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Abstract A new third derivative hybrid block method is presented for the solution of first
order stiff systems of initial value problems. The main method and additional methods are
obtained from the same continuous scheme derived via interpolation and collocation proce-
dures using power series as the basis function. The continuous representation of the scheme
permits us to evaluate at both grid and off-grid points. The stability properties of the method
is discussed. The block method is applied simultaneously to generate the numerical solutions
of (1) over non-overlapping intervals. Numerical results obtained using the proposed third
derivative hybrid method in block form reveal that it compares favorably well with existing
methods in the literature.
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1 Introduction

Consider the initial value problems (IVPs) of the form

y′ = f (t, y), y(t0) = y0 (1)

where f : � × �3d −→ �d ; y, y0 ∈ �d , and d is dimension of the system. f satisfies
the conditions which guarantee that the problem has a unique continuously differentiable
solution, which we denote by y(t) (see Henrici [1]), and the Jacobian ( ∂x

∂y ) whose eigenvalues
have negative real parts varies slowly ([2]). These type of equations arise frequently in
engineering, science, and biological sciences. It is common knowledge that a vast number
of these problems cannot be solved analytically, hence the need for the numerical methods
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for such problems remains crucial. In the literature, several authors have proposed various
techniques for the numerical solution of (1) which include linear multistep methods (LMMs).
It should be noted that (1) is efficiently solved by A-stable methods and for high accuracy,
higher order methods are preferable. However, for linear multistep methods (LMMs), the
use of high order LMMs for (1) is restricted by the second Dahlquist [3] barrier theorem
which stated that the order of an A-stable linear multistep method cannot exceed 2. Several
methods have been proposed to overcome this barrier theorem, for instance, (see Akinfenwa
et al. ([4–9]), Gear [10], Gragg and Stetter [11], Butcher [12], Lambert [13], and Kohfeld
and Thompson [14]), the second derivative methods (see Enright [15], Gupta [16], and Hairer
and Wanner [17], and exponentially fitted methods (see Jackson and Kenue [2], Cash [18]).
Hybridmethod (2) is themodified formof the k-step linearmultistepmethod (LMM)obtained
by incorporating off-step points in the derivation process in order to overcome the Dahlquist
barrier theorem.

k∑

j=0

α j yn+ j = h
k∑

j=0

β j fn+ j + hβη j fn+η j (2)

Gupta [16] noted that the design of algorithms for hybrid methods is more tedious due to the
occurrence of off-steps function in the methods which increases the number of predictors
needed to implement the methods. Like ([6–9,19,20]), the block hybrid method (3) proposed
in this paper is developed via collocation and interpolation procedure, it’s self-starting and
implemented without the use of predictors.

yn+k = yn+k−1h

⎛

⎝
k∑

j=0

β j fn+ j +
v∑

i=1

βη j fn+η j

⎞

⎠ + h2γkgn+k + h3ζkτn+k (3)

where h is the stepsize, k = 2 is the step number, v = 2 is the number of off-points, ηi,
i = 1, 2 are rational number, β j , βη j , γk , and ζk are unknown coefficients that must be
determined.

The rest of the paper is presented as follows: in Sect. 2, we discuss the basic idea behind
the method and obtain a continuous representation Y (t) for the exact solution y(t) which is
used to generate members of the block method for solving (1). In Sect. 3, we present the
analysis of newly developed two step third derivative hybrid block method. In Sect. 4, we
show the accuracy of our method. Finally, in Sect. 5 we present some concluding remarks.

2 Derivation of the method

In order to obtain (3), we proceed by seeking an approximation of the exact solution y(t) by
assuming a continuous solution Y (t) of the form

Y (t) =
3k+1∑

j=0

b jϕ j (t) (4)

where t ∈ (t0, Tn), b j are unknown coefficients to be determined, ϕ j (t) are polynomial basis
functions of degree 3k + 1. Since this polynomial must pass through the interpolation points
[tn+k−1, yn+k−1] and the collocation points [tn, yn), (tn+1, yn+1), . . . (tn+k, yn+k]we require
that the following (3k + 2) equations must be satisfied.
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7∑

j=0

b j t
j = yn+i , i = 1 (5)

7∑

j=0

b j j t
j−1
n+i = fn+i , i = 0,

1

2
, 1,

3

2
, 2 (6)

7∑

j=0

b j j ( j − 1)t j−2
n+i = gn+i , i = k (7)

7∑

j=0

b j j ( j − 1)( j − 2)t j−3
n+i = τn+i , i = k (8)

Equations (5), (6), (7) and (8) lead to a system of eight equations which is solved to obtain
the coefficients b j and are then substituted into (2). After some algebraic simplification the
continuous representation of the third derivative hybrid method is obtained in the form

Y (t) = yn+k−1 + h

⎛

⎝
k∑

j=0

β j (t) fn+ j + βη j (t) fn+η j

⎞

⎠ + h2γk(t)gn+k + h3ζk(t)τn+k

(9)

where β j (t), j = 0, 1, 2, βη j (t), η j = i
2 , i = 1, 3, γk(t), and ζk(t), are continuous coeffi-

cients k is the step number, and h is the chosen step-length.We assume that yn+ j = Y (tn+ jh)

is the numerical approximation to the analytical solution y(tn+ j ), y′
n+ j = f (tn+ j , yn+ j ) is

an approximation to y′(tn+ j ), y′
n+η j = f (tn+η j , yn+η j ) is an approximation to y′(tn+η j ),

gn+k = d f
dt (tn+k, y(tn+k)), and τn+k = d2 f

dt2
(tn+k, y(tn+k)).

The same continuous method (9) is then used to generate the main method by evaluating
(9) at t = (tn, tn+2) and additional methods at t = (tn, tn+ 1

2
, tn+1), and t = (tn+ 3

2
) to yield

yn+2 = yn+1 + h

1120
fn − 32h

2835
fn+ 1

2
+ 43h

210
fn+1 + 64h

105
fn+ 3

2
+ 17791h

90720
fn+2

−17h2

3024
gn+2 − h3

1008
τn+2 (10)

yn = yn+1 − 493h

3360
fn − 736h

945
fn+ 1

2
+ 9h

70
fn+1 − 64h

105
fn+ 3

2
+ 12293h

30240
fn+2

−139h2

1008
gn+2 + 5h3

336
τn+2 (11)

yn+ 1
2

= yn+1 + 47h

17920
fn − 4387h

22680
fn+ 1

2
− 1499h

3360
fn+1 + 269h

840
fn+ 3

2
− 270113h

1451520
fn+2

+2887h2

48384
gn+2 − 97h3

16128
τn+2 (12)

yn+ 3
2

= yn+1 + 59h

53760
fn − 101h

7560
fn+ 1

2
+ 243h

1120
fn+1 + 361h

840
fn+ 3

2
− 65059h

483840
fn+2

+629h2

16128
gn+2 − 19h3

5376
τn+2 (13)

The block hybrid method is then implemented by simultaneously applying (10), (11),
(12), and (13) to provide the approximate solution yn ,yn+ 1

2
, yn+1, yn+ 3

2
, yn+2, for n =

0, k, 2k, . . . , N − k on the partition [t0, t2, t4, . . . , tN−2, tN ].
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3 Analysis of the two step third derivative hybrid block method

In this section, we discuss the local truncation error and order, consistency, zero-stability,
and convergence of the two step third derivative hybrid block method.

3.1 Local truncation error and order

Following Fatunla [21] and Lambert [22] we define the local truncation error associated with
(3) to be the linear difference operator.

L[y(t); h] =
k∑

j=0

α j y(t + jh) − h
k∑

j=0

β j y
′(t + jh)

−h
v∑

j=1

βη j y
′(t + η j) − h2γk y

′′(t + kh) − h3ζk y
′′′(t + kh) (14)

Assuming that y(t) is sufficiently differentiable, we can expand the terms in (10) as a Taylor
series expansion about the point t to obtain the expression

L[y(t); h] = C0y(t) + C1y
′(t) + · · · + Csh

s y(s)(t) + . . . ,

where the constant coefficients Cs, s = 0, 1, . . . are given as follows:

C0 =
k∑

j=0

α j

C1 =
k∑

j=1

jα j −
k∑

j=0

β j −
v∑

j=1

βη j

C2 = 1

2!

⎛

⎝
k∑

j=1

j2α j − 2

⎛

⎝
k∑

j=0

jβ j

⎞

⎠ −
v∑

j=1

η jβη j

⎞

⎠ − γk

C3 = 1

3!

⎛

⎝
k∑

j=1

j3α j − 3
k∑

j=0

j2β j − 3
v∑

j=1

η j2βη j

⎞

⎠ − kγk − ζk

C4 = 1

4!

⎛

⎝
k∑

j=1

j4α j − 4
k∑

j=0

j3β j − 4
v∑

j=1

η j3βη j

⎞

⎠ − 1

2!k
2γk − kζk

...

Cp = 1

p!
k∑

j=1

j pα j − 1

(p − 1)!
k∑

j=0

j p−1β j

− 1

(p − 1)!
v∑

j=1

η j p−1βη j − 1

(p − 2)!k
p−2γk − 1

(p − 3)!k
p−3ζk

According to Henrici [1], the third derivative hybrid method (3) has order p if
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L[y(t); h] = O(h p+1), C0 = C1 = · · · = Cp = 0, Cp+1 �= 0 (15)

Therefore, Cp+1 is the error constant and Cp+1h p+1y(p+1)(tn) the principal local truncation
error at the point tn . It was established from our calculations that the block hybrid method
has high order (7, 7, 7, 7)T , and a relatively small error constants given as − 1

56448 ,
−197

43352064 ,
59

6286896000 ,
1

130977000 where T is a transpose

3.2 Zero-stability

The Eqs. (10), (11), (12) and (13) can be represented by a matrix finite difference equation
given by

A(1)Yω+1 = A(0)Yω + hB(1)Fω+1 + hB(0)Fωh
2D(1)Gω + h3E (1)UωFω (16)

where

Yω+1 = (yn+ 1
2
, yn+1, yn+ 3

2
, yn+2)

T , Yω = (yn− 3
2
, yn−1, yn− 1

2
, yn)

T ,

Fω+1 = ( fn+ 1
2
, fn+1, fn+ 3

2
, fn+2)

T , Fω = ( fn− 3
2
, fn−1, fn− 1

2
, fn)

T ,

Gω+1 = (gn+ 1
2
, gn+1, gn+ 3

2
, . . . , gn+2)

T , Uω+1 = (τn+ 1
2
, τn+1, τn+ 3

2
, τn+2)

T ,

for ω = 0, . . . and n = 0, k, . . . , N − k.
And the matrices A(1), A(0), B(1), B(0), D1 and E (1) are 4 by 4 matrices whose entries are
given by:

A(1) =

⎛

⎜⎜⎜⎜⎜⎝

1 −1 0 0

0 −1 0 0

0 −1 1 0

0 −1 0 1

⎞

⎟⎟⎟⎟⎟⎠

A(0) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 −1

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

B(1) =

⎛

⎜⎜⎜⎜⎜⎝

− 4387
22680 − 1499

3360
269
840 − 270113

1451520

− 736
945

9
70 − 64

105
12293
30240

− 101
7560

243
1120

361
840 − 65059

483840

− 32
2835

43
210

64
105

17791
90720

⎞

⎟⎟⎟⎟⎟⎠
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B(0) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 97
17920

0 0 0 − 493
3360

0 0 0 59
53760

0 0 0 1
1120

⎞

⎟⎟⎟⎟⎟⎠

D(1) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 2887
48384

0 0 0 − 139
1008

0 0 0 629
16128

0 0 0 − 17
3024

⎞

⎟⎟⎟⎟⎟⎠

E (1) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 − 97
16128

0 0 0 5
336

0 0 0 − 19
5376

0 0 0 − 1
1008

⎞

⎟⎟⎟⎟⎟⎠

The zero stability of the methods in (16) are determined as the limit h tends to zero. Thus
as h → 0 the method (11) tends to the difference system

A(1)Yω+1 − A(0)Yω

which is normalized to obtain the first characteristic polynomial ρ(R) given by

ρ(R) = det (A(1)R − A(0)) = R3(1 − R) (17)

Following Fatunla [21], the block method (16) is zero-stable, since from (14), ρ(r) = 0
satisfies |R j | ≤ = 1, j = 1, . . . , 5, and for those roots with |R j | = 1, the multiplicity does
not exceed 1. We note that the single members of the block method are not zero-stable, but
this property is gained when the methods are combined as numerical integrators in the block
form (16).

3.3 Consistency and convergence

The block method (16) is consistent since each of the integrators has orderm > 1. According
toHenrici [1], convergence= consistency+ zero-stability.Hence the two step third derivative
hybrid block method is convergent.

3.4 Stability analysis

The linear stability properties of the newly derived methods are determined by expressing
them in the form (16) and applying them to the test problems y′ = λy, y′′ = λ2y, y′′′ = λ3y,
λ < 0 to yield

Yω+1 = M(z)Yω, z = λh, (18)

where the amplification matrix M(z) is given by

M(z) = (A(1) − zB(1) − z2D1 − z3E1)−1(A(0) + zB0) (19)
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Fig. 1 Stability region

Definition Amethod is said to be A-stable if (i) all z ∈ C
−, M(z) has a dominant eigenvalue

max such that |max | ≤ 1. More so, since max is a rational function, the real part of the
zeros ofmax must be negative, while real part of the poles ofmax must be positive; (ii)A0-
stable if for all z ∈ � ⊂ C

− M(z) has a dominant eigenvalue max such that |max | ≤ 1;
(iii) L0-stable if it is A0-stable and limz→−∞ max = 0; (iv) L-stable if it is A-stable and
limz→−∞ max = 0

The matrix M(z) has eigenvalues {1,23 and {4} = {0, 0, 0,4} where the domi-
nant eigenvalue 4 is the stability function R(z) : C → C which is a rational function with
real coefficients given by

4(z) = 3(1680 + 1200z + 350z2 + 50z3 + 3z4)

5040 − 6480z + 3930z2 − 1470z3 + 369z4 − 62z5 + 6z6

with the zeros of 4(z) denoted with squares having negative real part and the poles denoted
with plus signs having positive real part.

Remark Clearly, from Fig. 1, it is obvious that the new method is not A-stable but L0-stable
since from the above definition the method is A0-stable and limz→−∞ max = 0.

4 Implementation

Method (16) is in block form and is applied in a block-by-block fashion. This is enhanced
by the availability of the continuous representation (7), which generates a main discrete
hybrid method and three additional methods, which are combined and used as a block
method to simultaneously produce approximations [y 1

2
, y1, y 3

2
, y2] for the solution of (1)

at points [t 1
2
, t1, t 3

2
, t2] in the first block. The new method is implemented more efficiently

by combining the hybrid methods as simultaneous integrators for IVPs without requir-
ing starting values and predictors. We proceed by explicitly obtaining initial conditions at
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Table 1 Computed values of error = |y(t) − y|, at t = 10, using TDHBM for Example 5.1

h ς = −10 ς = −1000

Errory1 Errory2 Errory1 Errory2

0.1 4.280 × 10−14 2.973 × 10−14 1.196 × 10−13 1.196 × 10−13

0.05 3.802 × 10−16 1.966 × 10−16 1.005 × 10−15 1.005 × 10−15

0.025 3.196 × 10−18 1.304 × 10−18 8.170 × 10−18 8.171 × 10−18

0.0125 2.596 × 10−20 9.039 × 10−21 6.514 × 10−20 6.515 × 10−20

tn+2, n = 0, 2, . . . , N − 2 using the computed values Y (tn+2 = yn+2) over sub-intervals
([t0, t2], . . . , [tN−2, tN ]).

We summarize the process as follows: On the partition
πN : a = t0 < t1 < · · · < tn < tn+1 < · · · < tN = b
h = tn+1 − tn, n = 0, 1, . . . , N − 1

Step 1: Choose N , for k = 2, h = (b−a)/N , the number of blocks � = N/2. Using (11),
n = 0, = 0, the values of [y 1

2
, y1, y 3

2
, y2]T are simultaneously obtained over

the sub-interval [t0, t2] as y0 is known from the IVPs (1).
Step 2: For n = 2, = 1, the values of [y 5

2
, y3, y 7

2
, y4]T are simultaneously obtained

over the sub-interval [t2, t4], as y2 is known form the previous block.
Step 3: The process is continued for n = 4, . . . , N − 2 and  = 2, . . . , � to obtain

approximate solutions to (1) on sub-intervals [t4, t6], . . . , [tN−2, tN ].
Hence, the sub-intervals do not over-lap and the solutions obtained in thismanner aremore

accurate than those obtained in the conventional fashion. We note that for linear problems,
we solve the IVPs directly from the start with Gaussian elimination using partial pivoting
and for nonlinear problems, we use a modified NewtonRaphson method (Table 1).

5 Numerical examples

Example 5.1 Our first example is the non-linear problem.

y′
1 = −2y1 + y2 + 2Sin(t), y1 = 2

y′
2 = −(ς + 2)y1 + (ς + 1)(y2 + Sin(t) − Cos(t)), y2 = 3

With general solution of the system given by

y1(t) = χ1exp(−t) + χ2exp(ς t) + Sin(t)

y2(t) = χ1exp(−t) + χ2(ς + 2)exp(ς t) + Cos(t)

where χ1 and χ2 are arbitrary constants. This system has also been solved in ([22,23]), with
ς = −3 and−1000 in [22] using classical two step BDFmethod of order 2 and ς = −10 and
−1000 in [23] using exponentially fitted BDF method of order 3 with the aim of illustrating
the phenomenon of stiffness and the numerical consequences of it.The reason is that, if the
initial conditions are y1(0) = 2 and y2(0) = 3, the constants χ1 and χ2 get the values χ1 = 2
and χ2 = 0 and therefore the exact solution becomes independent of ς . The interval [0, 10]
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Table 2 Computed values of
Maxerror = Max |y(t) − y|,
using TDHBM for Example 5.1

h ς = −10 ς = −1000

MaxError ROC MaxError ROC

0.1 1.281 × 10−12 – 1.307 × 10−12 –

0.05 9.604 × 10−15 7.05 9.821 × 10−15 7.05

0.025 7.358 × 10−17 7.02 7.521 × 10−17 7.02

0.0125 5.690 × 10−19 7.15 5.817 × 10−19 7.15

Table 3 Absolute errors = |yi (T ) − yi | at end point T = 10 for Example 5.2

T BBDF8 p = 8 T DBHM p = 7

Erry1 Erry2 Erry1 Erry2

10 4.18 × 10−13 2.09 × 10−13 1.53 × 10−15 7.64 × 10−16

was considered and the stepsizes used were h = 1
10 ,

1
20 and 1

40 . In Table 2 we give the
absolute errors from the methods at t = 10, for ς = −10 (a nonstiff case) and ς = −1000 (a
stiff case). Comparison will not be fair as both the classical method and exponential method
are of order 2 and 3 while the new hybrid method is of order 7. The results show that the
method performs well and from Table 2 the rate of convergence is consistent with the order
of the method, irrespective of whether the system is stiff or not.

Example 5.2 Next, we consider a well known classical system see [5,24] in the range 0 ≤
t ≤ 10

y′
1 = 998y1 + 1998y2, y1(0) = 1

y′
2 = −999y1 − 1999y2, y2(0) = 1

Its exact solution is given by the sum of two decaying exponentials components

y1 = 4e−t − 3e−1000t

y2 = −2e−t + 3e−1000t ,

The stiffness ratio is 1 : 1000. In Table 3, we present result for BBDF8 inAkinfenwa et al. [5]
and the new T DBHM at the end point T = 10 using the step length h = 0.1. The TDBHM
of order seven performs better than BBDF8 of order eight

Example 5.3 Next, we consider the non-linear system see ([25,26]) in the range 0 ≤ t ≤ 10

y′
1 = λy1 + y22 , y1(0) = −1

λ + 2
y′
2 = −y2, y2(0) = 1

where λ = 10,000. The exact solution is:

y1 = −e−2t

λ + 2
,

y2 = e−t
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Table 4 Comparison of results for Example 5.3

t SDMM [26] at h = 0.0001 TDBHM at h = 0.01 TDBHM at h = 0.1

Error(y1) 3 2.478147 × 10−11 3.146086 × 10−25 1.337807 × 10−17

Error(y2) 3 2.471093 × 10−6 1.916685 × 10−20 2.981299 × 10−13

Error(y1) 5 3.450271 × 10−14 1.394823 × 10−24 2.945373 × 10−18

Error(y2) 5 2.304573 × 10−8 3.126055 × 10−20 1.788161 × 10−13

Error(y1) 10 3.456372 × 10−18 4.239569 × 10−27 3.823273 × 10−20

Error(y2) 10 3.150734 × 10−10 3.146622 × 10−21 2.837687 × 10−14

Table 5 Absolute errors = |yi (T ) − yi | at end points T = 5, 40, 70 at = 0.01 for Example 5.4

T Method 3.2 in [27] p = 8 Method 3.4 in [27] p = 11 TDBHM p = 7

Erry1 Erry2 Erry1 Erry2 Erry1 Erry2

5 4.8198 × 10−5 1.0083 × 10−1 2.3725 × 10−7 8.8134 × 10−1 4.8511 × 10−17 6.4681 × 10−9

40 8.1806 × 10−9 1.0908 × 10−1 2.2033 × 10−9 2.9378 × 10−1 5.8782 × 10−18 7.8377 × 10−10

70 8.7510 × 10−9 1.1668 × 10−1 8.593 × 10−10 1.1456 × 10−1 4.0277 × 10−18 5.3703 × 10−10

100 9.361 × 10−9 1.2482 × 10−1 3.351 × 10−10 4.4677 × 10−2 5.3649 × 10−19 7.1532 × 10−11

We compare the results in [26] which uses second derivation method in predictor corrector
mode at h = 0.0001 with the results obtained using the new TDBHM at h = 0.1 and 0.01 at
different values of t . The table shows that the new TDBHM obtained superior results than
those of [26] even with larger step size h.

Example 5.4 The next example is a highly stiff system see ([27]).

y′
1 = −107y1 + 0.075y2, y1(0) = 1

y′
2 = 7500y1 − 0.075y2, y2(0) = −1

The eigenvalues of the Jacobian of the system are approximately λ1 =
−1.000000000562500 × 106 and λ2 = −0.0743749995813. This problem has been solved
[27]. The result of the new method of order seven is compared with that of Yakubu and
Markus [27] using second derivative method of order eight and eleven as displayed in the
Tables 4 and 5 below.

Example 5.5 Next is the chemistry problem which has been solved by Gear [28], Cash [29],
and Yakubu [27],

y′
1 = −0.013y1 − 1000y1y3, y1(0) = 1

y′
2 = −2500y2y3, y2(0) = 1

y′
1 = −0.013y1 − 1000y1y3 − 2500y2y3, y3(0) = 0

This problem was solved in the interval 0 ≤ t ≤ 50 using the new TDBHM and the
result is presented in the Fig. 2 with the numerical value h = 0.001 at the end point T =
10, 20, 30, 40, 50 presented in the Table 6 below.
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Fig. 2 Graphical solution to Example 5.5

Table 6 Result at end points T = 10, 20, 30, 40, 50 for Example 5.5

T TDBHM

y1 y2 y3

10 0.9091683236263698 1.090828425973842 −3.2503998003423745 × 10−6

20 0.8229824068833479 1.177014751859257 −2.841257419894874 × 10−6

30 0.7421209848178718 1.2578765330436872 −2.4821384719855023 × 10−6

40 0.6669652093244602 1.3330326227856673 −2.167889909722385 × 10−6

50 0.5976546980645232 1.4023434085489979 −1.8933865404310407 × 10−6

Table 7 A comparison of
methods for number of correct
digits �, T = 100, and φ = 10
for Example 5.6

h M(7, r7) p = 7 T DBHM p = 7

4/5 2.90 6.7

2/5 4.74 9.04

1/5 6.96 10.34

1/10 8.13 13.01

1/20 9.77 13.81

1/40 10.83 13.57

Example 5.6 Finally is the problem whose Jacobian matrix J has purely imaginary eigenval-
ues on the range 0 ≤ t ≤ T

y′
1 = −φy2 + (1 + φ)Cos(t), y1(0) = 0

y′
2 = αy2 − (1 + η)Sin(t), y2(0) = 1

With exact solution of the system given by y1 = sin(t), y2 = cos(t) For any value of the
parameter η. Thus, the jacobian J has the following expression

J =
(
0 −φ

φ 0

)

the eigenvalues −iφ, iφ.
We compare ourmethodwith that of [30] for the correct digit� = − log10 (

||yi (T )−yn,i ||∞
||yn,i ||∞ )

at the end of the interval for various values of h as shown in Table 7.
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6 Conclusion

A two step Third derivative hybrid method is proposed and used together with additional
methods in the block form (13) to simultaneously solve (1). The methods are implemented
without the need for starting values or predictors and hence complicated subroutines are
avoided. The efficiency of the methods have been demonstrated on both linear and non-
linear stiff systems of initial value problems. Details of the numerical results are displayed
in Tables 1, 2, 3, 4 and 5.

References

1. Henrici, P.: Discrete Variable Methods in ODEs. Wiley, New York (1962)
2. Jackson, L.W., Kenue, S.K.: A fourth order exponentially fitted method. SIAM J. Numer. Anal. 11,

965–978 (1974)
3. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)
4. Akinfenwa, A., Yao, N.M., Jator, S.N.: A Self Starting Block Adams Methods for solving stiff Ordi-

nary Differential Equation. In: The 14th IEEE International Conference on Computational Science and
Engineering CSE/I-SPAN/IUCC, pp. 127–136 (2011)

5. Akinfenwa, O., Jator, S., Yoa, N.: Eight order backward differentiation formula with continuous coeffi-
cients for stiff ordinary differential equations. Int. J. Math. Comput. Sci. 17(4), 172–176 (2011)

6. Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A continuous hybridmethod for solving parabolic PDEs. AMSE
J. Adv. Model. A Gen. Math. 48, 17–27 (2011)

7. Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A seventh-order hybrid multistep integrator for second order
ordinary differential equations far east. J. Math. Sci. 56(1), 43–56 (2011)

8. Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A linear multistep hybrid methods with continuous coefficient
for solving stiff ordinary differential equation. J. Mod. Math. Stat. 5, 47–53 (2011)

9. Akinfenwa, O.A., Jator, S.N., Okunuga, S.A., Sofoluwe, A.B.: A one step hybrid multistep method with
two off-step points for solution of second order ordinary differential equations. Int. J. Comput. Appl.
Math. 7(3), 235–247 (2012)

10. Gear, C.W.: Hybrid methods for initial value problems in ordinary differential equations. SIAM J. Numer.
Anal. 2, 69–86 (1965)

11. Gragg, W., Stetter, H.J.: Generalized multistep predictor-corrector methods. J. Assoc. Comput. Mach. 11,
188–209 (1964)

12. Butcher, J.C.:Amodifiedmultistepmethod for the numerical integration of ordinary differential equations.
J. Assoc. Comput. Mach. 12, 124–135 (1965)

13. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1973)
14. Kohfeld, J.J., Thompson, G.T.: Multistep methods with modified pre- dictors and correctors. J. Assoc.

Comput. Mach. 14, 155–166 (1967)
15. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J.

Numer. Anal. 11, 321–331 (1974)
16. Gupta, G.K.: Implementing second-derivative multistep methods using Nordsieck polynomial represen-

tation. Math. Comp. 32, 13–18 (1978)
17. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, New York (1996)
18. Cash, J.R.: On the exponential fitting of composite multiderivative linear multistep methods. SIAM J.

Numer. Anal. 18, 808–821 (1981)
19. Onumanyi, P., Awoyemi, D.O., Jator, S.N., Sirisena, U.W.: New linear mutlistep methods with continuous

coefficients for first order initial value problems. J. Nig. Math. Soc. 13(1994), 37–51 (1994)
20. Sarafyan, D.: Multistep methods for the numerical solution of ordinary differential equations made self-

starting. Tech. Report 495, Math. Res. Center, Madison (1965)
21. Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)
22. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, New York (1991)
23. Ixaru, L.G., Berghe, G.V., DeMeyer, H.: Frequency evaluation in exponential fitting multistep algorithms

for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)
24. Baker, C.T.H., Keech, M.S.: Stability regions in the numerical treat- ment of Volterra integral equations.

SIAM J. Numer. Anal. 15, 394–417 (1978)

123



Third derivative hybrid block integrator... 641

25. Gamal, A.F.I., Ibrahim, I.H.: A new higher order effective P-C methods for stiff systems. Math. Comput.
Simul. 47, 541–552 (1998)

26. Khalsaraei, M.M., Oskuyi, N.N., Hojjati, G.: A class of second derivative multistep methods for stiff
systems. Acta Universitatis Apulensis 30, 171–188 (2012)

27. Yakubu,D.G.,Markus, S.: Second derivative of high-order accuracymethods for the numerical integration
of stiff initial value problems. Afr. Mat. doi:10.1007/s13370-015-0389-5

28. Gear, C.W.: The automatic integration of stiff ordinary differential equations. Inf. Process. 68, 187–193
(1969)

29. Cash, J.R.: Second derivative extended backward differentiation formulas for numerical integration of
stiff systems. SIAM J. Numer. Anal. 18(1), 21–36 (1981)

30. Chartier, P.: L-Stable parallel one-block methods for ordinary differential equations. SIAM J. Numer.
Anal. 31, 552–571 (1994)

123

http://dx.doi.org/10.1007/s13370-015-0389-5

	Third derivative hybrid block integrator for solution of stiff systems of initial value problems
	Abstract
	1 Introduction
	2 Derivation of the method
	3 Analysis of the two step third derivative hybrid block method
	3.1 Local truncation error and order
	3.2 Zero-stability
	3.3 Consistency and convergence
	3.4 Stability analysis

	4 Implementation
	5 Numerical examples
	6 Conclusion
	References




