Antiinflammatory, analgesic and antioxidant activities of Cyathula prostrata (Linn.) Blume (Amaranthaceae)

Bolanle Ibrahim a, Abimbola Sowemimo a, Anzel van Rooyen b, Maryna Van de Venter b

a Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Ili-Irataba, Lagos, Nigeria
b Department of Biochemistry and Microbiology, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa

ARTICLE INFO

Article history:
Received 8 November 2011
Received in revised form 13 February 2012
Accepted 14 February 2012
Available online 1 March 2012

Keywords:
Cyathula prostrata
Anti-inflammatory
Analgesic
Antioxidant
Flavonoid

ABSTRACT

Ethnopharmacological relevance: Cyathula prostrata (Linn.) Blume (Amaranthaceae) is an annual herb widely used traditionally in the treatment of various inflammatory and pain related health disorders in Nigeria. The aim of this study is to evaluate the anti-inflammatory, analgesic and antioxidant activities of the methanolic extract of Cyathula prostrata (Linn.) Blume.

Materials and methods: The anti-inflammatory (phorbol 12-myristate 13-acetate (PMA)-induced reactive oxygen species (ROS)), lipopolysaccharide (LPS) induced nitric oxide production in U937 macrophages, LPS-induced COX-2 expression, carrageenan-induced rat paw oedema, arachidonic acid-induced ear oedema and xylene-induced ear oedema), analgesic (acetic acid-induced writhing and hot plate tests) and antioxidant activities (DPPH [1,1-diphenyl-2-picrylhydrazyl] and lipid peroxidation assays) activities of the plant extract were investigated.

Results: The methanolic extract of Cyathula prostrata did not show inhibitory activity in the in vitro PMA-induced reactive oxygen species, LPS-induced nitric oxide production and LPS-induced COX-2 expression assays. In the in vivo anti-inflammatory assays, the extract (50, 100 and 200 mg/kg) showed a significant (P<0.05) dose-dependent inhibition in the carrageenan, arachidonic acid and xylene-induced tests. Cyathula prostrata produced a significant (P<0.05, 0.001) dose-dependent inhibition in the acetic acid and hot plate analgesic tests respectively. The plant extract did not exhibit any antioxidant activity in the DPPH and lipid peroxidation assays.

Conclusion: The results suggest that the methanolic extract of Cyathula prostrata possesses anti-inflammatory and analgesic activities and this authenticates the use of the plant in the traditional treatment of ailments associated with inflammation and pain.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Due to their implication in virtually all human and animal diseases, inflammation and pain have become the focus of global scientific research. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs) and opioids have necessitated the search for new drugs with minimal side effects (Dharmasiri et al., 2003; Vittalrao et al., 2011). The current trend of research is the investigation of medicines of plant origin because of their affordability and accessibility with minimal side effects.

Cyathula prostrata (Linn.) Blume (Amaranthaceae) is a straggling to more or less erect annual herb of up to 1 m long and is widely distributed in tropical Africa, Asia, Australia and tropical America. The young foliage is often coloured red with burred and adhesive fruits. The plant is a weed of cultivated land, waste places as well as forest margins. In Ivory Coast, the sap is applied to sores and chancres and used as ear drops for otitis and headache while leafy twigs, inflorescences and seeds pulped into a paste with or without clay are used on sores, burns and fractures. In Nigeria and Cameroon, it is used in the treatment of articular rheumatism and dysentery while in Gabon, it is used in treating eye troubles, wounds and urethral discharges (Burkill, 1995). The phytochemical study, proximate analysis and antibacterial activity of Cyathula prostrata have been reported (Oladimeji et al., 2005; Unni et al., 2009). The cytotoxic activity of the ethanolic extract of the plant against cervical and breast cancer have also been reported (Sowemimo et al., 2009, 2011). Ecdysterone, a plant ecdysteroid has been isolated from the plant (Shah and De Souza, 1971).

 Abbreviations: COX, cyclooxygenase; DCF, 2,7 dichlorofluorescin; DCF-DA, 2,7’-dichlorofluorescin diacetate; DMSO, dimethyl sulphoxide; EDTA, ethylenediaminetetraacetic acid; LPS, lipopolysaccharide; NO, nitric oxide; PBS, phosphate buffered saline; PMA, phorbol 12-myristate 13-acetate; ROS, reactive oxygen species; U937 cells, human promonocytic leukaemia cell line.

* Corresponding author. Tel.: +234 803 936 3361.
E-mail address: asowemimo@unilag.edu.ng (A. Sowemimo).

0378-8741/$ – see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.jep.2012.02.032
The aim of this study was to investigate the anti-inflammatory, analgesic and antioxidant activities of the methanolic extract of *Cyathula prosta.*

2. Materials and methods

2.1. Plant material

Cyathula prosta (Linn.) Blume [Amaranthaceae] (whole plant) was collected from the front of the Faculty of Science Building, University of Lagos, Nigeria in April 2011. They were identified by Mr. Daramola and authenticated at the Herbarium of the Department of Botany, Faculty of Science, University of Lagos, where a voucher specimen (LUH 3671) was deposited.

2.2. Extraction procedure

The plant was air-dried for 2 days and further dried in a hot air oven at 40 °C, ground to powder and stored in amber coloured bottles. Five hundred grams of the powdered material was macerated with 80% methanol at room temperature. The extract was filtered and concentrated *in vacuo* at 30 °C using the rotary evaporator (Buchi, Switzerland). The extract obtained was deep brown in colour and the crude yield was 4.4% (w/w). The extract was reconstituted in distilled water to appropriate concentrations before administration to experimental animals.

2.3. In vitro anti-inflammatory activity

2.3.1. Culture differentiation and treatment of U937 cells

U937 cells (human promonocytic leukaemia cell line) were cultured in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum, penicillin and streptomycin. The cells were differentiated into monocyte–macrophage before treatment by incubating them in the presence of 100 nM 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) for 24 h. After differentiation, cells were seeded into 48-well plates at 1 × 10⁶ cells/ml and incubated in the presence of the various treatments. Incubation period for each method is indicated in the relevant section below. Treatments included vehicle (0.125% DMSO), 50 and 125 μg/ml extract, 100 or 250 ng/ml lipopolysaccharide (LPS) and 10 nM phorbol 12-myristate 13-acetate (PMA).

2.3.2. Measurement of intracellular ROS level

The membrane permeable 2′,7′-dichlorofluorescin diacetate (DCF-DA) (Molecular Probes, Eugene, OR, USA) was used to assess intracellular reactive oxygen species (ROS) (Liu et al., 2005; Lee et al., 2008). Oxidation of DCF-DA by ROS particularly H₂O₂, yielded fluorescent 2′,7′-dichlorofluorescin (DCF). Differentiated U937 monocyte–macrophage cells were washed with warm phosphate buffered saline (PBS) and incubated in culture medium containing 2.5 μM DCF-DA for 30 min in the dark. Subsequently, the cells were centrifuged for 5 min at 250 × g, washed twice with PBS to remove excess stain and resuspended in fresh medium. The cells were then incubated with the extract and controls for 90 min in the dark. The reaction was terminated through addition of 50 mM EDTA. Cells were analysed using a Beckman Coulter FC500 flow cytometer with a 488 nm laser for excitation and green fluorescence recorded in FL1.

2.3.3. Measurement of nitric oxide production

The differentiated cells were incubated with the test compound and LPS (100 ng/ml) for 24 h. Fifty microliters of the supernatant was removed, transferred to another plate and mixed with 50 μl of Griess reagent to assay the nitrite (Suh et al., 1998). The solution was incubated at room temperature for 30 min in the dark. The nitrite concentration in the culture medium was measured spectrophotometrically on a BioTek® PowerWave XS spectrophotometer at 540 nm as an indicator of nitric oxide (NO) production according to the Griess reaction (Kim et al., 1995).

2.3.4. Measurement of COX-2 expression

Differentiated U937 cells were seeded into 48-well plates and incubated with extract and LPS (250 ng/ml) for 6 h. The cells were lysed with Cytobuster™ Protein Extraction Reagent (Novagen, USA) to obtain the total cell lysate and stored at −80 °C until required. The cell lysates (100 μl) were used to measure the amount of COX-2 using the COX-2 ELISA kit (Calbiochem, USA) according to the manufacturer’s instructions. ELISA results were recorded using a BioTek® PowerWave XS spectrophotometer at 450 nm. The results were expressed in ng/mg protein (Shigemasa et al., 2003). Each sample was measured in triplicate.

2.4. Animals

Wistar rats (100–200 g) and Swiss albino mice (20–30 g) of either sex used in this study were obtained from the animal house facility of National Agency for Food and Drug Administration and Control (NAFDAC), Lagos. All the animals were maintained under standard laboratory conditions (12 h light/dark cycle at 22 ± 2 °C) and fed with standard rodent pellets (Livestock Feed PLC, Lagos, Nigeria) and water ad libitum.

The procedures used in this study were in accordance with the United States National Institutes of Health Guidelines for Care and Use of Laboratory Animals in Biomedical Research (NIH, 1985).

2.5. Acute toxicity study

Acute oral toxicity assay was performed on five groups of 6 mice each fasted for 12 h prior to the experiment. The plant extract was administered at doses of 2.0, 2.5, 3.0, 3.5 and 4.0 g/kg (p.o.) and 1.8, 2.0, 2.2, 2.4 and 2.6 g/kg (i.p.). The animals in each group were observed for 2 h after treatment for immediate signs of toxicity. The number of deaths in each group within 24 h was recorded. Animals which survived were further observed for 7 days for signs of delayed toxicity. The log dose-probit analysis method was employed in the LD₅₀ estimation (Adeyemi et al., 2009).

2.6. In vivo antinflammatory activity

2.6.1. Carrageenan-induced paw oedema

The method of Henriques et al. (1987) was used to determine the anti-inflammatory activity of the extract. Five groups of 6 rats each were treated with *Cyathula prostrata* (50, 100 and 200 mg/kg, p.o.), indomethacin (10 mg/kg p.o.) and distilled water (10 ml/kg, p.o.). One hour after the administration of the various agents, oedema was induced by injection of carrageenan (0.1 ml, 1%, w/v in saline) into the subplantar tissue of the right hind paw. The linear paw circumference was measured using the cotton thread method (Bambhose and Noamesi, 1981). Measurements were made immediately before injection of the phlogistic agents and at 30 min interval for 3 h.

%Inhibition = \[
\frac{\text{increase in paw oedema, control} - \text{increase in paw oedema, treated}}{\text{increase in paw oedema, control}} \times 100
\]
2.6.2. Arachidonic acid-induced right ear oedema
Mice were divided into five groups of 6 animals each. Thirty minutes after oral treatment of mice with distilled water (10 ml/kg), acetylsalicylic acid (1 mg/kg) and extract (50–200 mg/kg), oedema was induced by applying 0.03 ml of arachidonic acid to the inner surface of the right ear. The left ear was considered as control. Thirty minutes after the application of arachidonic acid, the mice were killed under ether anaesthetics and both ears were removed and weighed (Young et al., 1984).

\[
\text{%Inhibition} = \frac{\text{difference in weight of ear, control} - \text{difference in weight of ear, treated}}{\text{in weight of ear, treated}} \times 100
\]

2.6.3. Xylene-induced ear oedema
Mice were divided into five groups of 6 animals each. Thirty minutes after oral treatment of mice with distilled water (10 ml/kg), dexamethasone (1 mg/kg) and extract (50–200 mg/kg), oedema was induced by applying 0.03 ml of xylene to the inner surface of the right ear. The left ear was considered as control. Fifteen minutes after the application of xylene, the mice were killed under ether anaesthetics and both ears were removed and weighed (Nunez Guillen et al., 1997).

\[
\text{%Inhibition} = \frac{\text{difference in weight of ear, control} - \text{difference in weight of ear, treated}}{\text{in weight of ear, control}} \times 100
\]

2.7. Analgesic activity

2.7.1. Hot plate test
The hot plate test was performed at a fixed temperature of 55±0.5°C. Five groups of six mice each were fasted overnight were used in this experiment. Pre-treatment reaction for each mouse was determined after which treatment was done as follows: distilled water (10 ml/kg, p.o.), morphone (10 mg/kg, s.c.) and Cyathula prostrata (50, 100 and 200 mg/kg). Sixty minutes after oral administration, the reaction time was recorded. Post-treatment cut-off time of 15 s was used (Omisore et al., 2004).

\[
\text{%Inhibition} = \frac{\text{post-treatment latency} - \text{pre-treatment latency}}{\text{cut-off time} - \text{pre-treatment latency}} \times 100
\]

2.7.2. Acetic acid-induced abdominal writhing test
The method of Koster et al. (1959) was used for this test. The mice were divided into five groups of six mice each and fasted overnight. The animals were treated with acetylsalicylic acid (10 mg/kg, p.o.), distilled water (10 ml/kg, p.o.) and Cyathula prostrata (50, 100 and 200 mg/kg, p.o.). The mice were treated with acetic acid (0.6%, v/v in saline, 10 ml/kg, i.p.) 1 h after the above treatment was carried out. The number of writhes was counted for 30 min.

\[
\text{%Inhibition} = \frac{\text{number of writhes (control)} - \text{number of writhes (test)}}{\text{number of writhes (control)}} \times 100
\]

2.8. Antioxidant activity

2.8.1. Determination of antioxidant activity by DPPH radical scavenging ability
The effect of the extract on DPPH radical was estimated using the method of Liyanage-Pathirana and Shahidi (2005). A solution of 0.135 mM DPPH in methanol was prepared and 1.0 ml of this solution was mixed with five different concentrations of the extract ranging from 20 to 500 μg/ml. The reaction mixture was shaken thoroughly and left on the bench at room temperature for 30 min for complete reaction. The absorbance was measured at 517 nm using a spectrophotometer (T80 spectrometer, PG Instrument Ltd.). Quercetin was used as standard. All determinations were done in triplicate.

The ability of the sample to scavenge radical was calculated by the following equation:

\[
\text{DPPH radical scavenging activity (%)} = \frac{\text{absorbance of control} - \text{absorbance of sample}}{\text{absorbance of control}} \times 100
\]

2.8.2. Determination of antioxidant activity by lipid peroxidation (LPO) assay
An in vitro model using the liver homogenate was used for the induction of lipid peroxidation mediated by FeSO4 as pro-oxidant and assessed by the method of Ohkawa et al. (1979). The reaction mixture contained 1 ml of liver homogenate, 0.1 ml of potassium dihydrogen sulphate buffer (10 mM), 0.1 ml of FeSO4 6H2O (25 μM), 0.1 ml ascorbic acid (100 μM) and 1 ml of various concentrations of the extract (20–500 μg/ml). Distilled water (0.7 ml) was added to make up to 3 ml. Incubation was carried out at 37°C for 1 h. After the incubation period, the reaction mixture was treated with 1 ml thiobarbituric acid in HCl (0.8%) and 1 ml trichloroacetic acid (20%, pH 3.5). The solution was boiled in a water bath at 95–100°C for 30 min. The absorbance was measured at 532 nm. The assay was performed in triplicate. Quercetin was used as standard. The percentage inhibition of lipid peroxidation was calculated using the following equation:

\[
\text{%Inhibition of lipid peroxidation} = \frac{A_{\text{control}} - A_{\text{test}}}{A_{\text{control}}} \times 100
\]

where \(A_{\text{control}} \) is the absorbance of the control reaction and \(A_{\text{test}} \) is the absorbance in the presence of the sample extract.

2.9. Determination of total phenolic content
The total phenolic content (TPC) of the extract was determined by Folin and Ciocalteu (1927) method. In the preparation of the calibration curve five dilutions of standard solution of gallic acid (0.005–1.0 mg/ml) were prepared. In a 96-well-plate, 4 μl of extract (250 μg/ml) or standard solution was added to distilled water (16 μl) and Folin–Ciocalteu reagent (100 μl). Immediately after,

\[
80 \mu l of 7.5\% sodium bicarbonate was added to the mixture to make up to a total volume of 200 μl in each well. The solution was incubated for 90 min at 30°C after which the absorbance was read at 765 nm using a BioTek® PowerWave XS spectrophotometer. All determinations were performed in quadruplicate. The results were expressed as mg gallic acid equivalent (GAE) per gram of dry mass.

2.10. Determination of total flavonoid content
The total flavonoid content (TFC) of the extract was determined using the aluminium chloride colorimetric assay (Kumar et al., 2008). In the preparation of the calibration curve five dilutions
of standard solution of rutin (0.005–1.0 mg/ml) were prepared. In a 96-well-plate, 4 μl of extract (250 μg/ml) or standard solution (dissolved in 16 μl of distilled water) was added to 6 μl of 15% NaNO₂ and 80 μl of distilled water. After 6 min, 6 μl of 10% AlCl₃ was added. After another 6 min, 80 μl of 4% NaOH was added and made up to a total volume of 200 μl with 8 μl of distilled water. The solution was mixed well and allowed to stand for 15 min after which absorbance was read at 510 nm on a BioTek® PowerWave XS spectrophotometer. All determinations were performed in quadruplicate. Total flavonoids content was expressed as mg rutin equivalent (RE) per gram weight of sample.

2.11. Statistical analysis

All values were expressed as means ± SEM. Data were analysed by one way ANOVA followed by Dunnett’s multiple comparison, Tukey’s multiple comparison and Student’s t-tests. Results were considered statistically significant at P < 0.05.

3. Results

3.1. Effect of Cyathula prostrata on PMA-induced intracellular reactive oxygenase species

3.1.1. (ROS) accumulation in U937 cells

The intracellular reactive oxygen accumulation as reflected by the DCF fluorescence triggered by PMA was measured in this assay. The concentration of Cyathula prostrata (125 μg/ml) used in this assay increased the generation of intracellular reactive oxygen species induced by PMA (Fig. 1A). The results suggest that Cyathula prostrata is not a reactive oxygenase inhibitor.

3.2. Effect of Cyathula prostrata on LPS-induced NO production

The ethanolic extract of Cyathula prostrata was checked for its inhibitory effect on nitric oxide production from macrophages (U-937 cells) induced by LPS. Two different concentrations of the crude extract were used (Fig. 1B). The extract did not show inhibitory activity on nitric oxide production in the induced cells. This suggests that the ethanolic extract of Cyathula prostrata is not an inhibitor of the NO related inflammation pathway.

3.3. Effect of Cyathula prostrata on LPS-induced COX-2 expression

The influence of Cyathula prostrata on LPS-induced COX-2 protein expression was determined. At 50 and 125 μg/ml, the crude extract caused an increase in the COX-2 protein expression (Fig. 1C) and this result suggests that extract does not inhibit the COX-2 protein expression in the inflammation pathway.

3.4. Acute toxicity

No death was observed for the oral route of administration at all doses. However 83% mortality (2.0 and 2.2 g/kg) and 100% mortality (2.4 and 2.6 g/kg) were recorded for the intraperitoneal route and the LD₅₀ was estimated to be 1.9 g/kg. The physical signs of toxicity included excitation, paw licking, increased respiratory rate, decreased motor activity, gasping and coma which was followed by death.

3.5. Carrageenan-induced rat paw oedema

The ethanolic extract of Cyathula prostrata administered 1h before the injection of carrageenan caused a significant (P<0.01–0.05) and dose dependent inhibition of increase in paw
3.6. Arachidonic acid-induced ear edema

Cyathula prostrata significantly ($P<0.05$) reduced the ear oedema induced by arachidonic acid and peaked at the dose of 100 mg/kg (62.44%). The level of inhibition observed at this dose was not significantly different from that produced by 10 mg/kg acetylsalicylic acid (65.38%) (Table 2).

3.7. Xylene-induced ear edema

A significant ($P<0.05$) dose dependent inhibition of oedema development was produced by *Cyathula prostrata* and peaked at the highest dose of 200 mg/kg (26.26%). The percentage inhibition produced by dexamethasone (1 mg/kg; p.o.) was however higher than that of the extract at 200 mg/kg (Table 3).

3.8. Analgesic activity

3.8.1. Hot plate test

Cyathula prostrata showed a significant ($P<0.001$) dose dependent effect with maximum inhibition (44.28%) at the highest dose of 200 mg/kg. Morphine showed a significant protective effect (62.26% inhibition, $P<0.001$) at a dose of 10 mg/kg (Table 4).

3.8.2. Acetic acid writhing reflex

The effect of *Cyathula prostrata* on the writhing response in mice is shown in Table 5. The plant extract significantly ($P<0.001$) inhibited the acetic acid induced writhing response in a dose dependent manner with a maximum inhibitory response (50.16%) at the dose of 200 mg/kg. The inhibition elicited by the extract at 200 mg/kg was however lower than that observed for acetylsalicylic acid at a dose of 10 mg/kg (62.58%).

3.9. Antioxidant activity

The DPPH radical scavenging and lipid peroxidation activities of the extract are shown in Fig. 2. These results suggest that *Cyathula prostrata* had no antioxidant activity in the DPPH assay and a low activity ($\leq 35\%$) in the lipid peroxidation assay.

3.10. Total phenolic and flavonoid content

The total phenolic and the flavonoid contents of *Cyathula prostrata* were 16.95 ± 3.32 mg GAE/g dry weight and 117.69 ± 4.56 mg RE/g dry weight respectively.

4. Discussion

Inflammatory reactions can be triggered off by exogenous or endogenous aggressions which are characterised by vascular and cellular events. These reactions in turn induce the production of ROS which is known to play an important role in the expression of cyclooxygenase (COX) which augments the production of inflammatory mediators such as leukotrienes and prostaglandins (Hakim, 1993; Pepicelli et al., 2002). Nitric oxide also plays an important role in acute and chronic inflammatory processes (Saha et al., 2004).

In our study of the in vitro anti-inflammatory activity of *Cyathula prostrata*, the inhibitory effect of the extract on nitric oxide production in U937 cells as well as the inhibition of the generation of ROS induced by PMA and COX-2 expression were investigated in order...
Table 2
Effect of Cyathula prostrata on arachidonic acid-induced ear oedema in mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Increase in ear oedema (mg)</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathula prostrata</td>
<td>50</td>
<td>27.00 ± 0.004</td>
<td>30.34</td>
</tr>
<tr>
<td>Cyathula prostrata</td>
<td>100</td>
<td>14.70 ± 0.005<sup>1</sup></td>
<td>62.44</td>
</tr>
<tr>
<td>Cyathula prostrata</td>
<td>200</td>
<td>34.00 ± 0.004</td>
<td>13.93</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>10</td>
<td>13.50 ± 0.090<sup>1</sup></td>
<td>65.38</td>
</tr>
<tr>
<td>Distilled water</td>
<td>10 (ml/kg)</td>
<td>39.00 ± 0.007</td>
<td>–</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM (n = 6).¹ P < 0.05 vs. control (one way ANOVA followed by Dunnett’s multiple comparison test).

Table 3
Effect of Cyathula prostrata on xylene-induced ear oedema in mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Increase in ear oedema (mg)</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathula prostrata</td>
<td>50</td>
<td>8.30 ± 0.002</td>
<td>16.67</td>
</tr>
<tr>
<td>Cyathula prostrata</td>
<td>100</td>
<td>8.20 ± 0.002<sup>1</sup></td>
<td>17.17</td>
</tr>
<tr>
<td>Cyathula prostrata</td>
<td>200</td>
<td>7.30 ± 0.002<sup>1</sup></td>
<td>26.26</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>1</td>
<td>5.00 ± 0.003</td>
<td>49.5</td>
</tr>
<tr>
<td>Distilled water</td>
<td>10 (ml/kg)</td>
<td>9.80 ± 0.003</td>
<td>–</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM (n = 6).¹ P < 0.05 vs. control (one way ANOVA followed by Dunnett’s multiple comparison test).

to determine the mechanism of action in vitro. Our results indicate that the Cyathula prostrata did not inhibit inflammation through any of these pathways.

The carrageenan, arachidonic acid and xylene-induced oedema tests were used to investigate the in vivo anti-inflammatory activity of Cyathula prostrata. Carrageenan paw oedema is a test used largely to study anti-inflammatory drugs as it involves several media-tors (Mazzanti and Braghiroli, 1994). The development of oedema induced by carrageenan is a three phase event; the early phase (the first 90 min) involves the release of histamine and serotonin; the second phase (90–150 min) is mediated by kinin and the third phase (after 180 min) is mediated by prostaglandin (Di Rosa et al., 1971). The results from this study suggest that the extract possibly acts by inhibiting the release and/or action of histamine, serotonin and kinin since the extract showed a significant inhibitory activity at the middle phase (150 min) of the oedema development. Forestieri et al. (1996) reported anti-inflammatory activity of the decoction and 95% ethanolic extract of Cyathula prostrata at 500 mg/kg after 3 h subplantar injection of carrageenan, however in this study, the highest anti-inflammatory activity was observed at 50 mg/kg at 150 min.

Arachidonic acid induced ear inflammation has been reported to be sensitive in detecting the anti-inflammatory activity of lipooxygenase and cyclooxygenase inhibitors (DiMartino et al., 1987; Khan et al., 2011). In this study, the extract showed a significant inhibitory effect (62.44%) on the ear oedema at 100 mg/kg and this suggests that the plant extract acts as a lipooxygenase inhibitor since no inhibition was observed in the expression of COX-2 in

Table 4
Effect of Cyathula prostrata on hot plate-induced pain in mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Pre-treatment reaction latency (s)</th>
<th>Post-treatment reaction latency (s)</th>
<th>Percentage inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathula prostrata</td>
<td>50</td>
<td>1.20 ± 0.06</td>
<td>4.35 ± 0.16<sup>1</sup></td>
<td>21.11</td>
</tr>
<tr>
<td>Cyathula prostrata</td>
<td>100</td>
<td>1.20 ± 0.06</td>
<td>6.38 ± 0.22<sup>2</sup></td>
<td>37.54</td>
</tr>
<tr>
<td>Cyathula prostrata</td>
<td>200</td>
<td>1.20 ± 0.06</td>
<td>7.21 ± 0.31<sup>1</sup></td>
<td>44.28</td>
</tr>
<tr>
<td>Morphine</td>
<td>10</td>
<td>2.52 ± 0.07</td>
<td>10.29 ± 0.18<sup>2</sup></td>
<td>62.26</td>
</tr>
<tr>
<td>Distilled water</td>
<td>10 (ml/kg)</td>
<td>1.73 ± 0.20</td>
<td>1.73 ± 0.2</td>
<td>–</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM (n = 6).¹ P < 0.001 vs. pre-treatment reaction latency (Student’s t test).
the in vitro assay. The xylene-induced ear oedema is used in the screening of anti-inflammatory activity (Wang et al., 2011) and in the evaluation of anti-inflammatory steroids (Zanini et al., 1992). The inhibition produced by 200 mg/kg of the extract (26.26%) was lower than that produced by 1 mg/kg dexamethasone (49.5%). The effect of the extract in this model suggests that Cyathula prostrata may not be effective in anti-inflammatory disorder but rather in acute inflammatory disorder. It also suggests that the extract may contain non-steroidal anti-inflammatory agents since this model has been reported to be less sensitive to non-steroidal anti-inflammatory agents (Zanini et al., 1992).

The analgesic activity of Cyathula prostrata in this study was investigated using the hot plate and mouse writhing tests. The hot plate test is useful for the evaluation of centrally acting analgesics which are known to elevate the pain threshold of mice towards heat (Hiruma-Lima et al., 2000). It also indicates narcotic involvement with opioid receptor (Turner, 1965). The low percentage inhibition (<50%) shown by the plant extract in this assay suggests that plant extract is not a centrally acting analgesic. The work of Forestieri et al. (1996) reported no activity for the ethanolic extract of Cyathula prostrata at 500 mg/kg. The writhing model is a sensitive method for screening peripheral analgesic efficacy agents and it is more sensitive to non-steroidal analgesics (Collier et al., 1963).

The analgesic effect of acetic acid is due to the liberation and increased level of several mediators such as histamine and serotonin which act by stimulation of peripheral nociceptive neurons (Cui et al., 2010). The results from this study suggest that the extract mediates its analgesic activity peripherally and this could be attributed to the histamine and serotonin mediators. In the work of Forestieri et al. (1996) 45% inhibition in this model at 500 mg/kg was reported, however, in this study, 50% inhibition was observed at 200 mg/kg. The observed differences between our work and the results reported by Forestieri et al. (1996) may however be due to the differences in the mode of extraction as there was no application of heat in the extraction of the plant in this study.

Phytochemicals are known to have a complex nature hence the antioxidant activities of plant extracts cannot be evaluated by a single method. In this study, the antioxidant activity of Cyathula prostrata was evaluated using the DPPH and lipid peroxidation assay methods. DPPH is a simple, rapid and reliable method commonly used in the assessment of radical scavenging activities of plant extracts in vitro (Munasinghe et al., 2001). The lipid peroxidation assay gives information on the scavenging of free radicals induced by oxidative stress which can initiate and propagate the lipid peroxidation cascade (Nuutila et al., 2003). Cyathula prostrata did not exhibit scavenging capacity against the DPPH radical. It also showed a very low activity (<30%) in the lipid peroxidation assay. These results indicate that Cyathula prostrata has no antioxidant potential.

The poor antioxidant activity of the plant extract may also explain the inability of the plant to act as a ROS inhibitor since ROS (generated from many redox processes) are known to be major free radicals in the human body and antioxidants have the ability to scavenge free radicals and thus prevent intracellular oxidative damage (Valko et al., 2007).

Flavonoids are known to exhibit a wide range of pharmacological properties such as antimicrobial, antioxidant, anti-inflammatory and analgesic effects (Pelzer et al., 1998; Clavin et al., 2007; Sanchez de Medina et al., 2009; Mosquera et al., 2011). They have been reported to inhibit the cyclooxygenase and 5-lipoxygenase pathways (Williams et al., 1995; Li et al., 2011). They have also been reported to have antiinflammatory activity in acetic acid and p-benzoquinone-induced writing tests (Piq et al., 1991; Toker et al., 2004). The flavonoids present in this plant may be responsible for anti-inflammatory and analgesic activities observed in Cyathula prostrata however the involvement of other secondary metabolites present in the plant cannot be ruled out.

5. Conclusions

The methanolic extract of Cyathula prostrata was found to possess anti-inflammatory activity mediated by the inhibition of the lipoxigenase pathway and by inhibiting the release and/or action of histamine, serotonin and kinin. The extract also showed peripheral analgesic activity but no antioxidant activity. The flavonoid content may also play a role in the observed anti-inflammatory and analgesic activities. The results obtained in this work justify the use of Cyathula prostrata in the treatment of inflammatory disorders in Nigeria.

Acknowledgement

This work has been supported by the African Laser Centre (LHEAB01 Task 10).10

References

