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Introduction: Overview of Fermented Foods

Fermentation of food substrates is an ancient practice, often described as a cheap, energy efficient, low-technology, and one of
the oldest forms of traditional food processing and preservation techniques, usually carried out to introduce a variety of diets
into food preparations (Ferri et al., 2016; Guyot, 2012; Kebede et al., 2007; Simango, 1997). Most food materials are highly
perishable in their raw states (e.g. milk, cassava, fruits and vegetables, edible bamboo shoots etc.), which make them prone
to spoilage attack, and in some cases, inedible and surplus after harvesting. Hence, they are fermented by natural inoculation
and biochemical activities of microorganisms, which help to achieve post-harvest preservation, prevent physiological deteriora-
tion and losses, make inedible ones edible, with improved shelf-life, food safety, as well as ensuring availability of foods all year
round (Patra et al., 2016; Rolle and Satin, 2002). Generally, these microorganisms are mostly from the raw food materials,
fermentation vessels and utensils, processors, contaminants and other environmental microflora, selected to actively dominate
and ferment the substrates through competitive adaptation and direct competition for available nutrients (Franz et al., 2014;
Tamang, 1998).

A diversity of fermented foods and beverages obtained from food substrates, such as cereal grains, legumes and pulses, roots and
tubers, fruits, vegetable leaves and edible bamboo shoots, milk and dairy products, meat and seafoods, miscellaneous food
commodities (e.g. tea leaves, cocoa, sugar cane juice, oil palm sap etc.) is abundantly available in different parts of the world
(Tamang et al., 2016a). Divergent microbial strains of bacteria (Bacillus, lactic acid bacteria, Acetobacter, Micrococcaceae), yeasts
and mycelia or filamentous moulds have been reported to be principally responsible for the biotransformation of these food mate-
rials, resulting in the production of either acidic, alcoholic or alkaline-fermented food products (Steinkraus, 1997; Tamang, 1998).
During the process of fermentation, microorganisms become exposed to food substrates, which leads to utilization of the nutrient
contents. The nutrients and organic chemical compounds are used as carbon, nitrogen, electron and energy sources, through various
enzymatic and biochemical reactions, which bring about desirable functional changes along with the production of metabolites
that impart functional benefits. Beneficially, microbial fermentation enhances nutrient enrichment and bioavailability, develop-
ment of attractive flavour, taste, aroma and texture, in addition to improved digestibility of carbohydrates and proteins, as well
as bio-preservative effects (Blandino et al., 2003; Nout, 2009; van Boekel et al., 2010). Apart from the production of pleasant
and acceptable quality food substances preferred by consumers (compared to their respective raw food materials), food fermenta-
tion also supports prolonged shelf-life of final food products (Caplice and Fitzgerald, 1999; Holzapfel, 1997). Other benefits
include detoxification and reduction in undesirable toxic components and anti-nutritional factors, food fortification with essential
amino acids and fatty acids, vitamins, minerals and antioxidants, stimulation of health promoting functions, value-added advan-
tage and new products development (Oboh, 2006; Ouoba et al., 2003; Teniola and Odunfa, 2001).

Among these advantages, the consumption of fermented foods and beverages for their health-promoting properties, especially in
disease prevention and improvement of human health has long been recognized by consumers. This is in consonant with early
comments by the Russian Scientist, Élie Metchnikoff who suggested that the prolonged life span of the Bulgarian peasants resulted
from the consumption of fermented dairy foods, such as yoghurt, sour milk and kefir, which contain lactic acid bacteria (LAB)
(Metchnikoff, 1907). Metchnikoff’s observation has since then stirred up consumers’ consciousness and awareness in the consump-
tion of foods with health-promoting values, beyond the purpose of nutrition and other basic benefits. Thus, food fermentation has
received increasing research interests and attention, especially in food science, human nutrition and applied microbiology (Saarela
et al., 2002; Salmerón, 2017). Multiple studies and evidence-based investigations have shown that fermented foods carrying both
large populations of live microbial cultures and their metabolites, or either of these, may impart health beneficial functions (Barla
et al., 2016; Kim et al., 2016; Singh et al., 2014; Tamang et al., 2016b). Hence, the scope of this chapter provides a comprehensive
account and current information on health-promoting fermented foods and beverages around the world. Such benefits include
reduction in serum and blood cholesterol, production of exopolysaccharides (EPSs) and bioactive compounds, production of anti-
microbial compounds against potential pathogenic microorganisms, anti-mutagenic, anti-carcinogenic, anti-tumour effects and
fibrinolytic activities. Other health effects include amelioration of metabolic and physiological disorders, improvement in cognitive
brain functioning, enhanced probiotic properties, etc. In addition, highlights of the different types of fermented foods, and the
predominant microorganisms associated with them will be discussed.

Diversity of Fermented Foods and Beverages Around the World

Fermented foods and beverages are classified on the basis of raw food materials used in producing them, whether alkaline, acidic,
alcoholic, or both acidic and alcoholic as well as the predominant group of microorganisms (Table 1).
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Table 1 Some selected fermented foods and beverages around the world, based on divergent raw food substrates

Products Food substrates Nature Predominant microorganisms Country of origin

mawè maize acidic dough Lactobacillus fermentum, Saccharomyces cerevisiae Benin Republic
tchoukoutou sorghum alcoholic opaque beer Sac. cerevisiae, Candida krusei, Lac. fermentum Benin Republic
dosa rice and black gram acidic and slightly alcoholic batter Leuconostoc mesenteroides, Lac. fermentum, Bacillus

amyloliquefaciens, Sac. cerevisiae, Debaryomyces hansenii
India, Sri Lanka, Malaysia, Singapore

pozol maize mildly acidic dough Lac. fermentum, Lac. plantarum, Lac. casei Mexico
sourdough rye, wheat mildly acidic, leavened bread Lac. sanfranciscensis, Lac. alimentarius, Lac. buchneri United States of America, Europe, Australia
iru African locust bean alkaline condiment Bac. subtilis, Bac. amyloliquefaciens, Bac. cereus Nigeria
kinema soybean alkaline condiment Bac. subtilis, Bac. licheniformis, Bac. cereus India
natto soybean alkaline condiment Bac. subtilis (natto) Japan
fufu cassava acidic dough Lac. plantarum, Lac. cellobiosus, Bacillus species West Africa
tarubá cassava acidic beverage Lac. plantarum, Lac. brevis, Leu. mesenteroides, Pichia

exigua, Can. tropicalis
Brazil

sauerkraut cabbage acidic, sour salad Leu. mesenteroides, Pediococcus pentosaceus, Lac.
plantarum, Lac. brevis

Europe, Canada, United States of America, Australia

table olives olive acidic, side dish salad Lac. plantarum, Lac. pentosus, Leu. mesenteroides, Ped.
pentosaceus,

United States of America, Spain, Portugal, Peru, Chile

kimchi cabbage, green onion,
hot pepper

acidic, mildly sour, side dish Leu. mesenteroides, Leu. citreum, Leu. kimchi, Lac.
plantarum, Weissella cibaria

Korea

kefir milk acidic, mildly alcoholic fermented milk Lac. kefiranofaciens Lac. brevis, Streptococcus
thermophilus, Lac. plantarum, Lac. casei, Can. kefyr, Sac.
cerevisiae

Russia, Europe, Middle East, North Africa

dahi milk acidic viscous curd Lac. alimentarius, Lac. paracasei, Lac. acidophilus, Lac.
helveticus

India, Nepal, Sri Lanka, Bangladesh, Pakistan

amasi milk acidic, sour, with thick consistency Lactococcus lactis subsp. lactis, Lac. lactis subsp. cremoris,
Leuconostoc spp.

South Africa, Zimbabwe

alheira pork or beef dry/semi-dry sausage Lac. plantarum, Lac. paraplantarum, Lac. brevis, Lac. sakei Portugal
ngari fish mildly acidic fermented fish Lac. plantarum, Lac. pobuzihii, Lac. coryniformis, Bac.

subtilis Staphylococcus carnosus

India

tej honey sweet, effervescent and cloudy alcoholic Sac. cerevisiae, Deb. phaffi, Kluyveromyces bulgaricus Ethiopia
kombucha tea fermented tea drink Sac. cerevisiae, Acetobacter aceti, Gluconobacter oxydans China, India

Adapted and modified from Tamang et al. (2016a).
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Cereal Fermented Foods

Non-alcoholic fermented cereal foods produced from maize (Zea mays L.) in Africa include doklu (Côte d’Ivoire), kenkey (Ghana),
amahewu (ormahewu) and incwancwa (South Africa),mawè (Benin Republic), ogi (Nigeria), poto–poto (Congo), togwa (Tanzania), ikii
and uji (Kenya), munkoyo and chibwantu (Zambia), as well as tobwa, mutwiwa and ilambazi lokubilisa (Zimbabwe). Ben-saalga and
dégué (Burkina Faso), koko or akasa, koko sour water and fura (Ghana), and kunun-zaki (Nigeria) are made from pearl millets [Pen-
nisetum glaucum (L.) R. Br.], while mangisi (Zimbabwe) is from finger millet (Eleusine coracana Gaertn.). Fermented sorghum
[Sorghum bicolor (L.) Moench] foods include obushera (or bushera) (Uganda), gowê (Benin Republic), hussuwa and kisra (Sudan),
bogobe (Botswana), obiolor and ogi-baba (Nigeria) (Assohoun-Djeni et al., 2016; Gadaga et al., 1999; Odunfa and Adeyele, 1985;
Owusu-Kwarteng et al., 2012; Schoustra et al., 2013). Major fermented cereal alcoholic beverages are pito, dolo, tchapalo, burukutu,
tchoukoutou, busaa, kaffir beer, muramba, pombe, impeke, malwa, merissa, amgba, bouza, umbugug, doro/uthwala, tella (Holzapfel, 1997;
Jespersen, 2003). Fermented baked snacks and pancakes also produced from cereals include injera, kisra and masa. Common fer-
mented cereal foods in Asia are dosa (pancake), idli (pudding), hamei and xaj-pitha (rice wines, India), congee and suanzhou (acidic
gruel, China), chhang (barley beer, India), jalebi, koozh (Indian porridge), adhirasam (rice doughnut), hopper (steamed baked, Sri-
Lanka), puto (Philippines), sake (also saké, Japanese rice wine) and dhokla (dough) (Jeyaram et al., 2008; Qin et al., 2016). Bread,
sourdough bread, San Francisco bread, rye bread, beer, boza (Turkish sour drink), bagni (millet alcoholic drink, Russia), hulumur
(sorghum beverage drink, Turkey), kvass (a non-alcoholic beverage similar to boza), perkarnaya (Russia), pumpernickel (Switzerland),
and Mexican pozol and atole agrio comprise the various cereal fermented foods in Western and Eastern countries. Products such as
champus and chicha de jora (both mild alcoholic beverages), and masa agria (maize dough) are found in South America (Chaves-
Lopez et al., 2016; Elizaquível et al., 2015; Väkeväinen et al., 2018; Ventimiglia et al., 2015).

Fermented Legume Protein-Rich Seeds

Traditional fermented protein-rich, legume-based foods are widely consumed in many African and Asian countries. In East and
Southeast Asia, soybean [Glycine max (L.) Merr.] seeds are fermented by Bacillus subtilis to produce varieties of alkaline fermented
food condiments, such as Japanese natto, Indian kinema, hawaijar, bekang, tungrymbai, peruyaan and aakhone, Thailand thua nao,
Korean cheonggukjang, and Chinese douchi and yandou (Sanjukta and Rai, 2016). The major biochemical change is protein hydrolysis
due to high proteinase activity of Bac. subtilis, which results in rapid production of polypeptides, amino acids, ammonia, and poly-
glutamic acid (PGA) in addition to other volatile compounds that contribute to the product’s characteristic pungent smell and
ammoniacal flavour (Leejeerajumnean et al., 2001; Odunfa, 1985). A similar food flavouring agent in Africa from soybean is soy-dad-
dawa, but iru (also known as daddawa), soumbala, afitin, nététou, kinda, oso, kawal, cabuk, bikalga, dawadawa botso, datou,mbuja, furundu,
maari and tayohounta are produced using non-soybean seeds, while cassava leaves form the raw material for the production of ntoba
mbodi (Adewumi et al., 2014; Parkouda et al., 2009; Vouidibio Mbozo et al., 2017). Other fermented soybean foods in Asia where
filamentous and mycelia moulds like Aspergillus oryzae, Rhizopus oligosporus, Rhi. oryzae, Rhi. microsporus, Mucor sufu, Muc. wutungkiao,
Muc. plumbens, Actinomucor taiwanensis, Act. elegans and Absidia corymbifera dominate the fermentation process or with the participa-
tion of Bacillus species, include Indonesian tempe, Chinese sufu (also fu-ru or tofu) and soy sauce, Koreanmeju, doenjang, ganjang (a soy
sauce), doenjang-meju and gochujang, Japanese miso and shoyu (Han et al., 2001; Jung et al., 2014; Nout and Kiers, 2005).

Fermented Starchy Roots and Tuber Products

Cassava, yam, cocoyam and potatoes constitute starchy root and tuber crops that provide carbohydrate, an energy source in the diets of
millions of people, especially in sub-Saharan (Cock, 1982; O’Hair, 1990). In Africa, cassava (Manihot esculenta Crantz) is the most
abundant and importantly consumed root crop despite the presence of linamarin and lotaustralin, which are toxic cyanogenic gluco-
sides (Aryee et al., 2006; Kimaryo et al., 2000). Processing by fermentation, involving Lactobacillus plantarum, Lac. fermentum, Lac. pen-
tosus, Lac. brevis, Leuconostoc mesenteroides subsp. mesenteroides, Weissella paramesenteroides, Wei. cibaria, Wei. confusa and Pediococcus
pentosaceus, primarily brings about detoxification and biochemical activities of the cassava tubers. This enhances acidification and
imparts organoleptic properties, leading to the production of varieties of edible fermented food products, such as, gari, agbelima, akyeke,
attiéké, fufu, kivunde, lafun (or kokonte), chikwangue, cingwada, kocho, ikivunde, imikembe, inyange, and ubuswage, among others (Adesulu-
Dahunsi et al., 2017; Amoa-Awua et al., 1997; Kostinek et al., 2007; Obilie et al., 2004). Cassava fermentation for gari production is
a solid-state natural inoculation, unlike fufu, attiéké, lafun and agbelima where submerged fermentation is employed (Coulin et al.,
2006; Oyewole, 2001). Other microorganisms, including Bacillus species and yeasts have also been reported to partake in cassava
fermentation. Bac. subtilis was found to produce amylases that were involved in the initial breakdown of cassava starch into simple
sugars that are then fermented by LAB (Amoa-Awua and Jakobsen, 1995). Saccharomyces cerevisiae, Pichia scutulata, Kluyveromyces marx-
ianus, Hanseniaspora guilliermondii, Candida tropicalis, Can. glabrata and Can. krusei are the yeasts species isolated during traditional gari
and lafun production in West Africa (Oguntoyinbo, 2008; Wilfrid Padonou et al., 2009). Cassava is also processed by solid-state
fermentation for the production of tarubá, an indigenous beverage by the Amerindian tribes in Brazil (Ramos et al., 2015).

Fermented Fruits and Vegetables

Lactic acid fermentation of fruit and vegetable foods is traditionally carried out in most parts of Europe, United Sates of America and
Asian sub-continents for the purpose of preservation against spoilage and rotting. Other reasons include prevention of post-harvest
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losses, shelf-life extension, improvement in nutrient composition, detoxification and reductions in levels of anti-nutritional compo-
nents (e.g. glucosinolates in cabbage and oleuropein in olive), in order to make them edible and available during the off season
(Gail-Eller and Gierschner, 1984; Ross et al., 2002; Sánchez et al., 2000a). Fermentation processing of heads of white cabbage (Bras-
sica oleracea var. capitata L.), cucumber (Cucumis sativus L.) and olive (Olea europaea L.) for the production of sauerkraut (’sour herb’ or
’sour cabbage’ as known in Germany), pickles and table olives respectively, is commonly practised in Western countries. However,
Korean kimchi from Chinese cabbage (Brassica rapa subsp. pekinensis) is the most popular fermented vegetable side dish food in Asia
(Oguntoyinbo et al., 2016a; Patra et al., 2016). Fermented vegetable ethnic foods that are also common in Asia are gundruk, sinki,
khalpi, sunki, pak-sian-dong, tursu, suan-tsai, salgam, kanji, jiang-gua, hardaliye, dhamuoi, dakguadong, goyang, phak-gard-dong and gherkins,
while the edible fermented bamboo shoots include mesu, soidon, soibum, soijim, ekung, hirring, naw-mai-dong, inziangsang, doubanjiang
and pao cai (Altay et al., 2013; Anandharaj et al., 2015; Tamang et al., 2008; Tamang and Tamang, 2009). In Africa however, very few
vegetable leaves like those from cowpea [Vigna unguiculata (L.) Walp.] and African kale [Brassica carinata A. Braun] are subjected to
fermentation before consumption (Kasangi et al., 2010; Oguntoyinbo et al., 2016b). Spontaneous fermentation of fruits of capper
berries (Capparis spinosa L.), sweet cherry (Prunus avium L.) and ’Almagro’ egg plant (Solanum melongena var. esculetum L.) are equally
found in the Mediterranean, where they form part of various cuisines (Perez Pulido et al., 2005; Sánchez et al., 2000b).

Fermented Milk and Dairy Products

Among other fermented food substrates is milk, which is highly perishable with a very short shelf-life because it contains major
classes of nutrients. The high nutrient density makes milk a suitable medium for microbial contamination and colonization by
autochthonous, spoilage and pathogenic microorganisms. For preservation and digestibility purposes, milk is naturally fermented
at ambient temperature, or with starter cultures in the raw form or after pasteurization (Jans et al., 2017). Yoghurt is a fermented
dairy food that is produced commercially from pasteurized milk using strains of Lac. delbrueckii subsp. bulgaricus and Streptococcus
thermophilus starter cultures. While Str. thermphilus is responsible for the metabolism of lactose sugar to produce lactic acid, which
enhances milk acidification, Lac. delbrueckii subsp. bulgaricus contributes to aroma and flavour production (Innocente et al., 2016).
Cheese is another commercial fermented milk food, with different types depending on the origin of production, ripened or unrip-
ened, soft or hard. During cheese manufacturing, the acidic environment created by LAB, neutralizes the negative charge ion of the
milk casein, for precipitation and coagulation, forming a gel cheese curd at isoelectric point of pH around 4.6. The major cheese
microbiota includes Lactococcus lactis subsp. lactis, Lac. lactis subsp. cremoris, Lac. lactis subsp. lactis var. diacetylactis, Leu. mesenteroides
subsp. cremoris, Lac. helveticus, Lac. casei, Lac. plantarum, Lac. salivarius, Enterococcus faecium, Ent. durans, Propionibacterium freudenrei-
chii, Debaryomyces hansenii, Yarrowia lipolytica, Kluveromyces marxianus, Geotrichum candidum, Penicillium roqueforti, Pen. camemberti,
Pen. glaucum and Staphylococcus species (Quigley et al., 2011).

Naturally fermented milk (NFM) products are likewise available in different parts of the world apart from cheese and yoghurt.
Examples include kefir (fermented milk with kefir grain), koumiss (in Russia), sethemi, amasi/wakakora, mukaka, hodzeko, mbanik, kule
naoto, mursik, amabere, amaruranu, suusac, raib, zabady (like plain yoghurt), urubu, amateregua, amavuta, jben, leban, rob, gariss, fènè,
mabisi, dhanaan, makamo, nunu, nyarmie, kindirmo, maishanu, arera and pendidam (from different parts of Africa), laban (Lebanon),
doogh (Iran), aryan (Turkey), and kurut (China) (Akabanda et al., 2013; Franz et al., 2014; Jans et al., 2017). Others are långfil, film-
jölk, viili, tettemelk, ymer and talouspiimä in the Scandinavian, and dahi (yoghurt-like), chhurpi, somar, chhu, khachu, philu, shrikhand,
philu and shyow in India (Duboc and Mollet, 2001; Ghatani and Tamang, 2017). Fermented curds similar to cottage cheese include
datsi, warankashi/woagashi, oscypek, batzos, rigouta, ergo, ititu, ayib, while traditional fermented butters are kibe, neterkibe, omashikwa,
klila and chhash.

Fermented Meat and Seafood Products

Meat and fish products are highly nutritious, and perhaps the richest source of protein foods, when compared to plants, because of
their amino acid quantity and quality, which may be lacking in other protein sources (Lücke, 2000). Fresh cut meat and fish are
susceptible to microbial contamination and spoilage because of their relatively high moisture contents and water activity (aw)
(Adams, 2010; Gram and Huss, 1996). They are usually processed by cooking, smoking, drying, canning and grilling before
consumption. Fermentation of meat and seafood is also carried out, especially in Southern and Central Europe, United States of
America, including Asia and some parts of Africa. Fermented sausage (also called ’salami’ in Italy) is the most popular and the
microbial ecology indicates the important presence and technological roles of two main groups of bacteria, LAB (Lac. sakei, Lac.
curvatus, Lac. paracasei, Lac. plantarum, Lac. pentosus, Lac. buchneri, Lac. brevis, Lac. rhamnosus, Lac. alimentarius, Lac. farciminis, Ped. pen-
tosaceus, Ped. acidilactici, Leu. mesenteroides, Leu. pseudomesenteroides, Leu. carnosum, Leu. gelidum), and Gram-positive coagulase-
negative cocci (CNS: Staphylococcus xylosus, Sta. carnosus subsp. carnosus, Sta. pasteuri, Sta. warneri, Sta. saprophyticus, Sta. epidermis,
Sta. equorum, Sta. simulans, Sta. sciuri, Sta. succinus, Kocuria varians) (Greppi et al., 2015; Rantsiou et al., 2005; Villani et al.,
2007). Can. famata, Deb. hansenii, Willopsis saturnus, Pen. nalgiovense, Pen. chrysogenum and Pen. camemberti have also been found
to be present. Other sausage-like fermented meat products are alheira in Portugal, sucuk in Turkey, nham in Thailand, nem chua
in Vietnam, Taiwanese ham, wakalim in Ethiopia, jamma, arjia and kargyong in India (Albano et al., 2008; Bacha et al., 2010; Kesmen
et al., 2012; La Anh, 2015; Oki et al., 2011; Tu et al., 2010).

Fermented fish are numerous and predominantly produced in South and Southeast Asian regions, with a few of them in Africa
and some other parts of the world. They include salted fermented fish sauce (e.g. budu, kecap ikan/bakasang, nam-pla, ngan pyaye, nuoc
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mam, patis, yu-lu, shottsuru, ishiru, jeotkuk, garos), and fish pastes (bagoong, belacan, hentak, jaadi, kapi, kung chao, mehiawah, ngapi, nar-
ezushi, pla ra, trassi, tungtap (Jung et al., 2013; Thapa et al., 2004). Fermented fish foods that are neither sauce nor paste, with or
without salt, and sometimes sun-dried include jeotgal, hákarl, surstrØmming, rakØrret, fessiekh, ngari, pedah, balao balao, guedj, bonome,
shiokara, pekasam, kung som (Devi et al., 2015; Guan et al., 2011; Sanchart et al., 2017).

Alcoholic Drinks and Other Miscellaneous Fermented Foods

Non-cereal alcoholic beverages and miscellaneous fermented food products are available in various parts of the world, and are
produced from different food raw materials. For example, wine made from grape juice/must, is consumed throughout the world,
and fermentation occurs through a divergent community species and strains of yeasts, although predominantly by Sac. cerevisiae
strains (Perrone et al., 2013). LAB, mostly Oenococcus oeni, is responsible for secondary or malolactic fermentation (MLF) that
involves conversion/decarboxylation of dicarboxylic L-malic acid found in grape juice to monocarboxylic L-lactic acid (Liu,
2002; Osborne and Edwards, 2005). Technologically, Oen. oeni population in wines usually cause reductions in pH below 3.5,
resulting in a softer-tasting wine; ensures microbial stability, and evolution of various sensory changes, due to production of
a number of secondary metabolites (Dicks and Endo, 2009; Swiegers et al., 2005). Oen. oeni has been described as the preferred
starter culture for MLF, whereas other wine-related LAB are known to cause spoilage in wine. This is because Oen. oeni has higher
tolerance to wine conditions, such as pH< 3.5 and ethanol concentration>10% and is less prone to off-flavour production (Versari
et al., 1999).

Traditional wines, beers and alcoholic drinks, prepared from carbohydrate-rich substrates and indigenous fruits are particularly
popular in Africa, South America and some other parts of the world. These include palm wine from palm sap/juice, tej (honey wine
in Ethiopia),mbege, urwarwa and isongo (banana beer in Tanzania and Burundi),marula,murara,mutandavira,masau andmudetemwa
fruit wines and beer in Zimbabwe, basi and cachaça (fermented sugar cane juices), kanji and aloja (alcoholic beverages from carrot
and carob beans respectively), caxiri, pulque etc (Aloys and Angeline, 2009; Escalante et al., 2008; Gadaga et al., 1999; Mulaw and
Tesfaye, 2017; Nyanga et al., 2013; Santos et al., 2012). Apart from black tea that is popularly consumed around the world, tradi-
tional fermented tea products such asmiang, fuzhuan brick, puer and kombucha are also found in Asia. Other miscellaneous fermented
products are coffee and cocoa beans in chocolate manufacturing, nata de coco and nata de piña.

Health-Promoting Effects of Fermented Foods and Beverages

Production of Antimicrobial Compounds Against Pathogenic Microorganisms

In starchy foodmaterials, LAB species typically secret a-amylase enzyme, which hydrolyzes complex carbohydrates into fermentable
sugars such as glucose and maltose. Upon sugar metabolism, LAB produce lactic acid as the principal metabolite but bacteriocins,
a group of antimicrobial proteins or peptide compounds that inhibit closely related bacterial genera and other unrelated microbial
species are also released. The production of lactic acid causes pH reduction to below 4.2 in acidic fermented foods and beverages,
facilitating the inhibition and/or elimination of the onset and growth of food spoilage microorganisms and food-borne pathogens,
which are known causative agents of several food-borne diseases and human illnesses (Giraffa, 2004; Holzapfel, 1997). Lactic acid-
fermented food products containing viable bacterial cultures and metabolites, and their potential health benefits in diseases control
have been previously identified.

Odugbemi et al. (1991) demonstrated the effective control of enteropathogenic Escherichia coli (EPEC), Salmonella typhi and Sal.
paratyphii in ogi, a lactic acid cereal gruel used for infant feeding in West Africa. Mbugua and Njenga (1992) reported the antimi-
crobial activities of LAB against diarrhoea-causing bacteria – Sal. typhi, EPEC and Shigella dysenteriae in uji. Other studies onmahewu,
kenkey, ikii, bushera and togwa, revealed the inhibition of the proliferation of food-borne pathogens and disease-causing bacteria such
as Campylobacter jejuni, Shi. flexneri, EPEC and coliforms (Kalui et al., 2009; Kingamkono et al., 1998; Mensah et al., 1988, 1991;
Muyanja et al., 2003; Nout et al., 1989; Simango and Rukure, 1991). An optimized ogi, ’DogiK0, prepared with lactobacilli strain
starter cultures, was developed for the control of infantile diarrhoeal disease in Nigeria (Olukoya et al., 1994). In a related study,
Adebolu et al. (2007) confirmed the anti-diarrhoeal potential of ogi liquor harbouring Lactobacillus species, with respect to Shi. dys-
enteriae, Sal. typhimurium, Esc. coli, Sta. aureus and Enterobacter spp. Bacteriocinogenic Lac. plantarum strains from ben-saalga was
found to exhibit broad spectra antimicrobial properties against food-borne pathogenic strains of Bac. cereus, Ent. faecalis, Listeria
innocua, Lis. monocytogenes, Sta. aureus and Sal. enterica (Omar et al., 2006). In like manner, bacteriocin-producing Lac. plantarum,
Ent. faecium and Leu. lactis in boza demonstrated bactericidal effects regarding Esc. coli, Klebsiella pneumoniae, Listeria spp. Pseudomonas
aeruginosa and Staphylococcus spp. (Todorov, 2010).

There are various reports on the health-promoting functions of LAB in fermented milk foods, fruits and vegetables. Yoghurt and
acidophilus-fermented milk containing Lac. acidophilus were effectively used in the treatment of gastrointestinal tract (GIT) disor-
ders, including colitis, diarrhoea and constipation (Sanders, 1993). Olasupo et al. (1999), Ghrairi et al. (2004) and Mitra et al.
(2010) isolated a nisin Z Lac. lactis strain from wara (short form of warakanshi), rigouta and dahi respectively, which possessed
anti-listerial characteristics, by inhibiting Lis. innocua, Lis. monocytogenes, as well as Clostridium butyricum, Clo. perfringens, Bac. cereus
and Sta. aureus. Another Lac. lactis strain from goat cheese whey in Brazil likewise showed anti-listerial properties (Chaves de Lima
et al., 2017). LAB present in Iranian, Turkish and Algerian fermented dairy foods produced bacteriocin and bacteriocin-like inhib-
itory substances (BLIS) against Lis. monocytogenes, Lis. innocua, Sal. enteritidis, Sta. aureus, Ent. faecalis, Bac. cereus, Sta. epidermidis, Esc.
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coli and Yersinia enterocolitica (Aslim et al., 2005; Iranmanesh et al., 2014; Mezaini and Bouras, 2013). Bacteriocin-producing LAB
screened from kurut, a Chinese traditional fermented yak milk was antagonistic towards Sta. aureus and Esc. aerogenes (Luo et al.,
2011). Lac. lactis subsp. lactis biovar. diacetylactis strain was used alone as starter culture or in combination with Can. kefyr, to
produce traditional fermented milk in Zimbabwe; this retarded the growth and survival of Esc. coli and Sal. enteritidis strains orig-
inating from human clinical samples (Mufandaedza et al., 2006). Similarly, Lac. lactis subsp. lactis bacteriocin was applied in situ for
the biological control of Lis. monocytogenes in jben (Benkerroum et al., 2000). A crude extract containing antimicrobial peptide of
milk fermented with Lac. plantarum 26, displayed antagonistic characteristic towards food-borne pathogens, particularly Lis. innocua
(Aguilar-Toalá et al., 2017). Pediocin, a bacteriocin, produced by a strain of Pediococcus in kimchi, was characterized to have bacte-
ricidal effects, and was resistant toMicrococcus luteus, Clo. perfringens, Lis.monocytogenes, Sta. aureus, Esc. coli, Shi. flexneri and Sal. typhi-
murium (Kwon et al., 2002). Lee et al. (2009) investigated the growth inhibitory effects of LAB species from kimchi on food-borne
pathogens, and found strong antimicrobial activities against Lis. monocytogenes, Sta. aureus, Esc. coli and Sal. typhimurium. Fruits and
vegetables fermented by lactobacilli strains in India and Romania showed antimicrobial activities against Lis.monocytogenes, Esc. coli
(including ESBL strains), Sta. aureus and multi-drug resistant Sta. aureus (MRSA) strains (Grosu-Tudor and Zamfir, 2013; Patel et al.,
2014).

An intervention programme on hospitalized children suffering from acute diarrhoea was conducted in New Delhi, India. The
consumption of dahi, containing Lac. lactis, Lac. lactis subsp. cremoris and Leu. mesenteroides subsp. cremoris starter strains, signifi-
cantly reduced the mean duration of diarrhoea in a randomized, double-blind study (Agarwal and Bhasin, 2002). In vitro screening
of enterococci from dahi showed antimicrobial inhibition of food-borne pathogens, such as Lis. monocytogenes, Sal. typhi, Sta. aureus
and Shi. dysenteriae (Gupta and Malik, 2007). Historically, the Maasai nomadic communities in Kenya have been consuming kule
naoto, for the treatment of diarrhoea and constipation (Mathara et al., 2004).

In addition to the antibacterial activities of LAB in fermented foods, their antifungal properties have also been documented.
Mould growth and mycotoxin production in food substances pose serious health risks and concerns to the consumers (Batish
et al., 1997). Aflatoxins (AFs) and ochratoxins (OTs) are among the most potent mycotoxins reported so far with carcinogenic,
mutagenic, teratogenic, neurotoxic, nephrotoxic, immunosuppressive and estrogenic effects when consumed, even at low concen-
trations (Bennett and Klich, 2003; IARC, 1993; Nwagu and Ire, 2011). Studies have shown the potentials of LAB as bio-protective
cultures, in controlling or preventing mould growth and development, and their mycotoxins production in various fermented food
matrices, thereby conferring significant health benefits on them.

Roger et al. (2015) confirmed the inhibition of the growth of Asp. flavus and its aflatoxin B1 (AFB1) metabolism by divergent LAB
strains in kutukutu, a fermented maize dough in northern Cameroon. Carboxylic acids synthesized by Lac. plantarum FST1.7 and Lac.
brevis R2D starter strains during wort fermentation were antagonistic against spores of mycotoxin-producing Fusarium culmorum
(Peyer et al., 2016). Strains of Lac. brevis from katak (a yoghurt-like drink) in Bulgaria showed broad spectrum antifungal activities,
suppressing the growth of carcinogenic Asp. niger, Asp. awamori and Pen. claviforme, and partially inhibiting mycelial growth and
conidia germination of Asp. flavus (Tropcheva et al., 2014). Hassan and Bullerman (2008) earlier reported the anti-
mycotoxigenic potentials of Lac. paracasei isolated from sourdough bread culture, against several species of Aspergillus, Penicillium
and Fusarium. Lac. brevis, Lac. plantarum and Lac. sanfranciscensis strains used as starter cultures for cocoa fermentation, exhibited
antifungal properties in the control of ochratoxinogenous Asp. ochraceus, Asp. niger and Asp. carbonarius (Essia Ngang et al.,
2015). LAB present in naturally fermented amahewu and other fermented maize meal, potentially reduced AFB1, fumonisin B1
(FB1) and zearalenone (ZEA) to undetectable levels (Chelule et al., 2010; Mokoena et al., 2005). The ability of some lactobacilli
species, originating from fermented dairy foods, to bind AFB1 was assessed. Specifically, Lac. amylovorus and Lac. rhamnosus strains
bind more than 50% AFB1 throughout a 72-h incubation period (Peltonen et al., 2001). Generally, the anti-mycotic compounds of
LAB that make them active against mycotoxigenic moulds, include lactic acid, indole lactic acid, phenolic acid, phenyllactic acid, 4-
hydroxy-phenyllactic acid, 3-(R)-hydroxydecanoic acid, 3-hydroxy-5-cis-dodecenoic acid, 3-(R)-hydroxydodecanoic acid, 3-(R)-
hydroxytetradecanoic acid, cyclo (L-Phe-trans-4-OH-L-Pro), cyclo (L-Phe-L-Pro) and 3-hydroxylated fatty acids (Crowley et al.,
2013; Haskard et al., 2001; Lavermicocca et al., 2000; Sjӧgren et al., 2003).

The production of antimicrobial compounds against pathogenic microorganisms, which cause various human diseases and
other health related issues, has also been reported in fermented food products that are not lactic acid fermented. One example
is the alkaline pH-fermented protein-rich legume foods that are widely consumed in West Africa sub-region and Southeast Asia.
A number of traditional alkaline-fermented food condiments in West Africa like bikalga,maari, okpehe and soumbala have been found
to possess health beneficial functions. They contain vegetative cells of Bac. subtilis, Bac. pumilus, Bac. amyloliquefaciens ssp. plantarum,
Bac. subtilis subsp. subtilis and Bac. licheniformis that are capable of producing inhibitory peptide and antibiotic compounds. These
substances such as iturin, fengycin, surfactin, difficidin, macrolactin, bacillaene, bacilysin, subtilisin, subtilosin A, subtilin, sublan-
cin and ericin, showed broad spectrum antagonistic properties towards Mic. luteus, Sta. aureus, Bac. cereus, Ent. faecium, Lis. monocy-
togenes, Esc. coli, Sal. typhimurium, Shi. dysenteriae, Yer. enterocolitica, Asp. ochraceus and Shi. flexneri (Compaoré et al., 2013a; b; Kaboré
et al., 2012; Oguntoyinbo et al., 2007; Ouoba et al., 2007). Bac. natto TK-1 and Bacillus strains from Japan, Korea and Thai fermented
soybean foods, natto, chungkookjang and thua-nao respectively, produced heterogenous and bio-surfactant lipopeptides against Bac.
cereus, Lis. monocytogenes Ent. faecalis, Sal. typhimurium, Esc. coli and Sta. aureus, including inhibition of Asp. flavus growth and signif-
icant detoxification of AFB1 and ochratoxin A (OTA) by more than 70% (Cao et al., 2009a; Lee et al., 2016; Petchkongkaew et al.,
2008). Bac. subtilis HJ18–4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, produced an anti-
microbial peptide against Bac. cereus, causing the down-regulation of expression of diarrhoeal and enterotoxin genes (Eom et al.,
2014).
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Two strains of Ent. faecium, LMG 19827 and 19828 identified in Malaysian tempe produced enterocins that inhibited Lis. mono-
cytogenes growth (Moreno et al., 2002). The antimicrobial potentials of Indonesian tempe was earlier demonstrated by its protective
effects against diarrhoeal EPEC and enterotoxigenic E. coli (ETEC), with health beneficial functions in diarrhoea prevention, control
and management among children (Karyadi and Lukito, 2000; Kiers et al., 2003; Kiers et al., 2002). Bacteriocin-producing Bac. coag-
ulans was found in ngari, which inhibited Bac. cereus, Sta. aureus and Mic. luteus (Abdhul et al., 2015). A peptide antibiotic, polyxin,
from Paenibacillus polymyxa, isolated from Argentinean fermented sausage, was previously found to be antagonistic to Esc. coli, Sal.
newport, Serratia marcescens, Sta. aureus, Kle. pneumoniae, Bac. thuringiensis israeliensis and Bac. cereus (Piuri and Ruzal, 1998). Another
Pae. polymyxa strain isolated from kimchi, co-produced a lantibiotic (polymyxin E1) and an antimicrobial peptide (paenibacillin)
that were active against Clo. sporogenes, Sta. aureus and Listeria spp. (He et al., 2007).

Bioactive Compounds Synthesis

Different biologically active compounds, synthesized during food fermentations, either as metabolites of wild-type microbial
strains/starter cultures or as substances released from the hydrolysis of organic components of food substrates, are widely associated
with various functional health-promoting benefits. These bioactive compounds usually have antimicrobial (already discussed
above), antihypertensive, antioxidant, anti-diabetic, anti-mutagenic, anti-cancer, anti-tumour effects and fibrinolytic activities.

Antihypertensive
Angiotensin converting enzyme-inhibitory (ACE-I) peptides are among the bioactive peptides formed during food fermentation by
the action of proteolytic enzymes (i.e. proteases) on the native proteins present in many protein-based food substrates. They are not
digested by the GIT digestive enzymes (e.g. trypsin, pepsin and chymotrypsin), and inhibit the enzyme responsible for converting
angiotensin I to angiotensin II, a potent vasoconstrictor that causes re-absorption of water and sodium ions, thereby affecting the
electrolyte balance, volume and blood pressure (BP) (Hartmann and Meisel, 2007; Rai et al., 2017). The inhibition of angiotensin
converting enzyme (ACE) by ACE-I peptides is suggested to be made possible by the presence of hydrophobic (aromatic or
branched side chain: Tyr, Phe, Trp, Ala, Ile, Val and Met) and positively charged amino acids (Arg and Lys), including Pro at the
C terminal of ACE-I peptides, which show affinity for ACE protein (Haque and Chand, 2008; He et al., 2012; Rai et al., 2017).
In addition to converting angiotensin I to angiotensin II, ACE also inactivates bradykinin and kallidin, two important vasodilators,
which leads to increased BP, and risk of hypertension, including other cardiovascular diseases (CVD), strokes, etc (Sanjukta and Rai,
2016). Investigations on ACE-I peptides production are mostly on fermented milk products and legumes, and there are reports of
their ACE inhibition, to cause vasodilator effects, which lowers BP. They are thus gaining wide popularity as antihypertensive agents
in prophylactic medicine.

An in vitro spectrophotometric analysis is most commonly used for the evaluation of ACE-I activities. Hippuryl-His-Leu
(HHL) serves as the substrate, which is hydrolysed by ACE to produce hippuric acid and His–Leu. ACE-I peptides in the
water-soluble fraction, produced by bacterial cell wall proteinase enzymes system, prevents this reaction from taking place.
ACE-I peptide activity is then expressed as the percentage of ACE inhibition or as the minimum concentration of peptide to
inhibit 50% of ACE activity, the IC50 (Hernández-Ledesma et al., 2011). Several LAB strains have been screened for high
proteinase and ACE-I activities of dipeptides, tripeptides and oligopeptides liberated from milk proteins, as1-casein and
b-casein, as a strategy for the development of fermented milk foods with antihypertensive properties. Empirical studies on
different LAB dairy and non-dairy starter cultures, alone or in combination with yeasts species, including wild-type strains,
to ferment milk, for yoghurt, cheese and other traditional fermented milk products, as well as their specific ACE-I peptide
sequences, properties and IC50 values after fermentation and during storage, have been documented (Beltrán-Barrientos
et al., 2016; Rai et al., 2017). Li et al. (2017) characterized the ACE-I peptides in milk fermented with Lac. casei strains.
More than half of the strains produced fermented milks with ACE-I activity of over 60%, and maximum Val-Pro-Pro (VPP)
and Ile-Pro-Pro (IPP) concentration of 6.60 � 0.25 mmol/L. Goat and camel milk fermented by Lac. plantarum 69 and Lac. rham-
nosus MTCC 5945 (NS4), respectively had ACE-I activities up to 78.09% and 91.62%, under optimum fermentation conditions
(Chen et al., 2018; Solanki and Hati, 2018).

To validate the in vitro antihypertensive potential of ACE-I peptides, animal models, using spontaneously hypertensive rats
(SHR) and clinical trials of human subjects are conducted, measuring reduction or drop in systolic blood pressure (SBP) or diastolic
blood pressure (DBP), after oral or intravenous/intra-peritoneal administration. Earlier works on fermented milk products, like cal-
pis sour milk in Japan, fermented with Lac. helveticus and Sac. cerevisiae, and containing tripeptides VPP and IPP, showed hypotensive
effects and decrease in ACE tissue activity of SHR (Nakamura et al., 1995; Nakamura et al., 1996). Milk fermented with Lac. lactis
strains NRRL B-50571 or NRRL B-50572 had similar reductions in SBP and DBP of SHR, in comparison with captopril administra-
tion (Rodríguez-Figueroa et al., 2013). A single oral dose of Lac. helveticus H9 in fermented milk significantly lowered the systolic,
diastolic and mean blood pressure of SHR (Chen et al., 2014). Increase in frequency unit of Gamalost cheese consumption, rich in
ACE-I peptides, among Norwegian population, corresponded to a reduction in SBP of 0.72 mm Hg (Nilsen et al., 2014). Beltrán-
Barrientos et al. (2018) examined the BP-lowering effect of milk fermented by Lac. lactis NRRL B-50571 in a double blind, random-
ized controlled, clinical trial of pre-hypertensive patients, administered daily for 5 wk, and observed reductions in SPB and DBP, in
addition to triglyceride, total cholesterol and low density lipoprotein in blood serum. Other in vivo studies involving SHR and
human subjects on both short- and long-term antihypertensive effects of fermented milk peptides are available in Beltrán-
Barrientos et al. (2016) and Rai et al. (2017) reviews.
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Similarly, protein-rich legume fermented seeds, particularly soybean, containing glycinin and b-conglycinin protein fractions,
have also been reported to possess ACE-I peptides. But while information is available on the antihypertensive activities of
different fermented soybean foods consumed in Asia, little or none is known about closely related fermented foods in Africa.
For instance, an antihypertensive peptide identified in natto, fermented with Bac. subtilis natto O9516, showed in vitro ACE-I
activity, and in vivo reduction of SBP within 5 h of single dose oral administration in SHR (Ibe et al., 2009). Extracts of tofuyo
composed of Ile-Phe-Leu and Trp–Leu peptide sequences were resistant to GIT digestive enzyme treatments and had good
ACE-I activity (Kuba et al., 2003). Toshiro et al. (2004) reported chunggugjang soy product to possess antihypertensive peptides,
which when administered in volunteer human subjects reduced SBP and DBP by 15 mm Hg and 8 mm Hg, respectively after 2 h.
ACE-I activity was recorded in sufu, fermented with fungal strain, which correlated with peptide content, and increased during
fermentation andmaturation (Ma et al., 2013). Pigeon pea seeds [Cajanus cajan (L.) Millsp.] fermented with a strain of proteolytic
Asp. niger, produced an ACE-I octapeptide Val-Val-Ser-Leu-Ser-Ile-Pro-Arg, which had competitive inhibition against in vitro ACE
activity (Nawaz et al., 2017). Fermented soymilk products with strains of Lac. casei, Lac. acidophilus, Lac. bulgaricus, Ent. faecium
and Bifidobacterium longum have been shown to possess ACE-I properties (Martinez-Villaluenga et al., 2012; Tsai et al., 2008). In
addition to milk and legume, fermented fish sauce from salmon, sardine, anchovy, blue mussel and oyster in Asia were reported
to contain ACE-I peptides. A purified peptide from fermented blue mussel significantly reduced BP in SHR by oral administration
(Je et al., 2005).

Gamma-aminobutyric acid (GABA) is another peptide compound with hypotensive activity, in addition to other physiological
functions such as relaxation, sleep enhancement (opioid), anti-depression, enhanced immunity, anti-diabetic, anti-cancer and anti-
obesity. GABA also possesses anti-inflammatory, pro-neurotransmitter, menopausal syndrome relief, activation of liver and kidney
function, amelioration of oxidative stress, as well as treatments of Parkinson’s disease, seizures, Alzheimer’s disease, stiff-man
syndrome and schizophrenia (Wong et al., 2003). It is a non-protein four-carbon free amino acid (FAA), synthesized by the irre-
versible a-decarboxylation of L-glutamic acid or its salts, i.e. monosodium glutamate (MSG), catalysed by glutamic acid decarbox-
ylase (an enzyme found in bacteria, moulds and yeasts), in the presence of pyridoxal 50 phosphate cofactor (Shelp et al., 1999).
Evidence of GABA hypotensive effect on SHR was established in Lac. plantarum-fermented skim milk diet, where SBP and DBP
were significantly decreased (Liu et al., 2011). Lac. plantarum produced 77.4 mg/kg of GABA in an enriched functional fermented
milk food; this increased in concentration to 144.5 mg/kg, in combination with other LAB strains, and was recommended for mild
hypertensive condition (Nejati et al., 2013). GABA concentration of 10–12 mg in 100 mL of milk fermented by Lac. casei strain
Shirota and Lac. lactis YIT 2027, significantly decreased BP when fed two or four weeks in a randomized, placebo-controlled trial
with mild hypertensive patients as participants (Inoue et al., 2003). Lac. lactis ssp. lactis improved the GABA content of cheese
(16 mg of GABA/50 g cheese), which decreased BP by 3.5 mm Hg in human subjects (Pouliot-Mathieu et al., 2013). GABA and
nattokinase in Bac. subtilis B060-fermented beans significantly lowered SBP and DBP in SHR and Wistar-Kyoto rats (Suwanmanon
and Hsieh, 2014).

Antioxidant
Free radicals (i.e. atoms or molecules with an unpaired electron) and reactive oxygen species (ROS), such as superoxide anion radi-
cals (O�

2
�), hydroxyl radicals (HO�), hydrogen peroxide (H2O2) and singlet oxygen (1O2) are frequently generated in the human

body during various metabolic processes and environmental stresses, besides those consumed in oxidized edible fats and oils. These
free radicals play significant roles in cell signalling, apoptosis, gene expression and ion transportation (Lü et al., 2010). However,
oxidative stress occurs when these molecules are produced in excess and/or there is lack of cellular defences against them, leading to
oxidation of proteins and lipids, DNA mutation, cell and tissue disruption, permanent damage, and eventually death, as well as
oxidative modification of low density lipoproteins (LDL) (Hu et al., 2004). Consequent upon this is the development of a number
of degenerative diseases e.g. CVD (atherosclerosis), cancer, tumour growth, diabetes, arthritis, increase in blood cholesterol level,
Alzheimer’s and Parkinson’s diseases (Afonso et al., 2007). Though not enough, the human system has non-enzymatic, i.e. reduced
glutathione (GSH) and enzymatic antioxidants in the form of superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and
catalase (CAT), as defence and repair mechanisms against oxidative damages (Miller and Britigan, 1997). To alleviate oxidative
stress, hydrolysed antioxidative peptides, FAA, free polyphenols (intermediates of b-glucosidase hydrolysis of polyphenols), genis-
tein and daidzein (isoflavones), malvidin and delphinidin (flavonoids) and aglycones, which are naturally enhanced in fermented
foods, can chelate metal ion, scavenge free radicals (by a way of proton or Hþ donation) and quench singlet oxygen (Mathew and
Abraham, 2006). For peptides, the radical scavenging activity (RSA) is supported by the side chain groups of the amino acids resi-
dues, i.e. imidazole, indole and phenol in His, Trp and Tyr, respectively (Guo et al., 2009). Therefore, these bioactive compounds
can serve anti-cancer, anti-tumour, anti-mutagenic and anti-diabetic purposes.

Fermentation of buckwheat, wheat gram, barley and rye with Lac. rhamnosus and Sac. cerevisiae, compared to their unfermented
equivalents, led to increase in total phenolic content (TPC), and antioxidant activities (AOA) as assessed using 2,2-diphenyl-1-
picrylhydrazyl (DPPH) scavenging capacity, ferric ion-reducing antioxidant power (FRAP) and thiobarbituric acid (TBA) methods
(ÐorCevi�c et al., 2010). Ethanolic extract of wheat koji prepared with Asp. oryzae and Asp. awamori nakazawa greatly increased the TPC
and free RSA (Bhanja et al., 2009). Fermentation of adlay, chestnut, lotus seed and walnut cereal grains by food-grade Bac. subtilis
and Lac. plantarum increased the phenolic and flavonoid contents of the methanolic extracts, with a stronger DPPH radical scav-
enging and FRAP activities (Wang et al., 2014). Solid-state fermentation (SSF) of wheat improved the water-soluble TPC and anti-
oxidant property. There was a 14-fold improvement in TPC in Asp. oryzae-fermented wheat, as well as 6.6 and 5.0-fold
enhancements of DPPH and ABTS radical scavenging, respectively in Rhi. oryzae-fermented wheat (Dey and Kuhad, 2014). The
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TPC, total flavonoids and AOA were significantly enhanced in ethyl acetate extracts of SSF-fermented wheat using Asp. oryzae var.
effuses, Asp. oryzae and Asp. niger (Cai et al., 2012).

During milk fermentation in the presence of Leu.mesenteroides ssp. cremoris, Lac. jensenii and Lac. acidophilus strains, antioxidative
peptides released (4–20 kDa) were responsible for RSA and inhibition of lipid peroxidation (Virtanen et al., 2007). Low molecular
weight bioactive peptides and FAA (His, Tyr, Thr and Lys) in commercial yoghurt provided antioxidant activities by inhibiting
oxidation in a liposome model, in addition to possession of strong DPPH radical scavenging and high Fe2þ chelation (Farvin
et al., 2010). An antioxidative undecapeptide (Ala-Arg-His-Pro-His-Pro-His-Leu-Ser-Phe-Met) isolated from milk fermented with
Lac. delbrueckii subsp. bulgaricus strain demonstrated scavenging activity against DPPH radical (Kudoh et al., 2001). Soy whey fer-
mented using Lac. plantarum B1-6 when compared to unfermented, possessed more TPC and isoflavone aglycone, higher ABTS,
hydroxyl and superoxide RSA, ferric reducing antioxidant power, and greater protection against oxidative DNA damage (Xiao
et al., 2015). Milk-kefir and soymilk-kefir fermented using kefir grains LAB and yeasts strains showed significant anti-mutagenic prop-
erty against different mutagens, as a result of scavenging activity against DPPH radicals, inhibition of linoleic acid peroxidation and
ferrous ion chelation (Liu et al., 2005).

Fermentation of soybeans to produce tempe, natto, kinema and douchi by mould or bacterial strains has also led to antioxidant
effects in the methanolic extract or water-soluble fractions of these food products. Enhancement in TPC, DPPH scavenging activity,
Fe3þ reducing power, Fe2þ chelation, inhibition of lipid peroxidation and oxidation of LDL correlated with increased FAA, peptide
content, free isoflavones and phenolic acids, protease and b-glucosidase activities, in most of the investigations, suggesting their
potential to mitigate oxidative stresses (Sanjukta and Rai, 2016). Earlier, free soluble phenol in fermented underutilized legume
seeds significantly enhanced reducing power, DPPH scavenging ability and inhibition of lipid peroxidation more than the bound
phenols (Oboh et al., 2009). The ethanolic extract of Bac. subtilis or Asp. oryzae fermented red beans decreased MDA as well as
increased GSH and SOD in the liver tissue of Sprague–Dawley rats, while only Bac. subtilis extract increased the levels of ascorbic
acid and a-tocopherol in the liver tissue; Asp. oryzae also increased ascorbic acid in the brain tissue better than the control
(Chou et al., 2008). In an attempt to demonstrate the beneficial functions of antioxidant compounds in the management of dia-
betes mellitus (DM), Lim et al. (2012) assessed the in vivo anti-diabetic potential of fermented soybean extract with a Bac. subtilis
strain, previously isolated from chungkookjang. Intra-peritoneal administration of the extract caused significant reduction in the
plasma glucose level in addition to significant increases in plasma insulin level and activities of SOD, GSHPx, CAT and malondial-
dehyde (MDA) in streptozotocin (STZ)-induced diabetic rats, suggesting hyperglycemia inhibition (i.e. hypoglycemic action), due
to the protection of pancreatic b-cells from free radical-mediated oxidative stress.

Anti-diabetic
Both in vitro and in vivo anti-diabetic effects of meju and chungkookjang fermented soybean products, rich in isoflavonoid agly-
cones and small peptides have been investigated. While peptide fractions in chungkookjang slightly enhanced glucose-
stimulated insulin secretion, daidzein extract in meju and chungkookjang better improved insulin-stimulated glucose uptake
by activating peroxisome proliferator-activated receptor-g (PPAR-g) in 3T3-L1 adipocytes than unfermented soybeans.
Furthermore, mouse insulinoma (Min6) cells treated with genistein and peptides had greater glucose-stimulating insulin
secretion capacity, as genistein and daidzein stimulated glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine
NCI-H716 cells, generating insulinotropic actions (Kwon et al., 2006, 2011). Experiments with type-2 diabetic male
Sprague-Dawley (SD) rats fed meju and chungkookjang, prepared with microbial starter strains, significantly improved glucose
homeostasis and tolerance, by way of glucose-stimulating insulin secretion and increased pancreatic b-cell mass, than the
unfermented products (Yang et al., 2013; Yang et al., 2012). Fermented soybean diets, enriched with phenolic compounds,
in STZ-induced diabetic rats reduced blood glucose, thiobarbituric acid reactive species (TBARS) contents, pancreatic MDA,
a-amylase, intestinal b-glucosidase and acetylcholinesterase activities, with corresponding increase in pancreatic glutathione
peroxidase (GPx) and GSH (Ademiluyi et al., 2014, 2015).

Anti-cancer
Apart from the lunasin anti-cancer peptide present in soybean, only very few reports are available on the anti-cancer compounds
produced during food fermentation. Hydrophobic peptides in Korean traditional soy sauce displayed anti-tumour activity by their
cytotoxic effects on different in vitro cell lines, including human colon cancer cells (Kim et al., 1998). Bac. subtilis natto T-2 and Bac.
natto TK-1 in natto produced cyclic lipopeptide and lipopeptide bio-surfactant respectively, which induced apoptosis in human
leukemia cells and inhibited the proliferation of human breast cancer cells (Cao et al., 2009b; Wang et al., 2007). Also, a surfac-
tin-like compound from Bac. subtilis CSY 191-fermented cheonggukjang resulted in growth suppression of human breast cancer
(MCF-7) cells (Lee et al., 2012). In camel milk fermented with Lac. lactis and Lac. acidophilus strains, the water-soluble extract
(�3 kDa) significantly inhibited proliferation of Caco2, MCF-7 and HELA carcinoma cell lines (Ayyash et al., 2018). Fractionated
peptides released by Lac. helveticus in fermented milk suppressed the growth of fibrosarcoma tumours induced by methylcholan-
threne crystals, and increased the number of immunoglobulin A (IgA)-secreting cells in BALB/c mice (LeBlanc et al., 2002).

Fibrinolytic Enzymes
Developments in the study of fibrinolytic enzyme activities and its potential thrombolytic property started when Sumi et al. (1987)
observed that one of the natto beans developed a clear zone on a fibrin plate, indicating that insoluble fibrin (i.e. blood clot) around
the bean was digested by an unknown enzyme produced by Bac. subtilis (natto), which was thereafter characterized and named
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nattokinase (NK). Subsequently was the report of oral administration of NK in natto to healthy adults, which increased fibrinolytic
activity two-folds in plasma, together with fibrin/fibrinogen degradation products in serum, and tissue plasminogen activator (tPA)
(Sumi et al., 1990). In furtherance to this, Fujita et al. (1995) described the passage of NK through intestinal cells of rats, showing
degradation of fibrinogen and appearance of NK in the plasma. Fibrinolytic enzymes from other protein-based fermented foods
apart from natto include: choggokkinase from chonggokjang, myulchikinase from myul-chi-jeot-gal, katsuwokinase from shiokara,
subtilisin DFE from douhchi, subtilisin DJ-4 from doenjang, metalloprotease from fish jeotgal and TPase from tempe. They are specific
in their actions toward fibrin clots. Fibrin, the key protein constituent of blood clot, is formed following fibrinogen degradation by
thrombin (Wolberg, 2007). Its presence is checked by fibrinolysis, to maintain a balance in homeostasis, by endogenous plasmin,
which is activated from the non-active plasminogen by tPA. However, an imbalance situation arises in the human physiology, when
there is challenge in hydrolysing fibrin. This results in its excessive accumulation in the blood vessels, which interfere with blood
flow, to cause thrombosis, leading to myocardial infarction, ischemic heart disease, CVD, high BP and stroke (Mine et al., 2005).

For treatment purpose, different thrombolytic agents [e.g. urokinase, streptokinase, staphylokinase and tissue-type plasmin-
ogen activator (t-PA)] are available for clinical use, and they follow same mechanism for plasmin activation as previously
described. They are however expensive, and suffer some drawbacks, such as short half-life in their specificity towards fibrin, gastro-
intestinal bleeding, allergic reactions, etc (Blann et al., 2002). Fibrinolytic enzymes produced by food-grade, edible microorgan-
isms in traditional fermented foods that have the ability to degrade fibrin and inhibit thrombin, are cheap, highly specific toward
fibrin, with safe records of consumption and no side effects. They have been isolated and characterized, and recommended as alter-
native therapy for the prevention and management of thrombosis (Kim et al., 1997; Montriwong et al., 2012; Singh et al., 2014;
Stephani et al., 2017). However, much more than enzyme purification and identification, is the need for sufficient evidence-based
and empirical scientific investigations to demonstrate the therapeutic efficacy of these enzymes in animal models and human
subjects, involving clinical trials. Unfortunately, only very few studies exist on this aspect of therapeutic effectiveness. For example,
subcutaneous administration of NK from Bac. natto, preceding intravenous kappa carrageenan to the tail of rats, produced infarcted
regions that were significantly shorter in mean length in rats administered NK than those in control rats, signifying the anti-
thrombosis prophylactic effects of NK (Kamiya et al., 2010). The fibrinolytic enzyme from Stenotrophomonas sp. in Indonesian
soybean fermented food dissolved thrombin and reduced blood clot induced by l-carrageenan injection in the tail of Wistar
rats (Nailufar et al., 2016). In human subjects with cardiovascular risk factors, oral intake of NK for 2 months significantly
decreased plasma levels of the CVD-associated coagulation factors of fibrinogen, factor VII and factor VIII (Hsia et al., 2009). Bacil-
lopeptidase F preparations, a serine protease secreted by Bac. subtilis (natto) that was orally administered to human volunteers
showed fibrinolytic and amidolytic activities by shortening euglobulin lysis time and positive changes in local blood flow (Omura
et al., 2004).

Production of Exopolysaccharides (EPSs)

Complex polysaccharide metabolites are generally synthesized by wild-type microorganisms, autochthonous or starter cultures that
are involved in the fermentation of different food substrates. Though these polysaccharides are secreted outside the microbial cells
as extracellular metabolites, they are either adherent, remaining tightly bound to the cell wall surface appendages (e.g. capsule),
referred to as capsular polysaccharides (CPSs) or permanently unattached to the cell surface as EPSs. EPSs may have two forms;
those loosely attached to the bacterial surface and the ones freely released to the cell’s external environment, which forms mucus,
ropiness and slimy materials (Badel et al., 2011). Structurally, EPSs are long-chain, high molecular weight carbohydrate polymers,
consisting of branched, repeating sugar units (mainly glucose, galactose and rhamnose), substituted sugars or sugar derivatives,
including substituents such as phosphate and acetyl group (De Vuyst and Degeest, 1999; Du et al., 2017). They could be homopo-
lysaccharides (HoPSs), composed of only one repeating monosaccharide moiety (D-glucose or D-fructose of two major groups:
glucans and fructans), and examples are cellulose, dextran, mutan, alternan, pullulan, levan and curdlan, or heteropolysaccharides
(HePSs), comprising different sugar molecules e.g. glucose, galactose, rhamnose, mannose, N-acetylglucosamine, N-acetylgalactos-
amine and glucuronic acid, to form gellan and xanthan (Fabera et al., 1998; Laws et al., 2001). Because the biosynthesis of EPSs is
a complex one, and the fact that the mechanism of polymerization of the repeating unit is unclear, its discussion remains out of the
scope of this review.

Other than the technological properties (i.e. viscosity, texture, rheology and firmness) of EPSs in fermented foods, they have
been reportedly found to impart a number of physiological and health beneficial functions on the consumers, which include adhe-
sion and colonization of probiotic microorganisms for competitive exclusion of food-borne pathogens, prebiotic activity, acting as
a physical barrier to many pathogenic bacteria. Other health benefits include serum and blood cholesterol reduction, immunomo-
dulation and immunostimulatory effects, antimicrobial, antioxidant, antihypertensive, anti-diabetic, anti-cancer, anti-tumour, anti-
proliferative, anti-allergic, anti-ulcer, anti-viral, anti-biofilm formation of pathogens, generation of short chain fatty acids (SCFAs)
upon degradation in the gut by the colon microbiota, and protection against the harsh gut environment (Caggianiello et al., 2016;
Dilna et al., 2015).

Purified EPS (EPS_DN1) produced by Lac. kefiranofaciens in kefir completely inhibited Lis.monocytogenes and Sal. Enteritidis at 1%
least concentration, exerting bactericidal effects against them in vitro (Jeong et al., 2017). EPSs of Leu. citreum, Leu.mesenteroides, Leu.
pseudomesenteroides and Ped. pentosaceus obtained from Tunisian fermented foods showed pre- and post anti-biofilm activities at
1 mg/mL against Esc. coli, Ent. faecalis and Sta. aureus, with minimum adhesion inhibition of 86.9% and 53.4% for in vitro pre-
and post-treatments, respectively (Abid et al., 2018).
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Lac. plantarum LRCC5310 isolated from kimchi produced an EPS that had anti-rotavirus effect against human rotavirus (HRV)Wa
strain. At 1.95 mg/mL, it reduced the viral RNA copy numbers significantly, when compared to the control; it also caused cytopathic
effects and interference towards the viral cells, due to strong adherence to MA104 cell lines. In the in vivo study with the same EPS but
rotavirus EDIM (RV-EDIM) strain, neonate mice pre-treated with EPS for 2 d, followed by administration of RV-EDIM together with
EPS at 1 mg/mouse for 5 d, significantly lowered the number (50%) that developed RV-EDIM-induced diarrhoea than in control
(Kim et al., 2018). For mice with acute diarrhoea and severe dehydration, the mean diarrhoea score and rotavirus shedding with this
EPS also decreased significantly at 8 d post-infection in comparison with those in control (Kim et al., 2018). The EPS of Lac. del-
brueckii ssp. bulgaricus 1073R-1 from traditional Bulgarian yoghurt at 20 mg/d orally administrated to BALB/c mice for 21 d, prior
to intranasal infection, significantly decreased influenza virus (H1N1) titre, and increased its antibodies (IgA, IgG1) at 4 d post-
infection, when compared to the control (Nagai et al., 2011). However, the acidic EPS (APS) prolonged the survival rate of influenza
virus-infected mice, and not the neutral EPS (NPS).

EPS prepared from Lac. plantarum YW11 used to ferment Tibetan kefir showed in vitro AOA against hydroxyl radicals at 75% of
1.22 mg/mL, superoxide anion at 62.71% of 1.54 mg/mL, DPPH at 35.11% of 0.63 mg/mL, and 41.09% ferrous ion chelation at
1.07 mg/mL concentration. In the oxidant-induced stress experiment by subcutaneous injection of 500 mg/kg per day of 5% D-
galactose in an ageing mouse, followed by 2.5 mg/mL EPS of Lac. plantarum YW11, there was a significant reduction in serum
MDA, which reflects lipid oxidation inhibition as well as increased GSHPx, SOD, CAT and total antioxidant capacity (TAOC) activ-
ities (Zhang et al., 2017). Pyrosequencing data analysis of the gut microbiota of the ageing mouse revealed gut modulation and
improvement, where Lac. plantarum YW11 EPS recovered the microbiome and phylotypes initially decreased or eliminated by D-
galactose, with further increase in SCFAs content (Zhang et al., 2017). Wei. confusa OF126 strain isolated from ogi, having EPS
of 1.1 x 106 Da exhibited hydroxyl radical and DPPH activities of 86.5% and 67.4%, respectively at 4 mg/mL (Adesulu-Dahunsi
et al., 2018). Ent. faecium BDU7 cultured from ngari was assayed for EPS; its purified form (8 mg/mL) showed significant scavenging
of DPPH (63.5%), superoxide anion (77.3%) and hydroxyl (38.4%) radicals (Abdhul et al., 2015). The antioxidant activity of
a purified EPS (6.9 x 105 Da) from Lac. lactis subsp. lactis in Chinese pickled cabbage, revealed significant decrease in MDA and
increased SOD and CAT in mice serum in a concentration-dependent manner (Pan and Mei, 2010). An EPS (LPC-1) extracted
from Lac. plantarum C88 found in Chinese dairy tofu, demonstrated strong RSA of 85.21% hydroxyl radical and 52.23% DPPH
at 4 mg/mL. LPC-1 also significantly inhibited the formation of MDA and exerted AOA against H2O2-induced injury in Caco-2 cells
(Zhang et al., 2013).

Wang et al. (2018) characterized a neutral EPS (EPS0142) produced by Lac. plantarum JLK0142 from tofu. EPS0142 significantly
induced macrophage-derived nitric oxide (NO) production in RAW 264.7 cell lines, in a dose-dependent manner, without any cyto-
toxic effect, as well as improved phagocytic activity. High dose of EPS0142 also administered to previously cyclophosphamide-
induced immunosuppressed female BALB/c mice, significantly increased the spleen index and splenic lymphocyte proliferation,
including the intestinal immunoglobulin A (sIgA) content and the levels of IL-2 and TNF-a cytokines. EPS extracted from milk fer-
mented with Lac. lactis subsp. cremoris FC, and orally administered to male BALB/c mice before skin exposure to 2,4,6-trinitro-1-
chlorobenzene (TNCB), significantly suppressed skin thickening induced by TNCB and penetration of mast cells in skin lesions
(Gotoh et al., 2017). There was also the regulation of IL-4, IFN-g, IL-6 and TNF-a over-expression, as a result of TNCB exposure,
and stimulation of bone marrow cell proliferation in dose-dependent EPS-treated Payer’s patch cell of C3H/HeJ mice. EPS derived
from Lac. delbrueckii ssp. bulgaricus 1073R-1 as previously described, and the respective yoghurt product, caused immunostimulation
of IFN-g and augmentation of NK cells production in female BALB/c mice spleen cells, but not other yoghurts that also contain
lactobacilli cultures (Makino et al., 2006, 2016). EPS fraction (B-EPS) from Bac. subtilis J92 isolated from kimchi increased NO,
TNF-a, IL-6 and IL-1b, and their proteins and mRNA expressions in IFN-g-primed RAW 264.7 macrophages cell lines, including
cytokine (IL-2 and IFN-g) production by CD3/CD28-stimulated splenocytes (Jung et al., 2015). In addition, post-orally adminis-
tered B-EPS significantly lowered the immunosuppression effects of cyclophosphamide in mice thymus and spleen, in a concentra-
tion-dependent manner.

EPS-producing Str. thermophilus strains in fermented milk, as well as their purified EPS in sterile milk, prevented the development
of gastritis ulcer, when previously fed to BALB/c mice for 7 d before acetyl-salicylic acid (ASA)-induced gastritis, based on histolog-
ical parameters and immune responses (Rodríguez et al., 2009). Two novel homogeneous EPSs synthesized by Lac. casei SB27 that
was previously isolated from fermented yakmilk, significantly inhibited the proliferation of HT-29 colorectal cancer cells, as an anti-
tumuor agent; induced apoptosis by the activation of caspase-3 and -8 genes in addition to up-regulation of pro-apoptotic genes Bad
and Bax (Di et al., 2017). EPS of probiotic Ent. faecium K1, an isolate from a traditional fermented milk product, kalarei, showed
significant cholesterol reduction potential, lowering the concentration from 100% to 48.81% in vitro (Bhat and Bajaj, 2018).
Lac. delbrueckii subsp. bulgaricus strains from homemade yoghurt that produced high amount of EPS, removed more cholesterol
from the medium, compared to those strains with low EPS production (Tok and Aslim, 2010).

Probiotic Properties of Fermented Foods

Probiotics are defined as preparation of live microorganisms, which when consumed in adequate amounts (107–109 cfu/g or mL),
induce health beneficial effects by qualitatively or quantitatively influencing gut microbiota, modifying immune status and contrib-
uting to general well being of the host, beyond basic nutrition (FAO/WHO, 2002; Pipenbaher et al., 2009). Most fermented foods
and beverages contain high population of viable microorganisms, and they serve as vehicles for the delivery of probiotics. For a pro-
biotic microorganism to exert health benefits and other positive desirable effects on the host when administered, it is expected to be
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resistant to gastric acidity of the stomach and tolerant to bile salts of the small intestine, produce antimicrobial compounds against
pathogenic microorganisms, adhere to GIT mucosal and epithelial cell linings, as well as in vivo persistence (colonization) for
competitive exclusion of pathogens, in addition to a long history of safety and non-pathogenicity (Ouwehand et al., 2002).

Even though the precise mechanisms by which probiotics perform their functions in the host have not been fully elucidated,
some manner of probiotic functions has been proposed. These include up-regulation of immune responses (e.g. IgA) towards path-
ogens or vaccines, down regulation of inflammatory responses, production of bacteriocins and SCFAs, improving gut mucosal
barrier function, enhanced stability and recovery of commensal microbiota when disturbed, as well as modulation of host gene
expression and delivery of functional proteins (e.g. lactase) (Sanders, 2009). A probiotic Lac. gasseri SBT2055 used to prepare fer-
mented milk significantly reduced abdominal visceral and subcutaneous fat, weight and body mass index (BMI) in adults with
obese tendencies, in a randomized controlled trial (Kadooka et al., 2010). Fermented milk curd containing probiotic Lac. acidophi-
lus, Lac. casei and Lac. lactis biovar diacetylactis had anti-tumour effect in rats, inhibiting 1,2-dimethylhydrazine (DMH) colon
genotoxic compound, as a result of significant reduction in DNA damage, in comparison to the control (Kumar et al., 2010).
The anti-diabetic effect of dahi fermented with probiotic Lac. acidophilus and Lac. casei was evaluated in high fructose-induced
type-2 diabetic male albino Wistar rats. Dahi-supplemented diet significantly reduced blood glucose, glycosylated hemoglobin,
glucose intolerance, plasma insulin, liver glycogen, plasma total cholesterol, triacylglycerol, low density lipoprotein cholesterol
(LDL-C), very low density lipoprotein cholesterol (vLDL-C), and blood free fatty acids that were initially increased after high fruc-
tose feeding (Yadav et al., 2007). High cholesterol diet supplemented with cereal-mix fermented food containing probiotic Pic.
kudriavzevii OG32, significantly lowered serum total cholesterol, triacylglycerol and LDL-C in rats, when compared to the control
high cholesterol feed without probiotic supplementation (Ogunremi et al., 2015). Total serum and liver cholesterol, including
the atherogenic index of rats fed high cholesterol chow, supplemented with milk fermented by probiotic Lac. plantarum HLX37,
significantly decreased by 23.33%, 32.37% and 40.23% respectively, when compared to the hyperlipidemia diet (Guan et al.,
2017). Probiotic bacteria in fermented milk were able to maintain consistent microbial community shift in the human GIT, where
Bacteriodetes species increased during the intervention programme (Unno et al., 2015). Chung et al. (2014) investigated the effects of
probiotic Lac. helveticus-fermented milk on cognitive functions in healthy older adults, in a double-blind, randomized control exper-
iment. Their results showed an improvement in cognitive functioning, in relation to neuropsychological and cognitive fatigue.

Conclusion

Fermented foods and beverages constitute a significant component of human nutrition, dietary supply and calories intake in
different parts of the world. Fermentation of diverse plant and animal substrates by microorganisms and their enzymes provides
desirable features, such as post-harvest preservation of perishable food materials, nutritional enrichment, bio-preservative effects
and specific health-promoting benefits. Nowadays, fermented foods and beverages are consumed not only for nutritional values,
wholesomeness or palatability, but importantly for their health beneficial functions. Live microorganisms and/or their metabolites
in fermented foods are responsible for various health-promoting properties. An example is lactic acid, the primary metabolite in
non-alcoholic fermented cereal foods (pH < 4.2) that demonstrates potential health benefits, by inhibiting pathogens causing
food-borne diseases and human illnesses. Bioactive peptides, free amino acids and polyphenols, flavonoids, isoflavones and
enzymes, which are naturally enriched in fermented foods possess antimicrobial, antihypertensive, antioxidant, anti-diabetic,
anti-cancer, anti-tumour, anti-mutagenic, anti-proliferative and anti-thrombosis health benefitting properties. In addition, exopo-
lysaccharides (EPSs) consumed in fermented foods can serve as prebiotics; they are also metabolized by colon microbiota to
produce short chain fatty acids (SCFAs), which induce apoptosis of cancer cells and stimulate immune responses in the host.
Furthermore, fermented foods contain viable probiotic microorganisms that confer health benefits on the host. However, to justify
their development as functional foods and nutraceuticals, there is need for further and detailed scientific investigations on the in-
depth characterization of the bioactive compounds and mechanism of actions in animal models and human intervention pro-
grammes, involving clinical trials.
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