CONSTRUCTION RESEARCH CONGRESS 2014

CONSTRUCTION IN A GLOBAL NETWORK

PROCEEDINGS OF THE 2014 CONSTRUCTION RESEARCH CONGRESS

May 19–21, 2014
Atlanta, Georgia, USA

SPONSORED BY
The Construction Institute of the American Society of Civil Engineers

School of Building Construction
Georgia Institute of Technology

EDITED BY
Daniel Castro-Lacouture, Ph.D., P.E.
Javier Irizarry, Ph.D., P.E.
Baabak Ashuri, Ph.D.

Published by the American Society of Civil Engineers
Preface

The Construction Institute (CI) of the American Society of Civil Engineers (ASCE) and the CRC2014 Organizing Committee are pleased to present the Proceedings of the 2014 Construction Research Congress (CRC2014) held on May 19-21, 2014, at Georgia Institute of Technology, Atlanta, Georgia, USA. CRC2014 is proudly hosted by the School of Building Construction at Georgia Institute of Technology.

The theme for this conference is "Construction in a Global Network." It highlights the importance and relevance of construction engineering and management (CEM) research, where schedules and networks are among the most distinguishable subjects, and the impact of globalization continues to transform the industry and the education of students, professionals and researchers alike. The effect of professional and social networks is dramatically changing existing communication patterns and information sharing paradigms in the way we live, practice, conduct research, and educate students in the domain of CEM and beyond. As a reflection of current integrated practice and project delivery, network technology is also allowing a better communication among construction owners, architects, engineers, construction managers, subcontractors, consultants, and facility managers. The School of Building Construction (BC) resides in the College of Architecture at Georgia Tech, which carries a legacy of enormous contributions in the fields of Building Information Modeling (BIM), high performance buildings, and Geographic Information Systems (GIS), among others. In this context, BC lies at the intersection of planning, architecture, engineering, management, and technology, thereby becoming a fertile ground for supporting the goal of CRC: to provide academics and industry professionals a platform to present and discuss research needs and findings that have profound impacts on the future of the architecture-engineering-construction industry. To better understand the goal of CRC, this Preface contains an opening article by Halpin et al. that describes the early days of the Construction Research Council, recognized as the premier forum for CEM research.

The Conference Proceedings contain 242 peer-reviewed papers, which stemmed from 580 abstracts submitted, 501 abstracts accepted, and 301 final papers submitted. In addition to the signature tracks traditionally offered by previous CRCs, this Congress is incorporating new tracks that reflect some of the emerging integrated practices and technologies such as building information modeling, interactive geospatial information systems, integrated facility and program management, sustainability-conscious design, and building performance, for a total of 18 tracks:

- Information Technology, Modeling and Simulation
- Construction Means and Methods
- Construction Education
- Construction Planning and Control
- Sustainable Design and Construction
- Risk and Safety Management
- Productivity and Workforce Issues
- Facility Management and Program Management
• Automation and Data Sensing
• Quantitative Methods
• Infrastructure Management and Disaster Response
• Contracting and Legal Issues
• Cost and Schedule
• Organizational Issues
• Global Construction Issues
• Building Performance and Life Cycle Analysis
• CII Research
• Urban Planning and Geographic Information Systems

On behalf of the Construction Institute of the American Society of Civil Engineers and the CRC2014 Organizing Committee, I extend best wishes to you for a memorable and remarkable occasion.

Daniel Castro-Lacouture, Ph.D., P.E.
Conference Chair
Georgia Institute of Technology
Acknowledgments

The members of the CRC2014 Technical Committee are acknowledged for their commitment and service that led to the publication of the CRC2014 Proceedings.

Conference Chair:
Daniel Castro-Lacouture, Georgia Tech, (dcastro@gatech.edu)

Technical Co-Chairs:
Javier Irizarry, Georgia Tech, (javier.irizarry@coa.gatech.edu)
Baabak Ashuri, Georgia Tech, (baabak.ashuri@coa.gatech.edu)

Track Coordinators:
Tariq Abdelhamid, Michigan State University, (tariq@msu.edu)
Tristan Al-Haddad, Georgia Tech, (tristan.al-haddad@coa.gatech.edu)
Thaís Alves, San Diego State University, (talves@mail.sdsu.edu)
Godfried Augenbroe, Georgia Tech, (godefried.augenbroe@coa.gatech.edu)
Salman Azhar, Auburn University, (salman@auburn.edu)
Yong Bai, North Dakota State University, (yong.bai@ndsu.edu)
Amir Behzadan, University of Central Florida, (amir.behzadan@ucf.edu)
Brian Bowen, Georgia Tech, (brian.bowen@coa.gatech.edu)
Jason Brown, Georgia Tech, (jason.brown@coa.gatech.edu)
Hubo Cai, Purdue University, (hubocai@purdue.edu)
Qingbin Cui, University of Maryland, (cui@umd.edu)
Islam El-Adaway, Mississippi State, (eladaway@cee.msstate.edu)
Khaled El-Rayes, University of Illinois, Urbana-Champaign, (elrayes@illinois.edu)
Michael Garvin, Virginia Tech, (garvin@vt.edu)
Russell Gentry, Georgia Tech, (russell.gentry@coa.gatech.edu)
Mani Golparvar-Fard, University of Illinois at Urbana-Champaign, (mgolpar@illinois.edu)
Paul Goodrum, University of Colorado - Boulder, (paul.goodrum@colorado.edu)
Subhro Guhathakurta, Georgia Tech, (subhro.guha@coa.gatech.edu)
Matthew Hallowell, University of Colorado - Boulder, (matthew.hallowell@colorado.edu)
Timo Hartmann, University of Twente, (t.hartmann@utwente.nl)
Marwa Hassan, Louisiana State University, (marwa@lsu.edu)
John Haymaker, Georgia Tech, (john.haymaker@coa.gatech.edu)
Amy Javernick-Will, University of Colorado - Boulder, (amy.javernick@colorado.edu)
David Jeong, Iowa State University, (djeong@iastate.edu)
Vineet Kamat, University of Michigan, (vkamat@umich.edu)
Amr Kandil, Purdue University, (akandil@purdue.edu)
Hamed Kashani, Sharif University of Technology, 
(hamed.kashani@sharif.edu)
Sinem Mollaoglu-Korkmaz, Michigan State University, (korkmaz@msu.edu)
Sanghyun Lee, University of Michigan, (shdpm@umich.edu)
Phil Lewis, Oklahoma State University, (phil.lewis@okstate.edu)
Min Liu, North Carolina State University, (min_liu@ncsu.edu)
Gunnar Lucko, The Catholic University of America, (lucko@cua.edu)
Pavan Meadati, Southern Polytechnic State University, (pmeadati@spsu.edu)
Giovanni Migliaccio, University of Washington, (gianciro@uw.edu)
Esther Obonyo, University of Florida, (obonyo@ufl.edu)
Mehmet Ozbek, Colorado State University, (mehmet.ozbek@colostate.edu)
Ennis Parker, Georgia Tech, (ennis.parker@coa.gatech.edu)
Pardis Pishdad, Georgia Tech, (pardis.pishdad@coa.gatech.edu)
Aminah Robinson Fayek, University of Alberta, 
(aminah.robinson@ualberta.ca)
Kathy Roper, Georgia Tech, (kathy.roper@coa.gatech.edu)
Jennifer Shane, Iowa State University, (jjshane@iastate.edu)
Xinyi Song, Georgia Tech, (xinyi.song@coa.gatech.edu)
Timothy Taylor, University of Kentucky, (taylor@engr.uky.edu)
John Taylor, Virginia Tech, (jet@vt.edu)
Ali Touran, Northeastern Tech, (a.touran@neu.edu)
Xiangyu Wang, Curtin University, (xiangyu.wang@curtin.edu.au)

Reviewers:
Ali Abbasian  Andrew  Brian Lines  Don Schafer
Christopher Ahern  Graettinger  Min Liu  Clifford Schexnayder
Changbum Ahn  Suat Gunhan  Rui Liu  Léon Scholtenhuis
Abiola Akanmu  Apif Hajji  Carla Lopez del Puerto  Arya Sedehi
Ali Akbarnezhad  Youngjib Ham  Ming Lu  Shahandashti
Reza Akhavian  Sanguk Han  Yujie Lu  Yongwei Shan
Bureu Akinci  Michael Hatcher  Wilson Lu  Omidreza Shoghi
Alex Albert  Tarek Hegazy  Vivien Luo  Wenchi Shou
Mohammed  Paul Holley  Mohammed Mehdi  Hossein Taghaddos
Alqady  Rex Holmlin  Marcel Maghier  Pramen Shrestha
Amin Alvanchi  Lei Hou  Reza Masoumi  Chandana Sridharan
Ingrid Arocho  Shang-Hsien  Joe McCarthy  Sheryl Staub-French
Rebecca Atadero  Hsieh  Carol Menassa  Kelly Strong
Payam Bakhshi  Shu-Chien Hsu  Sungkon Moon  Carrie Sturts Dossick
Vahid Balali  Yilei Huang  Mohammad  Hossein Taghaddos
Burcin Becerik  Sherif Ishak  Mortaheb  Pingbo Tang
Mario Bergés  Raja R. A. Issa  Kia Mostaan  Jochen Teizer
Leonhard Bernold  Farzad Jalaei  Ali Mostafavi  Daniel Tran
David G.  Li Jiang  Amlan Mukherjee  Yelda Turkan
Carmichael  Josh Johnson  Isabelina Nahmens  Nicholas Tymvios
Chen-Yu Chang  Ahmad Jrade  Long Nguyen  Rodolfo Valde-
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Cheng</td>
<td>Vineet Kamat</td>
<td>James O'Connor</td>
<td>Stephanie Vereen</td>
</tr>
<tr>
<td>Yong Cho</td>
<td>Jessica</td>
<td>Franz Okyere</td>
<td>Jason Vonmeding</td>
</tr>
<tr>
<td>Dan Chong</td>
<td>Kaminsky</td>
<td>John Onyango</td>
<td>Jun Wang</td>
</tr>
<tr>
<td>Caroline Clevenger</td>
<td>Shih-Chung</td>
<td>Ahmet Ozbakan</td>
<td>Ying Wang</td>
</tr>
<tr>
<td>Qingbin Cui</td>
<td>Kang</td>
<td>Beliz Ozorhon</td>
<td>Avi Wiezel</td>
</tr>
<tr>
<td>Gabriel Dadi</td>
<td>Jonghoon Kim</td>
<td>Wei Pan</td>
<td>Wei Wu</td>
</tr>
<tr>
<td>Andrey Dimitrov</td>
<td>Arto Kiviniemi</td>
<td>Saeed Pour</td>
<td>Naishan Xiang</td>
</tr>
<tr>
<td>André Dorée</td>
<td>Leidy Klotz</td>
<td>Sathy Rajendran</td>
<td>Perry Yang</td>
</tr>
<tr>
<td>Jing Du</td>
<td>Dae-Hyun Koo</td>
<td>Jeff Rankin</td>
<td>Saman</td>
</tr>
<tr>
<td>Omar El-Anwar</td>
<td>Kimberly</td>
<td>Abbas Rashidi</td>
<td>Yarmohammadi</td>
</tr>
<tr>
<td>Nora El-Gohary</td>
<td>Kramer</td>
<td>Saiedeh Razavi</td>
<td>Deborah Young-</td>
</tr>
<tr>
<td>Mostafa Elseifi</td>
<td>Gül Kremer</td>
<td>Janaka Ruwanpura</td>
<td>Corbett</td>
</tr>
<tr>
<td>John Fard</td>
<td>Sangwook Lee</td>
<td>Zofia Rybkowski</td>
<td>Vedran Zerjav</td>
</tr>
<tr>
<td>Mohammad</td>
<td>Namhun Lee</td>
<td>Rafael Sacks</td>
<td>Ye Zhang</td>
</tr>
<tr>
<td>Farshchian</td>
<td>Sanghyun Lee</td>
<td>Hisham Said</td>
<td>Yimin Zhu</td>
</tr>
<tr>
<td>John Gambatese</td>
<td>Robert Leicht</td>
<td></td>
<td>Zhenhua Zhu</td>
</tr>
<tr>
<td>Masoud Gheisari</td>
<td>Fernanda Leite</td>
<td></td>
<td>Samaneh Zolfagharian</td>
</tr>
<tr>
<td></td>
<td>Ken-Yu Lin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Student Assistants:**
- Aakash Arun
- Laura Florez
- Ebrahim P. Karan
- Mehdi Nourbakhsh
- Natalia Quintanilla
- Silvia Tijo
- Yun Zhou
- Samaneh Zolfagharian

**Webmaster:**
- Ebrahim P. Karan, Georgia Tech, (p.karan@gatech.edu)

**Conference Coordinators:**
- Brenda Morris, Georgia Tech, (brenda.morris@coa.gatech.edu)
- Lorie Wooten, Georgia Tech, (lorie.wooten@coa.gatech.edu)
- Rachel Von Ins, Georgia Tech, (vonins@coa.gatech.edu)
Introduction

Early Days of the Construction Research Council

Daniel W. HALPIN¹, Richard L. TUCKER², John D. BORCHERDING³, SangHyun LEE⁴, Amr KANDIL⁵, and Susan BOGUS⁶

¹ Professor Emeritus, School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907; email: halpin@purdue.edu
² Professor Emeritus, Dept. of Civil, Architectural and Environmental Engineering, University of Texas, 301 E. Dean Keeton St., Austin, TX 78712-1056; email: rltucker@mail.utexas.edu
³ Adjunct Professor, Dept. of Civil, Architectural and Environmental Engineering, University of Texas, 301 E. Dean Keeton St., Austin, TX 78712-1056; email: sborch@mail.utexas.edu
⁴ Chair of Construction Research Council, Assistant Professor, Dept. of Civil and Environmental Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109; PH (734) 764-9420; FAX (734) 764-4292; email: shdpm@umich.edu
⁵ Vice Chair of Construction Research Council, Assistant Professor, School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47906; PH (765) 494-2246; FAX (765) 494-0644; email: akandil@purdue.edu
⁶ Secretary of Construction Research Council, Associate Professor, Dept. of Civil Engineering, University of New Mexico, MSC01 1070, Albuquerque, NM 87131; PH (505) 277-1395; FAX (505) 277-1988; email: sbogus@unm.edu

ABSTRACT

The Construction Research Council (CRC) has served researchers in Construction Engineering and Management as a major clearing house for about 40 years. The number of members has continued to grow, and is currently over 300 worldwide. However, little historical record exists, and thus there is a need to document the early days of CRC for future generations. In an effort to address this issue and promote future growth, the authors gathered materials from our members and put together a short article. The article describes the early days of CRC. As a concluding remark, the authors recommend that the CRC increase efforts for creating opportunities to engage and advance the industry. This would be in the spirit of CRC’s early days.

CONSTRUCTION RESEARCH COUNCIL

Research in Construction Engineering and Management (CEM) is an essential element of our industry. For almost 40 years, the Construction Research Council (CRC) has been a meeting point and clearing house for interaction and information exchange among CEM researchers pursuing fundamental and applied research in CEM. Particularly, given the early view on construction as a business rather than an
engineering activity, the importance of research can’t be underestimated in establishing CEM as an academic discipline (Halpin 2007).

CRC members have contributed to improving the industry through research in diverse CEM fields, such as constructability improvement, estimating methods, project planning and control, building information modeling and visualization, value engineering, innovative materials and means, innovative technologies, automation, project delivery methods, productivity analysis and improvement, risk analysis techniques, safety and health, and labor and organizations, to name a few areas. The members have also helped to disseminate this research through the authorship of textbooks, publications, guidelines, and specifications. They have also contributed to industry training and continuing education, and perhaps most importantly, to the education of our young practitioners through our universities.

CRC is a committee in the Construction Institute’s (CI) Education and Research Directorate. The committee is comprised of over 300 academics and practitioners who are dedicated to research in CEM. The objectives of the committee are:

- To be recognized as the premier forum for CEM research.
- To maintain an active membership of qualified construction professionals.
- To advance engineering knowledge and practice by stimulating and encouraging innovative research in the field of CEM.
- To disseminate knowledge by sponsoring activities and assisting members in educational and professional development initiatives.
- To promote the activities of CRC and its individual members that enhance the practice of and research supporting the discipline of CEM.
- To mentor professionals who aspire to be researchers.

EARLY DAYS OF THE CONSTRUCTION RESEARCH COUNCIL

The most pivotal event to re-establish CRC was the 1976 ASCE Spring meeting in San Diego. Meetings to organize CRC occurred in the early 1970’s under the leadership of L. R. “Dick” Shaffer, who was, at the time, the Director of the Construction Engineering Research Laboratory of the Army Corps of Engineers in Champaign, IL. CRC existed but did not meet regularly, however, until 1976. At this time, the Nuclear Regulatory Commission (NRC) in Washington D.C. contacted ASCE with the intention of identifying researchers who might assist with research into the construction of nuclear power stations. A group of approximately 12 researchers met at the ASCE Spring conference in San Diego; the meeting was led by the CRC chair at that time, Russel C. Jones. This triggered a visit to Washington, D.C. in the summer of 1976 to meet with representatives from NRC (Halpin 2007).

NRC by this time had changed research direction, dropping the earlier interest in supporting research. Instead, it was recommended that CRC (again led by Russel C. Jones) meet with program managers at the Energy Research and Development Agency (ERDA is now the Department of Energy (DOE)). Research managers at ERDA were receptive to proposals made by CRC. By the Fall of 1976, researchers with connections to CRC had received ERDA-funded projects in the amount of approximately $1 million. These grants included a workshop at the Pennsylvania State University, a project to study Information Management for Nuclear Power...
Stations at the Georgia Institute of Technology, and other projects at The University of Texas at Austin and The Ohio State University. At a time when construction research projects were a rarity and projects in the amount of $12,000 a year were considered large, this level of funding was unprecedented. At least two of the funded projects were in excess of $300,000 over a multi-year period. This totally unexpected level of success lifted CRC into orbit, and it has been a cornerstone organization within the construction research community ever since (Halpin 2007).

GETTING MOMENTUM WITH INDUSTRY SUPPORT

The early days of CRC, as with any new group, were somewhat disorganized. The early members were a dozen or so academics and one or two industry members. Some of the early members are: Lance Bell, John Borcherding, Bob Carr, Fattah Chalabi, Marvin Gates, Dan Halpin, Donn Hancher, Vir Handa, Bob Harris, Bill Ibbs, Russel Jones, Bill Ledbetter, Ray Levitt, George Mason, Saxon Palmeter, Boyd Paulson, Randolph Thomas, and Richard Tucker

Along with the ERDA projects that boosted construction research, the other major and concurrent activity evolved from the Business Round Table (BRT), in the form of a Construction Industry Cost Effectiveness (CICE) Project, headed by Charles D. Brown, vice-president of DuPont. That project, in its early research stage, was triggered by a dinner in New York City, to which several faculty members from CRC were invited. Some of those faculty members were then included at subsequent meetings of the Construction Committee of the BRT, which funded a few grants for specific studies.

Simultaneously with the BRT and ERDA research activities, a few of the BRT companies decided to hire academics as consultants to help improve their projects. The initial contacts came from the Annual Construction Productivity Conference that evolved from the earlier ERDA project under the leadership of John Borcherding at The University of Texas at Austin. The major companies in that regard were Procter & Gamble, DuPont, Monsanto, and Texaco, along with some companies from the UK. Most of the projects were cost-reimbursable, and the contractors were willing to cooperate with the academic consultants. Several tools—such as Foreman Delay Surveys, Time-Lapse Photography, and Work Sampling—were utilized, and the credibility of the academic involvement was enhanced.

One of the companies, Texaco, invited consultants from The University of Texas at Austin to engage in a large project in Louisiana, and agreed to deviate from the consulting mode with a research grant involving graduate students and faculty. That project was renewed for five years, with regular reports to the Texaco management, and involved both PhD and MS students, some of whom obtained leaves of absence from Texaco to pursue their advanced education on that project.

A similar approach was used with the military services, which had programs of sending promising young officers back to school to obtain Master’s degrees. As a result of CRC meetings and communications, some universities proposed having their military students gather data from their military projects for their thesis and dissertation research—another credibility enhancement for academic research.

In the meantime, CRC decided to appoint a committee—including Richard Tucker, Lance Bell, and Bill Ledbetter—to develop recommendations for a CRC
Out of that committee came recommendations for the creation of the R. L. Peurifoy Award, and a program of CRC workshops (e.g., Construction Research Congresses) as well as a restructuring of the journals affiliated with the Construction Division of ASCE (e.g., Journal of Construction Engineering and Management). These complemented the Marvin Gates award for young faculty.

The activities of CRC, the BRT, the consulting activities of faculty on large projects, the multi-year research project between The University of Texas at Austin and Texaco, and the Construction Productivity Conference brought the stars into alignment at a Construction Productivity Improvement (CPI) Conference in 1982. (Significantly, only industry representatives were allowed to make presentations at the CPI Conference, offering their experiences.) One of the speakers at the Conference, from Texaco, stated that academic research had benefitted Texaco significantly in time and money savings on the Louisiana project. The speaker invited other companies to join with Texaco in pooling resources for academic research. That resulted in many brainstorming meetings involving representatives of industry and the Business Roundtable that culminated in the establishment of the Construction Industry Institute (CII) in October of 1983.

CII was carefully constructed to be a cooperative venture between academia and industry. Although it was to be headquartered at the University of Texas at Austin, it was structured to involve faculty and graduate students at many other universities, and to be a national organization. The ideas for its establishment were endorsed at a meeting of CRC, and the first CII Director who was, coincidentally, the Chair of CRC (Richard Tucker) selected the faculty members on the first CII Research Teams. The industry representatives were grateful, since they were not well acquainted with the construction faculty. There have now been many hundreds of faculty members and graduate students from most CRC universities that have participated in CII projects. CII has an Academic Committee that has the specific mission to include more faculty members in its research activities. Over the past 40 years, many industry-academic cooperative endeavors have evolved at other institutions.

Several other parallel activities also evolved from CRC. The increasing stature of CRC led to strong support from the National Science Foundation – the premier research agency of the federal government – leading to numerous grants to CEM researchers at major universities throughout the U.S. As part of its research oversight, CRC has recommended that ASCE Publication Standards incorporate actual data to improve their credibility with the industry. CRC has been a focal point for the evolution of academic/industry research over the years, including other regions of the world, such as Europe, the Middle East, South America, Australia, Japan, Korea, and China. ASCE has held at least two conferences in Saudi Arabia and Bahrain that involved representatives from CRC and comparable organizations in other countries.

CONCLUDING REMARKS

Although it is often overlooked, research is essential for the future of our industry!! As the challenges in CEM become larger and more complex, the need for research becomes more critical. A review of the early days of CRC offers a very
important lesson for the industry in general. Earlier efforts by the CRC were closely
tied with the industry’s needs and this led to great mutual successes. Recent CRC
activities have been a bit disjointed and drifted away from application within the
industry.

As a first step to reestablish CRC’s relationship with the industry, the 2014
Construction Research Congress will host an ASCE Construction Institute (CI) board
of governors meeting. This will provide a great opportunity to discuss how CRC
members can conduct joint activities with the industry to improve its practice through
research and dissemination activities. Such initiatives of this type should be continued
to insure the success of CEM as an academic discipline as well as a profession.

This article is only a small recollection of CRC’s past. Efforts to document
our past activities—like important milestones in the past 40 years—need to be
continued. The authors hope that CRC members continue to work on such
documentation, and thus can archive important milestones in CRC history. More
histories and events related to CEM in general can be found in Halpin’s article in
JCEM (Halpin 2007).

ACKNOWLEDGMENT

Many CRC members provided the authors of this article with the materials
about the early days of CRC. The authors greatly appreciate the follow people’s
provision of the materials herein: Lance Bell, Keith Molenaar, David Johnston,
William Maloney and Ed Jaselskis among others. Also, the authors thank Daniel
Castro-Lacouture, Chair of the 2014 Construction Research Congress, for placing this
article as part of the preface in the corresponding proceedings.

REFERENCES

Research.” Journal of Construction Engineering and Management, ASCE, 133
(9), 635–639.
Contents

Information Technology, Modeling (BIM), and Simulation

Enabling 3D Topological Analysis for Building Models with Boundary Representation
Xing Su and Hubo Cai

Robust Context Free Segmentation of Unordered 3D Point Cloud Models
Andrey Dimitrov and Mani Golparvar-Fard

Comparison of Experienced and Novice BIM Coordinators in Performing Mechanical, Electrical, and Plumbing (MEP) Coordination Tasks
Li Wang and Fernanda Leite

A Framework for Developing an As-built Virtual Environment to Advance Training of Crane Operators
Yihai Fang, Jochen Teizer, and Eric Marks

Client-Server Interaction Knowledge Discovery for Operations-level Construction Simulation Using Process Data
Reza Akhavian and Amir H. Behzadan

Similarities and Differences between Humans’ and Social Insects’ Building Processes and Building Behaviors
Lola Ben-Alon, Rafael Sacks, and Yasha Jacob Grobman

Differences in Skills Reported by Construction Professionals Who Use BIM/VDC
Girija Inguva, Caroline M. Clevenger, and Mehmet E. Ozbek

Estimating the Size of Temporary Facilities in Construction Site Layout Planning Using Simulation
Seyedreza Razavialavi, Simaan Abourizk, and Pejman Alanjari

Confidence Building of a System Dynamics Model on the Causation of Construction Workers’ Unsafe Behaviors
Zhongming Jiang and Dongping Fang

A Motion Sensor-based User Interface for Construction Drawings Navigation
Mehdi Nourbakhsh, Robert Stevenson, and Javier Irizarry

Issues of Translating BIM for Mobile Augmented Reality (MAR) Environments
Graceline Williams, Masoud Gheisari, and Javier Irizarry

An Agent-based Model for Exploring Formation of Housing Prices: Housing Market Laboratory (HoML)
Ahmet Tolga Ozbakan

Scalable Nonparametric Parsing for Segmentation and Recognition of High-quantity, Low-cost Highway Assets from Car-mounted Video Streams
Vahid Balali and Mani Golparvar-Fard

Automatic Cave-in Safety Risk Identification in Construction Excavation
Jun Wang, Nipesh Pradhananga, and Jochen Teizer
Farzad Jalaei and Ahmad Jrade

Development of a Novel BIM-Energy Use Ontology ........................................................ 150
Aruna Muthumanickam, Rishee K. Jain, John E. Taylor, and Tanyel Bulbul

Comparing Mindfulness in Manual and 4D-Supported Coordination Practices .......... 160
Léon L. Olde Scholtenhuis, Timo Hartmann, and André G. Dorée

Passive RFID and BIM for Real-time Visualization and Location Tracking .............. 169
Aaron Costin, Nipesh Pradhananga, and Jochen Teizer

Exploring BIMs as Avatars: Using 3D Virtual Worlds to Improve Collaboration with Models ......................................................................................................................... 179
Anne Anderson, Carrie Sturts Dossick, Rahman Azari, John E. Taylor, Timo Hartmann, and Ashwin Mahalingham

Development of a Cell-based Simulation Model for Earthmoving Operation using Real-time Location Data ........................................................................................................ 189
Nipesh Pradhananga and Jochen Teizer

Social Learning’s Effect on Absenteeism: The Effect of Project Turnover ............... 199
Kyle Anderson, Seungjun Ahn, and SangHyun Lee

Implementation of Rapid As-built Building Information Modeling Using Mobile LiDAR ............................................................................................................................. 209
Samad M. E. Sepasgozar, Samsung Lim, and Sara Shirowzhan

Application of Photogrammetry: 3D Modeling of a Historic Building .................. 219
Yang Liu and Julian Kang

Case Studies of BIM Practices within Mechanical Contractors .............................. 229
Fangyu Guo, Yelda Turkan, and Charles T. Jahren

Employing LiDAR Scanning for Drywall Prefabrication: A Qualitative Pilot Proof of Concept Study ........................................................................................................ 239
Paul Holley and Shawn Mancill

Live Capture of Energy-related Knowledge into BIM Systems ................................ 249
Ibrahim Motawa, Srinivasan Janarthanam, and Abdulkareem Almarshad

Object-based 3D Intelligent Model for Construction Planning/Simulation in a Highway Construction ............................................................................................................ 259
Zhenhua Shen, Kevin Orr, Wonsik Choi, Namgon Kim, and Hyunjoo Kim

A Case Study of Embedding Real-time Infrastructure Sensor Data to BIM ............... 269
Jianli Chen, Tanyel Bulbul, John E. Taylor, and Guney Olgun

Potential Application of BIM in Cost-Benefit Analysis of Demolition Waste Management ......................................................................................................................... 279
Behzad Hamidi, Tanyel Bulbul, Annie Pearce, and Walid Thabet

A Road Maintenance Management Tool for Rural Roads in Kenya ...................... 289
Kabindra K. Shrestha, Pramen P. Shrestha, and Thomas K. Kandie

A Tool to Select Road Maintenance Contracting Methods .................................... 299
Kishor Shrestha and Pramen P. Shrestha
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Wireless Communication Platform Addresses Crane Safety and</td>
<td>309</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td>Payam R. Zekavat and Leonhard Bernold</td>
<td></td>
</tr>
<tr>
<td>Eliciting Constructability Knowledge for BIM-enabled Automated, Rule-</td>
<td>319</td>
</tr>
<tr>
<td>based Constructability Review: A Case Study of Formwork</td>
<td></td>
</tr>
<tr>
<td>Li Jiang, Robert M. Leicht, and Gül E. Okudan Kremer</td>
<td></td>
</tr>
<tr>
<td>Demystifying the Time-Effort Distribution Curves in Construction</td>
<td>329</td>
</tr>
<tr>
<td>Projects: A BIM and non-BIM Comparison</td>
<td></td>
</tr>
<tr>
<td>Weisheng Lu, Cong Liang, Ada Fung, and Steve Rowlinson</td>
<td></td>
</tr>
<tr>
<td><strong>Construction Education</strong></td>
<td></td>
</tr>
<tr>
<td>Enhancement of Learning Objectives in Construction Engineering</td>
<td>339</td>
</tr>
<tr>
<td>Education: A Step toward Simulation Assessment</td>
<td></td>
</tr>
<tr>
<td>Fadi Castronovo, Dragana Nikolic, Sarah E. Zappe, Robert M. Leicht,</td>
<td></td>
</tr>
<tr>
<td>and John I. Messner</td>
<td></td>
</tr>
<tr>
<td>Teams Assessing Teams: How Assessment is Affected by Team Member</td>
<td>349</td>
</tr>
<tr>
<td>Personality Traits</td>
<td></td>
</tr>
<tr>
<td>Steven K. Ayer, Gretchen A. Macht, Robert M. Leicht, and David A.</td>
<td></td>
</tr>
<tr>
<td>Nembhard</td>
<td></td>
</tr>
<tr>
<td>Transforming Building Design through Integrated Project Delivery in</td>
<td>359</td>
</tr>
<tr>
<td>Architectural and Engineering Education</td>
<td></td>
</tr>
<tr>
<td>José L. Perdomo and Humberto Cavallin</td>
<td></td>
</tr>
<tr>
<td>Evaluating the Implementation of Lean Construction into Construction</td>
<td>369</td>
</tr>
<tr>
<td>Education...</td>
<td></td>
</tr>
<tr>
<td>Bradley Hyatt</td>
<td></td>
</tr>
<tr>
<td>Toward a Framework for Construction Ethics Education: A Meta-</td>
<td>379</td>
</tr>
<tr>
<td>Framework of Construction Ethics Education Topics</td>
<td></td>
</tr>
<tr>
<td>Kenneth Sands and Annie Pearce</td>
<td></td>
</tr>
<tr>
<td>Benefit-Cost Analysis of International Instructional Methods for</td>
<td>389</td>
</tr>
<tr>
<td>Construction Management and Engineering Students</td>
<td></td>
</tr>
<tr>
<td>Anne Werner and Marcelo Azambuja</td>
<td></td>
</tr>
<tr>
<td>A New Model for Offering Construction Education on MOOC Platforms</td>
<td>399</td>
</tr>
<tr>
<td>Ali Shafaat and Farshid Marbouli</td>
<td></td>
</tr>
<tr>
<td>Parade Plus: A Simulation Game for Investigating and Teaching</td>
<td>409</td>
</tr>
<tr>
<td>Strategies for Managing Production Variability and Dependence</td>
<td></td>
</tr>
<tr>
<td>Panagiotis “Takis” Mitropoulos, Thais Alves, and Kenneth D. Walsh</td>
<td></td>
</tr>
<tr>
<td>A Collaborative Learning Community on Service-Learning in Energy</td>
<td>419</td>
</tr>
<tr>
<td>Conservation and Efficiency</td>
<td></td>
</tr>
<tr>
<td>Yupeng Luo</td>
<td></td>
</tr>
<tr>
<td>Preparing a Project Manual: A Comprehensive Project View</td>
<td>426</td>
</tr>
<tr>
<td>Ihab M. H. Saad</td>
<td></td>
</tr>
</tbody>
</table>
Sustainable Design and Construction

A. Karatas and K. El-Rayes

A Systems Approach for Sustainability Assessment of Civil Infrastructure Projects ... 444
Mehmet Boz, Islam El-Adaway, and Mohamed Eid

Hoda Homayouni, Carrie Sturts Dossick, and Gina Neff

Results of a Case Study on Quantifying Fuel Use and Emissions for a Bridge Replacement Project ........................................................................................................... 464
Elizabeth Hazzard and Phil Lewis

Development of the Simple Estimating Tool to Assess the Energy Cost Savings of Attic Radiant Barrier System in Temperate Climate Regions ........................................ 474
Somayeh Asadi and Marwa Hassan

A Multi-Objective Harmony-Search Algorithm for Building Life-cycle Energy Optimization ........................................................................................................................ 484
Somayeh Asadi

Carbon Footprint of Panelized Construction: An Empirical and Comparative Study .......................................................................................................................... 494
Hong Xian Li, Mehrdad Naseri Esfahani, Mustafa Gul, Haitao Yu, Don Mah, and Mohamed Al-Hussein

Transition from Low-rise to High-rise Zero Carbon Buildings: The Potential of Socio-Technical Systems ....................................................................................... 504
Wei Pan and Yan Ning

Mapping WASH Sustainability Frameworks to Legitimacy Theory ......................................................... 514
Jessica Kaminsky

Financial Valuation for Commercial Energy Retrofits under Private Risks ............................. 524
Hyun Woo Lee, Kunhee Choi, John A. Gambatese, and Doyoon Kim

Carbon Abatement and Its Cost in Construction Activities ................................................. 534
David G. Carmichael, Cassandra J. Malcolm, and Maria C. A. Balatbat

Contractors’ Perspective on the Selection of Innovative Sustainable Technologies for Low-carbon Retail Buildings .............................................................................. 544
Syeda Zainab, Wei Pan, Steve Goodhew, and Alba Fuertes

Methodology to Forecast the Emissions from Construction Equipment for a Transportation Construction Project ................................................. 554
Ingrid Arocho, William Rasdorf, and Joseph Hummer

Challenges, Opportunities, and Solutions in Low-cost Building Envelopes: A Case Study of Low-strength Masonry Systems ......................................................... 564
Esther Obonyo, Peter Donkor, Fabio Matta, and Ece Erdogmus

Encouraging Elegant Solutions by Applying Choice Architecture to Infrastructure Project Delivery .......................................................................................................... 574
Tripp Shealy and Leidy Klotz
Development and Validation of a Framework for Evaluation of Integrated Design Teams of Sustainable High-performance Buildings ................................................................. 584
Rahman Azari and Yong-Woo Kim

Assessing Occupants' Energy-load Variation in Commercial and Educational Buildings: Occupancy Detecting Approach Based on Existing Wireless Network Infrastructure ................................................................. 594
Jiayu Chen and Changbum Ahn

Testing Effectiveness of Solar Photovoltaic Systems for Public Schools in Washington ...................................................................................................................... 604
Charusheela Ghadge and Yong-Woo Kim

Comparison of Predictive Modeling Methodologies for Estimating Fuel Use and Emission Rates for Wheel Loaders .................................................................................... 613
Heni Fitriani and Phil Lewis

Discovering Stakeholder Values for Axiology-based Sustainability-oriented Value Analysis of Educational Building Projects ........................................................................ 623
Lu Zhang and Nora M. El-Gohary

Antoine Abou Jaoude, Issam Srour, and Carol Menassa

New Eco-City: Incorporating Sustainability into the Concept Master Plan ................. 643
Farah Mneimneh, Issam Srour, and Isam Kaysi

Dual-Use Research in Sustainable Construction on the Moon ....................................... 653
Leonhard E. Bernold

Effect of Polypropylene Fiber Length on the Flexural and Compressive Strength of Compressed Stabilized Earth Blocks ............................................................................ 661
Peter Donkor, Esther Obonyo, Fabio Matta, and Ece Erdogmus

Municipalities' Possible Use of 100% Recycled Asphalt............................................... 671
Shima Clarke and Jeffrey Austin

Determination of Optimum Pavement Construction Alternatives to Minimize Life-cycle Costs and Greenhouse Gas Emissions................................................................. 679
Yuhong Wang and Dan Chong

Estimating the Energy Saving Potential for Office Buildings in Hong Kong Based on a Four-tier Framework ............................................................................................... 689
Simou Zhang, Wei Pan, and Mohan M. Kumaraswamy

Integration of Monte Carlo Simulation and Genetic Algorithms for Sustainable Designs Analysis ................................................................. 699
Peeraya Inyim and Yimin Zhu

Applying Lean Process Principles to Improve Labor Efficiency of Solar Photovoltaic Installations .................................................................................................................. 709
Joseph Goodman, Kathryn Nagel, Matthew Wren, and Jesse Morris

The Need for Integrated Project Delivery in the Public Sector ....................................... 719
Wesley Collins and Kristen Parrish
Productivity and Workforce Issues

Automated Worker Activity Analysis in Indoor Environments for Direct-Work Rate Improvement from Long Sequences of RGB-D Images .......................................................... 729
Ardalan Khosrowpour, Igor Fedorov, Aleksander Holynski, Juan Carlos Niebles, and Mani Golparvar-Fard

Feasibility of Onsite Biomechanical Analysis during Ladder Climbing .................................. 739
Joon Oh Seo, Sang Uk Han, Sang Hyun Lee, and Thomas J. Armstrong

Understanding the Role of Social Rules in Shaping Construction Workers’ Absence Behavior Using Agent-based Modeling and Surveying ............................................ 749
Seungjun Ahn and Sang Hyun Lee

Estimating Optimal Labor Productivity: A Two-Pronged Strategy ........................................... 757
Krishna P. Kisi, Nirajan Mani, and Eddy M. Rojas

Cognitive Demands of Craft Professionals Based on Differing Engineering Information Delivery Formats ........................................................................................................... 767
Gabriel B. Dadi, Timothy R. B. Taylor, Paul M. Goodrum, and William F. Maloney

A Critical Review of Methods Used to Determine Productivity of Mechanical, Electrical, and Plumbing Systems Coordination .............................................................. 777
Baabak Ashuri, Saman Yarmohammadi, and Mohsen Shahandashti

Testing the Application of Google Fusion Tables as a Collaborative Productivity Database and Benchmarking System for the Construction Industry .................................... 787
Roman Titov, Chandana Siriwardana, and Janaka Ruwanpura

Development of an Industry Level Productivity Metric for the Construction Industry .............. 797
Stephanie Vereen, Joseph E. Hummer, and William Rasdorf

Estimating Labor Productivity Frontier: A Pilot Study ............................................................. 807
Nirajan Mani, Krishna P. Kisi, and Eddy M. Rojas

Time and Motion Study for Solar Contractors ........................................................................... 817
Natalia Quintanilla, Saman Yarmohammadi, Baabak Ashuri, Matthew M. Wren, Mohsen S. Shahandashti, and Joseph Goodman

Construction Workforce Management Strategies to Reduce Absenteeism: A Survey Study .................................................. 827
M. Ghayth Lattouf, F. Jordan S sour, and Issam M. S rour

Data-driven Approaches to Discovering Knowledge Gaps Related to Factors Affecting Construction Labor Productivity ................................................................. 837
Abraham Assefa Tsehayae and Aminah Robinson Fayek

Key Issues in Workforce Planning and Adaptation Strategies for BIM Implementation in Construction Industry ................................................................. 847
Wei Wu and Raja R. A. Issa

Effect of Decision-making Methods on Trust ............................................................................ 857
Pardis Pishdad-Bozorgi and John Haymaker

Decision-making Model by Specialty Subcontractors in Construction Projects .............. 867
Ali Shafaat, Tarek Mahfouz, Christine Jackson, and Amr Kandil
Shift Work and Labor Productivity in Urban Sewer Construction
Long D. Nguyen, Thang K. N. Nguyen, and Dai Q. Tran

Developing a Knowledge-based Information System (KISCCES) for Construction Cost Estimating and Scheduling
Seonghoon Kim, Marcel Maghiar, Lixin Li, Yong Bai, and Jason Scott

Automation and Data Sensing

Semantic-based Text Classification of Environmental Regulatory Documents for Supporting Automated Environmental Compliance Checking in Construction
Peng Zhou and Nora El-Gohary

Automated Reasoning for Regulatory Compliance Checking in the Construction Domain
Jiansong Zhang and Nora M. El-Gohary

Automatic As-is 3D Building Models Creation from Unorganized Point Clouds
Chao Wang and Yong K. Cho

Automatic 3D Reconstruction of As-built Pipeline Based on Curvature Computations from Laser-Scanned Data
Hyojoo Son, Changmin Kim, and Changwan Kim

Automated Detection of Near-miss Fall Incidents in Iron Workers Using Inertial Measurement Units
Kanghyeok Yang, Sepi Aria, Changbum R. Ahn, and Terry L. Stentz

Comparison of Methods Used for Detecting Unknown Structural Elements in Three-dimensional Point Clouds
Jamie Yeung, Mohammad Nahangi, Yasaman Shahtaheri, Carl Haas, Scott Walbridge, and Jeffrey West

Automated Extraction of Building Geometry from Mobile Laser Scanning Data Collected in Residential Environments
Alireza G. Kashani, Andrew J. Graettinger, and David Grau

A Comprehensive Matrix of Unmanned Aerial Systems Requirements for Potential Applications within a Department of Transportation
Ebrahim P. Karan, Claus Christmann, Masoud Gheisari, Javier Irizarry, and Eric N. Johnson

Automatic Detection of Pavement Surface Defects Using Consumer Depth Camera
Chenxi Yuan and Hubo Cai

Data Quality-oriented 3D Laser Scan Planning
Mingming Song, Zhenglai Shen, and Pingbo Tang

Analyzing Abnormal Cycles of Pilot Tube Microtunneling through Pattern Recognition in Time-series Data of Hydraulic Pressure
Zhenglai Shen, Pingbo Tang, and Samuel T. Ariaratnam

Automated Registration of 3D Point Clouds with 3D CAD Models for Remote Assessment of Staged Fabrication
Mohammad Nahangi, Mahdi Safa, Arash Shahi, and Carl T. Haas
### Automatic 3D Thermal Zones Creation for Building Energy Simulation of Existing Residential Buildings
Chao Wang and Yong K. Cho

---

### Evaluation of the State-of-the-Art Automated Construction Progress Monitoring and Control Systems
Reza Maalek, Janaka Ruwanpura, and Kamal Ranaweera

---

### Automated Monitoring of Operation-level Construction Progress Using 4D BIM and Daily Site Photologs
Kevin K. Han and Mani Golparvar-Fard

---

### Automating Construction Operations Using Discrete Event Simulation Models
Joseph Louis, Phillip Dunston, and Julio Martinez

---

### Rapid Dynamic Target Surface Modeling for Crane Operation Using Hybrid LADAR System
Yong Cho, Chao Wang, Mengmeng Gai, and Jee Woong Park

---

### Quantitative Methods

#### U.S Economic Indicators and Stock Prices of Construction Equipment Manufacturers: A Statistical Relationship Analysis
Herbert Barber and Islam El-Adaway

---

#### A Data Envelopment Analysis Model for Building Energy Efficiency Benchmarking
Jian Lu, Baabak Ashuri, and Mohsen Shahandashti

---

#### Modeling Bid/No Bid Decision Using Adaptive Neuro Fuzzy Inference System (ANFIS): A Case Study
Gul Polat, Befrin Neval Bingol, and Enis Uysalol

---

#### Empirical Study of Effects of Price Adjustment Clauses (PACs) on Highway Construction Bid
Mohammad Ilbeigi, Baabak Ashuri, and Soheil Shayegh

---

#### Analysis of the Temporal Relationships between Highway Construction Cost and Indicators Representing Macroeconomic and Construction and Energy Market Conditions
Mohsen Shahandashti

---

#### A Stochastic Process to Model the Fluctuations of Asphalt Cement Price
Mohammad Ilbeigi, Baabak Ashuri, and Yang Hui

---

#### Evaluating the Project Coordination Performance Using Information Centrality
Pelin Ipek Timurcan and Sevgi Zeynep Dogan

---

#### Quantitative Analysis of Bidding Strategies: A Hybrid Agent Based-System Dynamics Approach
Arash Mahdavi and Makarand Hastak

---

#### Toward Statistics on Construction Engineering and Management Research
Dai Tran, Henry Lester, and Nathaniel Sobin
Optimal Crew Design for Masonry Construction Projects Considering Contractors' Requirements and Workers’ Needs ................................................................. 1149
Laura Florez and Daniel Castro-Lacouture

Infrastructure Management and Disaster Response

Leveraging Structural Health Monitoring for Bridge Condition Assessment ........... 1159
Manu Akula, Yilan Zhang, Vineet R. Kamat, and Jerome P. Lynch

A Mathematical Framework to Assess Vulnerabilities in Codependent Infrastructure and Natural System Networks ................................................................. 1169
Christopher Van Arsdale and Amlan Mukherjee

Dynamic Social Network Analysis for Infrastructure Transportation Systems ........ 1179
Eric Vechan, Islam El-Adaway, and Marwa Hassan

Achieving Value for Money: An Analytic Review of Studies on Public-Private Partnerships ........................................................................................................ 1189
Wei Peng, Qingbin Cui, Yujie Lu, and Li Huang

Successes and Failures of the Post-tsunami Housing Reconstruction Program in Tamil Nadu, India .......................................................................................... 1199
Elizabeth Jordan and Amy Javernick-Will

3D Data Collection and Automated Damage Assessment for Near Real-time Tornado Loss Estimation .......................................................................................... 1209
Alireza G. Kashani, Andrew Graettinger, and Thang Dao

Using Alternative Project Delivery Methods to Enhance the Cost Performance of Trenchless Construction Projects ............................................................... 1219
Tober Francom, Mounir El Asmar, and Samuel T. Ariaratnam

Evaluating the Feasibility of Decommissioning Residential Water Infrastructure in Cities Facing Urban Decline ........................................................................ 1229
Kasey Faust and Dulcy M. Abraham

A GIS-enabled Cost Estimation Tool for Road Upgrade and Maintenance to Assist Road Asset Management Systems ................................................................. 1239
Kabindra K. Shrestha and Pramen P. Shrestha

Resilience-based Planning in Civil Infrastructure Using System-of-Systems Analysis .................................................................................................................. 1249
Ali Mostafavi and Dulcy M. Abraham

A Remote Sensing-based Approach for Assessing and Visualizing Post-Sandy Damage and Resiliency Rebuilding Needs .................................................... 1259
Jie Gong

A Framework for Post-disaster Facility Restoration Management: Needs and Requirements for the Use of Hybrid Simulation .................................................. 1269
Moonseo Park, Sang Hyun Lee, Hyun-Soo Lee, Minji Choi, Sungjoo Hwang, Myung Gi Moon, Seulbi Lee, and Jae-Ho Pyeon

Microeconomics for Infrastructure Rehabilitation .................................................. 1279
Dina A. Saad and Tarek Hegazy
Bridge Inspection Practices Using Nondestructive Testing Methods for Concrete Structure ................................................................. 1289
Sangwook Lee and Nikolas Kalos

Use of Low-cost Remote Sensing for Infrastructure Management .................. 1299
Su Zhang and Susan M. Bogus

Integrated Model for Evaluating Infrastructure Sustainability in China .......... 1309
Min Cheng and Panpan Liu

Contracting and Legal Issues

Challenges and Opportunities for Expediting Environmental Analysis in Transportation Design-Build Projects ........................................... 1319
David Hannon, Kia Mostaan, and Baabak Ashuri

Association between Construction Contracts and Relational Contract Theory........ 1329
Christofer M. Harper and Keith R. Molenaar

Zorana Popic and Osama Moselhi

Unsolicited Proposals for PPP Projects: Private Sector Perceptions in the USA .... 1349
Ahmed Abdel Aziz and Human Nabavi

Prioritization of Demand Risk Factors in PPP Infrastructure Projects ............. 1359
Rajaa Alasad, Ibrahim Motawa, Stephen Ogunlana, and Prince Boateng

Assessing the Performance of Two-Step Design-Build Procurement ................. 1369

Case Study of LMM Airport Concession in Puerto Rico ............................... 1379
Edwin E. González and Michael J. Garvin

A Meta-analysis of Literature Comparing Project Performance between Design-Build (DB) and Design-Bid-Build (DBB) Delivery Systems ...................... 1389
Vahid Nikou Goftar, Mounir El Asmar, and Evan Bingham

Emerging Project Procurement Trends in the Canadian Construction Industry ... 1399
Faisal Arain, Tim McFarlane, Don Mah, and Mehdi Zahed

An Evaluation of Current Practices of Road Maintenance Contracting Methods .... 1408
Pramen P. Shrestha and Kishor Shrestha

Application of the Time “At Large” Principle to Standard Forms of Contract .... 1418
Salwa Fawzy and Islam El-Adaway

Ontology-based Investigation of Construction Delay Analysis Methodologies in Egypt ............................................................... 1428
Mohamed Magdy Ahmed, Maged Georgy, and Hesham Osman

Cost and Schedule

Unevenly Distributed Markup in Cash Flow Modeling with Singularity Functions .. 1438
Yi Su and Gunnar Lucko
Spatially Constrained Scheduling with Multidirectional Singularity Functions........ 1448
Gunnar Lucko, Hisham M. M. Said, and Ahmed Bouferguene

Mapping Relational Efficiency in Neuro-Fuzzy Hybrid Cost Models.............. 1458
Olubukola Tokede, Dominic Ahiaga-Dagbui, Simon Smith, and
Sam Wamuziri

Optimization-based Approach for Organizing the Bidding of Nonserial Repetitive
Projects................................................................. 1468
A. Samer Ezeldin and Ahmed M. Alhady

Accuracy in Design Stage Cost Estimating through Risk-contingency Analysis: A
Theoretical Exploration....................................................... 1478
Johnson Adafin, Suzanne Wilkinson, James O. B. Rotimi, and
Henry Odeyinka

Determining Standard Cost Estimating Methods for Negotiating Engineering and
Related Services Contracts............................................... 1488
David Rogge and Fan Zhang

Assessment of the Effect of Changing Activities’ Start Times on Cash-flow
Parameters............................................................................ 1498
Marwa Hussein Ahmed, Tarek Zayed, and Ashraf Elazouni

Supply Chain Cost Model in Integrated Approach........................................... 1508
Yong-Woo Kim

Examining the Effects of Early Cost Drivers on Contingencies ....................... 1518
Bo Xiong and Bo Xia

Contributions of the Construction Project Team to Cost Overruns: The
Contractors’ Perspective.......................................................... 1528
Olusegun Akinsiku, Adeyemi Akintola, Oko Ameh, and Ayokunle Ige

Construction Means and Methods

Potential of Nanoparticles and Nitrates Released to Water from Photocatalytic
Pavements............................................................................. 1537
Heather Dylla and Marwa M. Hassan

Influence of Clay Pozzolana on Some Properties of Portland Limestone Cement..... 1547
Mark Bediako

Best Practices for Maintenance of Concrete Bridge Elements Against Mold and
Mildew Growth........................................................................ 1556
Angel Lence, Marwa Hassan, Adam Zayor, and Tyson Rupnow

Quad Pod: Ultra-efficient PV Racking System for Long-span Ground Mount and
Canopy Applications............................................................... 1566
Tristan Al-Haddad, Bradley Brooks, Russell Gentry, Joseph Goodman,
Joshua Lohr, and Keyan Rahimzadeh

Sustainable Construction Methods Using Ancient BAD GIR (Wind Catcher)
Technology.............................................................................. 1576
Chris Soelberg and Julie Rich
Aircraft Sound Transmission in Homes Categorized by Typical Construction Type . 1586
Ashwin Thomas, Javier Irizarry, Erica E. Ryherd, Daniel Castro-Lacouture, and Rick Porter

Construction Planning and Control

Analyzing Scaffolding Needs for Industrial Construction Sites Using Historical Data ........................................... 1596
Lingzi Wu, Yasser Mohamed, Hosein Taghaddos, and Rick Hermann

4D-based Value Engineering .......................................................................................................................... 1606
Yalda Ranjbaran and Osama Moselhi

Evaluating the Effect of Resource Utilization Decisions on Energy Consumption in Construction Projects .......................................................... 1616
Reza Sheykhi and Wallied Orabi

The Potential of Construction Project Benchmarking in the Vicksburg District of the U.S. Army Corps of Engineers ................................................................................... 1626
Philip Labarre, Islam El-Adaway, and Mohamed Eid

Modularization Critical Success Factors Accomplishment: Learning from Case Studies ................................................... 1636
Jin Ouk Choi and James T. O’Connor

Development of a Takt-time Plan: A Case Study ......................................................................................... 1646
Adam Frandson and Iris D. Tommelein

Biddability, Constructability, Operability, and Environmental Analysis at the Engineer Research and Development Center ........................................................................... 1656
Mark Ogburn and Islam El-Adaway

An Automatic Scheduling Approach: Building Information Modeling-based Onsite Scheduling for Panelized Construction ........................................................................... 1666
Hexu Liu, Zhen Lei, Hong Xian Li, and Mohamed Al-Hussein

Strategies for Optimizing Labor Resource Planning on Plant Shutdown and Turnaround .................................................. 1676
Ming-Fung Francis Siu, Ming Lu, and Simaan Abourizk

The Project Screening Model for Natural Gas Projects: Focusing on the Gas Field Development ........................................................................... 1686
Woosik Jang, Seokjin Choi, Heedae Park, Seung H. Han, and Sangku Lee

Risk Assessment of a Ready-mix Concrete Supply Chain .................................................................................. 1695
Marcelo Azambuja and Xin Chen

Evaluation of Asphalt Pavement Deterioration Curves for Oklahoma Interstate Highways ........................................................................... 1704
Hossein Khalegian, Phil Lewis, David Jeong, and Asregedew Woldeisenbet

Crew Cost and Productivity Performance Benchmarking Based on Commercial Cost Estimating Databases ........................................................................... 1713
Ming Lu and Chang Liu

Current Trends in Construction Site Layout Planning .................................................................................. 1723
Samaneh Zolfagharian and Javier Irizarry
Alternative Project Delivery Methods for Water and Wastewater Projects: The Satisfaction Level of Owners

Pramen P. Shrestha, Ruiko Maharjan, Binita Shakya, and Jacimaria Batista

Risk and Safety Management

A Mathematical Structure for Modeling Uncertainty in Cost, Schedule, and Escalation Factor in a Portfolio of Projects

Ali Touran

Modeling the Role of Social Networks in Situational Awareness and Hazard Communication

Alex Albert and Matthew R. Hallowell

Evaluation of a Mobile Work Zone Barrier System

Nicholas Tymvios and John Gambatese

Exploring the Relationship between Chronic Sleep Deprivation and Safety on Construction Sites

Umberto C. Gatti, Ken-Yu Lin, Christian Caldera, and Rayleigh Chiang

Implementation of Traffic Control Devices on Highway Preservation Projects to Enhance Construction Work Zone Safety

Fan Zhang, John Gambatese, and Ali Moghaddam Vahed

Developing a BIM-enabled Bilingual Safety Training Module for the Construction Industry

Caroline Clevenger, Carla Lopez Del Puerto, and Scott Glick

UAS4SAFETY: The Potential of Unmanned Aerial Systems for Construction Safety Applications

Masoud Gheisari, Javier Irizarry, and Bruce N. Walker

Assessing Operational Risks in Road Projects Under the PPP Framework in Colombia

Germán Pineda and Carlos A. Arboleda

Mapped Workflow for Safety and Reliability Assessments of Use and Reuse of Formwork

Andre Barbosa, John Gambatese, Amrutha Das, and Ana Catarina Pestana

The Effect of Project Type on Risk Timing and Frequency

Anthony J. Perrenoud, Kenneth T. Sullivan, and Kristen C. Hurtado

Accident Prevention through Production Control: Lessons from High-reliability Foremen

Panagiotis Mitropoulos

Safety Assurance of Existing Pipelines in Tunneling Construction

Limao Zhang, Xianguo Wu, Miroslaw J. Skibniewski, Yueqing Chen, and Hongyu Chen

Prediction of Safety Climate through a Neural Network

D. A. Patel and K. N. Jha
Risk Management for Build-Transfer Plus Land Usage Fee Reimbursement Delivery Method in China ................................................................. 1871
Wei Zhang, Yong Bai, and Yilei Huang

Financial Provision for Construction Health and Safety (H&S) ...................... 1881
John Smallwood and Fidelis Emuze

Facility Management and Program Management

Using Discrete-event Simulation to Support Building Asset Management: An Exploratory Case Study................................................................. 1891
Umberto Gatti, Omar El-Anwar, Giovanni Migliaccio, and Ken-Yu Lin

Motivation for the Development of an Information Management Framework for Healthcare Facility Management.................................................... 1901
Arundhati Ghosh and Allan D. Chasey
Generating As-is Building Information Models for Facility Management by Leveraging Heterogeneous Existing Information Sources: A Case Study .......... 1911
Bo Gu, Semiha Ergan, and Burcu Akinci

Energy Management Effects on Asset Value.................................................. 1921
Sydney V. Roberts and Khalid Siddiqi

Noise as a Risk Factor in Elementary Classrooms: Applicability of Life-cycle Value Tradeoff of Noise-mitigating Measures Using Multicriteria Decision Modeling ......................................................... 1931
Parminder K. Juneja

Exploring BIM and Mobile Augmented Reality Use in Facilities Management ....... 1941
Masoud Gheisari, Shane Goodman, Justin Schmidt, Graceline Williams, and Javier Irizarry

Intelligent Facilities: Applicability and Flexibility of Open BIM Standards for Operations and Maintenance......................................................... 1951
Kevin Orr, Zhenhua Shen, Parminder K. Juneja, Nathaniel Snodgrass, and Hyunjoo Kim

Church Energy Audits in the United States..................................................... 1961
George Ford and Sung Jun Suk

Organizational Issues

Evaluating the Usefulness of Knowledge Sharing Connections in Multinational Construction Companies .......................................................... 1967
John Wanberg and Amy Javernick-Will

Analysis of the Growth Dynamics and Structure of the Modular Building Construction Industry ........................................................................... 1977
Hisham Said, Ayman R. Ali, and Mohammed Alshehri

Dimensions of Interoperability in the AEC Industry ........................................ 1987
Erik A. Poirier, Daniel Forgues, and Sheryl Staub-French

Exploring the Role of the Team Environment in Building Project Performance....... 1997
Bryan Franz, Behzad Esmaeili, Robert Leicht, Keith Molenaar, and John Messner
Progress Loops in Interorganizational Project Teams: An IPD Case
Angelo Joseph Garcia, Sinem Mollaoglu-Korkmaz, and Vernon D. Miller

Highway Data Quality Report Card (HDQRC): A Conceptual Framework of Pavement Management Data
Asregedew Woldesenbet and H. David Jeong

Social Network Analysis (SNA) for Construction Projects’ Team Communication Structure Optimization
Andreas Malisiovas and Xinyi Song

A Framework for Identifying and Measuring Competencies and Performance Indicators for Construction Projects
Moataz Nabil Omar and Aminah Robinson Fayek

Developing Capability of Public Sector Procurement in Ghana: An Assessment of the Road Subsector Client
Peter Addo-Duah, Tony Westcott, Jim Mason, Colin Booth, and Abdul-Majeed Mahamadu

Competitiveness of Construction Organizations in South Africa
Luqman Oyekunle Oyewobi, Abimbola Olukemi Windapo, and Keith Stone Cattell

Organizational Issues Affecting Tacit Knowledge Sharing in Construction Organizations
Seokyon Hwang

An Action Research Approach to Implementation of Alternative Project Delivery Methods within Architectural, Engineering, and Construction Owner Organizations: Overcoming Resistance through Education
Brian Lines, Kenneth Sullivan, and Jake Smithwick

Framework of Construction Innovation: A Review of Diffusion of Sustainable Innovation in the Building Sector
Eunhwa Yang and Ying Hua

Diffusion Pattern Recognition of Technology Vendors in Construction
Samad M. E. Sepasgozar and Steven Davis

Global Construction Issues

Why Do They Acquire Each Other? Nexus between International Contracting and Construction Professional Service Businesses
Weisheng Lu, Kunhui Ye, Roger Flanagan, and Carol Jewell

Effect of Institutional Risks on the Performance of International Construction Projects
Heedae Park, Kang-Wook Lee, H. David Jeong, and Seung Heon Han

Trust in the Construction Industry: A Literature Review
Ghada M. Gad and Jennifer S. Shane

The Advantages of the Construction Sector of China and India: A Comparison
Chuan Chen, Igor Martek, and Mona Shah
Layered Boundary Spanning in Global Virtual Project Networks: Exploring the Role of Cultural Boundary Spanners at Knowledge Domain and Technological Boundaries ................................................................. 2156
Andres Zelkowicz, Josh Iorio, and John E. Taylor

Housing and Construction Cost Escalation: Causes and Effects in Riyadh .......... 2165
Abdulaziz Saleh Alfouzan and Ahmed Khalafallah

Comparing Global versus Domestic Project Network Facilitation in Virtual Workspaces ........................................................................................................................ 2175
Semra Comu, John E. Taylor, and Carrie Sturts Dossick

Building Performance and Life Cycle Analysis (LCA)

Structural Deterioration Prediction Modeling for Coastal Protection Structures in Alexandria Eastern Harbor .......................................................... 2185
Ayman El Hakea, Soliman Abu-Samra, Ossama Hosny, and Hesham Osman

Building Energy Performance Estimation in Early Design Decisions:
Quantification of Uncertainty and Assessment of Confidence ......................... 2195
Roya Rezaee, Jason Brown, and Godfried Augenbroe

Optimal Selection of Sustainability Measures to Minimize Building Operational Costs ........................................................................................................ 2205
Moatassem Abdallah, Khaled El-Rayes, and Liang Liu

A Systematic Approach to Quantifying Energy Savings Potential Because of Improved Operations of Commercial Building Stocks .............................................. 2214
Elie Azar and Carol C. Menassa

The Role of Construction Detailing and Workmanship in Achieving Energy-efficient Buildings .......................................................... 2224
Qinpeng Wang, Godfried Augenbroe, and Yuming Sun

Evaluating the Value of Investment in Building Insulation Retrofits Based on EPAR (Energy Performance Augmented Reality) Models ......................... 2234
Youngjib Ham and Mani Golparvar-Fard

A Sensitivity Analysis of Energy Modeling Input Parameters for Energy Retrofit Projects ........................................................................................................ 2244
Tabitha L. Sprau Coulter and Robert M. Leicht

Hadia Awad, Mustafa Gul, Hamid Zaman, Haitao Yu, and Mohamed Alhussein

CII Research

Current State of Interface Management in Mega-construction Projects ............ 2266
Samin Shokri, Seungjun Ahn, Thomas Czerniawski, Carl T. Haas, and Sang Hyun Lee

Starting From Scratch: A New Project Delivery Paradigm ............................. 2276
Rahman Azari, Yong-Woo Kim, Glenn Ballard, and Seong-Kyun Cho
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Assessment of Best Practices and the Efficacy of an Open Repository in the Construction Industry</td>
<td>2286</td>
</tr>
<tr>
<td>Roberta Bosfield and G. Edward Gibson Jr.</td>
<td></td>
</tr>
<tr>
<td>Identification of Late Deliverables and Their True Effects on Industrial Construction Projects</td>
<td>2296</td>
</tr>
<tr>
<td>William Barry, Fernanda Leite, and William J. O’Brien</td>
<td></td>
</tr>
<tr>
<td>The Predictability Index: A Novel Project Performance Metric to Assess the Early Prediction of Cost and Time Outcomes</td>
<td>2306</td>
</tr>
<tr>
<td>David Grau, W. Edward Back, Amin Abbaszadegan, and Rick Sirven</td>
<td></td>
</tr>
<tr>
<td>Near-Miss Reporting Program to Enhance Construction Worker Safety Performance</td>
<td>2315</td>
</tr>
<tr>
<td>Eric Marks, Jochen Teizer, and Jimmie Hinze</td>
<td></td>
</tr>
<tr>
<td>An Analysis of Process versus Inspection Capabilities in Fabricated, Engineered-to-Order Construction Supply Chains</td>
<td>2325</td>
</tr>
<tr>
<td>Shamail Ahmad, Kenneth D. Walsh, Thais da C. L. Alves, and Kim LaScola Needy</td>
<td></td>
</tr>
<tr>
<td>The 10-10 Performance Assessment Campaign: New Theories Regarding the Benchmarking of Capital Project Performance</td>
<td>2335</td>
</tr>
<tr>
<td>Youngcheol Kang, Jiukun Dai, Stephen Mulva, and Jiyoung Choi</td>
<td></td>
</tr>
<tr>
<td>SAVES: An Augmented Virtuality Strategy for Training Construction Hazard Recognition</td>
<td>2345</td>
</tr>
<tr>
<td>Ao Chen, Mani Golparvar-Fard, and Brian Kleiner</td>
<td></td>
</tr>
<tr>
<td>Urban Planning and Geographic Information Systems (GIS)</td>
<td></td>
</tr>
<tr>
<td>Developing a Spatial Data Framework for Facility Management Supply Chains</td>
<td>2355</td>
</tr>
<tr>
<td>Ebrahim P. Karan and Javier Irizarry</td>
<td></td>
</tr>
<tr>
<td>A Framework for Assessing Environmental Implications of an Urban Area</td>
<td>2365</td>
</tr>
<tr>
<td>Seyed Mostafa Batouli and Yimin Zhu</td>
<td></td>
</tr>
<tr>
<td>Optimizing the Location of Out-Care Centers in Urban Space Using Agent-based Modeling</td>
<td>2375</td>
</tr>
<tr>
<td>Timo Hartmann and Vedran Zerjav</td>
<td></td>
</tr>
<tr>
<td>GIS-based Planning Support System for Waste Stream and Algal Cultivation in Residential Construction</td>
<td>2385</td>
</tr>
<tr>
<td>Perry Pei-Ju Yang, Steven Jige Quan, Daniel Castro-Lacouture, Charles Rudolph, and Ben Stuart</td>
<td></td>
</tr>
</tbody>
</table>

*Construction Research Congress 2014*
Contributions of Construction Project Team to Cost Overruns: The Contractors’ Perspective

Olusegun AKINSIKU¹, Adeyemi AKINTOLA¹, Oko AMEH¹ and Ayokunle IGE¹

¹Department of Building, Faculty of Environmental Sciences, University of Lagos, Nigeria; PH (234) 08038011097; email: eoakinsiku@yahoo.com

ABSTRACT

A project is adjudged successful if it is completed to time, within the budgeted cost and meets client’s expectation. However, there is the global issue of construction cost and time overruns, which has contributed to poor project performance. Contractors have always been seen as the culprit in this regard, whereas, the contractor is not solely involved in construction projects, there are other project team members who determine the path of the project success. This study assesses the causes of cost overruns, viewing this from the contractor’s assessment of the contribution of its project team members. The study was conducted using questionnaire surveys in which 100 questionnaires were distributed to contractors using purposive sampling; data were analyzed by the use of descriptive statistics. The results show that lack of adequate pre-contract planning and project team co-ordination are the most significant factor among construction professionals leading to cost overruns. The study made recommendations which are of good benefit to the client, project team members and contractors.

INTRODUCTION

Cost is a major consideration throughout the project management life cycle and can be regarded as one of the most important parameters of a project and the driving force of project success. It is the universal and most highly visible performance metric for indicating project success. As such, Tichacek (2006) enjoined project managers and project controls professionals to expend their effort and intelligence to properly manage cost. However, cost overrun is a general occurrence in the global construction industry (Rahman, Memon, Abdul-Azis & Abdullah, 2013). Chimwaso (2000) opined that projects completed within budget are rarely found compared with cases of projects with cost overrun. The ripple of this phenomenon is usually friction between clients (especially government clients), project managers and contractors on the issue of project cost variation (Creedy, 2005). Cost overrun is a very frequent phenomenon and is almost associated with nearly all projects in the construction industry.

This trend is more severe in developing countries where these overruns sometimes exceed 100% of the anticipated cost of the project (Azhar, Farooqui and Ahmed, 2008). Findings on construction projects in some developing countries revealed that the actual cost of construction do exceed the original contract price by about 30% (Al-Momani, 1996). It was further observed that both public sector and private sector projects have similar pattern of cost overruns. Endut, Akintoye and Kelly (2009) in a study conducted on 308 public projects and 51 private projects in
Malaysia observed that 46.8% and 37.2% of public sector and private sector projects respectively are reported to be completed within the budget. Further result of the study show that 84.3% of the private sector projects were completed within the 10% cost deviation compared with 76.0% of the public sector projects. This is an indication that both private sector and public sector driven projects are susceptible to cost overruns.

Against this backdrop, with the dearth in financial resources available for infrastructure development most especially in developing countries and the susceptibility of construction projects to cost and time overruns, it is necessary to improve construction efficiency by means of cost-effectiveness and timeliness; this would certainly contribute to cost savings. However, the responsibility for project performance is often placed on the contractor, whereas the contractor is not solely and absolutely involved in project execution. The contractor is always at the receiving end of project delays which in most cases leads to cost overruns. Previous researches have identified the contractor as a major contributor to project delays and cost overruns in the areas of financial difficulties, equipment and tool shortages, material shortages, poor site management practices, construction mistakes and defective works; this is shown in table 1.

Table 1. Studies on Causes of Delays by Contractors

<table>
<thead>
<tr>
<th>S/N</th>
<th>Causes of Delays by contractors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Equipment and tool shortages</td>
<td>Wendle (2008)</td>
</tr>
<tr>
<td>3</td>
<td>Materials shortage</td>
<td>Sambasivan and Yau (2007); Ruiz-Torres and Farzad (2006); Arditi et al. (1985)</td>
</tr>
<tr>
<td>4</td>
<td>Poor site management</td>
<td>Sweis et al. (2008); Aibinu and Odenyika (2006); Arshi and Sameh (2006); Faridi and El-Sayegh (2006); Ahmed et al. (2003); Augustine and Mangywat (2001); Arditi et al. (1985)</td>
</tr>
</tbody>
</table>

RESEARCH METHOD

A quantitative approach using structured questionnaire was used to elicit information from contractors on their perception of project consultants’ contribution to cost overrun. The population of the study is professionals in the contracting organisations within Lagos state, Nigeria. The data gathering procedure was by administering the questionnaires to the respondents who were contractors in
construction firms. 100 questionnaires were administered all along for the study of which 57 were returned and used for the analyses.

RESEARCH FINDINGS

Causes of Cost Overrun

Table 2 shows a list of factors responsible for cost overrun of building projects with their corresponding mean scores. It is seen that lack of planning and coordination had the highest mean item score of 4.09 and the least being long period between time of bidding/tendering and award having a mean score of 2.98. Others are additional costs due to variation works/change order, changes in plans and drawings or design changes, increase in the cost of construction materials, poor cost control method, inconsistent client brief, changes to specification, fluctuations in the cost of labour and/or material, inexperienced contractor, lack of control on excessive change orders, inaccurate quantity estimate or excess quantity during construction, inadequate site investigation, delayed payments to contractors, wrong method of cost estimation, lack of coordination between design team and general contractor, complexity of construction projects, poor communication among contractor, consultant and the client, lowest bidding procurement method, acceleration required by the owner (Shortening of contract time) and long period between time of bidding/tendering and award with their respective mean scores to be 3.96, 3.93, 3.74, 3.70, 3.70, 3.69, 3.61, 3.60, 3.58, 3.54, 3.36, 3.30, 3.29, 3.26, 3.25, 3.23, 3.07, 3.05 and 2.98.

<table>
<thead>
<tr>
<th>FACTORS</th>
<th>N</th>
<th>Mean</th>
<th>Ranking Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of planning and coordination</td>
<td>55</td>
<td>4.09</td>
<td>1</td>
</tr>
<tr>
<td>Additional costs due to variation works/Change order</td>
<td>57</td>
<td>3.96</td>
<td>2</td>
</tr>
<tr>
<td>Changes in plans and drawings or Design changes</td>
<td>56</td>
<td>3.93</td>
<td>3</td>
</tr>
<tr>
<td>Increase in the cost of construction materials</td>
<td>57</td>
<td>3.74</td>
<td>4</td>
</tr>
<tr>
<td>Poor cost control method</td>
<td>57</td>
<td>3.70</td>
<td>5</td>
</tr>
<tr>
<td>Inconsistent client brief</td>
<td>56</td>
<td>3.70</td>
<td>5</td>
</tr>
<tr>
<td>Changes to specification</td>
<td>54</td>
<td>3.69</td>
<td>7</td>
</tr>
<tr>
<td>Fluctuations in the cost of labour and/or material</td>
<td>56</td>
<td>3.61</td>
<td>8</td>
</tr>
<tr>
<td>Inexperienced contractor</td>
<td>55</td>
<td>3.60</td>
<td>9</td>
</tr>
<tr>
<td>Lack of control on excessive change orders</td>
<td>57</td>
<td>3.58</td>
<td>10</td>
</tr>
<tr>
<td>Inaccurate quantity estimate or excess quantity during construction</td>
<td>57</td>
<td>3.54</td>
<td>11</td>
</tr>
<tr>
<td>Inadequate site investigation</td>
<td>56</td>
<td>3.36</td>
<td>12</td>
</tr>
<tr>
<td>Delayed payments to contractors</td>
<td>57</td>
<td>3.30</td>
<td>13</td>
</tr>
<tr>
<td>Wrong method of cost estimation</td>
<td>56</td>
<td>3.29</td>
<td>14</td>
</tr>
<tr>
<td>Lack of coordination between design team and general contractor</td>
<td>57</td>
<td>3.26</td>
<td>15</td>
</tr>
<tr>
<td>Complexity of construction projects</td>
<td>55</td>
<td>3.25</td>
<td>16</td>
</tr>
</tbody>
</table>
Poor communication among contractor, consultant and the client 57 3.23 17
Lowest bidding procurement method 57 3.07 18
Acceleration required by the owner (Shortening of contract time) 57 3.05 19
Long period between time of bidding/tendering and award 57 2.98 20

Clients Contributions to Cost Overrun
From Table 3, it can be seen that the actions of client that mostly contribute to cost overrun is lack of planning and coordination with a mean score of 4.77. Thereafter are additional costs due to variation works/change order having a mean score of 3.86, inadequate financial provision had 3.80, inadequate brief to the design team had 3.63, changes in plans and drawings or design changes had 3.58, method of procurement employed had 3.51, different consultant for design, supervision and contract administration had 3.47, delay in making decisions had 3.47, poor communication among contractor, consultant and the client had 3.37, executive bureaucracy in the client's organisation had 3.35 and supplementary/additional agreement had 3.21.

Table 3. Clients Contributions to Cost Overrun

<table>
<thead>
<tr>
<th>FACTORS</th>
<th>N</th>
<th>Mean</th>
<th>Ranking Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of planning and coordination</td>
<td>57</td>
<td>4.77</td>
<td>1</td>
</tr>
<tr>
<td>Additional costs due to variation works/Change order</td>
<td>57</td>
<td>3.86</td>
<td>2</td>
</tr>
<tr>
<td>Inadequate financial provision</td>
<td>56</td>
<td>3.80</td>
<td>3</td>
</tr>
<tr>
<td>Inadequate brief to the design team</td>
<td>57</td>
<td>3.63</td>
<td>4</td>
</tr>
<tr>
<td>Changes in plans and drawings or Design changes</td>
<td>53</td>
<td>3.58</td>
<td>5</td>
</tr>
<tr>
<td>Method of procurement employed</td>
<td>57</td>
<td>3.51</td>
<td>6</td>
</tr>
<tr>
<td>Different consultant for Design, Supervision and Contract Administration</td>
<td>57</td>
<td>3.47</td>
<td>7</td>
</tr>
<tr>
<td>Delay in making decisions</td>
<td>56</td>
<td>3.41</td>
<td>8</td>
</tr>
<tr>
<td>Poor communication among contractor, consultant and the client</td>
<td>57</td>
<td>3.37</td>
<td>9</td>
</tr>
<tr>
<td>Executive bureaucracy in the Client's organization</td>
<td>55</td>
<td>3.35</td>
<td>10</td>
</tr>
<tr>
<td>Supplementary/Additional agreement</td>
<td>57</td>
<td>3.21</td>
<td>11</td>
</tr>
</tbody>
</table>

Consultants Contributions to Cost Overrun
Table 4 gives a list of factors responsible for causing cost overrun of building projects. From the Table, it is seen that lack of planning and coordination had a mean score of 4.00, changes in plans and drawings had 3.95, insufficient geotechnical investigation had 3.89, additional costs due to variation works had 3.88, lack of control on excessive change orders had 3.76, cost under estimation had 3.75, working out unrealistic programme of work had 3.70, inaccurate quantity estimate or excess quantity during construction had 3.68, changes to specification had 3.61, poor communication among contractor, consultant and the client had 3.59, faulty and
incomplete information at the inception stage had 3.55, complexity of construction projects had 3.44, suspension of work ordered by the engineer had 3.42 and different consultant for design, supervision and contract administration had 3.32.

Table 4. Consultants Contributions to Cost Overruns

<table>
<thead>
<tr>
<th>FACTORS</th>
<th>N</th>
<th>Mean</th>
<th>Ranking Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of planning and coordination</td>
<td>57</td>
<td>4.00</td>
<td>1</td>
</tr>
<tr>
<td>Changes in plans and drawings</td>
<td>56</td>
<td>3.95</td>
<td>2</td>
</tr>
<tr>
<td>Insufficient geotechnical investigation</td>
<td>57</td>
<td>3.89</td>
<td>3</td>
</tr>
<tr>
<td>Additional costs due to variation works</td>
<td>56</td>
<td>3.88</td>
<td>4</td>
</tr>
<tr>
<td>Lack of control on excessive change orders</td>
<td>54</td>
<td>3.76</td>
<td>5</td>
</tr>
<tr>
<td>Cost under estimation</td>
<td>57</td>
<td>3.75</td>
<td>6</td>
</tr>
<tr>
<td>Working out unrealistic programme of work</td>
<td>56</td>
<td>3.70</td>
<td>7</td>
</tr>
<tr>
<td>Inaccurate quantity estimate or excess quantity during construction</td>
<td>57</td>
<td>3.68</td>
<td>8</td>
</tr>
<tr>
<td>Changes to specification</td>
<td>57</td>
<td>3.61</td>
<td>9</td>
</tr>
<tr>
<td>Poor communication among contractor, consultant and the client</td>
<td>56</td>
<td>3.59</td>
<td>10</td>
</tr>
<tr>
<td>Faulty and incomplete information at the inception stage</td>
<td>56</td>
<td>3.55</td>
<td>11</td>
</tr>
<tr>
<td>complexity of construction projects</td>
<td>55</td>
<td>3.44</td>
<td>12</td>
</tr>
<tr>
<td>Suspension of work ordered by the Engineer</td>
<td>55</td>
<td>3.42</td>
<td>13</td>
</tr>
<tr>
<td>Different consultant for Design, Supervision and Contract Administration</td>
<td>56</td>
<td>3.32</td>
<td>14</td>
</tr>
</tbody>
</table>

Remedies to Cost Overrun

Table 5 presents the remedies for minimising or preventing cost overrun of building projects. Adequate financial provision had a mean score of 4.52, employing the right procurement method had 4.47, effective and efficient project management had 4.43, provision of comprehensive information had 4.36, good communication among the construction project team had 4.21, thorough estimating process had 4.19, improving contractors' managerial skill had 4.14, control over excessive change order or variation had 4.07, procurement of construction materials and other items in collaboration with the client ahead of time had 4.05 and adequate contingencies allowance had 3.77.
Table 5. Remedies for Minimising or Preventing Cost Overrun

<table>
<thead>
<tr>
<th>Remedies</th>
<th>N</th>
<th>Mean</th>
<th>Ranking Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate financial provision</td>
<td>56</td>
<td>4.52</td>
<td>1</td>
</tr>
<tr>
<td>Employing the right procurement method</td>
<td>57</td>
<td>4.47</td>
<td>2</td>
</tr>
<tr>
<td>Effective and efficient project management</td>
<td>56</td>
<td>4.43</td>
<td>3</td>
</tr>
<tr>
<td>Provision of comprehensive information</td>
<td>56</td>
<td>4.36</td>
<td>4</td>
</tr>
<tr>
<td>Good communication among the construction project team</td>
<td>57</td>
<td>4.21</td>
<td>5</td>
</tr>
<tr>
<td>Thorough estimating process</td>
<td>54</td>
<td>4.19</td>
<td>6</td>
</tr>
<tr>
<td>Improving contractors' managerial skill</td>
<td>57</td>
<td>4.14</td>
<td>7</td>
</tr>
<tr>
<td>Control over excessive change order or variation</td>
<td>56</td>
<td>4.07</td>
<td>8</td>
</tr>
<tr>
<td>Procurement of construction materials and other items in collaboration with the client ahead of time</td>
<td>57</td>
<td>4.05</td>
<td>9</td>
</tr>
<tr>
<td>Adequate contingencies allowance</td>
<td>57</td>
<td>3.77</td>
<td>10</td>
</tr>
</tbody>
</table>

SUMMARY AND DISCUSSION OF FINDINGS

From the analysis as shown above, lack of planning and coordination is the most significant factor that cause cost overrun of building construction project. In Fetene (2008), this was identified as the second most significant cause of cost overrun. The other four most significant causes of cost overrun as observed in their order of significance are: additional costs due to variation works/change order, changes in plans and drawings or design changes increase in the cost of construction materials and poor cost control method. Elhag and Boussabaine (1999) ranked variation orders and additional works second as most significant cause of cost overrun. Further findings shows that lack of planning and coordination is also the most significant contributory factors by the client that causes cost overrun. The actions of client that often result into cost overrun is their attitude of getting involve in inadequate or poor planning and coordination of the work to be done. This could be as result of the time allowed by the client for contract documentation. It could also be as a result of choosing incompetent consultants and contractor. Other contributions by the client are additional costs due to variation works/change order, inadequate financial provision, inadequate brief to the design team and changes in plans and drawings or design changes are the most five significant factors that result into cost overruns of building construction project.

It is seen that the most significant factor causing cost overrun as a result of consultants contribution is also lack of planning and coordination ranking 1st on the list, while changes in plans and drawings, insufficient geotechnical investigation, additional costs due to variation works and lack of control on excessive change orders ranked 2nd, 3rd, 4th and 5th respectively.

The recommended remedies to minimizing or preventing cost overrun is adequate financial provision which is ranked 1st among others and employing the right procurement method, effective and efficient project management, provision of comprehensive information and good communication among the construction project team were ranked 2nd, 3rd, 4th and 5th respectively.
CONCLUSIONS
The following conclusions can be reached from the study:
1) Lack of planning and coordination is described as the most significant factor causing cost overrun of building construction projects.
2) Lack of planning and coordination is described as the most contributory factor by the client causing cost overrun of building construction projects.
3) Lack of planning and coordination is described as the most contributory factor by the consultants causing cost overrun of building construction projects.
4) The recommended remedies to minimize or prevent cost overrun is adequate financial provision among others.

It can be seen that Lack of planning and coordination or poor planning and inefficient coordination happens to be a general factor causing cost overrun and also a contributory actions from the client and the consultants. This is traceable to the competency of consultants in handling a project and the little involvement of client in a building project.

RECOMMENDATIONS
This will be targeted towards the project team members who are the client, consultants and the contractors.

Recommendations to the Clients
a) Clients should allow adequate time for planning and provide good platform for effective coordination of building projects.
b) Client should allow sufficient time for proper feasibility studies, planning, design, and information documentation and tender submission. This helps to avoid errors and omissions that consequentially help in avoiding or minimizing cost overrun.
c) Client should ensure that all briefings and decisions are finalized as to what will be incorporated in the building projects. This is to reduce that amount of additional costs due to variation works.
d) Client should ensure that a good cost control measures is established before embarking upon a project.
e) Clients should ensure that adequate funds are available before projects are started, so that contractors can be paid in accordance with the contract agreement and materials can be bought on time to forestall increment in material prices.
f) The client should endeavor to select a competent consultant and a reliable contractor to carry the work.

Recommendations to the Consultants
a) The consultants should be involve in continuous coordination and direct communication, which will eliminate design discrepancies and errors as well as omissions in design and also provide an opportunity for professionals to review the contract documents thoroughly? This help in eliminating change orders or variation works.
b) Adequate cost advice on incessant changes to plans and drawings requested by the client should be given.
Detailed and comprehensive site investigation should be done at the design phase to avoid variations and late changes during the construction phase.

Adequate control should be exercised on excessive change orders requested by the client.

They should also expedite action on review and approval of design documents, preparation of payment of certificates for contractor orders early enough.

Implement the necessary measures to reduce construction cost, since construction cost reduction is one way of reducing potential cost overrun.

REFERENCES


