LAGOS EDUCATION REVIEW
A Journal of Studies in Education

Vol. 14, No.1, January, 2014. ISSN: 0331-9237

Editorial Board

Editor-in-Chief
Professor Mopeola Omoegun
Dean, Faculty of Education

Editor
Professor Sujoo Jegede

Managing Editor
Dr. Soji Oni

Members
Dr. P. Okunola
Dr. N. Ikonta
Dr. S.A. Oyebode
Dr. E.A. Hastrup
Dr. C. Oke
Dr. T.A. Bakare
Dr. S. Sule
Dr. Blessing Anyikwa

Advisory Board
Professor A. M. Ejigbo
Professor Duro Ajealemi
Professor K. A. Adegbeke
Professor O. O. Lawal
Professor M. A. Bidmos
Professor Ajike Osanyin
Professor A. M. Olusakin
Professor R. A. Alani
Professor G. C. Ilogu
Professor N. A. Osarenren
Professor G. O. Otiwara
Professor G. G. Oke
Professor O. Obsoro-John
Professor C. O. Oladapo
Professor H. N. Odogwu
Editorial

Embarking on a project of publishing a journal is a herculean task and painstaking endeavour. Despite the seeming obstacles we remained committed to the project of producing LER as at when due. And since the inception of Lagos Education Review, it has continued to be respected as a source, of well-researched and authoritative articles by a wide spectrum of experienced and leading educational practitioners.

This edition of Vol. 14, No.1 of January, 2014 comprises of well-articulated articles in different areas of education. The articles submitted, assessed and published had gone through the sharp and rigorous eyes and pencils of our body of reviewers and consulting editors. Let me use the opportunity to thank our numerous reviewers and consulting editors. We will still continue to count on your support.

We sincerely acknowledge and appreciate the contributions of scholars, whose articles appeared in this edition. We welcome constructive criticisms that could assist to improve on the subsequent editions.

Thank you all and God Bless

Professor Mope Olola Omoegum
Editor-in-Chief
TABLE OF CONTENTS

Impact of Compensation and Benefits on Employees’ Job Satisfaction
Ajayi, Kassim Oluwamini & Muraina, Kehinde O 1 – 9

Entrepreneurship in Higher Education in Nigeria:
An Imperative for Sustainable Development
Martha, Nkechinyere Amadi ... 11 – 24

Implications of Urbanization on the Use of Mother – Tongue For
Adult Basic Literacy Education in the 21st Century Nigeria
Anyikwa E. Blessing, Igwe Oji Igwe & Okudo, Afoma 25 – 34

Attitudes of Undergraduate Students towards Research in
University of Lagos
Perpetua Ememe ... 35 – 46

Attitude, Gender, Age and Verbal Ability as Predictors of Primary
School Pupils’ Achievement in Composition Writing
Adefunke T. Kolumo .. 47 – 57

Comparative Analysis of Public and Private Universities
Administration in Nigeria
Ohadara, Olabanji E .. 59 – 69

Effects of Classwide Peer Tutoring on Students’ Concept Attainment and
Achievement in Chemistry Practicals
Bamikole O. Ogunleye & Abiodun D. Bamidele 71 – 85

Analysis of Multiple Choice Items and the Effect of Items’ Sequencing on
Item Analysis in the Test of Mathematics
Adeneye O. A. Awofala, Ibraheem O. Ola-Adua,
Olabinpe A. Oguntuyi & Rotimi A. Ogundare 87 – 102

Early Child Care and Education: Serving Children Best
Interest through Best Practices
Christy Omotuyole & Manuel Mojisola Nkochi 103 – 115

Influence of Cultural Beliefs on Junior Secondary School Students’
Understanding of Basic Science Concepts
Ngozi Okafor & Uchenna Udeani 117 – 128
Teacher Continuing Professional Development and Job Performance in Education District IV of Lagos State.

Oshionebo, Esther, Onyene, Virgy & Oluola, Thomas

Assessment of the Impact of Open and Distance Learning (ODL) Education on the Realization of Global Goals of Education for all by Year 2015

Ogunwale, Samuel

Predictors of Computer Self-efficacy of Nigerian Preservice Mathematics Teachers with varied Goal Orientations

Awofala, Adeneye O. A. & Fatade Alfred O.

Effect of Collaborative and Guided-Inquiry Approach on Junior Secondary School Students Achievement in Basic Science

Bolaji, O. A. & Adefina, A.E.

Influence of Acquisition of Skills and Attitudes in Peace Education on Conflict Resolution in the Health Sector of Osun and Oyo States of Nigeria

Ajala, E.M.

Carrying Capacity and Quality of Education in Colleges of Education in South Western Nigeria

Adekunle & A. A. Oladejo

Influence of Population Growth on University of Lagos Teacher Education

Lawal, Wuraola L. & Adepoju, Adefola

Effects of Investigative Laboratory and Expository Methods on Acquisition of Science Process Skills by Chemistry Students in Senior Secondary Schools

Owoyemi, T. F. & Alabi Esther

Decentralization of Education and the Challenges of Better Service Delivery in Nigeria

Lawal, Wuraola, L

Childhood Experiences and Adolescent Delinquent behaviour among Remand Home Inmates in Lagos, Nigeria

Omoegun, O. M. & Ubankha, P.N. Emeri
Examining Nigerian Preservice Teachers' Perceptions of Early Childhood Education Programme in Lagos State
Oludola Sarah Sopekan & Yinka Ajibike Akeredolu .. 247 - 262

Effect of Problem Solving and Mastery Learning Strategies on Junior Secondary School Students' Attitudes toward Mathematics
O. M. Omogun & O. O. Akanni ... 263 - 277

Achieving an effective school in Nigeria: Targeting learning outcomes, rewarding learning achievement and reinforcing accountability in schools
Joel Babatunde Babalola .. 279 - 305
EFFECTS OF INVESTIGATIVE LABORATORY AND EXPOSITORY METHODS ON ACQUISITION OF SCIENCE PROCESS SKILLS BY CHEMISTRY STUDENTS IN SENIOR SECONDARY SCHOOLS

Owoyemi T. E.
Department of Science and Technology Education,
Faculty of Education, University of Lagos.
towoyemi@unilag.edu.ng

Alabi Esther
Department of Chemistry
Adeyemi College of Education, Ondo, Nigeria
alabietet@yahoo.com

Abstract
The study investigated the effects of the investigative laboratory approach and the expository method on science process skills acquisition by chemistry students. The design of the study was a pre-test post-test control group quasi-experimental design. The sample consisted of one hundred and twenty students from senior secondary schools in Ondo State, Nigeria. Two research hypotheses guided the study. Treatment consisted of teaching selected chemistry concepts to the experimental group using investigative laboratory approach while the other group was taught using the expository method. Test of science process skill acquisition (TOSPSA) and chemistry achievement test (CAT) were the instruments used for data collection. Mean and standard deviation and also T-test were used to test the hypotheses at 0.05 level of significance. Results revealed that students taught using the investigative laboratory approach performed significantly better than those taught using the expository method. Based on the findings of this study, the use of investigative laboratory approach to enhance science process skills acquisition in chemistry students was recommended.

Keywords: Investigative laboratory approach, Expository method, Acquisition of science process skills, chemistry.
Introduction

The enviable position which science education occupy in most countries of the world including Nigeria is perhaps justifiable. The reason is that science can exert a dominant if not decisive influence on the life of individual as well as on the development effort of a nation (Adesoji, 2008). The universal recognition of the above submission is responsible for the prime position that has been accorded science and in particular, chemistry world-wide. Within the context of science education, chemistry has been identified as a very important school subject and its importance in scientific and technological development of any nation has been widely reported (Nelson, 2000). It was as a result of the recognition given to chemistry in the development of the individual and the nation that has made it a core – subject among the natural sciences and other science related courses in the Nigeria education system (Hornby, 1995).

The importance of chemistry mentioned above justifies the effort of previous researchers in chemistry and chemistry education in making the study of chemistry comprehensive and interesting as possible. The inclusion of chemistry as a core – subject in science in the secondary school calls for the need to teach it effectively. This is because effective science teaching can lead to the attainment of scientific and technological greatness (Abdullahi, 1982). Within the last two decades great deals of researcher efforts in science education have been directed at strategies or techniques that will enhance the teaching and learning science in general and chemistry in particular. Several researcher reports (Olawale, 1986; Okoli, 1995; Nwagbo, 2001; Madu, 2004) converge to indicate that students' perform poorly in secondary school science subjects.

The performance of students in chemistry external examinations especially in the practical examination has been reported as a poor one where students exhibit very poor skill acquisition (West Africa Examination Council Report, 2008; 2011) on students' performance. A number of factors have been identified as contributing to non-acquisition of skills by secondary school students. One of such factors is the teacher variable that is, the teacher's method of teaching, several research reports (All, 1984; Okebukola, 1985; Okoli, 1985; Nwosu, 1993; Nwagbo, 1999) indicate that many science teachers prefer the traditional expository method of teaching and shy away from innovative activity-oriented teaching methods, (such as inquiry, discovery, cooperative learning, investigative laboratory approach and expository method on acquisition of science process skills by chemistry students was investigated.

The expository method is a teaching method in which the teacher presents a verbal discourse on a particular subject, theme or concept to the learners. It is an ideal way of communicating coherent sequence of ideals and it is used to elaborate, clarify and discuss factual information or views on issues and problems. The teachers deliver pre-planned lessons to the students with little or no instructional materials. Investigative laboratory approach is a method of teaching in which students are guided to find out the truth of ideas, facts or assumptions for ultimate confirmation or rejection. This method emphasizes knowledge and skills acquisition through hands-on minds-on scientific activities under the guidance of the science teachers. Students are provided opportunity to interact with materials within the environment through observing, classifying, measuring, questioning, hypothesizing, collecting and interpreting data, accurate reporting, predicting, and inferring (Müller, 2010). Investigative laboratory activities are not restricted to the laboratory alone but any environment outside the classroom that provides
practical work to give first hand experiences to
the learners could be regarded as an investigative
laboratory activity.

Science process skills are cognitive and
psychomotor skills which scientists employ in
problem identification, objective inquiry, data
gathering, transformation, interpretation and
communication. Havlen (1984) describes science
process skills as abilities which can be
developed by experience and which are used in
carrying out mental operations and physical
actions. Studies by Okebukola and Ogumi
(1984), Nwosa (1990) and Okoli (1998) assert
that when one acquires the science process skills
of observing, measuring, questioning, designing
experiment, interpreting data etc. such a person
become specially equipped with the tools
required for science inquiry or problem-solving
as well as ability to use these skills in the
laboratory for a variety of investigations.
Laboratory skills are therefore synonymous in
many ways with science process skills. Hence
instructional strategies that enhance the
acquisition of science process skills also enhance
the acquisition of laboratory skills. The present
study therefore focused on effects of laboratory
approach and expository method on acquisition
of science process skill by chemistry students.

Statement of the Problem
The persistence poor performance of students in
chemistry coupled with poor science process
skills acquisition exhibited by chemistry students
in practical examinations in chemistry at senior
school certificate examination leaves one in
doubt about the effectiveness of the teaching
method popularly used by chemistry teachers for
teaching the subject. The expository method of
teaching is very popular and is widely used by
chemistry teachers to convey large volumes of
scientific information to senior secondary school
students in a bid to prepare them for the rigorous
senior school certificate examination. Therefore
the present study sought to investigate effects of
laboratory approach and expository method on
acquisition of science process skills.

Research Hypotheses
To guide the study two hypotheses were
formulated and tested.
1: There is no significant difference in the pre-
test mean scores of students exposed to
investigative laboratory approach and those exposed to expository method of
teaching in chemistry.
2: There is no significant difference in the post-
test mean scores of students exposed to
investigative laboratory approach and those exposed to expository method of
teaching in chemistry.

Methodology
The design of the study was a pre-test post-test
control quasi-experimental design. Intact classes
were used as it was not possible to randomly
assign students to experimental and control
conditions. The study sample was one hundred
and twenty (120) senior secondary year one
(SS1) chemistry students randomly selected
from two senior secondary schools selected from
all the schools in Akure Local Government Area
of Ondo State, Nigeria. The two schools were
randomly assigned to experimental and control
conditions. The experimental school was taught
using, investigative laboratory approach while
control school was taught using expository
method of teaching. All the students in each of
science classes in the two schools were used for
the study. The experimental sample and control
sample were made up of forty students
respectively.

The level of acquisition of science process skills
was measured using Test of Science Process
Skill Acquisition (TOSPSA) developed by the researcher based on some chemistry topics from Senior Secondary School I chemistry curriculum. The instrument was designed to assess students' ability in the use of manipulative skills. The TOSPSA is 25-item on acquisition of process skills through practical exercise and each item required students to complete simple laboratory tasks keyed to one or more process skill objectives using simple laboratory instruments. Students were required to demonstrate behaviors such as making careful and accurate observations, classifying, measuring, drawing and labelling correctly, making tables, recording data interpreting observed data, experimenting, predicting on the basis of experimental, data and inferring based on the topics covered during the investigation. Marking guide with the necessary scoring keys for the process skills was also developed by the researchers.

The research instrument was validated by three experts in the field of chemistry and science education. The experts were requested to determine if the language used was clear and unambiguous and whether the items were keyed to the appropriate process skill objectives and within the capability of the students. The experts were in agreement with the scoring key, the match between the items and process skill objectives. Their comments and suggestions were considered in the final draft of the instrument and the revised version of TOSPSA had twenty-five (25) items. The reliability of TOSPSA was determined using Test-retest reliability method the reliability coefficient of 0.65 was obtained for the instrument. A sample of the test item and the process skill objective is presented below:

<table>
<thead>
<tr>
<th>Science Process Skills</th>
<th>Item Sample-TOSPSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimenting</td>
<td>Test Item</td>
</tr>
<tr>
<td>Ability to plan or follow a procedure, collect data, recognizing a problem, draws conclusions.</td>
<td>You are provided with the following items funnel, a bowl of sand and distilled water.</td>
</tr>
<tr>
<td>Observing</td>
<td>a. Carry out the following instructions carefully</td>
</tr>
<tr>
<td>Ability to look deliberately for known or unusual characteristics or features of things, and relationships among things observed.</td>
<td>i. Add distilled water to the sand in the bowl and stir.</td>
</tr>
<tr>
<td>Communicating</td>
<td>ii. Filter the mixture</td>
</tr>
<tr>
<td>Ability to ask questions, explains, write a report of an experiment, evaluate a scientific procedure, and understand instruction.</td>
<td>b. Write a short explanation about your observations.</td>
</tr>
<tr>
<td>Inferring</td>
<td>c. What inference can you make from your observation?</td>
</tr>
<tr>
<td>Ability to obtain logical judgment from a given premise or observed data.</td>
<td>The experimental group was handled by a research assistant after being trained on how to</td>
</tr>
</tbody>
</table>
conduct instruction using the investigative laboratory approach. The control group was taught by the regular chemistry teacher in the selected school using the conventional expository method which was popularly used by chemistry teachers. Each teacher in both groups was given the validated lesson note and copy of TOSPSA which was used for data collection. The pre-test was administered by the two teachers initially briefed on how to teach their groups using TOSPSA instrument without feedback to the students.

The teacher for the experimental group (i.e. investigative laboratory group) taught the students the theoretical concepts of nature of matter, separation techniques, acids, bases and salts, kinetic theory and gas laws. The teacher then allowed the students to perform the experiments relating to the topics taught by following the procedure given by the teacher while the teacher observed, monitored and guided them when necessary.

The teacher in charge of the control group used expository method to teach the topics as in case of experimental group but without performing any experiment or engaging the students in any experiment related to the topics taught. The teaching here involved delivery of pre-planned lesson to the students. The teacher presented factual information on chemistry concepts and in addition, gave a verbal explanation of the experiment procedures, and expected results.

The teaching lasted for four weeks, each teacher in the experimental and control groups administered the TOSPSA again as post-test after teaching the chemistry concepts following the stipulated guidelines. The data collected were subjected to descriptive and t-test analyses.

Results

The groups' pre-test observations were subjected to T-test and T-value obtained was less than table value at 2 and 118 degree of freedom and at 0.5 level of significance. This means that the result was not significant and that the two groups had the same pre-entry knowledge therefore the two groups' post-test observation were subjected to T-test to test the hypothesis of the study.

Hypothesis 1:

There is no significant difference in the pre-test mean scores of students exposed to investigative laboratory approach and those exposed to expository method of teaching in chemistry.

<table>
<thead>
<tr>
<th>Table 1: T-Test Analysis of Pre-Test Score of Students' Science Process Skill Acquisition in Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Investigative Lab.</td>
</tr>
<tr>
<td>Expository method</td>
</tr>
</tbody>
</table>

At 0.05 level of significance

From table 1, the groups pre-test scores show that the mean score (11.10) of the Experimental group is closer to that of control group (11.28). This shows that the result was not significance and this implies that students in the two groups have the same initial knowledge of the concepts under study. Table 1 shows that T-cal < T-table therefore, H01 is accepted meaning there is no
significant difference in the pre-test score of experimental and control groups.

Hypothesis 2:
There is no significant difference in the post-test mean scores of students exposed to investigative laboratory approach and those exposed to expository method of teaching in chemistry.

Table 2: T-Test Analysis of Post-Test Score of Students’ Science Process Skill Acquisition in Chemistry

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>SD</th>
<th>df</th>
<th>T-cal</th>
<th>T-table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigative</td>
<td>34.80</td>
<td>10.3</td>
<td>118</td>
<td>4.88</td>
<td>1.96</td>
</tr>
<tr>
<td>Expository</td>
<td>26.75</td>
<td>7.53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At 0.05 level of significance

Table 2 shows that T-cal > T-table therefore, H2 is rejected meaning there is a significant difference in the post-test score of experimental and control groups.

From table 2 it was revealed that the experimental group performed better than the control group. Thus, the hypothesized similarity of no significant difference between the experimental and control groups was rejected. The calculated T-value (4.88) at P<0.05 is considerably greater than the T-table (1.96). This indicates that students exposed to investigative laboratory approach (experimental group) perform significantly better and acquired high science process skills than students exposed to expository method.

The findings of this study as presented in table 1 indicated that the students pre-test mean score was not significant and the two groups had the same pre-entry knowledge. The table 2 indicated that the investigative laboratory approach produced high mean science process skills acquisition score in chemistry. This implies that the experimental (investigative laboratory approach) group was significantly better than the control (expository method) group. The success of the investigative laboratory approach group over expository method group may have been due to the fact that the former were provided with opportunity to employ the process skills of science such as observation, organization, classification, investigation, thinking and critical analysis and interpretation of their findings in order to draw logical conclusion and generalization. This could have enable them apply the knowledge acquired to a new but related situations. The result of this study was found to be consistent with Okoli (2006), who found out that the investigative laboratory approach was significantly better than expository method in improving the overall achievement of students and also, in facilitating application of principles and science concepts.

Conclusion
From the findings of this study, it can be posited that teaching students using the investigative laboratory approach enable students to acquire not only scientific knowledge but also science process skills. This implies that chemistry teachers should use the investigative laboratory approach that exposes students to hands-on minds-on scientific activities, rather than the expository method that encourages only role memorization of scientific knowledge. Such memorized knowledge has little transfer value to new situation outside the school context and
does not promote creativity and science process skill acquisition.

The findings of this study have projected an innovative teaching method (the investigative laboratory approach) to science teachers and students.

Based on the findings of this study, it is recommended that the Government should provide conducive learning environment by providing adequate chemistry classroom as well properly equipped chemistry laboratories to enhance the acquisitions of science process skills by chemistry students. Also, the Government is encouraged to utilize the services of various professional bodies such as Science Teachers Association of Nigeria (STAN), All Nigerian Conference of Principals of Secondary Schools (ANCOPSS); National Union of Teachers (NUT); and Facilities/Institutes of Education in the Universities to organise in-service training programmes, workshops, conferences and seminars for serving chemistry teachers to update their knowledge on the use of innovative teaching methods that can enhance acquisition of science process skill by chemistry students.

Science educators and curriculum planners are encouraged to incorporate innovative and pedagogical strategies (like the investigative laboratory approach) into their various teacher education programmes. Chemistry teachers should make them available in attending in-service training conferences and workshop to update their knowledge and skill in the use of innovative teaching methods. More importantly, chemistry teachers should be creative, resourceful, and enthusiastic in their chosen profession by adopting measures that ensure that their students acquire the right scientific knowledge, skills and attitudes while at the same time inculcating literate in these students.

Reference

