INTERNATIONAL POLICY BRIEF SERIES
EDUCATION AND SCIENCE JOURNAL OF POLICY REVIEW AND CURRICULUM
DEVELOPMENT

ISSN Print: 2315-8425 ISSN Online: 2354-1660 Vol. 6. No. 1 November, 2016

Publishing Contact
International Scientific Research Consortium
United Kingdom

Frequency: Biannually

Disclaimer: The views and ideas expressed in articles/reviews are those of the author(s) and not necessarily of the editorial Board. Articles are published in good faith and the author(s) will be liable for any copyright infringements.

Editorial Objectives
Education and Science Journal of Policy Review and Curriculum Development (ESJPRCD) publish research articles relating to education and sciences. It publishes original research findings, experiments, action research, case studies, peer review articles in the fields of education and sciences. The objective is to create forum for researchers in education and sciences to publish their research findings.

Editorial Contact
International Scientific Research Consortium
c/o Abdulazeez D. El-Ladan
The Future Institute
10 Coventry Innovation Village
Coventry University
Technology Park, CV1 2TL, United Kingdom

Indexing/Abstracting/Library
The journal is processed for inclusion in,
- Google Scholar
- PIAS International Fact Sheets/Achieves
- Ulrich's Periodicals Directory (ProQuest)
- International Bibliography of the Social Sciences (IBSS)
- National Library of Nigeria cataloguing in publication data
- Brilliant International Research Library.

Index, author's guidelines, ethics in publishing and ethical guidelines for journal publication see:
http://www.internationalpolicybrief.org/journals
http://www.internationalpolicybrief.org/about-us/peer-review
http://www.elsevier.com/publishingethics
http://www.elsevier.com/journal-authors/ethics
INTERNATIONAL POLICY BRIEF SERIES
EDUCATION AND SCIENCE JOURNAL OF POLICY REVIEW AND CURRICULUM DEVELOPMENT

ISSN Print: 2315-8425 ISSN Online: 2354-1660 Vol. 6. No. 1 November, 2016

Editorial and Advisory Board
Professor Adebayo, Elizabeth
MAUTECH, Nigeria

Associate Prof. Anna Ujwary-Gil
National-Louis University, Poland

Clement Ayarebilla Ali
University of Education, Winneba, Ghana

Dr. Yarub A/-Douri
Institute of Nano Electronic Engineering
University of Malaysia, Perlis

Dr. M.A. Dorgham
International Centre for Technology and Management, UK

Dr. S. K. Nagarajan
Annamalai University, Tamil Nadu

Dr. Manoj Shukka
Department of Electronic Engineering
Harcourt Butler Technological Institute

Engr. Ramatu Abarshi
Department of Electrical Engineering
Kaduna Polytechnic, Nigeria

International Copyright law: All right reserved under the International Copyright Law. This volume is published by the International Scientific Research Consortium UK, in research league with International Institute for Policy Review & Development Strategies. This journal- its cover page design and content may not be used or produced in any manner without written permission from the International Institute for Policy Review and Development Strategies.
Contents

<table>
<thead>
<tr>
<th>Paper Title / Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Influence of Power Irregularities on Academic Activities in Nigerian Universities: the Pre-Service Teachers Opinion</td>
<td>1</td>
</tr>
<tr>
<td>'Babajide Veronica, 'Egenti, Maureen N, & 'Komolafe Adefunke Titilayo</td>
<td></td>
</tr>
<tr>
<td>2. Insecurity of the School Environment Detriment to Inclusive Education Physically Impaired Children in Regular Primary School in Potiskum-Yobe State</td>
<td>11</td>
</tr>
<tr>
<td>Hassan Auta Miringa</td>
<td></td>
</tr>
<tr>
<td>3. Qualitative Education as a Strategy for Sustainable Development</td>
<td>16</td>
</tr>
<tr>
<td>'Larai, Keswet, 'Christine, Agbowuro & 'Naomi Adamu Gisilanbe</td>
<td></td>
</tr>
<tr>
<td>'Alfred-Jaja Stella Wellington Igonibo & 'Cletus Ogeibiri</td>
<td></td>
</tr>
<tr>
<td>5. Business Management Strategies, Capital Formation and Sustainable African Development in the 21st Century and Beyond</td>
<td>32</td>
</tr>
<tr>
<td>6. Innovation as a Critical Success Factor: a Case Study about the Partnership among Polytechnics with Industry in Nigeria</td>
<td>44</td>
</tr>
<tr>
<td>'Hammajam, A. A, 'Mairo, A.W & 'Usman I</td>
<td></td>
</tr>
<tr>
<td>7. Investigation into the Suitability of used Water Sachet (Polyethylene) as a Binder in the Production of Building Blocks</td>
<td>51</td>
</tr>
<tr>
<td>'Dunu Williams, 'Albert Idowu, 'Adaji Ahmadu Adejoh & 'Ibiyemi Bankayode Sunday</td>
<td></td>
</tr>
<tr>
<td>'S. I. Iwenofu, 'C. C. Nwobi-Okoye & 'I. U. Onyenaru</td>
<td></td>
</tr>
<tr>
<td>9. Diagonally Implicit Super Class of Block Backward Differentiation Formula with Off-Step Points for Solving Stiff Initial Value Problems</td>
<td>74</td>
</tr>
<tr>
<td>'Babangida, B. & 'Musa, H.</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Paper Title / Author

10 IT Infrastructural Change: Effect on Organizational Performance: Case Study of Kaduna Refinery and Petrochemical Company
Hilary Joseph Watsilla

11 Yield Characteristics of Nerica – 3 (O.Sativa × O.Glaberrima) as affected by Cowdung and Nitrogen Rates in Mubi, Adamawa State, Nigeria
'D. A. Aremu, 'A. A. Sajo & 'B. B. Jakusko

12 Analysis of Farmers' Access to Agricultural Credit from Bank of Agriculture (BOA) Yola, Adamawa State, Nigeria

13 Analysis of the Impact of Terrestrial and Tectonic Uplifts Soils on Flora Species Survival and Production in Niger State, Nigeria
Adamu Baba Abdullahi

14 Selection and Retention of Professional Technology Teachers in North-East Federal Polytechnics, Nigeria
'Shittu Adamu Ngalbursti, 'Yohanna Yakubu, 'Hyalaba Godwin Zira, 'Mara Wazumtu & 'Ibrahim Zahraddeen Wala

15 Towards Improving the Accuracy of Positioning Data Obtained using Handheld Global Positioning System (GPS)
'Ahmed Babayo, 'Mohammed Jawaluddeen Sani, & 'Shuaibu Umar

16 Unconventional Hydrocarbon Potential of the Nigerian Inland Basins: a Clue from the Duvernay Shale Gas Resource Estimation in Western Canadian Sedimentary Basin
'Yohanna, O. M., 'Olorunyomi, A.E. & 'Yenne, E.Y

17 Information Technology and Community Engagement for Sustainable Development: the Role of Librarians
'Auwalu Dansale Yahaya & 'Muhammad Kabiru Usman

18 Analysis of Projects Life Cycle on Investments in Nigeria
'Sunday C. Nwite & 'Ugwuanyi Lilian

88
98
109
120
131
143
156
166
179
Contents

Paper Title / Author

19 Counseling Women and Leadership in Higher Education its Unique Role and Challenges in Promoting Women's' Empowerment and Development in South-South Nigeria
Pauline Ekpang, 'Arop Lucy Obol & 'Abuo, C. Bisong

20 Supervisor Personal Variables as Determinants Postgraduates Science Education Students Attitude towards Research Skills in Tertiary Institutions in South-South Nigeria
'Eyong, Emmanuel Ikpi, 'Ekong, Sylvester Augustine & 'Ekam, Irik Oyama

21 Organisational Challenges to the Effective Management of Training and Development Activities: a Hindrance to Public Sector Management in Federal Polytechnics in Nigeria
'Hussaina Ochuu Suleiman, 'Igunnu, Abosede Ayobola & 'Emmanuel Itope Makoju

22 Indicators of Perceived Readiness and Attitude of Near-Retirement Apostolic Church Clergy in South-South, Nigeria
Isalah, Samuel Akpan

'Olom, Patricia Akwaya, 'Arikpo Sampson Venatius & 'Udie, Stephen
The Influence of Power Irregularities on Academic Activities in Nigerian Universities: the Pre-Service Teachers Opinion

Babajide Veronica
Egenti, Maureen N, &
Komolafe Adefunke
Titilayo
Department of Science and Technology Education,
Faculty of Education,
University of Lagos
Department of Adult Education, Faculty of Education,
University of Lagos
Department of Arts and Social Sciences Education,
Faculty of Education,
University of Lagos

Abstract

The study investigated the influence of power irregularities on academic activities in Universities. The study is a survey type of descriptive research. The population consists of all undergraduate pre-service teachers in both state and Federal Universities in Lagos State Nigeria. A sample of 436 pre-service teachers was selected from six Departments in the Faculty of Education, University of Lagos using a stratified random sampling technique. A validated 30 items structured questionnaire (r value=0.91) was used in collecting data. Nine research questions guided the study. Data collected were analysed descriptively and inferentially. Results showed that pre-service teachers general opinion on the influence of power irregularities on academic activities in Nigeria Universities is high. All the independent variables made a total contribution of 99.8% to the dependent variables. Students' welfare made the highest contribution while the environmental conduciveness made the lowest contributions. Based on the results obtained some recommendations are provided.

Keywords:
Power,
Irregularities,
Academic,
Activities,
Universities

Corresponding Author:
Babajide Veronica
Background to the Study
Energy is the capacity of a physical system to do work. Mbalisi and Offor (2015), Cunningham and Saigo (2001), Sodhi (2005), Owate, Nte and Nna (2005) see energy as ability to do work. Power is the rate of transferring of energy and so power and energy are used interchangeably in daily conversation. In the practical sense of it, the amount of power obtained from any mechanical system depends on the amount of energy possessed by such system. Hence, a system with high energy will generate a high power; therefore, energy is related to power. The European Commission’s Research on Energy has also shown that energy is very essential to the quality of man’s everyday life. It is evident across the centuries that man is totally dependent and reliant on energy for work and personal life. In fact, the use of energy cuts across all sectors. The dependence on energy is even more visible in the 21st century with the heavy use of electrical energy which is virtually applicable to all spheres of life ranging from home use, to entertainment, education, recreation and industrial use. The availability of energy is usually linked to prosperity and efficiency and a higher standard of living in every sector of the economy.

The education sector also makes use of energy in most activities. The presence of light is needed for visibility in classrooms, libraries and laboratories. With the heavy influx of the use of ICT in the educational sphere, it is imperative that there is the need for adequate power supply to meet the needs of the growing electrical infrastructure used in the educational system. In the classroom, laboratories and even for educational field activities, electrical energy is used to power various appliances that are used for instruction, learning and research. Examples of electronic instruments used in the educational sphere include microscopes, oscilloscopes, projectors, computers, microphones, public address systems, printers, scanners, fans, air conditioners, soldering irons, lathe machines and the likes used in electronics and mechanical workshops. Energy is also necessary for communication in education and to access a wide source of information through the use if the internet. The use of energy for private use has a transferred effect on education. Energy to run household appliances for the well-being and disposition of everyone and for higher level of productivity is not in abundance.

Inadequate supply of energy in Nigeria is a problem that has seemed to evade solutions by successive administrations in the past 50 years. The availability of energy leads to constant power supply. However, in the case of Nigeria, the power supply is not constant and it is barely enough to cater for the energy needs of the country (Amadi, 2015; Mbalisi & Offor, 2015; Awosope, 2014; Ologundudu, 2014; Ubi Peter Samuel & Effiom Lionel (2013); George, & Oseni, 2012). As an evidence to this, Nigerians have resorted to the use of fuel powered electricity generators to cater for their energy needs (Cerny, 2013) in order to compete favourably in terms of productivity (Ekpo, 2009; Obadote, 2009; Ajanaku, 2007). These generators vary in sizes depending on the scale of the use from home and personal use to industrial use. Even with the widespread use of generators, it has been found that power supply is still epileptic and affects many sectors negatively (Guardian, 2014; Omoleke, 2011; Okafor, 2008; Kennedy-Darling, Hoyt, Murao & Ross, 2008; Okpong, 1976).

Claudivis (2014) reported that electricity is the bedrock of both economic and technological development. The researcher reported the relationship between the electricity generated and the energy consumption per capital and found that what is generated is very low to what is needed for consumption.
The available review showed that power outage is a major problem in Nigeria and its effects are felt in every sector which further constitutes a major threat to the Nigerian economy. Few of such reviews are the findings of Amadi (2015) who investigated the consequences of power outages on the social-economic and educational life of rural households in the Niger Delta region. He reported that a total of 700 i.e. 76.09% of the respondents are of the opinion that power outages to a large extent pose a major challenge in the education of rural households in the Niger Delta. Only 220 i.e. 23.91% of the respondents believed that power outages do not pose a major challenge to the well-being of the people. The researcher therefore concluded that power outage constitutes a major challenge to the education of rural households in the Niger Delta as it discourages reading by students at night thereby increasing poor performances in examinations and promoting illiteracy among the populace. This is buttressed by Foley (1990), Venkataraman (1990), Barnes(1988) and Brodman (1982) all of which held that electricity promotes literacy because students can read and study when there is no natural light.

Also, Abdallah, Genevieve, Emmanuel, Duah and Justice (2016) conducted an exploratory study with the use of the generalized anxiety Disorder 7 - item scale (GAD – 7) using University students. The study showed that nearly 20% of student interviewed felt nervous, anxious or on edge almost every day due to the erratic power supply. The proportion of students determined to be classified having minimal, mild, moderate and severe anxiety due to the erratic power supply were 24.20 %, 30.70%, 22.10% and 23.10% respectively. Students were significantly more likely to be anxious if the frequency of power outage increased. This study failed to put into consideration the effects of irregularity of power on school environment, learning experience, study habits of the student and every other student and lecturer activity. It is against this background that this study investigated the effects of this poor supply of electricity on the academic activities in Nigerian Universities.

Statement of the Problem

Every sector in Nigeria has experienced epileptic supply of power since time immemorial. This problem has resulted to low output in all the sectors specifically the sector of education which is the bedrock of all development. Individuals have made diverse efforts in alleviating this menace; one of such is the use of generator/ which led to the increase in price of such equipment because of the high demand as well as to the high demand for fuel to power the generator. The resultant effects of these are on Nigerians specifically the students who are faced with the challenges of academic activities in Nigerian Universities.

Research Questions

The study provided answers to the following nine research questions:

1. Is there any significance influence of power irregularities on students' academic activities?
2. Is there any significant effect of power irregularities on lecturers' academic activities?
3. Is there any significant influence of power irregularities on environmental factors?
4. Is there any significant influence of power irregularities on result processing?
5. Is there any significant influence of power irregularities on students' study habits?
6. Is there any significant influence of power irregularities on students' learning experiences?
7. What are the joint effects of power outage on the variables of academic activities?
8. What is the general opinion of the respondents on the influence of power irregularities on academic activities in Universities?
9. Is there any significant difference in the opinion of male and female respondents on the influence of power irregularities on University activities?

Methodology
The study was a survey type of descriptive research design. A questionnaire of 30 items structured around six sub headings namely: Students' activities, lecturers' activities, production and release of results, environmental influences, study habit and students' learning experiences was used in collecting data. Each of the areas contains five items respectively given a total of 30 items. The instrument was validated and its empirical validity was ensured through a pilot test of the instrument in a neutral school and its reliability coefficient was calculated to be 0.94 using Chronbach alpha. The instrument adopted a four point scoring of strongly agree(SA), Agree(A), Disagree(D) and Strongly Disagree(SD) as 4,3,2, and 1 respectively for positive items while negative items were scored vice versa. The instrument was administered to undergraduate education students (pre service teachers) in the six Departments of the Faculty of Education, University of Lagos. This constituted the sample of the study drawn from the population of all pre-service teachers from the two Universities in Lagos state.

Presentation of Result
The result of the study is presented in line with the stated research questions.
1. Is there any significant influence of power irregularities on students' academic activities?

Table 1 provides answer to this research question

Table 1: Paired Sample Statistics of Influence of power irregularities on students' academic activities.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students' Activities</td>
<td>15.84</td>
<td>1396</td>
<td>2.72</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Irregularities</td>
<td>87.70</td>
<td>1396</td>
<td>13.53</td>
<td>0.36</td>
<td>227.10</td>
<td>1395</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 1 shows that power irregularities affects students' academic activities since mean difference is significant.

2. Is there any significant effect of power irregularities on lecturers' academic activities?
Table 2: Paired Sample Statistics of Influence of power irregularities on lecturers' activities.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturers' Factors</td>
<td>14.21</td>
<td>1396</td>
<td>3.61</td>
<td>0.10</td>
<td>254.19</td>
<td>1395</td>
<td>0.000</td>
</tr>
<tr>
<td>Power Irregularities</td>
<td>87.70</td>
<td>1396</td>
<td>13.53</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 shows that power irregularities affects lecturers' academic activities since mean difference is significant.

3. Is there any significant influence of power irregularities on environmental factors?

Table 3: Paired Sample Statistics of Influence of power irregularities on environmental factors.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>15.55</td>
<td>1396</td>
<td>2.60</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Irregularities</td>
<td>87.70</td>
<td>1396</td>
<td>13.53</td>
<td>0.36</td>
<td>228.89</td>
<td>1395</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 3 shows that power irregularities affects environmental factor since mean difference is significant.

4. Is there any significant influence of power irregularities on result processing and release?

Table 4: Paired Sample Statistics of influence of power irregularities on result processing and release.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result Issues</td>
<td>11.51</td>
<td>1396</td>
<td>2.80</td>
<td>0.07</td>
<td>244.66</td>
<td>1395</td>
<td>0.000</td>
</tr>
<tr>
<td>Power Irregularities</td>
<td>87.70</td>
<td>1396</td>
<td>13.53</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 shows that power irregularities affects processing of results since mean difference is significant

5. Is there any significant influence of power irregularities on students' study habits?

Table 5: Paired Sample Statistics of influence of power irregularities on study habit.

<table>
<thead>
<tr>
<th>Study Habits</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2 tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>13.44</td>
<td>1396</td>
<td>2.90</td>
<td>0.08</td>
<td></td>
<td></td>
<td>240.46 1395 0.000</td>
</tr>
<tr>
<td>Irregularities</td>
<td>87.7</td>
<td>1396</td>
<td>13.53</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 shows that power irregularities affects students study habits since mean difference is significant

6. Is there any significant influence of power irregularities on students' learning experiences?

Table 6: Paired Sample Statistics of Influence of power irregularities on students' learning experiences.

<table>
<thead>
<tr>
<th>Learning Experiences</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2 tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>17.17</td>
<td>1396</td>
<td>4.12</td>
<td>0.11</td>
<td></td>
<td></td>
<td>231.56 1395 0.000</td>
</tr>
<tr>
<td>Irregularities</td>
<td>87.7</td>
<td>1396</td>
<td>13.53</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 shows that power irregularities affects students' learning experiences since mean difference is significant

7. What are the joint effects of power outage on the variables of academic activities?

Table 7: Summary of Regression Analysis of Power Outage on variables of academic activities.

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.999a</td>
<td>.998</td>
<td>.998</td>
</tr>
</tbody>
</table>

Predictors: Learning Experience, Students activities, Environment, Study habits, Results issues, Lecture factors.
Table 7 shows that power irregularities made a total contribution of 99.8% on all the academic activities, this implies that power irregularities affect all the variables of academic activities.

8. What is the general opinion of the respondents on the influence of power irregularities on academic activities in Universities?

Table 8: Descriptive Statistics of respondents' opinions on influence of power irregularities on academic activities in Universities.

<table>
<thead>
<tr>
<th></th>
<th>N Statistic</th>
<th>Range Statistic</th>
<th>Minimum Statistic</th>
<th>Maximum Statistic</th>
<th>Mean Statistic</th>
<th>Std. Deviation</th>
<th>Variance Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Irregularities</td>
<td>1396</td>
<td>85.00</td>
<td>47.00</td>
<td>132.00</td>
<td>87.70</td>
<td>36</td>
<td>13.53</td>
</tr>
<tr>
<td>Valid N</td>
<td>1396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decision: Bench mark mean=60, estimated mean=87.70 hence the general opinions is high since estimated mean > than bench mark mean otherwise it is low.

9. Is there any significant difference in the opinion of male and female respondents on the influence of power irregularities on University activities?

Table 9: Group Statistics of male and female responses on the influence of power irregularities on academic activities in Universities.

<table>
<thead>
<tr>
<th>GENDER</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>t</th>
<th>Df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Irregularities</td>
<td>MALE</td>
<td>662</td>
<td>87.65</td>
<td>13.55</td>
<td>0.06</td>
<td>1263.00</td>
</tr>
<tr>
<td></td>
<td>FEMALE</td>
<td>603</td>
<td>87.70</td>
<td>13.65</td>
<td>0.06</td>
<td>1250.29</td>
</tr>
</tbody>
</table>

Table 9 shows there is no significant difference in the opinions of male and female respondents on the influence of power irregularities on academic activities in Universities.

Summary of Findings
1. Power irregularities affect students' and lecturers' academic activities.
2. Power irregularities affect processing and release of examination results.
3. Power irregularities affect students' study habits and learning experiences. (Noble 2006)
4. Power irregularities made a total contribution of 99.8% of the variables of academic activities.
5. The pre-service teachers are of high opinion that power irregularities have influence on academic activities in Universities. Amandi (2015) education sector, Omoleke (2011)
6. There is no significant difference in the opinions of male and female pre-service teachers.
Discussion of Findings

The result of the study showed that pre-service teachers are of the opinion that power irregularities affect students' and lecturers' academic activities negatively; they cannot search the web for information, cannot do and submit assignment as at when due, cannot carry out laboratory investigation in the dark and have challenges of writing reports of experiments. The lecture rooms and lecturers' offices are extremely hot and not conducive, some students and lecturers boycott lecture hours which are seldom rescheduled for a convenient day and time. These findings are in line with the findings of Karemera (2003) who found that students' academic performance highly corresponds with learning facilities such as library and computer laboratory. The library and computer laboratory cannot be accessible and function in situation of power irregularities. Some lecturers come late to the lecture room and they don't also teach well leading to poor output. The findings of this study support the findings of Kirmani and Siddiquah (2008) who found that learning environment affects academic performance of students, implying that academic activities will be truncated by irregular powersupply.

The result also showed that power outage affects students study habits and learning experiences negatively as students cannot study well, group discussions and tutorial classes are cancelled or rescheduled due to power outbreak. Most students study in the evening after normal classroom lectures when the sun had set and most often these classes do not hold because of power outage. This result is in line with the findings of Noble (2006) who reported that students' performance is highly correlated with study habit and learning experiences. The moment power outage prevents students from studying well, their learning experiences will be poor and the resultant effect is poor performance.

Power irregularities made a total contribution of 99.8% of the variables of academic activities. The pre-service teachers are of high opinion that power irregularities have influence on academic activities in Universities. This mean that power outage paralyses academic activities in the University; as the library staff perform skeletal work, internet facilities are totally down; assignments and project reports cannot be written and submitted, laboratories, classrooms, departmental and lecturers' offices are not conducive for academic activities. These findings are corroborated by the findings of Amadi (2015) and Omoleke (2011) who found that power outage affects educational sector negatively and retards national development of a nation.

Recommendations
The following recommendations are suggested
1. The Federal government of Nigeria should wake up from slumber to find a practical solution to the power outage in Nigeria with the adoption of the provision of financial support to the PHCN to establish a domestic electrical engineering industry to combat obsolete equipment rather than relying absolutely on external technology. Probably, this will bring improvement in the generation, transmission and distribution of electricity to consumers. This aligns with the recommendation of Iweribor (1994).

2. University Management should device alternating sources of generating energy so as to ensure constant supply of power in the University community for academic and other activities.

3. There should be constant supply of power in the computing rooms, laboratories, library, lecture rooms, Lecturers' offices and students' hostels in addition to wireless internet services so that information can easily be accessed, assignment can be submitted, project and experimental reports can be written. This can be ensured with standby generator in every Faculty and hostel.

References

Ajanaku, L. (2007). Battling with Darkness, Tell, May;28-31

