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6.10 and 7.01% silicon, respectively. XRF results revealed 
presence of 38% SiO2 in CP ash. XRD revealed presence of 
silica and silicates phases. TGA shows that their calcination 
temperature must be above 500 °C. Numerical optimization 
of CP calcination gave optimum condition of 700 °C for 
270 min to attain 82% weight loss. Calcination regression 
equation exhibited high coefficient of determination (R2) of 
0.8225. The three wastes contain silica and silicates from 
which silica could be extracted. Calcination temperature and 
time have been established to be significant in ash content 
enhancement.

Keywords  Proximate analysis · Calcination · Agricultural 
wastes · Cassava periderm · Maize stalk · Sugarcane 
bagasse

Introduction

Several researches have focused on agricultural wastes recy-
cling for extraction of useful products such as cellulose, 
lignin, carbon, silica, silicon, inhibitors, adsorbents and bio-
fuels [1–8]. Most of the research efforts principally focus 
on a product, neglecting by-products without considering 
the proportions of other constituents. Narnaware et al. [9] 
produced solid briquettes and gas from vegetable wastes. 
Shao et al. [10] and Moreira et al. [11] produced activated 
carbon, fuel-gas and oil from bio-wastes. These efforts are 
better waste management approaches [12, 13]. Proportion of 
constituent elements and components will give salient infor-
mation on how to best manage wastes from these sources. 
Chemical analysis of wastes gives approximate information 
on the elemental composition. Proximate analysis provides 
information on components such as moisture, volatile mat-
ter, fixed carbon and ash contents. Useful products from 

Abstract  Indiscriminate disposal and burning of agricul-
tural wastes constitute environmental pollution and increase 
in greenhouse gases emission. Renewable nature and avail-
ability of agricultural wastes has stimulated researchers to 
explore “wastes to wealth creation” policy. Three agricul-
tural wastes were investigated for potential use for silica 
production. Proximate analysis, thermogravimetric analysis 
(TGA), compositional analysis, calcination and statistical 
analysis were carried out to quantify the ash and establish 
presence of silica. Response surface methodology was used 
for statistical analysis of CP calcination. The proximate anal-
ysis showed that sugarcane bagasse, cassava periderm and 
maize stalk ash contents are 1.73, 4.93 and 4.80%, respec-
tively. The EDS results showed that their ashes contain 5.22, 
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the wastes target exploitation of these components except 
moisture content. Ash contains compounds which enables 
them to be exploited for extraction of silica [3, 14, 15], 
pozzolanic material in concrete [16] or reinforcement in 
composites [14, 17–19]. Generally, more detail information 
from ultimate analysis are required for fossil fuel applica-
tions [20–22].

Procedures required for agricultural wastes recycling 
usually involve either pyrolysis or calcination as effective 
thermal treatments. Solid residue as ash or char is obtained 
after calcination or pyrolysis, respectively but the later 
could be obtained from the former [10]. Data obtained from 
thermogravimetric analysis (TGA) indicates temperatures 
under which the thermal treatment could be carried out [23, 
24]. Optimum pyrolysis/calcination temperature is essen-
tial for economic, technical feasibility and viability of using 
the waste in commercial production [25]. Some previous 
works chose convenient varied temperatures without prior 
knowledge of thermal behaviour of agricultural wastes 
been calcined [26, 27]. Temperature of pyrolysis has been 
shown to vary for most agricultural wastes investigated by 
Cheng et al. [22] and El-Sayed, Mostafa [28]. The duration 
of this thermal treatment cannot be obtained from TG/DTG 
curves. Time is an important factor to consider in material 
processing.

The main aim of this study is to investigate the physico-
chemical characteristics of cassava periderm (CP), maize 
stalk (MS) and sugarcane bagasse (SB) focusing on their 
ash contents. The selected agricultural waste residues are 
substantial in many developing countries like Nigeria [29]. 
The ash is intended for extraction of silica. Silica has been 
utilized for several applications across many industries such 
as pharmaceuticals, archeology, biomedical, electronics and 
feedstock of silicon (birth of semiconductor revolution). It 
has been used as intensive blue light emitter, fining agent in 
food industry, powder flow agent in pharmaceutical industry, 
extra-terrestrial particles collectors, DNA and RNA extrac-
tors, hard abrasives in toothpaste, desiccant, capacitors and 
silicon production [8, 30–37].

Materials and Methods

Materials

Cassava periderm, maize stalk and sugarcane bagasse used 
in this study were obtained from cassava (Manihot escu-
lenta), maize (Zea mays) and sugarcane (Saccharum offici-
narum), respectively. All the wastes were sourced locally in 
Nigeria: cassava from Betterlife market, Isale-Osun, Osogbo, 
Osun State, South-West; MS from University of Ilorin farm 
settlement, Ilorin, Kwara State, North Central; and sugar-
cane from Oluode Arain, Osogbo, Osun State. Analytical 
electronic balance (HX302T, accuracy is ± 0.01 g) was used 
for all weight measurement.

Methods

Preparation of Agricultural Wastes

The maize stalks were left to dry in-situ on the farm. Leaves, 
roots and tassels were removed and then washed with water 
to remove contaminants (especially soil). The stalks were 
sliced and chopped into smaller sizes of 3–5 cm. The roots 
and leaves of sugarcanes were removed before thorough 
washing to remove contaminants. Bagasse was obtained 
after manual juice extraction. The brown back of cassava 
(periderm) was manually removed, washed several times 
until fine sands were not obvious from the rinsing water. 
The three wastes were sun dried for maximum of 14 days. 
Each of the samples was dried inside a 65 cm stainless tray 
and thereafter stored in separate air-tight polyethylene bags.

Proximate Analysis of Wastes

The stored AWs were pulverized using laboratory blade 
mill according to ASTM standard as in Table 1. The sieves 
used are ASTME 11 Nos 12 (1.70 mm), 18 (1.00 mm), 50 
(0.30 mm) and 170 (0.09 mm). Fractions from 18 to 50 mesh 
sizes were used. Aluminium pans and porcelain crucibles 
were initially labelled and tared according to ASTM stand-
ards [38, 39]. These were kept in a desiccator until use. The 
tared masses of the containers were used for weight loss 
calculations.

Table 1   Standard test methods used for proximate analysis

Components ASTM standards used

Moisture content E 1756 (2008): Standard test method for determination of total solids in biomass [39]
Ash content E 1755 (2001): Standard test method for ash in biomass [38]
Volatile matter content E 872 (1998): Standard test method for volatile matter in the analysis of particulate 

wood fuels [40]
Fixed carbon content E 1755 (2001) and E 872 (1998) [38, 40]
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The components of different AWs were determined using 
ASTM standards methods as enumerated in Table 1. Six 
samples were used and their results averaged for moisture 
content determination. Minimum of three samples were used 
and their results averaged, for ash and volatile matter con-
tents. All calculations were based on Sun dried measure-
ments and formula used were obtained from the standards 
utilized [38–40].

Thermogravimetric Analysis and Calcination Temperature

Thermogravimetric analysis (TGA) was performed to inves-
tigate the thermal behaviour of the selected agricultural 
wastes from room temperature to 825 °C. This information 
usually indicates the pyrolysis/calcination temperatures but 
not the duration of the process. Thermal treatment is usu-
ally performed using electric furnaces, at high temperatures. 
For economic reasons, current (I) and time (t) are directly 
proportional to quantity of heat (Q) generated. As shown in 
Eq. 1, resistance (R) is a material property, I and t are very 
crucial in cost estimation. 

Due to high thermal stability of CP among the selected 
wastes, its samples were investigated for optimum calcina-
tion temperature and time. Porcelain crucibles were tarred at 
450 °C, their masses were measured and recorded as m1. 1 g 
each of 15 CP samples were measured into tarred porcelain 
crucibles. They were placed in a muffle furnace preheated 
to 450 °C at 10 °C/min heating rate. Three samples were 
removed after an hour interval for a maximum of 5 h. The 
samples were removed and kept in the desiccator to cool to 
room temperature before weighing. The final masses were 
measured and recorded as m2. This was repeated for 500, 
600, 700 and 800 °C.

Design Expert (Version 10) was used for analysis of vari-
ance (ANOVA). This was carried out using historical data 
design of Response Surface Methodology (RSM) with 25 
data points. Calcination temperature and time are the numer-
ical factors used to study their synergetic effects on weight 
loss as the only response. The data used are as obtained from 
calcination of CP from 450 to 800 °C and 60 to 300 min for 
temperature and time, respectively. Data point at 450 °C for 
60 min was neutralized for regression model improvement.

Characterisation

Agricultural wastes, their proximate analysed (ash and car-
bonized) samples, and calcined samples were characterized. 
Schottky Field Emission Scanning Electron Microscopy 
(SEM JSM 7600F) and Energy Dispersive X-Ray spectros-
copy (EDS) were carried out for morphology and chemical 
compositions. SEM images were obtained at a voltage of 

(1)Q = I2Rt

20.0 kV and rendered at ×1000 magnification. EDS scan was 
obtained at low magnifications. X-Ray Diffraction (XRD; 
Bruker D8 with generator operated at 40 kV and 30 mA) 
analysis was conducted to determine phases and crystallin-
ity of the wastes. XRD diffractograms were measured over 
a range of 2θ from 10° to 90° at step size of 4 degrees per 
minute. X-Ray Fluorescence (XRF) analysis was carried out 
using Rigaku ZSX-Primus II. TGA analysis was carried out 
using Thermal Analyzer (TA Instruments Q600 SDT) with 
nitrogen gas for purging. Initial mass of 11.5 mg was loaded 
and heated from room temperature to 825 °C at 10 °C/min.

Results and Discussion

Proximate Analysis

Figure 1 shows that moisture content of MS with 6.30% is 
the least while 8.37% for SB is the highest. Volatile matter 
and fixed carbon contents range between 58.50–71.30% and 
18.60–29.40%, respectively. Ash contents for all the three 
wastes have lowest proportions while similar observations 
have been reported [1, 10, 23]. The trend also conformed to 
the report of McKendry [41] that the proportions of con-
stituents reduces from volatile matter, fixed carbon to ash 
content. CP has the highest fixed carbon and ash contents 
thus gave the highest char value. The percentage of volatile 
matter (71.30%) in SB is the highest which is 5% above that 
of MS. Due to quite low ash content in SB, it is desirable to 
explore this agro-waste for carbon and volatile matter utili-
zation. All the investigated wastes could be used for produc-
tion of activated carbon and bio-fuels [10, 25, 42]. Although 
ash content is considered undesirable for biomass conversion 
to bio-fuels, it has been found to be useful as pozzolanic 
materials and extraction of silica [3, 16, 29, 43].

TGA and Calcination

The chars left after thermogravimetric analysis (Fig. 2) 
correspond to the proportions observed during proximate 
analysis with values of 34.33, 27.33 and 20.33% for CP, MS 
and SB, respectively. Thermal characteristics of the three 
biomass differ particularly during volatilization stage where 
hemicellulose, cellulose and lignin decomposition occurred 
[28, 44]. Their weight loss (TG) curves showed three main 
stages of dehydration, volatilization and carbonization with 
inflection points occurring before 200, 400 and 500 °C 
respectively for CP [23]. The first stage of moisture drying 
occurred up to 200 °C owing to water of crystallization in 
the structures of biomass but with evolution of light volatiles 
around 150 °C for SB as can be observed from its derivative 
of weight loss (DTG) curve [45].
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The DTG curves show kinetics of pyrolysis of the bio-
mass and reveal that dehydration started at initial tempera-
tures but was pronounced from 60 to 120 °C. Volatilization 
stage involves decomposition of hemicellulose which occurs 
between 180 and 340 °C, cellulosic breakdown between 
250 and 450 °C, and lignin decomposition between 200 and 

800 °C [46, 47]. The rapid weight loss (as obvious from the 
TG curves) can be attributed to hemicellulose and cellulose 
decomposition [48]. MS has simplest decomposition profile 
with a single peak spanning from 200 to 360 °C while that 
of CP is also similar with moderate profile but up to 380 °C. 
SB has a distinctive decomposition profile for hemicellulose 

Fig. 1   Comparison of proxi-
mate analysis components of 
sugarcane bagasse, cassava 
periderm and maize stalk

Fig. 2   TGA and DTG curves 
for sugarcane bagasse, cassava 
periderm and maize stalk from 
room temperature to 825 °C
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between 200 and 260 °C while cellulosic compounds break-
down occurred between 270 and 300 °C [49]. Due to lignin 
decomposition temperature range, fractions may be lost 
concurrently with cellulosic breakdown. The high inflection 
points at this volatilization stage could also be attributed to 
the exothermic features of decomposing phases. The volatile 
matters could be collected as liquid or gaseous biofuels [10, 
11, 43]. Carbonization of the remaining chars at this stage 
could be attributed to the decomposition of lignin (mainly 
carbon compounds) which started before 400 °C in two main 
stages. For instance in CP, rapid decomposition occurred up 
to 500 °C and then at a slow rate above 500 up to 800 °C.

The decomposition profiles at final stage can easily be 
associated with the fixed carbon contents from the proxi-
mate analysis as in Fig. 1 [24]. Similarities also exist when 
the heights of volatilization stage (from TG curves) and the 
volatile matter columns in proximate analysis were com-
pared. The weight losses within this range (200–400 °C) are 
63.59, 59.85 and 43.08% for SB, MS and CP, respectively. 
This variation could be associated with carbonization stage 
loss which is more pronounced for CP.

The final mass of each samples were estimated using 
Mass, m = m2 − m1. Average mass was calculated and plot-
ted against time. In Fig. 3, mass loss characteristics of CP 
at different temperatures was investigated to determine opti-
mum duration for calcination. Calcination at temperatures 
below the main volatilization stage from TG-DTG curves 
(Fig. 2) results in low mass loss, even for 5 h. Calcination 
carried out at 200 °C above the end point of volatilization 
stage gave the same mass loss obtained at 800 °C after 3 h. 

For economic reasons, duration is vital to cost of calcination 
since the amount of energy utilized is directly proportional 
to time (Eq. 1). Time required for two main stages of calci-
nation will determine the final cost. The first stage requires a 
constant heating rate which correspond to dehydration stage 
in Fig. 2. The second stage is characterized with intermittent 
current usage that could be attributed to volatilization stage. 
Since calcination takes place in the presence of air/O2, heat 
is generated by the combustion of volatile matter from the 
biomass. The furnace temperature is observed to be above 
the set temperature during which no current is utilized [50]. 
Inappropriate calcination temperature (e.g. below 700 °C for 
CP) requires more time to attain same mass loss.

Table 2 shows the analysis of variance for the effect of 
calcination temperature and time on weight loss during 

Fig. 3   Mass loss of cassava 
periderm during calcination at 
different temperatures
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Table 2   ANOVA for Response surface methodology (RSM) for cal-
cination temperature (T) and time (t)

a Adjusted R-Squared = 0.7732, Predicted R-Squared = 0.7090

Source Sum of squares Mean square F value Prob > F

Modela 0.12 0.024 16.68 < 0.0001
 T 0.090 0.090 63.49 < 0.0001
 t 0.015 0.015 10.44 0.0046
 T2 0.025 0.025 17.60 0.0005
 t2 9.130E−4 9.130E−4 0.64 0.4333
 Tt 1.583E−3 1.583E−3 1.11 0.3052

Residual 0.026 1.421E−3
Cor total 0.14
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thermal treatment of CP within the range of our investiga-
tion. Regression model equation in terms of temperature (T) 
and time (t) is given in Eq. 2. The model’s F-value of 16.68 
and Prob > F of < 0.0001 imply that the model is highly sig-
nificant. Values of “Prob > F” less than 0.05 indicate model 
terms are significant. Hence, calcination temperature, time 
and second degree of calcination temperature are significant 
terms. Calcination temperature is the most significant factor 
for calcination. The relevance of temperature during calcina-
tion is also supported by highest F-value of 63.49 and high-
est actual factor coefficient. Two factors interaction between 
temperature and time is insignificant since the Prob > F value 
is greater than 0.1. Consequently, temperature and time have 
positive effect on weight loss while second degrees and 
interactions of both factors have negative effects. Ash con-
tents has been reported to increase with temperature which 
is in tandem with this study [25].

The quadratic model obtained from the data exhibited 
high coefficient of determination (R2) of 0.8225. The pre-
dicted R-Squared of 0.7090 is in reasonable agreement with 
the Adjusted R-Squared of 0.7732. Adequate precision value 
of 12.397 indicates adequate signal for both temperature 
and time within the design space. The interactive effects of 
calcination temperature and time on weight loss are shown 
in Fig. 4. Figure 4a shows effects of calcination tempera-
ture and time on weight loss. At low calcination tempera-
ture 500 °C for CP (Fig. 2), optimum weight loss cannot be 
attained. The maximum weight loss attainable for duration 
of 300 min at this temperature is 71%. Weight loss of 72% 
was attained at 600 °C within the first 60 min. 82% weight 
loss at 700 °C after 232 min is predicted by the model. 

Figure 4b presents interaction boundaries for all the design 
space. The optimum temperature could be projected around 
700 °C. The difference between the upper and lower lim-
its at any instance of temperature decreases as temperature 
increases. This minimizes error values for the design space. 
It is obvious that temperature above 717 °C has no more 
positive effects on weight loss of CP. Using numerical opti-
mization constraints, calcination at 700 °C for 270 min is the 
optimum condition for 82% weight loss. This implies that 
selection of optimum conditions for calcination improves 
ash yield in ensuring effective volatile matter removal. 

Microscopy and Chemical Analysis

Scanning electron microscopy was performed on the bio-
mass in order to study their morphology as they are heated to 
get varied ashes during calcination at 575 °C and char during 
volatilization at 950 °C. The micrographs obtained at ×1000 
are shown in Fig. 5. The pores observed in the raw samples 
of SB (a1) are attributed to the juice removed from the pulp 
while that of MS (a3) represents the skeletal structure of the 
stalk. The morphology of raw CP (b1) is unchanged even 
during volatilization (b3) because of its bulky flake nature. 
CP structure was completely crumbled during calcination 
(b2) due to volatile matter and fixed carbon removal [51]. 
This structural deformation was also observed for SB (a2) 
and MS (c2). During volatilization of SB and MS, their struc-
tural frameworks were retained because decarbonization did 

(2)
Weight Loss, mg = −739 + 3.951T + 1.185t − 2.651

× 10−3T2
− 1.051 × 10−3t2 − 8.062 × 10−4Tt

Fig. 4   Graphical effects of temperature and time on weight loss during calcination by a 3D surface model plot, and b interaction model plot
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not occur according to the procedure [40]. Lignin, which 
forms the main structural supporting tissue of plants, was 
decomposed but its high carbon percent left was strong 
enough to support the structure for both biomasses [52–55]. 
Through pores were formed by both SB (a3) and MS (c3) 
thus increasing the rate of their decompositions during vola-
tilization stage (Fig. 2). This justifies the observed sharp 
and short range peaks at this stage. The microspheres found 
around the pores are the chars of the volatilized cellulose, 
hemicellulose and lignin residues [44].

To establish how much siliceous products could be 
obtained from the wastes, Energy Dispersive X-ray spec-
troscopy (EDS) was carried out. The compositions of each 
biomass at different stages are shown in Table 3. Silicon is 
more abundant in MS than in CP with least amount observed 
in SB. Extraction of silica from ashes obtained after calcina-
tion has been established from previous researches [3, 14]. 
The presence of metals (e.g. Al) that could form amphoteric 
oxides should be taken into consideration as this may affect 
the final purity of the silica. The residues obtained at 575 °C 
have higher silicon contents because both volatilization and 
combustibles are removed. The products of this procedure 

could be associated with calcination products. The calcina-
tion temperature is also above the volatilization temperatures 
from thermogravimetric analysis (Fig. 2).

Figures 6 and 7 show the progress of calcination pro-
cess for CP where oxides of metals were increasing. The 
percentage of carbon decreased as temperature and time 
increased because of oxidative environment in the furnace 
chamber. Combustion of volatile matters and carbon takes 
place in air. The heat generated at this stage is responsible 
for increased furnace temperature and intermittent no usage 
of electricity during the procedure. Carbon, which was above 
80% (Fig. 6a), dropped to proportions below 40 (Fig. 6b), 
16 (Fig. 6c), 11 (Fig. 6d) and 10% (Fig. 7) at 500, 600, 700 
and 800 °C, respectively. The different gradients observed 
for each species could be attributed to temperature and time 
effects on volatile matters. This also corresponds with the 
observed features in Fig. 2 as regards stages of volatile mat-
ter decomposition. There is no much difference between the 
proportions of various chemical species at 700 and 800 °C. 
This shows that calcination of CP at 700 °C for a duration of 
300 min is adequate. This condition corresponds with opti-
mum condition from numerical optimization of the quadratic 

Fig. 5   SEM micrographs for 
sugarcane bagasse, cassava 
periderm and maize stalk. [a 
sugarcane bagasse, b cassava 
periderm, c maize stalk, 1 raw, 
2 calcined at 575 °C, and 3 
volatilized at 950 °C]
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Table 3   Chemical composition 
of sugarcane bagasse, cassava 
periderm and maize stalk

<< Below detection level

Composition (at.%)

Element Sugarcane bagasse Cassava periderm Maize stalk

Raw 575 °C Volatilized Raw 575 °C Volatilized Raw 575 °C Volatilized

C 62.70 << 91.01 55.74 14.17 70.77 63.23 18.25 82.68
O 30.66 64.22 8.26 35.01 58.44 23.26 33.96 53.39 11.73
Na 0.13 2.13 << << << 0.12 << << <<
Mg 2.33 2.50 << << 2.22 0.19 << 1.74 <<
Si 0.15 5.22 << 3.68 6.10 2.58 2.46 7.01 1.44
Al 0.22 << << 2.66 3.64 1.81 << << <<
K 0.89 18.45 0.73 << 5.11 0.35 0.35 14.90 3.78
Ca 2.09 << << 1.86 8.86 0.41 << << <<
Fe << << << 1.04 1.45 0.39 << << <<
P 0.65 2.66 << << << 0.04 << << <<
S << 2.25 << << << << << 2.76 <<
Cl 0.19 << << << << << << 1.96 0.36
Ti << << << << << 0.08 << << <<
Mo << 2.57 << << << << << << <<

Fig. 6   Chemical composition of cassava periderm calcined at different temperatures a 450 °C, b 500 °C, c 600 °C and d 700 °C
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model in Eq. 2. Progressive increase in the percentage of 
oxygen validates formation of the oxides whose values cor-
respond with the XRF results in Fig. 8 at 800 °C. Figure 7 
shows the quantitative elemental composition (EDS) of solid 
residue after calcination of CP at 800 °C. The proportion 
in descending magnitude is Si, Ca, Al, K, Fe, Mg and Na. 
This order is verified by the XRF result in Fig. 8 except 
for detection of more oxides due to higher efficiency of the 
instruments used.

Phase Identification

Figures 9, 10 and 11 show the XRD spectra of SB, CP and 
MS of sun-dried (raw) and proximate analysis products. The 
samples contain silica and silicate phases depending on the 
treatments. Figure 9 indicates that free silica is only formed 
during calcination of SB at relatively high temperature. 
The free silica recombined at volatilization temperature of 
950 °C to form complex silicates (magnesium aluminium 

Fig. 7   Chemical composition 
of cassava periderm calcined at 
800 °C

Fig. 8   Chemical composition 
of cassava periderm using XRF
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silicate and sodium tetramethyl ammonium silicate hydrate). 
Silicon is present in the raw SB as chantalite (calcium alu-
minium silicate hydroxide) which is an inorganic mineral 
with a tetragonal structure. It is also detected as magne-
siocarpholite (magnesium iron aluminium silicate hydrox-
ide) with similar mineral source but orthorhombic structure 
[56]. From Figs. 10 and 11, free silica is present in their raw 
samples with some silicates and complex hydroxides. Some 

of the free silica transformed to complex silicates during 
calcination and volatilization as can be observed both in CP 
and MS. The free silica can be enhanced and/or extracted 
by calcination and acid leaching or via hydrometallurgical 
process, sol–gel [14, 26].

Extraction of silica from siliceous compounds like agri-
cultural waste residues is important. Availability of abundant 
agricultural wastes for silica extraction has been reported 

Fig. 9   XRD of sugarcane 
bagasse of proximate analysis 
products for as sun dried, cal-
cined at 575 °C and volatilized 
at 950 °C

Fig. 10   XRD of cassava 
periderm of proximate analysis 
products for as sun dried, cal-
cined at 575 °C and volatilized 
at 950 °C
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[29]. They have properties similar to most siliceous miner-
als and gemstones but usually reactive in alkaline medium 
at low temperatures [15]. The use of chemical extractive 
process like sol–gel dissolves unwanted silicates. This could 
impair the purity of the final silica product [57]. This reac-
tivity features of the ash is also employed leaching unwanted 
soluble phases [58].

Conclusions

•	 All the agricultural wastes investigated have silica pre-
sent in their ashes but the amount of free silica differ. 
Ash, volatile matter and carbon contents for SB, CP and 
MS are 1.73, 4.93 and 4.80%; 71.30, 58.50 and 66.37%; 
and 18.60, 29.40 and 22.53%, respectively.

•	 All the selected agricultural wastes have different thermal 
decomposition profiles. Thermogravimetric analysis gave 
a calcination temperature of above 500 °C for SB, CP and 
MS.

•	 EDS results showed that samples calcined at 575 °C 
contain highest silicon contents of 5.22, 6.10 and 7.01% 
for SB, CP and MS, respectively. Acid leaching the ash 
could be effective for removal of unwanted oxides. Pres-
ence of amphoteric oxide like aluminium oxide should 
be avoided as may impair final silica purity.

•	 XRF result shows that CP ash contains more than 38% 
SiO2 with oxides of Ca, Al, K, Fe, Mg, Ti, S, P, Na and 
Mn. It also contains traces of Cl, BaO, ZrO2, SrO, ZnO, 
Rb2O, CuO, NiO and Nb2O5.

•	 Calcination of CP at 700 °C for 240 min in a muffle 
furnace gave 81% weight loss. Numerical optimization 
using RSM gave an optimum calcination condition of 
700 °C for 270 min for 82% weight loss.

•	 XRD spectra confirm the presence of silica and siliceous 
compounds in the selected agricultural wastes promi-
nently after calcination of their raw samples.
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