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Phylogenetic relationship and strains sub-typing of Bacillus species isolated from iru,
a traditional fermented condiment in Africa were studied using polyphasic genomic
approaches and the profiles compared with bacilli isolated from similar Asian condi-
ments. The 16S rRNA gene sequencing identified the strains as Bacillus subtilis,
Bacillus amyloliquefaciens, Bacillus cereus, Bacillus licheniformis, Bacillus pumilus,
and Brevibacillus formosus. The phylogenetic analysis conducted showed five dis-
tinct clusters with genetic relatedness among B. subtilis and B. amyloliquefaciens
strains from Africa and Asia. Amplified ribosomal DNA restriction analysis (ARDRA)
successfully differentiated species of B. subtilis phylogeny from B. cereus. Combined
analyses of ARDRA, internal transcribed spacer-polymerase chain reaction (ITS-PCR),
ITS-PCR-restriction fragment length polymorphism (ITS-PCR-RFLP) and randomly
amplified polymorphic DNA (RAPD-PCR) further confirmed B. subtilis and B. amyloliq-
uefaciens as the dominant Bacillus species associated with fermentation of iru, and
revealed high strains genetic diversity, while multilocus sequence analysis (MLSA) data
distinguished B. cereus from B. thuringiensis. This information is essential for selection
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of starter cultures with desirable functional attributes to guarantee product consistency
and safety quality of traditional fermented foods.

Key Words: phylogenetic relationship; Bacillus strains; diversity; fermented condi-
ments; starter cultures

INTRODUCTION

Fermented vegetable proteins used as condiments are widely consumed in
many African countries. These include soumbala (Burkina Faso), iru or
daddawa (Nigeria and Ghana), afitin and sonru (Benin Republic), nététou
(Senegal), and kinda (Sierra Leone), all produced by fermentation of African
locust bean [Parkia biglobosa (Jacq. Benth)] (N’dir et al., 1994; Ouoba et al.,
2008; Ouoba et al., 2010; Oguntoyinbo et al., 2010). Roselle seeds (Hibiscus
sabdariffa) are fermented to produce bikalga (Burkina Faso); dawadawa
botso (Niger Republic); datou (Mali); mbuja (Cameroon) and furundu (Sudan)
(Ouoba et al., 2008). Also, Baobab seeds [Adansonia digitata (L.)] are fer-
mented to produce maari (Burkina Faso) (Parkouda et al., 2010). Similarly,
in southeast Asia, various fermented alkaline food condiments reportedly
produced mainly from soybeans [Glycine max (L.)] include kinema, consumed
by the people of eastern Himalayan regions of the Darjeeling hills and Sikkim
in India, Nepal and Bhutan (Tamang and Nikkuni, 1996; Sarkar et al., 1997;
Dahal et al., 2005); hawaijar, popular among the Manipuris of northeast India
(Jeyaram et al., 2008); thua nao from northern Thailand (Leejeerajumnean
et al., 2001); Chinese douchi (Peng et al., 2004) and Korean cheonggukjang
(Kim et al., 1996).

Iru is consumed by more than 150 million people in West African subregion
and is particularly popular in Nigeria. It is used as both flavoring and thicken-
ing agents in soups and stews (Oyeyiola, 1988) and serves as a low cost source
of plant protein and seasoning agent (Antai and Ibrahim, 1986). Traditionally,
iru is prepared by boiling P. biglobosa seeds for 24 h followed by dehulling. The
cotyledons obtained are again boiled for 4 h with optional addition of iku iru,
a softening agent made from ground seeds of sunflower (Hibiscus sabdariffa).
They are then drained using raffia sieve, spread into wide calabash trays while
still hot, covered with jute bags and left to ferment for 3–5 d. Salt may be added
at the end of the fermentation process as a preservative.

The dominance of B. subtilis during fermentation of locust beans for iru
production has been consistently reported (Antai and Ibrahim, 1986; Odunfa
and Oyewole, 1986). Earlier studies on the identification of the microorganisms
associated with iru were based on phenotypic characterization using biochem-
ical tests that are poorly discriminatory, nonreproducible and often laborious
(Odunfa, 1981; Ikenebomeh, 1989). Genotypic typing techniques to study diver-
sity of Bacillus species during legume fermentation have been reported in
Africa and Asia. Sarkar et al. (2002) used randomly amplified polymorphic
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252 G. A. Adewumi et al.

DNA polymerase chain reaction (RAPD-PCR) to study the diversity within the
B. subtilis isolated from kinema and soumbala. Jeyaram et al. (2008) charac-
terized dominant Bacillus species associated with hawaijar using polyphasic
genotypic techniques. In Africa, Bacillus species responsible for the fermenta-
tion of Baobab seeds and Prosopis africana (Guill., Perrott and Rich.) Taub. for
maari and okpehe production respectively were recently reported (Oguntoyinbo
et al., 2010; Parkouda et al., 2010). These studies did not determine strains
clonal relationship, variation, and phylogenetic of Bacillus species across differ-
ent geographical regions; also horizontal gene transfer and recombination that
may occur among food-borne microbial strains require typing of diverse strains.
Information such as this is essential for identification of strains with functional
or virulence characteristics during industrial production of fermented food
condiments. In this study, different genomic characterization techniques were
used to subtype Bacillus species isolated from fermented P. biglobosa during
iru production in W. Africa and also determine the phylogenetic relationship
with strains obtained from similar fermented condiments in Asia.

MATERIALS AND METHODS

Sampling
Twenty samples of fermented P. biglobosa seeds were obtained from local

producers and retail markets in four towns in Nigeria (Oyo, Abeokuta, Kaduna,
and Ado-Ekiti). The sampling plan followed a sampling technique according to
Smith (2001). The fermented condiments were transported immediately with
the aid of ice pack into the laboratory, stored in the refrigerator at 4◦C, and
analyzed microbiologically within few days of collection.

Isolation of Microorganisms and Phenotyping
Homogenate of each of the condiments was made following the method of

Guo et al. (2006) with slight modifications. Six-fold serial dilutions were car-
ried out; 100 µL of appropriate decimal dilutions were plated in triplicate on
nutrient agar (Scharlau Chemie S.A., Barcelona, Spain) using spread plate
technique (Harrigan and McCance, 1976) and incubated at 37◦C for 18–24 h.
The predominant representative colonies were selected based on colonial mor-
phology and purified by repeated streaking to obtain pure cultures. A total of
280 bacterial cultures obtained were phenotyped using colony characteristics,
Gram’s reaction, catalase test, and endospore staining using phase contrast
microscope (BX61, Olympus, Japan) and subsequently stored at −20◦C in 50%
v/v glycerol (Calibiochem, San Diego, California, USA). Reference strains of
Bacillus were also obtained from Microbial Type Culture Collection (MTCC),
Institute of Microbial Technology (IMTECH), Chandigarh, India.
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Genotypic Characterization

Genomic DNA Extraction

Bacterial genomic DNA was extracted using modified lysozyme-heat lysis
method as previously described (Zhang et al., 2002). DNA quantity and
purity were determined at absorbance reading of 260 nm (NanoDropTM

1000 Spectrophotometer, Thermo Scientific, Waltham, Massachusetts, USA).

Amplified Ribosomal DNA Restriction Analysis (ARDRA)

The 16S rRNA gene ca. 1500 bp of the isolates were amplified with the
universal primers pair fD1 and rD1 (Table 1), digested with HaeIII, CfoI,
Hinf I, DdeI, TaqI and RsaI (Promega, USA) and analysed on 2% agarose
(Promega, USA) containing ethidium bromide (0.5 µg/ml) (E1510, Sigma
Aldrich), using 0.5X TBE buffer (45 mM Tris-borate, 1 mM EDTA, pH 8.0).
A 1 kb DNA ladder (Promega, USA) or 100 bp DNA ladder Cfol (Promega,
USA) was used as a size standard marker in each run, and the size of the
DNA fragments were measured using Quantity One software 4.6 (BIO-RAD,
Berkeley, California, USA).

16S-23S rRNA Gene Internal Transcribed Spacer (ITS) PCR Amplification
and Restriction Analysis (ITS-PCR-RFLP)

The amplification of the 16S-23S rRNA gene internal transcribed spacer
(ITS) was carried out in a 25 µL reaction mixture containing 50 ng DNA, 1X
PCR reaction buffer containing 1.5 mM MgCl2 (P2192, Sigma-Aldrich), 1.0 mM
MgCl2 (M8787, Sigma-Aldrich), 0.5 µM each of forward and reverse primers
(Sigma-Aldrich) (Table 1), 200 µM each of dNTP (Sigma-Aldrich) and 1.25 U of
Taq DNA polymerase (D6677, Sigma-Aldrich). Amplification was performed in
a master cycler (Eppendorf 5333, USA) with an initial denaturation of 94◦C for
5 min followed by 30 cycles of final denaturation at 94◦C for 30 sec, annealing at
60 ◦C for 30 sec and extension at 72◦C for 1 min with a final extension at 72◦C
for 7 min. The ITS PCR products were analyzed on 1.5% agarose and digested
with CfoI as previously described.

Randomly Amplified Polymorphic DNA PCR (RAPD-PCR)

Six random primers were used for the RAPD-PCR analysis (Table 1) and
analyzed in a 15 µL reaction volume, which contained 25 ng DNA, 1X Taq
buffer with 1.5 mM MgCl2 (Genei, Banglore), 0.8 pmol/µL each of the primers,
200 µM each of dNTP, and 1.2 U of Taq DNA polymerase (Genei, Banglore).
Amplification was performed in a thermal cycler (BIO-RAD iCycler, USA) and
the first step of the PCR cycling was the initial denaturation at 94◦C for 5 min
followed by 35 cycles of final denaturation at 94◦C for 1 min, annealing at 35◦C
for 1 min and extension at 72◦C for 2 min. The PCR was completed with a final
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extension temperature of 70◦C for 7 min. The thermocycle program used for
the PCR amplifications of M13 consisted of one cycle of 95◦C for 5 min followed
by 35 cycles of 95◦C for 30 sec, 36◦C for 1 min and 72◦C for 1 min 30 sec,
and then one cycle of 72◦C for 5 min. The RAPD-PCR products were analyzed
on 1.5% agarose. The banding patterns of ARDRA, ITS-PCR, ITS-PCR-RFLP
and RAPD-PCR polymorphisms were scored manually and then grouped using
NTSYSpc. 2.20e for the generation of clusters in a dendrogram based on the
Jaccard similarity coefficient (SJ) and the unweighted pair group method using
arithmetic averages (UPGMA).

16S rRNA Gene Sequencing and Phylogenetic Analysis

The 16S rRNA genes of representative strains within the formed clusters
were sequenced; closest known relative of the sequences were obtained by
comparison with those deposited in GenBank. These sequences were eventu-
ally submitted to GenBank NCBI and received the accession no. JN255703 to
JN255730. Pairwise and multiple alignments of these sequences includ-
ing strains of related species were carried out using CLUSTAL W 2.0.12
(Thompson et al., 1994), according to the Kimura two-parameter model
(Kimura, 1980). The evolutionary history was inferred using the Neighbor-
Joining method (Saitou and Nei, 1987), and evolutionary distances were
computed using the p-distance method (Nei and Kumar, 2000) and are in the
units of the number of base differences per site. Phylogenetic and molecular
evolutionary analyses were conducted using MEGA 5 (Tamura et al., 2011).
The statistical reliability of the tree was evaluated by bootstrap analysis of
1000 replicates (Felsenstein, 1985).

Multilocus Sequence Analysis (MLSA)
PCR amplification of gyrB, glpF, and gmk housekeeping genes were used for

differentiation of B. cereus phylogeny. The reaction mixture consisted of 50 ng
template DNA, 1X PCR buffer with 1.5 mM MgCl2, 0.25 µM each of forward
and reverse primers (Table 1), 200 µM each of dNTP and 1.25 U of Taq DNA
polymerase. PCR conditions were fixed at 94◦C for 5 min, 36 cycles of 94◦C for
1 min, 55◦C for 1 min, and 72◦C for 30 sec, with a final extension of 72◦C for
7 min. The PCR products obtained were analyzed on 1.5% agarose, sequenced
as described previously (Jeyaram et al., 2010), and searches were performed
using GenBank with the BLAST program.

RESULTS

Phylogenetic Analysis
The nucleotide sequences of almost complete 16S rRNA genes of the bac-

terial strains compared with those of NCBI first identified them as species
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closely related to B. subtilis, B. amyloliquefaciens, B. cereus, B. licheniformis, B.
pumilus, and Brevibacillus formosus in decreasing order of occurrence. Second,
it revealed Bacillus species as the major group of bacteria associated with fer-
mentation of P. biglobosa during iru production. Third, the 16S rRNA gene
sequences aided construction of a phylogenetic tree of Bacillus strains obtained
from African fermented condiments (iru or daddawa); Asian fermented condi-
ments (kinema, hawaijar, thua nao, douche, and cheonggukjang) and other
typed and referenced bacilli strains deposited in different culture collections.
The results of the phylogenetic relationship are as shown in Figure 1, with five
major bacilli groups identified. Group I consists of B. subtilis and B. amyloliq-
uefaciens strains from different condiments. The cluster analysis also showed
the strains to be closest relative of B. subtilis subspecies subtilis DSM 10T.
Although the analysis could not differentiate B. subtilis from B. amyloliquefa-
ciens, these strains are clonally related and must have originated from common
ancestors before dispersal and domestication in vegetal protein foods. Group II
is a subcluster of Group I that consists of species identified as B. licheniformis;
the two strains clustered with B. licheniformis ATCC 14580. This bacterium
is common with African condiments but poorly reported in Asia; it appeared
as close relative of B. subtilis, which must have diverged over time. Group
III consists of species closely related to B. pumilus ATCC 7061. They com-
pletely diverged from B. subtilis and B. licheniformis groups, phenotypically
this species does not hydrolyse starch (data not shown), and it might have lost
amylase production due to genetic mutation as a result of adaptation. Group IV
comprises B. cereus that clustered with B. cereus ATCC 14579; many studied
strains demonstrated diarrhoeal and emetic toxin production. Group V could
be referred to as an outcast; it comprises Brevibacillus formosus strain that
clustered with the type strain Brevibacillus formosus DSM 9885T.

Bacillus Characterization and Strains Subtyping
The genotypic diversity among the Bacillus strains was further determined

using polyphasic genomic approaches. Analysis of Hinf I digestion distinctly
differentiated the Bacillus strains into two phylotypes of B. subtilis and B.
cereus (Fig. 2). The restriction digested products of RsaI clearly differentiated
B. subtilis from B. amyloliquefaciens; B. subtilis from B. pumilus; B. amy-
loliquefaciens from B. licheniformis; B. pumilus from B. licheniformis (Fig. 3).
However, RsaI failed to distinguish B. amyloliquefaciens from B. pumilus and
also B. subtilis from B. licheniformis, as they were observed to possess similar
polymorphisms. The difficulty in differentiating B. subtilis from B. licheni-
formis was overcome with CfoI digestion. These results clearly indicated that
ARDRA can be successfully used for differentiation of Bacillus species, partic-
ularly B. subtilis phylogeny, when appropriate restriction endonucleases are
employed. PCR amplification of the 16S-23S rRNA gene internal transcribed
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Genome Subtyping of Autochthonous Bacillus Species 257

Figure 1: Dendrogram showing multiple sequence alignment of 16S rRNA gene sequences of
Bacillus species isolated in Africa from iru or daddawa; hawaijar, cheonggukjang, kinema,
douchi, thua nao in Asia; referenced and typed strains. Pairwise phylogenetic distances were
calculated based on 1400nt of 16S rRNA gene.

spacer (ITS-PCR) could not bring about any strain differentiation; rather it
maintained the interspecies differentiation generated by ARDRA, except for
B. licheniformis. However, ITS-PCR and restriction analysis with CfoI showed
intraspecies variation among the B. subtilis strains aside from differentiat-
ing B. pumilus from B. amyloliquefaciens. Dendrogram constructed based on
combined analysis of the gel fingerprints obtained from ARDRA, ITS-PCR
and ITS-PCR-RFLP is shown in Figure 4. Two major clusters were identified,
cluster 1 identified as B. subtilis phylogeny consisting of 17 strains clustered
together at 64% and cluster 2 identified as B. cereus phylogeny consisting
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1 2 3 4 5 6 7 8 9 m 10 11 12 13 14 15 16 17 18 19

Figure 2: ARDRA gel profile based on Hinf I showing differentiation of B. subtilis and B. cereus.
Lanes 1: B. subtilis MTCC 2451; 2: B. amyloliquefaciens MTCC 1270; 3: B. licheniformis MTCC 429;
4: B. cereus MTCC 430; 5: B. circulans MTCC 490; Lanes 6, 9, 10, 12, 13 & 15: B. subtilis strains;
Lanes 7 & 8: B. amyloliquefaciens strains; Lanes 11 & 14: B. pumilus strains; Lane 16: B. cereus
U175; Lanes 17 & 18: B. licheniformis strains; Lane 19: Brevibacillus formosus U185B; m 1kb DNA
ladder.

1 2 3 4 5 6 7 8 9 m 10 11 12 13 14 15 16 17 18 19

Figure 3: ARDRA gel profile based on RsaI showing differentiation among B. subtilis phylogeny.
Lanes 1: B. subtilis MTCC 2451; 2: B. amyloliquefaciens MTCC 1270; 3: B. licheniformis MTCC 429;
4: B. cereus MTCC 430; 5: B. circulans MTCC 490; Lanes 6, 9, 10, 12, 13 & 15: B. subtilis strains;
Lanes 7 & 8: B. amyloliquefaciens strains; Lanes 11 & 14: B. pumilus strains; Lane 16: B. cereus
U175; Lanes 17 & 18: B. licheniformis strains; Lane 19: Brevibacillus formosus U185B; m 1kb DNA
ladder.

of 3 strains clustered at 45%. Subclusters of B. subtilis phylogeny showed a
high degree of strain diversity. B. subtilis U104 clustered with strains isolated
from hawaijar and kinema. Similar strain relatedness was observed among B.
licheniformis and B. amyloliquefaciens isolated from iru and reference strains
from Asian fermented foods. Analysis of colonial morphology using stereo zoom
microscope also showed diversity of colonial types among bacilli strains isolated
from different iru samples in Nigeria (data not shown).

The two dominant species in B. subtilis phylogeny identified as B. subtilis
and B. amyloliquefaciens were further subjected to genomic strain diversity
using RAPD-PCR OPA 18 primer. Figure 5 showed 60% similarity level,
between two clusters I and II identified as B. subtilis and B. amyloliquefaciens
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Genome Subtyping of Autochthonous Bacillus Species 259

Figure 4: Dendrogram based on UPGMA clustering of Jaccard similarity coefficient (Sj) of nor-
malized combined ARDRA, ITS-PCR and ITS-PCR-RFLP fingerprint patterns of Bacillus isolated
from iru and reference strains.

strains. Also, at about 70% similarity level, two subclusters each of B. subtilis
and B. amyloliquefaciens strains were identified, which were genetically dis-
tinct from the reference strains B. subtilis MTCC 5480 and MTCC 1747 from
hawaijar and kinema, respectively, and B. amyloliquefaciens MTCC 1270. The
dominant strains of B. subtilis and B. amyloliquefaciens were further studied
using RAPD-PCR with M13 as it gave better diversity than OPA 18. At 85%
similarity level, high strain diversity was found within B. subtilis (19 strains),
and are genetically distinct from the reference strain B. subtilis MTCC 2451
(Fig. 6). Also, at 63% similarity level, high strain diversity was also observed
within B. amyloliquefaciens (13 strains), which are genetically different from
reference strain B. amyloliquefaciens MTCC 1270 (Fig. 7). Thus, polyphasic
genomic techniques as used in this study were useful in identification, strain
differentiation and comprehensive understanding of the diversity of Bacillus
strains.

MLSA for Subtyping Bacillus cereus sensu lato
The B. cereus phylogeny comprising B. cereus, B. mycoides, B. pseudomy-

coides, B. weihenstephanensis, B. anthracis, and B. thuringiensis showed high
similar ARDRA, ITS-PCR, ITS-PCR-RFLP, and RAPD profiles, without any
species differentiation. This necessitated PCR amplification of gyrB, glpF, and
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Figure 5: Dendrogram based on UPGMA clustering of Jaccard similarity coefficient (Sj) of
normalized OPA 18 RAPD-PCR fingerprints of dominant B. subtilis and B. amyloliquefaciens
strains.

Figure 6: Dendrogram based on UPGMA clustering of Jaccard similarity coefficient (Sj) of
normalized M13 RAPD-PCR fingerprints of dominant B. subtilis strains.
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Figure 7: Dendrogram based on UPGMA clustering of Jaccard similarity coefficient (Sj) of
normalized M13 RAPD-PCR fingerprints of dominant B. amyloliquefaciens strains.

gmk housekeeping genes for possible discrimination. DNA sequences obtained
were compared with those deposited in GenBank using the BLAST program;
this identified 96% of the B. cereus group as B. cereus and 4% as B. thuringien-
sis. gyrB, glpF and gmk gene sequences of B. cereus and B. thuringiensis strains
and other strains deposited in GenBank database were further analyzed
by the construction of phylogenetic trees as described earlier. This revealed
phylogenetic and clonal relationship of common ancestral origin between B.
cereus and B. thuringiensis; it also established B. cereus as the major mem-
ber of the B. cereus sensu lato associated with fermented iru. Also, B. cereus
and B. thuringiensis strains from the present study are totally diverged from
other strains, information that shows that the strains are geographically
domesticated (Figs. 8–10).

DISCUSSION

Different genomic typing techniques were used to determine phylogenetic rela-
tionship and diversity among autochthonous Bacillus species isolated from
African and Asian traditional fermented condiments. This provides a foun-
dation for the requirement for screening and selection of starter cultures for
industrial production of condiments with desirable functional properties as
well as food safety and quality.

The results of the phenotypic characterization based on colonial features,
Gram’s staining, catalase reaction, and endospore staining identified the
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Figure 8: Phylogenetic relationship of B. cereus phylotype based on nucleotide sequences of
gryB gene.

Figure 9: Phylogenetic relationship of B. cereus phylotype based on nucleotide sequences of
glpF gene.

strains as Bacillus species and its closest relatives. Previous studies in
Africa employed conventional phenotypic characteristics for the identification
of Bacillus species (Odunfa, 1985; Ikenebomeh, 1989). Although emerging
information on the use of genetic characterization for identification of bacilli
isolated from okpehe and soumbala are in agreement with our results (Ouoba
et al., 2004; Oguntoyinbo et al., 2010), none of these studies described the
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Figure 10: Phylogenetic relationship of B. cereus phylotype based on nucleotide sequences of
gmk gene.

phylogenetic relationship among bacilli strains from different regions. The
phylogenetic analysis based on 16S rRNA gene showed the genetic relationship
among the bacilli strains and established that most of the species must have
originated from common ancestor, adapted and domesticated into vegetable
protein environment both in Africa and Asia.

The species and strains divergence especially between B. subtilis and B.
cereus group strains may be due to horizontal gene transfer and recombination.
Also, reported phenotypic characteristics of these strains showed that B. sub-
tilis are highly amylolytic and proteolytic, while B. pumilus are nonamylolytic
but proteolytic. Whereas, B. cereus are weakly proteolytic and amylolytic but
must have acquired genes for production of toxins such as emetic and diar-
rhea over time via recombination and transposable elements (De Palmenaer
et al., 2004; Oguntoyinbo and Sanni, 2007; Didelot et al., 2009). Apart from
the dominant Bacillus species isolated from iru, another closely related genus,
Brevibacillus was detected; this confirmed the earlier reports of the implication
of Brevibacillus bortelensis in soumbala and bikalga (Ouoba et al., 2004, 2007).
The results of the phylogenetic analysis indicated five different clades, which
clustered separately on the basis of species; it also established divergence, evo-
lutionary, and clonal relationship of bacilli from Africa. Although we observed
poor 16S rRNA gene sequences discrimination of B. subtilis from B. amy-
loliquefaciens, this is also in agreement with previous reports confirming the
inability of this gene to differentiate closely related species of Bacillus because
of their clonal relatedness (Stackebrandt et al., 2002; Santos and Ochman,
2004).
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Various molecular fingerprints have been developed to identify clonally
related Bacillus species. Wu et al. (2006) used group-specific primer com-
bined with ARDRA to distinguish Bacillus species and other related genera.
Oguntoyinbo et al. (2010) described ARDRA as effective technique to differen-
tiate B. subtilis from B. cereus. ARDRA used in the present study successfully
differentiated the B. subtilis group, which hitherto has been a difficult task
(Vaerewijck et al., 2001; Parkouda et al., 2010); this makes it a simple, rapid,
and reliable molecular technique for distinctly discriminating closely related
species of bacilli. The combined results of ITS-PCR and ITS-PCR-RFLP showed
high intraspecies variation among the B. subtilis strains as observed previ-
ously (Jeyaram et al., 2008, 2010). However, in a related study, ITS-PCR-RFLP
only allowed genomic typing at species level (Ouoba et al., 2004). The dendro-
grams obtained from RAPD-PCR analyses of OPA 18 and M13 primers showed
high strain level diversity among the dominant Bacillus species from iru, and
they were also phylogenetically different from hawaijar, kinema, and other
reference strains. Different studies have confirmed the effectiveness of RAPD-
PCR for precise strain typing of B. subtilis (Sarkar et al., 2002; Matarante
et al., 2004; Inatsu et al., 2006; Jeyaram et al., 2008). The B. cereus phy-
logeny showed no species differentiation even with the combined efforts of the
various techniques employed (i.e. colony morphology and genomic characteris-
tics). This is perhaps because all the species in this group have high degree of
sequence similarity, which makes them closely related (Manzano et al., 2003).
Several attempts were made previously using 16S rRNA sequence-based anal-
ysis; single-strand conformation polymorphisms of amplified 16S rRNA gene;
virulence parameters; pulsed-field gel electrophoresis; ITS-PCR; restriction
fragment length polymorphisms (RFLP), including DNA:DNA hybridization for
possible discrimination of the B. cereus group (Harrell et al., 1995; Keim et al.,
1997; Ramisse et al., 1996; Borin et al., 1997; Yamada et al., 1999; Ahaotu et al.,
2013) but none of these was able to differentiate B. cereus from B. thuringiensis.
Multilocus sequence analysis of housekeeping genes used in this study prove
to be a better and promising technique for differentiation of closely related B.
cereus species and can have potential application during industrial processing
of fermented foods. Other investigators have also used this technique to study
the genetic relationship in the B. cereus group obtained from different sources
(Cardazzo et al., 2008; Didelot et al., 2009).

Our results showed phylogenetic relationship between bacilli isolated from
different condiments in Africa and Asia with genomic strains differentiation
indicating high level of diversity among strains within species. This study can
be of technological interest, since many functional traits are strain-specific
rather than being species-specific. Phylogenetic markers developed can be
effectively used in differentiating and authenticating Bacillus strains from
fermented iru and other commercially available strains. It is also important
to properly identify divergent functional properties associated with different
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strains identified in this study. Such data will facilitate development of pre-
dictable process through selection of strains with desirable functional quality
characteristics as well as improve shelf life and safety quality.
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