Þ

As dx? 0, Eq. (3) reduces to Eq. (4)

� dq
dx

¼ qcpgb0K
v f

wðT � T1Þ2 þ qint:ðTÞAcr ð4Þ

From Fourier’s law of heat conduction

q ¼ �kðTÞAcr
dT
dx

ð5Þ

Substituting Eq. (5) into Eq. (4), we have

d
dx

kðTÞAcr
dT
dx

� �
¼ qcpgb0Kw

v f
ðT � T1Þ2 þ qinðTÞAcr ð6Þ

Further simplification of Eq. (7) gives the governing differential
equation for the fin as given by

d
dx

keff ðTÞ dTdx
� �

� qcpgb0KðT � T1Þ2
tmf

þ qaðTÞ ¼ 0 ð7Þ

The boundary conditions are

x ¼ L; T ¼ Tb

x ¼ 0; dT
dx ¼ 0

ð8Þ

For many engineering applications, the thermal conductivity
and the coefficient of heat transfer are temperature-dependent.
Therefore, the temperature-dependent thermal conductivity and
internal heat generation are given by

keff ðTÞ ¼ /kf þ ð1� /Þks ¼ keff ;a½1þ kðT � T1Þ� ð9Þ

qintðTÞ ¼ qa½1þ wðT � T1Þ� ð10Þ
Substituting Eqs. (9) and (10) into Eq. (1), we have

d
dx

½1þ kðT � T1Þ� dT
dx

� �
� qcpgKb0ðT � T1Þ2

keff ;atmf
þ qa

keff ;a
½1þ wðT � T1Þ� ¼ 0

ð11Þ
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On introducing the following dimensionless parameters in Eq.
(12) into Eq. (11);

X ¼ x
L
; h ¼ T � T1

Tb � T1
; Ra ¼ Gr:Pr ¼ b0gTbt

3

m2f

 !
qcpmf
keff ;a

� �
;

Da ¼ K
t2
; Q ¼ qv f t

qcpb0gKðTb � T1Þ2

Sh ¼ b0gðTb � T1Þt3
m2f

 !
qcpmf K
keff ;at2

 !
ðL=tÞ2
keff ;a

¼ RaDaðL=tÞ2
keff ;a

;

c ¼ wðTb � T1Þ; b ¼ kðTb � T1Þ ð12Þ
We arrived at the dimensionless governing differential Eq. (13)

and the boundary conditions

d
dX

ð1þ bh� dh
dX

� �
� SHh

2 þ SHQð1þ chÞ ¼ 0 ð13Þ

If we expand Eq. (13), the dimensionless governing differential
equation become;

d2h

dX2 þ bh
d2h

dX2 þ b
dh
dX

� �2

� SHh
2 þ SHQchþ SHQ ¼ 0 ð14Þ

The boundary conditions are

X ¼ 1; h ¼ 1
X ¼ 0; dh

dX ¼ 0
ð15Þ
3. Solution procedure

It is very difficult to develop an explicit exact analytical/closed-
form solution for the above non-linear Eq. (14). Therefore, recourse
has to be made to either approximation analytical method, semi-
numerical method or numerical method of solution. In this work,
a simple but very powerful approximate method of solution,
Galerkin’s method of weighted residual is used.

The Galerkin method of weighted residual is based on the inte-
gral of the residual over the domain of interest. In the method, the
residual R(x) is weighted over the domain of interest by multiply-
ing R(x) by weighting functions wi(x) (j = 1, 2 . . ..), integrating the
weighted residuals over the range of integration, and setting the
integrals of the weighted residuals equal to zero to give equations
for the evaluation of the coefficients Ci of the trial functions yi(x).
Galerkin showed that basing the weighting functions wi(x) on
the trial functions yi(x) of the approximate solution y(x) yields
exceptionally good results. When the governing differential equa-
tion is known, it is logical to apply the Galerkin weighted residual
approach rather than look for the functional corresponding to the
differential equation as in the case of Rayleigh-Ritz.

The procedure of the method is described as follows:
Representing the governing equations by

LðhÞ ¼ 0 in X ð16Þ
and

h � h ¼
XN
i¼1

aiNiðXÞ ð17Þ
a3 ¼ 7½5ð1þ bÞ þ 2SHð2� cQÞ� � 7f½½5ð1þ bÞ þ 2SHð2� cQÞ��2 � ½20SH½
4½7bþ 6SH�
Substitution of the above Eq. (17) into Eq. (16) results in

Lðh�Þ – 0
¼ R ðresidualÞ ð18Þ

The method of weighted residual requires that the parameters
a1, a2. . . an be determined by satisfyingZ
X
wiðxÞRdx with i ¼ 1;2; � � � ;n ð19Þ

where the functions wi(x) are the n arbitrary weighting functions.
There are an infinite number of choices for wi(x) but four particular
functions are most often used. Depending on the weight function
adopted, the method of weighted residual could be collocation,
sub-domain, Galerkin or least Square method depending on the
choice of the weighting functions. Among all these methods, the
Galerkin method is the most accurate method [28]. In the Galerkin’s
method of weighted residual, the weight function is the same as the
trial function.Galerkin’smethod couldbedescribed as amodification
of the least squares method. Instead of using the derivative of the
residual with respect to the unknown, ci as done in Least Squares
Method, the derivative of the approximating function or trial func-
tion is used. In the Galerkin’s method of weighted residual, the
weight function is the same as the trial function. Since a simple but
highly accurate solution is sought, a quadratic trial solution shown
in Eq. (20) is adopted in this work. Although, the use of higher degree
trial function will produce more accurate results, Ganji [30] pointed
out that GM with second degree’s trial function converges to result
with a good accuracy. Also, Bert [31], having used second degree’s
trial function in his weighted residual analysis of steady state heat
conduction problem and established its high accuracy, pointed out
that further refinement is not necessary and therefore, additional
terms should not be needed in most instances. Therefore, a second-
order approximation function was considered in this work. Given
the trial function as

h ¼ a1 þ a2X þ a3X
2 ð20Þ

Eq. (20) satisfies the boundary conditions in Eq. (16) when
a1 ¼ 1� a3; a2 ¼ 0. Thus, the trial function that satisfies the
boundary conditions could be written as

h ¼ 1� ð1� X2Þa3 ð21Þ
And the weight function is

NiðXÞ ¼ 1� X2 ð22Þ
The Galerkin formulation of the fin equation isZ 1

0
NiðXÞ d2h

dX2 þ bh
dh
dX

þ b
dh
dX

� �2

� SHh
2 þ SHQchþ SHQ

" #
dX ð23Þ

Substituting the weight function in Eq. (22) into Eq. (23), we
have;Z 1

0
ð1� X2Þ d2h

dX2 þ bh
dh
dX

þ b
dh
dX

� �2

� SHh
2 þ SHQchþ SHQ

" #
dX

ð24Þ
On putting the corresponding terms from Eq. (21) into Eq. (24),

it was found that
bþ ðð6=7ÞSHÞ�½1� Qð1þ cÞ��12g ð25Þ
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If the thermal conductivity of the fin is constant and there is no
internal heat generation, then

a3 ¼ ½ð7=3Þ þ ð35=12ShÞ� � f½ð7=3Þ þ ð35=12ShÞ�2 � ð35=6Þg1=2
2

Also, substitute Eq. (25) into Eq. (21), we have
hðXÞ ¼ 1� 5ð1þ bÞ þ 2SHð2� cQÞ � f½5ð1þ bÞ þ 2SHð2� cQÞ�2 � ½20SH½bþ ðð6=7ÞSHÞ�½1� Qð1þ cÞ��g
1
2

4½bþ ð6=7ÞSH�

8<
:

9=
;ð1� X2Þ ð26Þ
If the thermal conductivity of the fin is constant and there is no
internal heat generation as carried out by Kiwan [3], then by the
method in this paper, we arrived at
hðXÞ ¼ 1� ½ð7=3Þ þ ð35=12ShÞ� � f½ð7=3Þ þ ð35=12ShÞ�2 � ð35=6Þg1=2
2

( )
ð1� X2Þ ð27Þ
3.1. Heat flux of the fin and rate of heat transfer per unit area from the
porous fin

The fin base heat flux is given by Eq. (27)

qb ¼ AckðTÞdTdx ð28Þ

The dimensionless heat transfer rate at the base of the fin is
given by
qb

qs
¼ Ar

Nu
ð1þ bÞf5ð1þ bÞ þ 2SHð2� cQÞ � ½½5ð1þ bÞ þ 2SHð2� cQÞ�� � ½20SH½bþ ðð6=7ÞSHÞ�½1� Qð1þ cÞ��12g

2½bþ ð6=7ÞSH�

( )
ð35Þ
Qb ¼
qL

kaAcðTb � T1Þ ¼ ð1þ bhÞ dh
dX

� �
X¼1

ð29Þ

Substituting the respective value from Eq. (26) into Eq. (29), we
have
Qb ¼
ð1þ bÞf5ð1þ bÞ þ 2SHð2� cQÞ � ½½5ð1þ bÞ þ 2SHð2� cQÞ�� � ½20SH½bþ ðð6=7ÞSHÞ�½1� Qð1þ cÞ��12g

2½bþ ð6=7ÞSH� ð30Þ
The rate of heat transfer per unit width removed by a porous fin
may be calculated from

Qb=w ¼ kaðTb � T1Þ t
L

� �
ð1þ bhÞ dh

dX

� �
X¼1

ð31Þ

Substituting the respective expressions from Eq. (26), the rate of
heat transfer from the fin base per unit width is given as
Qb=w ¼ kaðTb � T1Þ t
L

� � ð1þ bÞ 5ð1þ bÞ þ 2SHð2� cQÞ � ½½5ð1þ bÞ þ 2
n

2½bþ
3.2. Analysis of heat transfer augmented in porous fin

In order to make a comparison between the heat transfer from a
porous fin with that from a solid fin, the ratio of heat transfer rate
between the two fins are given by
qb

qs
¼ keff ðTÞAb

dT
dx

� �
x¼o

hAsðTb � T1Þ ð33Þ
where, the denominator represents the maximum possible heat
transfer rate obtained using a solid fin. Writing the above equation
in terms of the dimensionless temperature, dimension parameters
and axial distance, yields
qb

qs
¼ Ar

Nu
ð1þ bhÞ dh

dX

� �
X¼1

ð34Þ

Substituting the respective expressions from Eq. (26), we have
where the area ratio, Ar ¼ Ab
As
3.2.1. Exact analytical solution for model verification
In order to verify the model results, we developed exact analyt-

ical solution for a porous fin with constant thermal conductivity.
The dimensionless governing differential equation is given as

d2h

dX2 � Shh
2 þ ShQchþ ShQ ¼ 0 ð36Þ
SHð2� cQÞ�� � ½20SH½bþ ðð6=7ÞSHÞ�½1� Qð1þ cÞ��12
o

ð6=7ÞSH� ð32Þ
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Fig. 2. Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when (a) Sh, = 1, Q = 0.4, c = 0.2 (b)) Sh, = 1, Q = 0.6, c = 0.2 (c)
Sh, = 0.5, Q = 0.4, c = 0.5 (d)) Sh, = 0.5, Q = 0.4, c = 0.2.
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In order to find exact analytical solution for Eq. (36), taking the
transformation dh

dX ¼ /; we arrived at

/
d/
dX

� Shh
2 þ ShQchþ ShQ ¼ 0 ð37Þ

On integrating Eq. (37) wrt h, we have

/2

2
� Sh

3
h3 þ ShQc

2

� �
h2 þ ShQh ¼ C ð38Þ

Recall that / ¼ dh
dX ! /2 ¼ dh

dX

� �2
Therefore, Eq. (38) becomes

1
2

dh
dX

� �2

� Sh
3
h3 þ ShQc

2

� �
h2 þ ShQh ¼ C ð39Þ

With the application of the first boundary condition,
X ¼ 1; dh

dX ¼ 0 ! X ¼ 1; h ¼ ho

C ¼ � Sh
3
h3o þ

ShQc
2

� �
h2o þ ShQho ð40Þ

On substituting Eq. (40) into Eq. (39), we arrived at
1
2

dh
dX

� �2

� Sh
3
ðh3 � h3oÞ þ

ShQc
2

� �
ðh2 � h2oÞ þ ShQðh� hoÞ ¼ 0 ð41Þ

Which could be written as

dh
dX

� �2

� 2Sh
3

h3 þ ðShQcÞh2 þ 2ShQhþ 2Sh
3

h3o

� ðShQcÞh2o � 2ShQho ¼ 0 ð42Þ
Then

dX ¼ �dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sh
3 h3 � ðShQcÞh2 � 2ShQh� 2Sh

3 h3o þ ðShQcÞh2o þ 2ShQho
q

ð43Þ
Since h decreases as x increases, the negative sign is used in

when taking the square root.
Integrating Eq. (44)Z X

0
dX¼�

Z h

ho

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sh
3 h3�ShQch2�2ShQh� 2Sh

3 h3o þShQch2o þ2ShQho
q

ð44Þ
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which gives

X ¼
Z ho

h

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sh
3 h3 � ShQch2 � 2ShQh� 2Sh

3 h3o þ ShQch2o þ 2ShQho
q

ð45Þ
Suppose that

Gðh; Sh;Q ; hoÞ ¼
Z ho

h

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sh
3 h3 � ShQch2 � 2ShQh� 2Sh

3 h3o þ ShQch2o þ 2ShQho
q

ð46Þ
For instant [34]
Gðh;1;1; hoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1

3þ 6ho þ a1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ6hoþa1

a1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3�6hoþa1

a1

q
EllipticFð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ6hoþa1

2a1

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1
3þ6hoþa1

q
Þ

h8<
:

where

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
57� 12ho � 12h2o

q
a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6h3 � 18hþ 9h2 � 6h3o þ 18ho � 9h2o

q
a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2ho � 2h2o

q
Therefore, the exact solution of Eq. (36) in implicit form is given

by

X ¼ Gðh; Sh;Q ; hoÞ ð48Þ
a2 � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2hoþa1þ4h

a1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ho � h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3�2hoþa1þ4h

a1

q
EllipticF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2hoþa1þ4h

2a1

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1
3þ6hoþa1

q	 

a3

i
a2a3

9=
;

ð47Þ
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Fig. 6. Effects of temperature-dependent internal heat generation parameter on the dimensionless heat transfer rate in the fin when (a) b = �0.4, Q = 0.5 (b) b = 0.4, Q = 0.5 (c)
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Where the unknown ho in the solution can be determined from
the second boundary condition

X ¼ 0; h ¼ 1 ! 1 ¼ Gð0; Sh;Q ; hoÞ ! Gð0; Sh;Q ; hoÞ ¼ 1

i.e. for any given Sh, and Q, hois obtained from

Gð0; Sh;Q ; hoÞ ¼ 1 ð49Þ
And EllipticF in Eq. (47) is the incomplete elliptic integral of the

first kind defined as

EllipticFðX;KÞ ¼
Z X

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2s2

p ð50aÞ

This function can be exactly and analytically evaluated as
follows

Let s ¼ sin#; x ¼ sin/

EllipticFð/;KÞ ¼
Z /

0

d#ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2sin

p
#

ð50bÞ

In order to evaluate the integral, we expand the integral in the
form
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2sin2

#
p ¼ 1þ K2

2
sin2

#þ 3K4

8
sin4

#þ 5K6

16
sin6

#

þ 35K8

128
sin8

#þ ::: ð51Þ

which could written as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2sin2

#
p � 1 ¼ K2

2
sin2

#þ 3K4

8
sin4

#þ 5K6

16
sin6

#þ 35K8

128
sin8

#

þ :::þ P1
n¼1

2n� 1
2n

� �
K2nsin2n

# ð52Þ

Generally, we can write

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2sin2

#
p ¼ 1þ

X1
n¼1

P1
n¼1

2n� 1
2n

� �
K2nsin2n

# ð53Þ

The above series is uniformly convergent for all #, and may,
therefore, be integrated term by term. Then, we have

EllipticFð/;KÞ ¼
Z /

0
1þ

X1
n¼1

P1
n¼1

2n� 1
2n

� �
K2nsin2n

#

( )
d# ð54Þ
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Fig. 7. Effects of temperature-dependent thermal conductivity parameter and fin thickness-length ratio on the dimensionless heat transfer rate at the base of the fin when (a)
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But

Z
sin2n

#d# ¼ �cos#
2n

sin2n�1
#

n

þ
Xn�1

k¼1

ð2n� 1Þð2n� 3Þ:::ð2n� 2kþ 1Þ
2kðn� 1Þðn� 2Þ:::ðn� kÞ

sin2n�2k�1
#

)

þ ð2n� 1Þ!!
2nn!

# ð55Þ

Therefore

EllipticFð/;KÞ ¼ /þ
X1
n¼1

P1
n¼1

2n� 1
2n

� �
K2n

(

�
�cos/
2n sin2n�1/þ

Xn�1

k¼1

ð2n�1Þð2n�3Þ:::ð2n�2kþ1Þ
2kðn�1Þðn�2Þ:::ðn�kÞ sin2n�2k�1/

( )

þð2n�1Þ!!
2nn! /

8>><
>>:

9>>=
>>;

9>>=
>>;

ð56Þ
The symbolic and numerical calculations involved in the func-

tion Gðh; Sh;Q ; hoÞ were carried out via Wolfram’s Mathematica.
4. Results and discussion

Effects of nonlinear thermal conductivity parameters on the
dimensionless temperature distribution and by extension on the
rate of heat transfer are shown in Fig. 2a–d. From the figures, it
is shown that as the non-linear thermal conductivity parameter
increases, the dimensionless temperature distribution in the fin
decreases.

Figs. 3a–d show the effects of porous parameter or porosity on
the temperature distribution in the porous fin. From the figures, as
the porosity parameter increases, the temperature decreases
rapidly and the rate of heat transfer through the fin increases as
the temperature in the fin drops faster (becomes steeper reflecting
high base heat flow rates) as depicted in the figures. The rapid
decrease in fin temperature due to increase in the porosity param-
eter is because as porosity parameter, Sh increases and in conse-
quent, the Darcy and Raleigh number increase, the permeability
of the porous fin increases and therefore the ability of the working
fluid to penetrate through the fin pores increases, the effect of
buoyancy force increases and thus the fin transfers more heat



0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
H

ea
t 

tr
an

sf
er

 r
at

e 
pe

r 
un

it 
w

id
th

, 
Q

b/
w

  
 (

W
/m

) 

Porous parameter, Sh

γ = 0.0

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.4

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

H
ea

t 
tr

an
sf

er
 r

at
e 

pe
r 

un
it 

w
id

th
, 

Q
b/

w
  

 (
W

/m
) 

Porous parameter, Sh

γ = 0.0

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.4

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

H
ea

t 
tr

an
sf

er
 r

at
e 

pe
r 

un
it 

w
id

th
, 

Q
b/

w
  

 (
W

/m
) 

Porous parameter, Sh

β = 0.0

β = 0.1

β = 0.2

β = 0.3

β = 0.4

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

H
ea

t 
tr

an
sf

er
 r

at
e 

pe
r 

un
it 

w
id

th
, 

Q
b/

w
  

 (
W

/m
) 

Porous parameter, S
h

γ = 0.0

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.4

(C)
(d)

(a) (b)

Fig. 8. Effects of temperature-dependent internal heat generation and fin thickness-length ratio on the dimensionless heat transfer rate in the fin when (a) t/L = 1/100;
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and the rate of heat transfer from the fin is enhanced and the ther-
mal performance of the fin is increased. It could therefore be stated
that increase in the porosity of the fin improves fin efficiency due
to increasing in convection heat transfer.

The effects of the porosity and the internal heat generation on
the thermal stability of the fin is shown in Fig. 4a and b, it is obvi-
ous that as porous parameter, Sh increases to a certain value, the
dimensionless temperature distribution at the fin tip results in
negative value (which shows thermal instability) at x = 0, contra-
dicting the assumption made in the analysis. This fact was not
established in the Kiwan [3] numerical analysis of the same prob-
lem for the large values of Sh. From the analysis of the present
work, the limiting value of Sh for thermal instability for constant
thermal properties without internal heat generation is approxi-
mately 4

p
34. However, the value of porosity parameter for the

thermal stability increases with increase in internal heat genera-
tion parameter, Q (Fig. 4b) and thermal conductivity parameters, b.

Figs. 5a–d depict the effects of temperature-dependent internal
heat generation parameter on the temperature distribution in the
porous fin while Figs. 6a–d show the effects of temperature-
dependent internal heat generation on the rate of heat transfer
i.e. fin thermal performance at different porous parameters. From
the figures, as the temperature-dependent internal heat generation
parameter increases, the temperature gradient and consequently,
the rate of heat transfer in the fin decreases. Also, the figures show
that the rate of heat transfer at the base of the fin increases as the
porous parameter or porosity increases.

Actually, a major important analysis in the fin problem is the
determination of the rate of heat transfer at the base of the fin.
Figs. 7a-d show the effects of temperature-dependent thermal con-
ductivity parameter and fin thickness-length ratio, t/L, on the
dimensionless heat transfer rate at the base of the fin while
Fig. 8a-deffects of temperature-dependent internal heat generation
parameter and fin thickness-length ratio on the dimensionless heat
transfer rate at the base of the fin at different porous parameters.
From the figures, it could be deducted that the temperature-
dependent thermal conductivity parameter, porosity and fin thick-
ness ratio have direct and significant effects on the rate of heat
transfer at the base of the fin. Increase in the dimensionless thick-
ness parameter (fin thickness-length ratio) results in increase in
the rate of heat transfer at the base of the fin.
                                             (b)
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Fig. 14. (a) Comparison of GMWR and HPM results at different porosity numbers (b) Comparison of GMWR and Exact result.

Table 1
Table of comparison of results.

X NM HPM [55] GWRM (The Present study) Absolute Error in HPM Absolute Error in GWRM

0.0 0.9581 0.9581 0.9581 0.0000 0.0000
0.1 0.9585 0.9585 0.9585 0.0000 0.0000
0.2 0.9597 0.9597 0.9597 0.0000 0.0000
0.3 0.9618 0.9618 0.9618 0.0000 0.0000
0.4 0.9647 0.9647 0.9647 0.0000 0.0000
0.5 0.9685 0.9685 0.9685 0.0000 0.0000
0.6 0.9730 0.9730 0.9730 0.0000 0.0000
0.7 0.9785 0.9785 0.9785 0.0000 0.0000
0.8 0.9846 0.9846 0.9848 0.0000 0.0000
0.9 0.9919 0.9919 0.9919 0.0000 0.0000
1.0 1.0000 1.0000 1.0000 0.0000 0.0000
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The study of the effects of some dimensionless numbers that
evolved during the analysis of the porous fin on the thermal perfor-
mance of the fin is very essential. In other to carry out such study,
some values were used. For the sake of comparison, these values
are the same with the values used in the study of porous fin by
Kiwan and Al-Nimr [1]. Fig. 9 shows the effects of Darcy number
on the dimensionless rate of heat transfer. Increasing Darcy num-
ber, Da causes an increase in the heat transfer rate from the fin.
This is because when the Darcy number and consequently perme-
ability reduces, collision among the fluid flow and the pores of the
porous is increased. Thus the passing fluids gave more space to
contact with the porous media which has internal heat generation.
Consequently, the fin temperature is increased by decreasing the
Da number.

Effects of Nusselt number on the rate of heat transfer at the base
of the fin is depicted in Fig. 10. It shows that as Nu increases more
heat are drawn from the fin base. However, at high values of the
porosity parameter Sh, increasing Nu has no significant influence
on the heat transfer from the base of the fin. This is because as
the porosity parameter Sh increases the temperature at the fin tip
reaches the ambient temperature of the surrounding fluid and thus
the driving force for heat transfer from the fin tip reduces. This
leads to a significant reduction from the use of high values of Nu
at the tip [3]. Increasing t/Lor decreasing thermal conductivity
parameter, Kr increases Sh and thus increasing the rate of heat
transfer at the base of the fin. Moreover, increasing L or decreasing
Kr tends to reduce the heat transfer rate from the fin. From the
result, for the different values of fin thicknesses, the respective
optimum values (values beyond which a further increase on Sh or
L has no significant change on the heat transfer rate) for Sh and L
can be established (Fig. 11). Also, ncrease in fin thickness-length
ratio, t/L, increases the rate of heat transfer from the base of the
fin as shown in Fig. 11. However, as fin thickness-length ratio
increases up to some certain values for the different fin
thickness-length ratio considered, optimum points are reached
where further increase in t/L has no significant influence on the
heat transfer rate from the base of the fin. As the fin length
increases, the temperature of the part far from the fin base
approaches the working fluid temperature. This implies that the
driving force for natural convection decreases and leads (in porous
fins) to less fluid infiltrated through the pores of the porous
domain. Also, this implies that no significant improvements is
attained if the fin length is further increased. This scenario is not
only peculiar to porous fin, it also occurs in solid fin.

In order to make a comparison between the heat transfer rates
from a porous fin with that from a solid fin, the ratio of the heat
transfer rate between the porous fin and solid are established as
given by Eq. (34). Fig. 12 shows the effects of porosity number
on the ratio of heat transfer rate between the porous fin and solid.
Increase in porosity number, Sh, implies increase in Darcy and Ray-
leigh numbers. While the increase in Darcy number, Da increases
the permeability of the fin. Increase in Ra number leads to more
effects of buoyancy force and consequently heat transfer rate due
to convection mechanism. Therefore, high values of Sh or Da and
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Ra lead high value of the ratio of heat transfer rate between the
porous fin and solid and enhanced heat transfer between the fin
and the air flow.

The results of the approximate analytical method used in this
work was verified with the results of the fourth-Order Runge-
Kutta with shooting algorithm as presented by Kiwan [3], and also
with the numerical method (NM) using bvp4c in MATLAB and the
results of homotopy perturbation method (HPM) as presented by
Petroudi et al. [32] as shown in Figs. 13 and 14a and with the exact
analytical solution results as shown in Fig. 14b. It is depicted that
the Galerkin’s method is highly accurate and shows excellent
agreement with the results of the NM and the HPM. It was estab-
lished that when Sh > 1, the HPM solutions for b ¼ �0:4 are very
weak and provide unreasonable results. HPM solution fails when
porosity parameter increases to a large number. This shortcoming
in the solution method is not only peculiar to HPM, it is also expe-
rienced when using ADM [33] coupled with the additional task
tasks of finding Adomian polynomials. The results show that the
GMWR is very effective and it is a convenient tool to solve the non-
linear fin problems under different conditions.

Table 1 shows comparison of results and the errors in the
method used in this study. It could be inferred from the table that
the Galerkin’s method is highly accurate and agrees very well with
the results of numerical and homotopy perturbation methods.

5. Conclusion

In this work, thermal performance analysis in a natural convec-
tion porous fin temperature-dependent thermal properties and
internal heat generation has been analyzed using Galerkin’s
method of weighted residual. The developed symbolic heat trans-
fer models were used to investigate the effects of various parame-
ters on the thermal performance of the porous fin. Increasing the
porosity, Nusselt, Darcy and Rayleigh numbers and thickness-
length ratio of the fin increase the rate of heat transfer from the
base of the fin and consequently improve the efficiency of the
fin. Also, decreasing thermal conductivity parameter, Kr results in
increase in the rate of heat transfer from the base of the fin. How-
ever, an optimum value is reached beyond which further increase
in porosity, Nusselt, Darcy and Rayleigh numbers, thermal conduc-
tivity ratio and thickness-length ratio has no significant influence
on the rate of heat transfer. The results of the Galerkin’s method
used in the work was verified with the numerical method using
Runge-Kutta method. The Galerkin’s method results for the
second-order approximation function used are in excellent agree-
ment with results of the numerical method and that of homotopy
perturbation method as found in literature.
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