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This paper presents a three-dimensional geometric optimisation of cooling channels in forced convection
of a vascularised material with the localised self-cooling property subjected to a heat flux. A square con-
figuration was studied with different porosities. Analytical and numerical solutions were provided. The
geometrical configuration was optimised in such a way that the peak temperature was minimised at
every point in the solid body. The optimisation was subject to the constraint of a fixed global volume
of solid material, but the elemental volume was allowed to morph. The solid material was subject to a
heat flux on one side and the cooling fluid was forced through the channels from the opposite direction
with a specified pressure difference. The structure had three degrees of freedom as design variables: the
elemental volume, channel hydraulic diameter and channel-to-channel spacing. A gradient-based opti-
misation algorithm was used to determine the optimal geometry that gave the lowest thermal resistance.
This optimiser adequately handled the numerical objective function obtained from numerical simula-
tions of the fluid flow and heat transfer. The numerical results obtained were in agreement with a theo-
retical formulation using scale analysis and the method of intersection of asymptotes. The results
obtained show that as the pressure difference increases, the minimised thermal resistance decreases.
The results also show the behaviour of the applied pressure difference on the optimised geometry. The
use of the optimiser made the numerical results to be more robust with respect to the optimum internal
configurations of the flow systems and the dimensionless pressure difference.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Material with the property of self-healing and self-cooling is
becoming more promising in heat transfer analysis [1–7]. The
development of vascularisation of materials indicates flow archi-
tectures that conduct and circulate fluids at every point within
the solid body. This solid body (slab) may be performing or expe-
riencing mechanical functions such as mechanical loading, sensing
and morphing. The self-cooling ability of vascularised material to
bathe volumetrically at every point of a solid body gave birth to
the name ‘‘smart material’’. Constructal theory and design [8,9]
have been adopted as an optimisation technique for the develop-
ment of a procedure that is sufficiently allocating and optimising
a fixed global space constraint using a physical law (constructal
law). The method seeks to optimise the flow architecture that pre-
dicts the flow and thermal fluid behaviour in a structure that is
subject to a global volume constraint. Bejan [8,9] stated this law
as: For a finite-size system to persist in time (to live), it must evolve
ll rights reserved.
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in such a way that it provides easier access to the imposed (global)
currents that flow through it. In a smart material, constructal theory
ideally helps in the vascularisation of the smart material structure
by morphing the flow architecture configuration to provide easier
and greater access of flow through it.

The application of this theory started with Bejan and Sciubba
[10], who obtained a dimensionless pressure difference number
for optimal spacing from board to board of an array of parallel
plates to channel length ratio and a maximum heat transfer den-
sity, which can be fitted in a fixed volume in an electronic cooling
application using the method of intersection of asymptotes. The
applications of this theory have been reviewed [11,12] where, un-
der certain global constraints, the best architecture of a flow sys-
tem can be achieved with the one that gives less global flow
resistances, or allows high global flow access. In other words, the
shapes of the channels and the elemental structure that is subject
to global constraint are allowed to morph. The optimisation of heat
exchangers and multiscale devices by constructal theory has also
recently been reviewed and summarised by Reis [13] and Fan
and Luo [14].

Bello-Ochende et al. [15] conducted a three-dimensional opti-
misation of heat sinks and cooling channels with heat flux using
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Nomenclature

Ac cross-sectional area of the channel, m2

As cross-sectional area of the structure, m2

Be Bejan number
CP specific heat at constant pressure, J/kg K
dh hydraulic diameter, m
H structure height, m
h elemental height , m
hc channel height , m
i mesh iteration index
k thermal conductivity, W/mK
L axial length, m
N number of channels
n normal
P pressure, Pa
q00 heat flux, W/m2

R thermal resistance
s channel spacing, m
T temperature, �C
u velocity, m/s
~u velocity vector, m/s
V global structure volume, m3

vc channel volume, m3

vel elemental volume, m3

W structure width, m
w elemental width, m

wc cooling channel width, m
x, y, z Cartesian coordinates, m

Greek symbols
a thermal diffusivity, m2/s
l viscosity, kg/m s
q density, kg/m3

@ differential
1 far extreme end, free stream
/ porosity
D difference
r differential operator
c convergence criterion

Subscripts
f fluid
in inlet
max maximum, peak
min minimum
opt optimum
r ratio
s solid
w wall
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Fig. 1. Three-dimensional parallel square channels across a slab with heat flux from
one side and forced flow from the opposite side.
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scale analysis and the intersection of asymptotes method based on
constructal theory to investigate and predict the design and opti-
misation of the geometric configurations of the cooling channels.
Rocha et al. [16] and Biserni et al. [17] applied the theory to opti-
mise the geometry of C- and H-shaped cavities respectively that in-
trude into a solid conducting wall in order to minimise the thermal
resistance between the solid and the cavities, Lorenzini et al. [18]
used the theory to minimise the thermal resistance between the
solid and the cavities by optimising the geometry of isothermal
cavities that evolve from T- and Y-shaped of a solid conducting
wall.

Cho et al. [19] numerically investigated the flow and thermal
behaviour of vascular cooling plate for the volumetric bathing of
the smart structures. Constructal theory applications on the vascu-
larisation revolution of smart materials can also be found in open
literature [20–25]. Also, the constructal theory for optimisation
of several components and systems in engineering applications
has been extensively discussed and documented in the literature
[26–29].

The recent comment by Meyer [30] on the latest review of con-
structal theory by Bejan and Lorente [31] shows that the applica-
tion of constructal law in all fields of educational design is a
wide road to future advances.

This paper is borne out of the work of Kim et al. [7], who theo-
retically and numerically analysed vascularised materials with
heating from one side and coolant forced from the other side for
parallel plates and cylindrical channel configurations in an attempt
to find the channel configurations that minimised the non-uniform
temperature distribution of a vascularised solid body. This paper
focuses on the mathematical optimisation of laminar forced con-
vection heat transfer through a vascularised solid with square
channels. It examines the optimisation of a fixed and finite global
volume of solid material with an array of square cooling channels,
with a uniform heat flux from one side. The objective is the build-
ing of a smaller construct to form part of a larger construct body
with a self-cooling function that will lead to the minimisation of
the global thermal resistance or, inversely, the maximisation of
the heat transfer rate density (the total heat transfer rate per unit
volume). This is achieved by designing the body in a vascularised
manner and by forcing a coolant to the heated spot in a fast and
efficient way so as to significantly reduce the peak temperature
at any point inside the volume that needs cooling. The solution
of Kim et al. [7] will be used as comparison for the results reported
in this paper.

2. Computational model

The schematic diagram of the physical configuration is shown
in Fig. 1. The system consists of a solid body of fixed global volume,
V, which is heated with uniform heat flux q00 on the left side. The
body is cooled by forcing a single-phase cooling fluid (water) from
the right side through the parallel cooling channels. The flow is dri-
ven along the length L, of the square channel (wc = hc) with a fixed
pressure difference DP, in a transverse and counter-direction to the
heat flux. An elemental volume shown in Fig. 2 consisting of a cool-
ing channel and the surrounding solid was used for analysis be-
cause of the assumption of the symmetrical heat distribution on
the left side of the structure. The heat transfer in the elemental vol-
ume is a conjugate problem, which combines heat conduction in
the solid and the convection in the working fluid.
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Fig. 2. The boundary conditions of the three-dimensional computational domain of
the elemental volume.

Fig. 3. A section of the discretised 3-D computational domain of the elemental
solid–fluid volume considered for the simulation.
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2.1. Design variables

In Fig. 2, an elemental volume, vel constraint is considered to be
composed of an elemental cooling channel of hydraulic diameter dh

(dh = wc = hc). The surrounding solid of thickness s spacing between
channels) is defined as:

w ¼ h ð1Þ

The elemental volume is:

vel ¼ w2L ð2Þ

and the width of an elemental volume is:

w ¼ dh þ s ð3Þ

Therefore, the number of channels in the structure arrangement can
be defined as:

N ¼ HW

ðdh þ sÞ2
ð4Þ

and the void fraction or porosity of the unit structure can be defined
as:

/ ¼ vc

vel
¼ dh

w

� �2

ð5Þ

The fundamental problem under consideration is the numerical
optimisation of the channel hydraulic diameter, dh, and the channel
spacing, s, which corresponds to the minimum resistance of a fixed
volume for a specified pressure drop. The optimisation is evaluated
from the analysis of the extreme limits of 0 6 dh 61 and the ex-
treme limits of 0 6 s 61. The optimal values of the design vari-
ables within the prescribed interval of the extreme limits exhibit
the minimum thermal resistance.

The temperature distribution in the elemental volume was
determined by solving the equation for the conservation of mass,
momentum and energy numerically. A section of the discretised
three-dimensional computational domain of the elemental volume
is shown in Fig. 3. The cooling fluid was water, which was forced
through the cooling channels by a specified pressure difference,
DP, across the axial length of the structure. The fluid is assumed
to be in single phase, steady and Newtonian with constant proper-
ties. Water as fluid is more promising than air, because air-cooling
techniques are not likely to meet the challenge of high heat dissi-
pation in electronic packages [32,33]. The governing differential
equations used for the fluid flow and heat transfer analysis in the
elemental volume of the structure are:

r �~u ¼ 0 ð6Þ

qð~u � r~uÞ ¼ �rP þ lr2~u ð7Þ

qf CPf ð~u � rTÞ ¼ kfr2T ð8Þ
The energy equation for the solid part of the elemental volume can
be written as:

ksr2T ¼ 0 ð9Þ

The continuity of the heat flux at the interface between the solid
and the liquid is given as:

ks
@T
@n

����
w

¼ kf
@T
@n

����
w

ð10Þ

A no-slip boundary condition is specified for the fluid at the wall of
the channel,

~u ¼ 0 ð11Þ

At the inlet (z = L),

ux ¼ uy ¼ 0 ð12Þ

T ¼ T in ð13Þ

P ¼ Beal
L2 þ Pout ð14Þ

where, the Bejan number [34,35], Be, is the dimensionless pressure
difference and given as:

Be ¼ DPL2

laf
ð15Þ

and

af ¼
kf

qf CPf
ð16Þ

At the outlet (z = 0), the pressure is prescribed as zero normal stress

Pout ¼ 1 atm ð17Þ

At the left side of the wall, the thermal boundary condition that is
imposed is assumed to be:

q00 ¼ ks
@T
@z

ð18Þ
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at the solid boundaries, the remaining outside walls and the plane
of symmetry were modelled as adiabatic as shown in Fig. 2

rT ¼ 0 ð19Þ

The measure of performance is the minimum global thermal resis-
tance, which could be expressed in a dimensionless form as:

Rmin ¼
kf ðTmax � T inÞmin

q00L
ð20Þ

and it is a function of the optimised design variables and the peak
temperature

Rmin ¼ f ðdhopt ;velopt ; Tmaxmin
Þ ð21Þ

Rmin is the minimised thermal resistance for the optimised design
variables. The inverse of Rmin is the optimised overall global thermal
conductance.The effect of material properties later be taken into
consideration by the ratio of the thermal conductivities

kr ¼
ks

kf
ð22Þ
CFD simulation 
converged?
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data and results processing
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Fig. 4. Flow chart of numerical simulation.

Table 1
Grid independence study with dh = 400 lm and / = 0.2 for Be = 108.

Number of nodes Number of cells Tmax c ¼ jðTmaxÞiðTmaxÞi�1 j
jTmax Þi j

5456 3675 33.09371 –
8718 5952 32.79123 0.009194
15,005 11,200 32.772 0.000587
26,609 20,160 32.67453 0.002983
3. Numerical procedure, grid analysis and code validation

The simulation work began by fixing the length of the channel,
prescribed pressure difference, porosity, heat flux and material
properties and we kept varying values of hydraulic diameter of
the channel in order to identify the best (optimal) internal config-
uration that minimised the peak temperature. The numerical solu-
tion of the continuity, momentum and energy Eqs. (6)–(9) along
with the boundary conditions (10)–(19) was obtained by using a
three-dimensional commercial package Fluent™ [36], which em-
ploys a finite volume method. The details of the method are m ex-
plained by Patankar [37]. Fluent™ was coupled with the geometry
and mesh generation package Gambit [38] using MATLAB [39] to
allow the automation and running of the simulation process. After
the simulation had converged, an output file was obtained
containing all the necessary simulation data and results for the
post-processing and analysis. The computational domain was
discretised using hexahedral/wedge elements. A second-order
upwind scheme was used to discretise the combined convection
and diffusion terms in the momentum and energy equations. The
SIMPLE algorithm was then employed to solve the coupled pres-
sure–velocity fields of the transport equations. A flow chart repre-
senting the numerical procedure is shown in Fig. 4. The solution is
assumed to have converged when the normalised residuals of the
mass and momentum equations fall below 10�6 and while the
residual convergence of energy equation was set to less than
10�10. The number of grid cells used for the simulations varied
for different elemental volume and porosities. However, grid inde-
pendence tests for several mesh refinements were carried out to
ensure the accuracy of the numerical results. The convergence cri-
terion for the overall thermal resistance as the quantity monitored
was:

c ¼
jðTmaxÞi � ðTmaxÞiþ1j

jðTmaxÞij
6 0:01 ð23Þ

where i is the mesh iteration index. The mesh was more refined as i
increases. The i � 1 mesh was selected as a converged mesh when
the criterion (23) was satisfied.

Table 1 shows the grid independence test performed for the
case where dh = 400 lm and / = 0.2 for Be = 108. Computational
cell densities of 3675, 5952, 11,200 and 20,160 were used for the
grid independence test. Almost identical results were predicted
when 5952 and 11,200 cells were used. Therefore, a further in-
crease in the cell density beyond 11,200 has a negligible effect
on the results.

The validation of the numerical simulation was carried out by
comparing the present simulation with that of Kim et al. [7] for a
cylindrical configuration as shown in Fig. 5 for the case where /
= 0.1 and kr = 10. The curves were found to be similar in trend
and the solutions were in good agreement with a deviation of less
than 7%.
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4. Numerical results

In this section, we present results for the case when the channel
hydraulic diameter (or channel width/height) was in the range
of 0.1 mm to 1.5 mm and the porosities ranged between
0:1 6 / 6 0:3 and a fixed length of L = 10 mm and fixed applied
dimensionless pressure differences of Be = 108. The thermal con-
ductivity of the solid structure (stainless steel) was 16.27 W/m K;
and the heat flux supplied at the left wall was 100 kW/m2. The
thermophysical properties of water [40] used in this study were
based on water at 300 K and the inlet water temperature was fixed
at this temperature.

Figs. 6 and 7 show the existence of an optimum hydraulic diam-
eter and elemental volume size in which the peak temperature is
minimised at any point in the channel for the square configuration
studied. Fig. 6 shows the peak temperature as a function of the
channel hydraulic diameter. It shows that there exists an optimal
channel hydraulic diameter, which lies in the range 0.01 6 dh/
L 6 0.05 minimising the peak temperature. Also, the elemental vol-
ume of the structure has a strong effect on the peak temperature as
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Fig. 6. Effect of optimised dimensionless hydraulic diameter dh on the peak
temperature at Be = 108.
shown in Fig. 7. The minimum peak temperature is achieved when
the optimal elemental volume is in the range 0.05 mm3

6

vel 6 8 mm3. This indicates that the global peak temperature de-
creases as the design variables (hydraulic diameter and elemental
volume) increase or the global peak temperature decreases as the
design variables decrease until it gets to the optimal design values.
Therefore, any increase or decrease in the design variable beyond
the optimal values indicates that the working fluid is not properly
engaged in the cooling process, which is detrimental to the global
performance of the system. The results show that the optimal
arrangement of the elemental volume for the entire structure at
this fixed pressure difference should be very small in order to
achieve a better cooling. Figs. 6 and 7 also show that porosity
has a significant effect on the peak temperature. The best cooling
occurs at the highest porosity. That is, as the porosity increases,
the peak temperature decreases.

5. Mathematical optimisation and optimisation problem

In this section, we introduce an optimisation algorithm that will
search and identify the optimal design variables at which the
system will perform at an optimum. A numerical algorithm,
Dynamic-Q [41], was employed and incorporated into the finite
volume solver and grid (geometry and mesh) generation package
by using MATLAB as shown in Fig. 4 for more efficient and better
accuracy in determining the optimal performance.

The Dynamic-Q is a multidimensional and robust gradient-
based optimisation algorithm, which does not require an explicit
line search. The technique involves the application of a dynamic
trajectory LFOPC optimisation algorithm to successive quadratic
approximations of the actual problem [42]. The algorithm is also
specifically designed to handle constrained problems where the
objective and constraint functions are expensive to evaluate. The
details of the Dynamic-Q and applications can be found in open lit-
erature [41–47].

5.1. Design variable constraints

The constraint ranges for the optimisation are:

0:1 6 / 6 0:3 ð24Þ

0 6 w 6 L ð25Þ
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0 6 dh 6 w ð26Þ

0 6 s 6 w ð27Þ

The design and optimisation technique involves the search for and
identification of the best channel layout that minimises the peak
temperature, Tmax, such that the minimum thermal resistance be-
tween the fixed volume and the cooling fluid is obtained with the
desired objectives function. The hydraulic diameter and the channel
spacing and elemental volume of the square configuration were
considered as design variables. A number of numerical optimisa-
tions and calculations were carried out within the design constraint
ranges given in Eqs. (24)–(27) and the results are presented in the
succeeding section in order to show the optimal behaviour of the
entire system. The optimisation process was repeated for applied
dimensionless pressure differences, Be, from 105 to 109.

5.2. Effect of applied pressure difference on optimised geometry and
minimised thermal resistance

Fig. 8 shows the effect of the minimised thermal resistance as a
function of applied dimensionless pressure difference. Minimised
thermal resistance decreases as the applied dimensionless pres-
sure difference and porosity increase. Fig. 9 shows that the optimal
hydraulic diameter decreases as the pressure differences increase
and there exists a unique optimal geometry for each of the applied
pressure differences. The trend is in agreement with previous work
[7,43].

5.3. Effect of material properties on optimised geometry minimised
thermal resistance

The effect of material properties on the minimum thermal resis-
tance and optimised internal configuration was also studied. This
was best investigated by numerically simulating conjugate heat
transfer in an elemental volume for different values of thermal
conductivity ratio.

The numerical simulations follow the same procedure already
discussed to show the existence of an optimal geometry. We
started the simulation by fixing / = 0.2, Be = 108 and kr = 10 and
kr = 100. We then varied the hydraulic diameter and the elemental
volume until we got the minimum peak temperature. Fig. 10 shows
that optimal geometry exists at different thermal conductivity ra-
tios and minimum peak temperatures are achieved when kr is high.

We later carried on an optimisation process to determine the
best geometry that gives us the lowest thermal resistance temper-
ature by using the optimisation algorithm. We fixed / = 0.2 and
Be = 108 for all the design constraint ranges and for different values
of thermal conductivity ratios ranging from kr = 1 to kr = 104. Figs.
11 and 12 show the effect of the thermal conductivity ratio on
the minimised global thermal resistance and optimised hydraulic
diameter at fixed / = 0.2 and Be = 108. The minimised thermal
resistance decreases as the thermal conductivity ratio increases.
This shows that material properties have a strong effect on the
thermal resistance. The materials with a high thermal conductivity
property reduce the thermal resistance. Fig. 12 shows that the
thermal conductivity ratio has a significant influence on the opti-
mised hydraulic diameter. As the thermal conductivity ratio in-
creases, the optimal hydraulic diameter increases. However, at
higher thermal conductivity ratios (say Be P 4000), the thermal
conductivity has a negligible effect on the minimised thermal
resistance and optimised hydraulic diameter.
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We repeated the optimisation process for all the design con-
straint ranges from kr = 1 to 100 for applied dimensionless pressure
differences ranging from Be = 105 to 109, and / = 0.1 to 0.2 to deter-
mine the global behaviour of the whole system. Figs. 13–15 show
the effect of the applied dimensionless pressure difference on the
minimum thermal resistance and the internal geometry for differ-
ent values of thermal conductivity ratio and porosity. Fig. 13 shows
that the minimised thermal resistance decreases as the applied
dimensionless pressure difference, thermal conductivity ratio and
porosity increase. Also, Figs. 14 and 15 show that there are unique
design variables for each applied dimensionless pressure differ-
ence, thermal conductivity ratio and porosity.

Fig. 16a and b shows the temperature contours of the elemental
volume and of the inner wall of the cooling channel with cooling
fluid, respectively. The blue1 region indicates the region of low
1 For interpretation of colour in Fig. 16, the reader is referred to the web version of
this article.
temperature and the red region indicates that of high temperature.
The arrow indicates the direction of flow.

6. Method of intersection of asymptotes

This section investigated further the numerical solution of the
optimisation of flow and heat transfer with the analytical solution.
The theoretical analysis for the vascularised configurations fol-
lowed the application of the intersection of asymptotes method
and scale analysis [7,15,48–50] to provide the existence of an
optimal geometry that minimised the peak temperature and global
thermal resistance. The method of intersection of asymptotes
outlined by Kim et al. [7] was used to determine the optimal
geometric shape. The objective was to provide the relationship
between the global objective function in terms of global thermal
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resistance, R, and the varying hydraulic diameter, dh, in the two ex-
tremes at dh ? 0 and dh ?1. The optimal geometry value, dhopt ,
that corresponds to, Rmin, is located approximately where the
two asymptotes intercept. The following assumptions were made
throughout the analysis: inlet temperature and the pressure differ-
ence, DP, driving the pump are fixed with a uniform flow distribu-
tion in all the channels, laminar flow, constant cross-sectional area
of the channels, negligible inlet and exit plenum losses, negligible
axial conduction. An elemental volume is treated because of the
symmetry of the heat distribution. The analysis of a square volume
element is completely analogous to what is presented in Kim et al.
[7], using the same procedure as outlined by Kim et al. [7]. We have
that the dimensionless thermal resistance, R, behaviour in the ex-
treme limit of a small square channel is given as:

R ¼ kf ðTmax � T inÞ
q00L

ffi 32
/

dh

L

� ��2

Be�1 ð28Þ
Fig. 16. Temperature distributions on (a) the elemental
From Eq. (28), it can be concluded that in the small diameter ex-
treme, R, increases as dh ? 0. In the opposite extreme limit (large
channel), the dimensionless global thermal resistance is defined in
terms of dimensionless pressure difference as:

R ¼ kf ðTmax � T inÞ
q00L

ffi 0:75k�1
r /�1=2 dh

L
ð29Þ

From Eq. (29), it can be concluded that in the large channel diame-
ter extreme, R, increases as dh ?1.

The geometric optimisation in terms of channel geometry could
be achieved by combining Eqs. (28) and (29) using the intersection
of asymptotes method as shown in Fig. 17. The optimal dimension
can generally be approximated for the hydraulic diameter where
the two extreme curves intersect. The intersection result is:

dhopt

L
� 3:494/�1=6k1=3

r Be�1=3 ð30Þ

where dhopt is the optimal hydraulic diameter of the cooling channel.
The optimal spacing sopt between channels follows from Eqs. (3),

(5), and (30):

sopt

L
� 3:494/�1=6k1=3

r Be�1=3ð/�1=2 � 1Þ ð31Þ

Eqs. (30) and (31) show that in the two extremes, the hydraulic
diameter and channel spacing decrease as the pressure difference
increases for fixed porosity.

The minimum dimensionless global thermal resistance can be
obtained for an elemental volume for the configuration that corre-
sponds to the optimal geometries by substituting Eq. (30) into Eq.
(28) as:

Rmin ¼
kf ðTmax � T inÞmin

q00L
ffi 2:62ðkr/Þ�2=3Be�1=3 ð32Þ

Eq. (32) shows that the minimised global thermal resistance de-
creases monotonically as, Be, increases for a fixed porosity.

The optimisation results of Eqs. (30) and (32) agreed within a
factor of the order of one with th corresponding result of Kim et
al. [7], because geometrically, the hydraulic diameter of a circular
duct and that of a square duct are the same.
volume and (b) the cooling fluid and the inner wall.
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Fig. 17. Method of intersection of asymptotes: global thermal resistance.
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7. Correlations of the theoretical method and numerical
optimisation

The analytical results of Eqs. (30)–(32) were used to validate the
numerical solutions. The numerical and approximate solutions
based on scale analysis at optimal geometry dimensions are in
good agreement and the solutions have similar trends as shown
in Figs. 18–20.

Fig. 18 shows the minimised dimensionless global thermal
resistance group as a function of the dimensionless pressure differ-
ence at optimised design variables for the configuration. The ana-
lytical and the numerical results show that the minimised global
thermal resistance group decreases as the dimensionless pressure
difference increases. Figs. 19 and 20 show the effect of the dimen-
sionless pressure difference on the optimised dimensionless design
variable groups. The curves show that the optimised design vari-
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Fig. 18. Correlation of numerical and analytical solutions for the minimised global
thermal resistance.
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Fig. 20. Correlation of numerical and analytical solutions for the optimised spacing.
ables decrease as the applied dimensionless pressure difference
and porosity increase. This shows that a unique optimal design
geometry exists for each applied dimensionless pressure differ-
ence, thermal conductivity ratio and porosity.

Also the optimised spacing is directly proportional to the opti-
mised hydraulic diameter. This is also due to the fact that the ele-
mental volume is not fixed, but it is allowed to morph for a fixed
porosity. In all cases (objective function and design variables),
the theoretical and numerical values agree within a factor of the
order one for the worst case. These results are also in agreement
with past research work [7,43].
8. Conclusion

This paper studied the numerical and analytical optimisation of
geometric structures of square cooling channels of vascularised
material with a localised self-cooling property subject to a heat
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flux on one side in such a way that the peak temperature is mini-
mised at every point in the solid body. The numerical results ob-
tained are in good agreement with results obtained in the
approximate solutions based on scale analysis at optimal geometry
dimensions. The approximate dimensionless global thermal resis-
tance predicts the trend obtained in the numerical results. This
shows that there are unique optimal design variables (geometries)
for a given applied dimensionless pressure number for fixed poros-
ity. The use of the optimisation algorithm coupled with the CFD
package made the numerical results to be more robust with re-
spect to the selection of optima structure geometries, internal con-
figurations of the flow channels and dimensionless pressure
difference.

The results also show that the material property has a signifi-
cant influence on the performance of the cooling channel. There-
fore, when designing the cooling structure of vascularised
material, the internal and external geometries of the structure,
material properties and pump power requirements are very impor-
tant parameters to be considered in achieving efficient and optimal
designs for the best performance.
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