

1

AN ADAPTIVE RADIAL BASIS FUNCTION

NEURAL NETWORK GLOWWORM

SWARM OPTIMIZATION FOR TIME-

SERIES FORECASTING

By

ISIMETO, ROSELYN OLUA

NOVEMBER, 2017

2

AN ADAPTIVE RADIAL BASIS FUNCTION NEURAL NETWORK GLOWWORM

SWARM OPTIMIZATION FOR TIME-SERIES FORECASTING

By

ISIMETO, ROSELYN OLUA

Matriculation Number: 019074049

B.Sc. Agricultural Economics (1994), University of Nigeria

 PGD Computer Science (2002), University of Lagos

M.Sc. Computer Science (2008), Université Charles de Gaulle, Lille, France

A thesis submitted to the School of Postgraduate Studies, University of Lagos,

Akoka, Lagos, Nigeria, in partial fulfilment of the requirement for the award of

the degree of Doctor of Philosophy (Ph.D.) in Computer Science.

NOVEMBER, 2017

3

AUTHOR'S STATEMENT

I hereby agree to give the University of Lagos Library, a non-exclusive, worldwide right to
reproduce and distribute my thesis and abstract (hereinafter "the Work") in whole or in part,
by any and all media of distribution, in its present form or style or in any form or style as it
may be translated for the purpose of future preservation and accessibility provided that such
translation does not change its content.
By the grant of non-exclusive rights to University of Lagos through the Library under this
agreement, I understand that the rights of the University of Lagos are royalty free and that I
am free to publish the Work in its present version or future versions elsewhere.

Warranties
I further agree as follows:

i. That I am the author of the Work and I hereby give the University of Lagos the right
to make available the Work in the way described above after a three (3) year period of
the award of my doctorate degree in compliance with the regulation established by the
University of Lagos Senate.

ii. That the Work does not contain confidential information which should not be
divulged to any third party without written consent.

iii. That I have exercised reasonable care to ensure that the Work is original and it does
not to the best of my knowledge breach any Nigerian law or infringe any third party's
copyright or other Intellectual Property Right.

iv. That to the extent that the Work contains material for which I do not hold copyright, I
represent that I have obtained the unrestricted permission of the copyright holder to
grant this license to the University of Lagos Library and that such third party material
is clearly identified and acknowledged in the Work.

v. In the event of a subsequent dispute over the copyrights to material contained in the
Work, I agree to indemnify and hold harmless the University of Lagos and all of its
officers, employees and agents for any uses of the material authorised by this
agreement.

vi. That the University of Lagos has no obligation whatsoever to take legal action on my
behalf as the Depositor, in the event of breach of intellectual property rights, or any
other right, in the material deposited.

_______________ __________________ _________________
Author’s Name Signature/Date Email

_______________ __________________ _________________
Supervisor’s Name Signature/Date Email

_______________ __________________ _________________
Supervisor’s Name Signature/Date Email

_______________ __________________ _________________
Supervisor’s Name Signature/Date Email

4

CERTIFICATION

School of Postgraduate Studies, University of Lagos.

This is to certify that the thesis entitled

AN ADAPTIVE RADIAL BASIS FUNCTION NEURAL NETWORK GLOWWORM

SWARM OPTIMIZATION FOR TIME-SERIES FORECASTING

Submitted to the School of Postgraduate Studies, University of Lagos for the award of the

degree of Doctor of Philosophy (Ph.D.) in Computer Science is a record of original research

carried out by:

ISIMETO, ROSELYN OLUA

in the Department of Computer Sciences

__________________________________ __________________ _________________
Author’s Name Signature Date

__________________________________ __________________ _________________
First Supervisor’s Name Signature Date

__________________________________ __________________ _________________
Second Supervisor’s Name Signature Date

__________________________________ __________________ _________________
Internal Examiner’s Name Signature Date

__________________________________ __________________ _________________
First External Examiner’s Name Signature Date

__________________________________ __________________ _________________
Second External Examiner’s Name Signature Date

5

DEDICATION

In loving memory of Professor Adetokunbo Babatunde Sofoluwe. You left a vacuum difficult

to fill. You are one of the world’s most unassuming professors. A man humble extremely to

the core. A man who will always encourage you when you have challenges by saying “don’t

worry, it will soon be over”. Ever making me at ease and happy when I am around you. Your

absence caused me a lot. Oh, you left too early, my Prof, my daddy, my friend!. Rest in

Peace!!.

6

ACKNOWLEDGEMENTS

It has been a journey. A journey of my life. A journey that has been the most challenging, the

most tasking, and the most time-consuming job I have ever undertaken in my life so far! A task

which demands you to know this, to know that. A task that makes you connect to others and

work as a team because you cannot do it all alone.

First of all, I thank the Almighty God for everything. From the start to the end of this research

journey. I thank God for the wealth of knowledge gained from this study and for sparing my life

all through my globe-trotting in the quest for knowledge. I also appreciate the University of

Lagos and all the institutions that afforded me the opportunity to do this research.

The search for knowledge led me in 2012 to Maastricht University, Netherlands; where the Data

Mining workshop I attended opened my eyes to practical data mining skills. Associate Professor

Evgueni Smirnov, thank you for the invitation to attend the workshop and for all your advice to

me after I presented my initial course of work when you asked all doctoral students to present

their research work. In China, the Machine Learning Summer School workshop at Renmin

University, which I attended in 2014, enriched further my knowledge and afforded me the

opportunity to meet live, the experts I saw online in this field of research.

I owe unquantifiable gratitude to my supervisor, Professor C.O. Uwadia. A mentor

extraordinaire! Thank you a trillion folds for all your support, patience, guidance and excellent

advice through it all. Special heartfelt thanks go to you for your brilliant ideas and all you have

done to see to the conclusion of this work. Thank you for all the days you spent tirelessly

cleaning up my write-up. You had all the patience with me. Thank you, Prof. Uwadia. May

Heavens bless your kind and patient spirit. I simply can never thank you enough!. Special

gratitude goes to Dr . E. P. Fasina for his direction and shaping of this research. Your criticisms

impacted this work in no small measure. The tremendous support of Dr. Yinka-Banjo is highly

appreciated. I appreciate deeply your divine intervention in this work. Thank you so much, Dr.

C.O. Yinka-Banjo. I must also appreciate Dr. A. O. Sennaike for his role towards the end of this

work. God bless you all richly.

Indeed, the whole staff of our department of Computer Science must be appreciated. Dr. B. A.

Sawyerr, Dr. V. Odumuyiwa, Dr. O. B. Okunoye, Dr. N. A. Azeez, Dr. A. U. Rufai, Mr. L.

Ikuvwerha, Mrs. R.A. Ajetunmobi, Mrs. C. Ojiako, Mrs. D.T. Afolabi, Mr. S. E. Edagbami and

Mr. O. O. Ajayi, I deeply appreciate you all for the spirit of love, unity and camaraderie in our

department. I am happy being a part of you because without your love and encouragement, I

would not be able to complete this study. You supported me through it all. I owe you all the

success. You created an enabling environment for me to successfully complete this programme.

7

I also appreciate the support and contributions of the non-teaching staff of the department, Mrs.

Toyin Aloku, Ms. Idowu, Mrs. Alayaki, Mrs. Bamgbelu, Mrs. Emeana, Mrs. Oluwamuhuru,

Alhaja Gbolahan, Ms. Nonye Nbonu, Mr Isaiah Ayandele, Mr Imenvbore, Mr. Olaitan, Mr

Adewunmi, Mr. Okhueleigbe, Mr. Olagunju and all other staff. I must specially appreciate you,

Ms. Idowu for all the inconveniences you went through when you stayed severally with me till

very late at night and even slept with me, at my office, to support me so l could meet the

submission deadlines. Thank you so much.

Our indefatigable HOD, Dr. F.A. Oladeji, for all the tremendous progress achieved in our

department during your tenue, thank you, ma. The effort of our P.G. Co-ordinator, Dr. A.P.

Adewole (Associate Professor), is deeply acknowledged. Thanks for linking me to Dr. S.O.N.

Agwuegbu (Associate Professor), former HOD, Department of Statistics, UNAAB. Dr.

Agwuegbu, thanks for all the time you spent in teaching me and for travelling down to watch my

seminar presentations. Engr. D. Alienyi, thank you for all your teachings as well. I must also

mention the support of Dr. A.B Adeyemo and Dr. Osunade of Department of Computer Science,

University of Ibadan.

To the founding pillars of our department, Emeritus Professor O. Abass, Professor H.O. D.

Longe, Prof. J. O. A. Ayeni, thank you very much for your keen interest in this work and for your

immense support and contributions. Long may you reign! I must not fail to appreciate our faculty

members. To Prof. Adekunle, Dr. Adeoti, Dr. Akala, thank you for all the criticisms during my

seminar presentations. To Prof. Ilori and Prof. Okafor, thank you for the motivations. I also

acknowledge the faculty of science and the University of Lagos for the research grant awarded to

me.

Lastly, my family has been immensely supportive. To my son, Imoaghene, thank you for being

with me all through it all. You needed my attention to play with you, but I always begged you to

allow me concentrate. You told me one day “when will you finish this Ph.D? Mummy, you are

not intelligent. You started this Ph.D before I started secondary school. I have finished my

secondary school. You are yet to finish”. I henceforth will have all the time for you. To my

parents, Mr. & Mrs. J.K. Isimeto, and my siblings, thank you all for the love and support all these

years. To my dearest friend, O’bryan, thank you for all your support and motivation.

To God be all the glory!!!

8

ABSTRACT

It is well noted that statistical approaches to forecasting of time series have been going on

since the start of the twentieth century. Advances in the field of computing, motivated

researchers to develop new models based on Machine Learning. The Artificial Neural

Network models (ANN) are known to construct good and useful approximations for

complex sequence dependencies variables. The past three decades have witnessed active

research using a class of ANN, the Radial Basis Function Neural Networks, to forecast

time series.Many techniques for forecasting time series using Radial Basis Function

Neural Networks (RBFNN) have been proposed and developed in literature. The major

challenges in RBFNN lie in the optimization of its full parameters: the number and

location of cluster centres, the number of neurons in the hidden layer as well as the output

weights. To address these challenges, this study adapted the Clustering Analysis based on

Glowworm Swarm Optimization (CGSO) algorithm to obtain a modified Clustering

Analysis based on Glowworm Swarm Optimization (CGSOm) algorithm for solving the

clustering problem. Adaptation was achieved by incorporating a mechanism that

determines the sensor range of the CGSO efficiently and automatically, modifying the

glowworm initialization method, and introducing a function that measures the cluster error

during the iteration phase. For the weight optimization, the Bioluminescence Swarm

Optimization algorithm (BSO) was adopted, making it the first time it will be applied in

training the weights of the RBFNN. Algorithm as well as software development, and

graphical simulation in this work are implemented using functional programming

paradigm. The algorithms implemented include the CGSO, CGSOm, BSO, Conjugate

Gradient Descent (CGD), Gradient Descent (GD) and Particle Swarm Optimization

algorithm (PSO). Using seven well known datasets in literature, the first set of results

compared the effectiveness of the CGSOm with the following five well-known clustering

algorithms: CGSO, K-means, average linking agglomerative Hierarchical Clustering (HC),

Further First (FF), and Learning Vector Quantization(LVQ). Experimental results indicate

that the CGSOm gave best entropy and purity values in four out of the seven datasets

clustered (57%); CGSO gave best results in two datasets (28.5%); and HC gave best result

in one dataset (14.5%). With respect to the weight training, stock price and currency

exchange rate data were used to train the combinations of models developed (based on K-

means, CGSO, CGSOm and GD, CGD, PSO, BSO). The results obtained from the training

showed that the CGSOm-CGD RBFNN gave best forecasting accuracy by yielding lowest

error values; followed by the CGSOm-BSO RBFNN that gave relatively similar error

values. Hence, two new training methodologies for time series forecasting resulted from

this study; they are the CGSOm-BSO RBFNN and the CGSOm-CGD RBFNN. Validation

of the proposed approaches was done in comparison with other RBFNN models: Auto

Regressive-Radial Basis Function tuned using Genetic Algorithm and Evolving Radial

Basis Function Neural Network, using same data. The results obtained showed that

CGSOm-BSO RBFNN and the CGSOm-CGD RBFNN yielded lowest error values.

Keywords: Radial Basis Function Neural Network, Time Series Forecasting, Swarm

Intelligence, Clustering algorithms, Glowworm Swarm Optimization algorithm.

9

TABLE OF CONTENTS

TITLE …………………………………………………………………..…………………..………..………..……. i
AUTHOR'S STATEMENT………………………………………………..…...………..………...……….... ii
CERTIFICATION…………………………………………………...………...…………...……….………...… iii
DEDICATION……………………..……………………………….……………….…..………….……..…….. iv
ACKNOWLEDGEMENT………………………………………………..……………………………………… v
ABSTRACT……………………………………………………..…………......……………………………..….. vii
TABLE OF CONTENTS…………………...……………………………….…………………………….……..
LIST OF FIGURES……………………………...………….……………………………….……..……….……

viii
xiii

LIST OF TABLES……………………………………….……….…………………..…….……………………... xiv
LIST OF ALGORITHMS……………………………………………………………….………………………… xv

CHAPTER ONE : INTRODUCTION 1
1.1 Background to the Study……………………………………………………………………….. 1
1.2 Statement of the Problem………………………………………………..……………………. 2
1.3 Aim and Objectives of Study………………………………………………..………………… 3
1.4 Scope and Delimitation of Study …………………………………………………..………. 4
1.5 Significance of the Study ……………………………………………………………………….. 4
1.6 Definition of Terms …………………………………………………………………………..…… 4
1.7 List of Abbreviations…………………………………………………………………………..….. 5
1.8 Thesis Outline 6
CHAPTER TWO: LITERATURE REVIEW
2.0 Introduction………………………………………………………………………………………... 7
2.1 Approaches to Modelling Time Series Data………………………………………… 7
2.1.1 Statistical Techniques…………………………………………………………………………. 7
2.1.2 Machine Learning Techniques……………………………………………………………. 7
2.1.2.1 Artificial Neural Network…………………………………………………………………… 8
2.1.2.2 Support Vector Machines…………………………………………………………………. 9
2.1.2.3 Decision Tree…………………………………………………………………………………... 9
2.2 Radial Basis Function Neural Network……………………………………………... 9
2.3 The Learning Process in RBFNN………………………………………………........... 12
2.4 Related Work on Approaches to Full Optimization of RBFNN Models

for Time SeriesForecasting………………………………………………...................
13

2.5 Summary of Limitations of Related Work on Approaches to Full
Optimization of RBFNN Models for Time Series Forecasting..............

16

2.6 Limitations of related work on approaches to Clustering......................... 16
2.6.1 Limitations of CGSO Algorithm………………………………………………............ 17
2.7 Theories and Concepts used in this study……………………………………….…… 18
2.7.1 The Concept of Clustering…….………………………………………………........... 18
2.7.2 Approaches to Clustering………………………………………………....................... 19

10

2.7.2.1 Random Selection of Clusters………………………………………………................ 19
2.7.2.2 Partitioning Method…………………………………………………............................ 19
2.7.2.3 Hierarchical Clustering……………………………………………….......................... 21
2.7.2.4 Density-Based Methods………………………………………………......................... 22
2.7.2.5 Bio-Inspired Clustering Algorithms……………………………………………....... 22
 (i) The Basic Glowworm Swarm Optimization Algorithm……………. 23
 (ii) Clustering Based Glowworm Swarm Optimization algorithm… 25
2.7.3 Approaches to Training the Network weights ………………………… 28
2.7.3.1 Conventional Techniques……………………………………………... 28
 (i) Gradient Descent Algorithm……………………………………….. 28
2.7.3.
1

Swarm Intelligence Techniques……………………………………….. 29

 (i) Particle Swarm Optimization……………………………….…….. 29
 (ii) Bioluminescence Swarm optimization……………………………….. 31

CHAPTER THREE: METHODOLOGY………………………………………………… 33
3.1 Efficient determination of Local Sensor Range (r�) of the CGSO

algorithm…………………………………………………………………
..

33

3.1.1 Initialization of Glowworm……………………………………………. 34
3.1.2 The Modified CGSO (CGSOm) ………………………………………. 34
3.1.3 Clustering Error Function……………………………………………… 36
3.1.3.
1

Cluster Quality Evaluation Measures………………………………….. 36

3.2 Automatic determination of the optimal number of clusters in a
dataset…

37

3.3 Development of a RBFNN model that adapts to the number of clusters
in a dataset……………………………………..……………………….

37

3.4 Optimization of the RBFNN parameters fully ……………..…………. 38
3.4.1 The Basic RBFNN Model………….…………………………………. 38
3.4.2 Proposed CGSOm-BSO and CGSOm-CGD RBFNN Models………... 40
3.4.3 Procedures for Modelling CGSOm-BSO and CGD RBFNN Model….. 41
3.4.3.1 Data Collection………………………………………………………… 41
3.4.3.2 Data Pre-processing………………………………………..…………... 41
3.4.3.3 Data Partitioning……………………………………………………….. 41
3.4.3.4 Feature Extraction……………………………………………………... 41
3.4.3.5 Parameter Tuning…………………………………………………….... 42
3.4.4 The Software Development………………………………………………. 42

CHAPTER FOUR: RESULTS AND DISSCUSSION OF RESULTS

43

4.1 Experimental Results and Discussion of Effectiveness of CGSOm… 43
4.1.1 Test Data…………………………………………………….................. 43
4.1.2 Parameter Settings……………………………………………………... 43
4.1.3 Efficient determination of Local Sensor Range (r�) of the CGSO

algorithm
44

4.2 Automatic determination of the optimal number of clusters in a
dataset….

48

11

4.3 Development of a RBFNN model that adapts to the number of clusters
in a dataset…………………………………………………...................

50

4.4 Experimental Results and Discussion on RBFNN Weight Optimization 51
4.5 Optimizing the RBFNN parameters fully …………….……………. 51
4.6 Case 1: Stock Price Forecasting problem………………………………. 52
4.6.1 Parameter Settings……………………………………………………... 52
4.6.2 Plots of Optimized RBFNN Models…………………………………… 53
4.6.3 Comparative Analysis………………………………………………….. 56
4.7 Case 2: Currency Exchange Rate Forecasting problem……………….. 59
4.7.1 Parameter Settings……………………………………………………... 59
4.7.2 Plots of Optimized RBFNN Models………………………………….... 60
4.7.3 Comparative Analysis………………………………………………….. 62
4.8 Validation of Approach…………………………………………………… 62

CHAPTER FIVE: SUMMARY OF FINDINGS, CONCLUSION,
CONTRIBUTIONS TO KNOWLEDGE AND FURTHER WORK

64

5.1 Summary of Findings…………………………………………………….. 64
5.2 Conclusion……………………………………………………….............. 66
5.3 Contributions to Knowledge……………………………………………... 66
5.4 Further work……………………………………………………............ 67

REFERENCES 68
APPENDIX A Source Code 74
APPENDIX B Publications from this Study 10

6

12

LIST OF FIGURES

 Figures Page

1 Artificial neural network architecture, the Simple Perceptron 8
2 The architecture of a basic RBFNN model 11
3 The flow of the proposed model 40
4 The application Interface 42
5 Comparing clustering quality of CGSOm with other Clustering techniques 47
6 Rand Index Result of the CGSOm 48
7 Showing Agreement of CGSOm result with the ground truth 48

8 Clustering result for Mouse data set using original CGSO initialization 49
9 Clustering result for Mouse data set using modified CGSOm initialization 50
10 Time series plot of Stock Price data 52
11 Time series plot of actual and predicted stock price using CGSO-BSO trained

RBFNN
53

12 Regression plot of actual and predicted stock price from CGSO-BSO trained RBFNN 54
13 Time series plot of Actual and Predicted stock price from CGSOm-BSO trained

RBFNN
54

 14 Regression plot of actual and predicted stock price using CGSOm-BSO RBFNN 55
 15 Time series plot of actual and predicted stock price trained by PCA-CGSOm-BSO

RBFNN
55

16 Regression plot of actual and predicted stock price trained by PCA-CGSOm-BSO
RBFNN

56

17 Time series plot of the Currency Exchangedata 59
18 Time series plot of actual values vs. predicted currency exchange rate using

CGSOm-BSO trained RBFNN
61

19 Regression plot of actual and predicted currency exchange rate using
CGSOm-BSO trained RBFNN

61

20 Time series plot of actual values vs. predicted currency exchange rate using CGSO-
BSO trained RBFNN

61

 21 Regression plot of actual and predicted currency exchange rate using CGSO-BSO
trained RBFNN 68

61

13

LIST OF TABLES

Table Page

1. Summary of the data sets 43

2. The CGSOm constant parameters 43

3. Computed mean sensor range for each data set for 50 runs 44

4. Entropy Results 45

5. Purity Results 45

6. Rand Index Results 46

7. Parameters settings for CGSO and CGSOm algorithm used for Stock
Forecasting problem

52

8. Parameters settings for BSO algorithm used for Stock Forecasting
problem

53

9. Comparative Summary of Results for average of 10 Simulation Runs 57

10: Comparative summary of results for average of 10 simulation runs 58

11. Parameters settings for CGSO and CGSOm algorithm used for
Currency Exchange rate forecasting problem.

60

12 Parameters settings for BSO algorithm for Currency Exchange rate
forecasting problem

60

13: Comparative performance of RBFNN variants for average of 10

simulation runs

62

14: Comparative performance of RBFNN variants based on proposed
and existing approaches

63

15: Summary of Findings 64

14

LISTS OFALGORITHMS

 Algorithms Page

1. The k-means Algorithm 20
2. The GSOm Algorithm 24

3. The CGSO Algorithm 27

4. The Gradient Descent algorithm 29
5. The gbest PSO Algorithm 30
6. The BSO algorithm 31
7. Algorithm for determination of value of sensor range 34
8. The CGSOm algorithm 35

15

CHAPTER ONE

 INTRODUCTION

1.1 Background to the Study

Time series forecasting problems are a difficult type of predictive modelling problem, since

time series is a chronological sequence of observations on a particular variables(s). Unlike

regression predictive modelling, time series adds the complexity of sequence dependence

among the input variables, which are usually taken at regular intervals (days, months, years).

The goal of building a time series model is the same as the goal for other types of predictive

models which is to create a model such that the error between the predicted value of the

target variable and the actual value is as small as possible. The primary difference between

time series models and other types of models is that the lag values of the target variables are

used as predictor variables, whereas traditional models use other variables as predictors, and

the concept of a lag value does not apply because the observations do not represent a

chronological sequence.

Time series prediction using Artificial Intelligence (AI)/Machine Learning techniques has

been ongoing in the last 30-40 years.Recent studies have shown a notable AI technique, the

Artificial Neural Networks (ANN) can be constructed as a good and useful approximation for

complex sequence dependencies variable(s). The search for new models of computing based

on artificial neural networks is motivated by the quest to solve natural (intelligent) tasks by

exploiting the developments in computer technology (Yegnanarayana,2010). Artificial

Neural Network extracts relevant features from input data and perform pattern recognition

tasks by learning from examples without explicitly stating the rules for performing the tasks.

Machine Learning is known as the domain of knowledge that entails programming computers

to optimize a performance criterion using example data or past experience (Alpaydin,

2010;Han et al., 2012). The use of machine learning has spread rapidly throughout computer

science and beyond and its application areas include websearch, recommender systems, fraud

detection, robotics, medical diagnosis, and so on.

A class of ANN,the Radial Basis Function Neural Network (RBFNN) has been applied to

solvevarious problems such as function approximation, modelingdynamic systems, time

series prediction, pattern recognition, classification and system controls. For the past three

16

decades, there has been active research on using RBFNN to forecast time series data. This

work joins this research effort.

A major challenge in RBFNN optimization is the difficulty in knowing the number and

location of centres. From survey, most techniques used in clustering the centres require

stating the numberor using trial and error. This is a limitation as it is practically impossible to

know the number of clusters in a dataset, except there is a ground truth.

A bio-inspired swarm intelligence technique,the Clustering Analysis based onGlowworm

Swarm Optimization (CGSO) algorithm was proposed by Aljarah and Ludwig (2013).It can

automatically discover number of clusters and it has not yet been used to cluster the RBFNN

centres. This work adapted the CGSO algorithm toobtain the CGSOm which was used in

solving the clustering problem in RBFNN. Simulationresultsshow the effectiveness of the

CGSOm over that of CGSO and other four standard clustering algorithms commonly used in

the literature when tested on benchmark datasets.

With respect to optimizing the output weights of the RBFNN, tremendous achievements have

been recorded with the Swam Intelligence (SI) techniques. One recent SI technique is the

Bioluminescence Swarm Optimization (BSO) algorithm by Rossato de Oliveira et al.,(2011).

BSO is attracted to global optimum; it converges more slowly and smoothly, avoiding getting

trapped into local maxima compared to the Particle Swarm Optimization algorithm (PSO)

that easily gets trapped into local maxima. Hence,BSO leads to more accurate, optimal

results than the PSO. An account of the BSO outperforming the PSO was recorded by

Rossato de Oliveira et al.,(2011). Due to these interesting characteristics of both the CGSO

and BSO, this research focuses on using the adapted CGSO(the CGSOm) for clustering the

centres and the BSO for training output weights of the RBFNN network. To the best of our

knowledge, this is the first time BSO is being used to optimize the RBFNN model. The

performance of this approach is compared with the performance of existing RBFNN variants

for time series forecasting problems found in the literature.

1.2 Statement of the Problem

Various researchers have established the fact that the major challenge in RBFNN is

optimization of its full parameters: number and location of cluster centres, the output weights

along with the number of neurons in the hidden layer (Awad, 2010; Rivas et al.,2004).

Broomhead and Lowe (1988) also emphasized the need for automatic mechanism to build the

RBFNNs.

17

The learning process of the RBFNN involves two tasks which are clustering and weight

optimization. Different clustering algorithms have been used by researchers to select optimal

centre sets. Conventional clustering algorithms, such as the K-means, experience premature

convergence and achieve local optimal solutions. The emergence of Swarm Intelligence

(SI)clustering algorithms solved the problems of conventional clusteringtechniques (Handl

and Meyer, 2007; Shifeiet al., 2010). However, the limitations in these SIclustering

approaches are that while in some, the number of clustersare fixedprior to starting the

clustering process, in others, trial and error approach is used to get the number of cluster

centres.

The emergence of the Clustering analysis Based on Glowworm Swarm Optimization

(CGSO) algorithm by Aljarah and Ludwig (2013) has solved the limitations of earlier SI

clustering algorithms. CGSO can automatically discover the clusters within a dataset without

prior knowledge about the number of clusters. However, in CGSO a sensor range parameter

which determined the number of clusters as well as the cluster quality was obtained

experimentally by trial and error, thereby making the approach inefficient.

On weight optimization, different techniques have been developed with varying degrees of

success. However, it was observed that the Bioluminescence Swarm

Optimization(BSO)algorithm by Rossato de Oliveira et al., (2011) has not been used to

optimize the RBFNN.This study therefore sets out to improve the CGSO by incorporating an

automated mechanism that determines the sensor range efficiently, by modifying the

glowworm initialization method and introducing a function that measures the cluster error

during the iteration phase. It also seeks to adopt the BSO to optimize the weights of the

RBFNN.

1.3 Aim and Objectives of Study

The overall aim of this research is to develop a new approach of optimizing the RBFNN

parameters fully for any given time series forecasting problem.

 The specific objectives of this research are to:

(1)efficiently determine the sensor range of the CGSO algorithm.

(2) automatically determine the optimal number of clusters in a dataset.

(3)develop a RBFNN model that adapts to the number of clusters in a dataset.

(4) optimize the RBFNN parameters fully

18

1.4 Scope and Delimitation of the Study

This study is focused on forecasting time series problems irrespective of application

domain.However, for the proposed RBFNN model to perform optimally on time series

problems, the datasets must be clusterable or have clustering tendency.Otherwise, the

strength of the developed tool cannot be effectively demonstrated

1.5 Significance of the Study

As established, the major challenge in RBFNN is optimization of its full parameters: number

and location of cluster centres, the output weights along with the number of neurons in the

hidden layer (Awad, 2010; Rivas et al., 2004). Also, Broomhead and Lowe (1988)

emphasized the need for automatic mechanism to build the RBFNNs.This work through the

proposed models has been able to tackle these limitations. Thus, the research community will

be able to use for instance, the CGSOm algorithm to cluster datasets in order to get its

optimal number of clusters. This is because the CGSOm has a sensor range algorithm

incorporated into it, whichhelps it to determine the sensor range automatically. The CGSOm

will be of benefit to researchers in the data mining community who want to know the number

and location of cluster centres (centroids) in a dataset.

The proposed CGSOm-BSO and CGSOm-CGD RBFNN models for time series forecasting

yield good forecast precisions. These models fix the major challenges in RBFNN

optimization be it the number and location of cluster centres,the number of neurons in the

hidden layer, as well as the output weights. Additionally, the models serve as automatic

mechanism to build the RBFNN and will be a useful tool to those faced with such task of

building automatic RBFNNs. Indeed, these models are major contributions to the statistical

and machine learning community and will be of benefit to those domains and sectors

involved in time-series forecasting.

1.6 Definitions of Terms

Clustering:otherwise known as cluster analysis, is the process of partitioning a set of data

objects (or observations) into subsets called clusters.

19

Entropy:is a metric that is a measure of the amount of disorder in a vector.Entropy values

range from 0 (perfect clustering quality) to 1 (very poor clustering quality). Smaller values of

entropy indicate less disorder in a clustering, which means a better clustering.

Optimization: is obtaining the best resultunder the given circumstances. It is the process of

nding the best result in the form of minimizing or maximizing the benefit desired (profit

function), expressed in the form of a function of decision variables under certain constraints

and/or under given conditions (Raju, 2014).

Principal Components Analysis(PCA):is a statistical technique, designed to reduce the

number of variables that need to be considered to a small number of indices, the principal

components that are linear combinations of the original variables. Principal components

analysis provides an objective way of finding indices of variations in data, so that the

variations in the data can be accounted for as concisely as possible.

Purity:measures the percentage of the total number of objects (data points) that were

classified correctly.Possible values of purity range from 0 (very poor clustering quality) to 1

(perfect clustering quality).

Rand Index:is a cluster quality evaluation measure that checks how close the resulting

cluster is to the original cluster in terms of number of clusters and data points. It checks for

the extent of agreement of thenumber of clusters as well as data points in the resulting cluster

and the original cluster (the ground truth).Rand Index values range from 0 (very poor

clustering quality) to 1 (perfect clustering quality).

Sensor range:isthe radius around a glowworm that determines its neighbourhood. All

glowworms within the sensor range (perimeter) of a given glowworm are classified as its

neighbours.

Time series:is a collection of observations made sequentially in time. A Time series is a

sequence of vectors, �(t), t=0,1,…, where t represents elapsed time. Time Series are

ubiquitous as they occur in virtually most domains including medical, scientific, business,

and entertainment.They exist in different data formats such as image data, video data,

handwriting data, brain scan, and numeric data (Keogh, 2003).

1.7 List of Abbreviations

BSO Bioluminescence Swarm Optimization algorithm

CGD Conjugate Gradient Descent

20

CGSO Clustering Analysis based onGlowworm Swarm Optimization (CGSO)

algorithm

CGSOm modified Clustering Analysisbased on Glowworm Swarm Optimization

CGSOalgorithm

GSO Glowworm Swarm Optimization algorithm

PCA Principal Component Analysis

PSO Particle Swarm Optimization algorithm

RBFNN Radial Basis Function Neural Network model

1.8 Thesis Outline

The remaining chapters of this thesis are structured as follows:

Chapter two contains the literature review. The chapter presents the approaches to modelling

time series,and introduces the Radial Basis Function Neural Network. Related work on

approaches to full optimization of the RBFNN and their limitations are discussed. Also

presented are limitations of related work on approaches to clustering as well as theories and

concepts used in this study.

Chapter three presents the research methodology used to achieve each of the stated

objectives. The objectives concerningclustering andweight optimization of the RBFNN

model as well as the methods used to achieve these objectivesare well covered. Also

presented are the proposed models: CGSOm-BSO and CGSOm-CGD RBFNN, as well as the

techniques employed in developing these models for time series forecasting.

Chapter four presents the results and discussion on the simulation experiment.

Chapter five covers the summary of key findings, conclusion, contribution to knowledge and

suggestion for future work.

21

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This chapter presents the approaches to modelling time series and introduces briefly the

Radial Basis Function Neural Network. Related work on approaches to full optimization of

the RBFNN and their limitations are discussed. Also presented are limitations of related work

on approaches to clustering as well as theories and concepts used in this study.

2.1 Approaches to Modelling Time Series Data

Time series prediction is considered a modelling problem. The first step is establishing a

mapping between the inputs and the outputs. Usually, the mapping is non-linear. After such

mapping is done, future values are predicted based on past and current observations (Ortegaet

al., 2000).

Popular modelling techniques for time series analysis include statistical techniques and

machine learning techniques.

2.1.1Statistical Techniquesinvolve use of statistical reasoning, analysis and modeling.

These techniques make use of statistical probability and methods such as multiple correlation

analysis, discriminant analysis and principal component analysis, factor analysis, regression

methods, time series models (the Auto- Regressive Integrated Moving Average Process

(ARIMA), Auto- Regressive (AR), Moving Average (MA), Vector Auto- Regressive (VAR)

, Vector Auto- Regressive Moving Average (VARMA), etc. These techniques could be used

for fitting models to univariate and multivariate data

2.1.2Machine Learning Techniquesare programs that are able to improve their performance

with experience. In other words, they are capable of learning. The domain of knowledge

known as Machine Learning (Alpaydin, 2010) entails programming computers to optimize a

performance criterion using example data or past experience. Machine Learning (Han et al.,

2012) investigates how computers can learn or improve their performance based on data, and

it is a fast growing discipline. Machine Learning systems (Domingo, 2012) automatically

learn programs from data. The use of machine learning has spread rapidly throughout

22

computer science and beyond and its application areas include: web search, spam filters,

recommender systems, ad placements, credit scoring, fraud detection, drug design, and many

other applications. Machine learning also finds solutions to problems in vision, speech

recognition, robotics, medical diagnosis and for time series forecasting problems.

Machine Learning techniquesincludethe Artificial Neural Networks, Support Vector

Machine, Decision Tree, among a host of others.

2.1.2.1 Artificial Neural Network(ANN)is a system that is based on the biological neural

network, such as the brain. The brain has about 100 billion neurons which communicate

through electro-chemical signals. The neurons are connected through junctions called

synapses, and each neuron receives thousands of connections with other neurons. The ANN

attempts to recreate the computational mirror of the biological neural network. An ANN

comprises of a network of artificial neurons called nodes. There are three types of neurons in

an ANN: the input nodes, hidden nodes, and output nodes. The input nodes take in

information from the environment, in form of predictor variables, which is numerically

expressed as in xj ϵ , j=1,…., d. Associated with each input is a connecting weights wj ϵ ,

and the output, y, in the simplest case is a weighted sum of the input, as in Figure 1 (Alpaydin,

2010).

 y

 �� �� �� ��

�� =+1 ������

Figure 1:Artificial neural network architecture, the Simple Perceptron (Alpaydin,

2010)

The model for the Simple Perceptron is given as:

� = ∑ �� �� + ��
�
��� (1)

Where �� is the intercept to make the model more general, and it is modeled as the weight

coming from an extra bias unit, ��, which is always +1. The output of the perceptron could

23

be written as a dot product, y=WT�, where W = [�� , �� ,…,��]Tand� = [1,��, …, ��]Tare

augmented vectors to include the bias weight and input.

ArtificialNeural Networks provide a robust approach to approximating real-valued, discrete-

valued, and vector valued target functions. ANNs are among the most effective learning

methods currently known for certain types of problems such as learning to interpret noisy,

complex real-world sensor data (Mitchell, 1997). A neural network is a two-stage regression

or classification model. There exist variants of neural networks such as feed-forward, back-

propagation, time delay, radial basis function, among others. ANN can be used for modeling

univariate and multivariate data.

2.1.2.2 Support Vector Machine (SVM)is a machine learning algorithm that uses a linear

hyperplane to create a classifier with a maximal margin. SVM is a powerful classification

technique (Borgetto et al., 2012); and it is gaining much popularity in time series and

regression prediction (Bankole and Ajila, 2013).

2.1.2.3 Decision Tree Learning Method is an efficient non-parametric method that can be

used for both classification and regression. It is a method (Mitchell, 1997) for approximating

discrete-valued target functions that is robust to noisy data, in which the learned function is

represented by a decision tree. It has been successfully applied to a broad range of tasks from

learning to medical cases to learning to access credit risk of loan applications. Variants of

Decision tree algorithms exist.

This work focuses on modeling time series via the use of ANN. Precisely, this study focuses

on the use of a machine learning technique, a variant of feed-forward neural networks,

known as Radial basis function neural network (RBFNN). The RBFNN is strongly

considered because of its ability for solving problems involving function

approximation, prediction, pattern recognition, and modeling of dynamic systems and time

series.

2.2Radial Basis Function Neural Network

A class of the ANN is the Radial Basis Function Neural Network (RBFNN)model.RBFNN is

often referred to as model–free estimators as it can be used to approximate the desired

outputs without requiring a mathematical description of how the output functionally depends

on the inputs.As noted by Larsson and Fornberg(2005), the history of radial basis function

approximations goes back to 1968, when multiquadric RBFs were first used to represent

topographical surfaces given sets of sparse scattered measurements. Today, extensive

24

literature abounds on different aspects of RBF approximations. RBFs are used not only for

interpolation or approximation of data sets but also as tools for solving differential equations.

Moody and Darken (1989) popularized RBF networks which have proven to be a useful

neural network architecture.They are typically configured with a single hidden layer of units

whose activation function is selected from a class of functions called radial basis functions or

kernel functions. RBFNN has certain advantages over other types of neural networks such as

better approximation capabilities, simple network structure and faster learning (Sneha, 2013).

Though very similar to back propagation in many ways, radial basis function networks

possess several advantages. They can be trained much more efficiently than the back

propagation networks (Mitchell, 1997). The major difference between RBF networks and

back propagation networks is the behavior of the single hidden layer. Rather than using the

sigmoidal or S-shaped activation function as in back propagation, the hidden units in RBF

networks use a Gaussian or some other basis kernel function. Radial basis function neural

network (RBFNN)has received considerable applications in various problems such as

function approximation, prediction, pattern recognition, and modeling of dynamic systems

and time series.

Radial Basis Function Neural Networks typically have three layers: an input layer, a hidden

layer with a non-linear radial basis functionand a linearoutput layer.The architecture of

RBFNN is in Figure 2. The input layer consists of input signals which are propagated

through the network. The transformation from the input space to the hidden unit space is

nonlinear whereas the transformation from the hidden unit space to the output space is linear.

Thus RBFNN produces a linear combination of non-linear basis functions where the

dimension of input matches with the dimension of each radial centre. Each hidden unit or

node is known as radial centre and each centre is representative of one or some of the input

patterns. The hidden units in RBF networks use a Gaussian or some other basis kernel

function. Each hidden unit acts as a locally tuned processor that computes a score for the

match between the input vector and its connection centers. In effect, the basis units are highly

specialized pattern detectors.

The weights connecting the basis units to the outputs are used to take linear combinations of

the hidden units to produce the final classification or output. The output should ideally be

equal to a desired output. The difference between the obtained and desired output is used to

adjust or train the network parameters, so that the error is reduced. The network parameters

consist of the hidden-to-output layer weights, and parameters associated to the hidden layer

25

functions represented by each hidden layer node. RBFNNs, similarly to all neural networks,

are associated with a set of parameters that need to be adjusted in order for the neural

network to “learn” the correct mapping between inputs and outputs. The set of parameters of

a neural network is directly dependent on the neural network’s architecture.

Input layer Hidden layer Output layer

 ��,�

��� ��,�

���y1y′1

. ��,� .

. ��,���,�.

. . ��,�.
����,�. ��,1y′m

��,� . ��,�

Figure 2: The Architecture of a basic RBFNN model (Alpaydin, 2010)

The RBFNN model is a function of the form:�� = ��
� + ∑ ��

��(�)�
��� (2)

where �� is the value at output node m, �� is a set of � number of weights used in mapping

values from each hidden node to output node m (set of weights that minimize the sum of the

�,�

�)

�,�

�,�

�

�

bias

26

squared error, ∑); and ��
� is a bias term. � is the kernel function which the centroids are

passed to, in order to compute the output from the hidden layer. � is the input vector.

2.3 The Learning Process in RBFNN

The two tasks in the learning process of RBFNN are clustering of the RBF cluster centres

and optimization of the output weights.The learning process in RBFNN starts when a training

set of input patterns (data) is presented to the RBF Neural Network, The input patterns are

represented as points in the hyper-dimensional space. During the clustering process, the

clustering algorithms adjust the centres, to get the optimal centre sets: mean and standard

deviation, for the RBF network. After the clustering aspect is done with, the centroids are

obtained and these are passed to the kernel function in order to compute the output from the

hidden layer.Getting an output from hidden node requires the input vector, and the centroids

and standard deviation at that node. The nodes in the hidden layer are a multidimensional

vector. Each node in the hidden layer is defined by the values of centroids and the standard

deviation that define its kernel function.

The second part is the weight optimization aspect. This entails adjusting the output weights

via the use of optimization algorithms.The outputs from the hidden layer (kernel functions)

are then passed as inputs to the output layer that then computes a weighted linear

combination of these values from the hidden layer. At each output node, there is a calculated

output, �������.If there is an error, that is, a difference between the calculated ������� (� ′
�,�

)

and the target output patterns ������� (��,�), the weights are adjusted to reduce this error, until

the desired error accuracy level is achieved. This adjustment process continues iteratively

until one gets the weight matrix that enable us attain the desired error accuracy level.The

resulting weights at this point are then used on data that is not used in the training data. That

is, it is used on the validation data and test data.At the validation level, if the result is not

satisfactory, one goes back to the beginning of the training and make adjustments as is

deemed necessary.

It is known that the performance of a trained RBF network depends on certain parameters

such as the number and location of Radial Basis Functions (RBF) centres, the output weights

27

along with the number of neurons in the hidden layer (Rivas et al., 2004; Awad, 2010). It has

been established that the performance of RBF suffers degradation when the desired locations

of the centres of the RBF are not suitable (Song et al., 2005). As long as the centres and the

radii have been fixed, the weights of the links between the hidden and the outputs layers can

be obtained.

For the past three decades, there has been active research work on using RBFNN to forecast

time series data.The next section presents a review and critique of existing work related to

this study.

2.4Related Work on Approaches to Full Optimization of RBFNN Model for Time Series
Forecasting.

This section reviews existing work on optimizingall the parameters of the RBFNN in order to

find their global optimum. Time series forecasting from diverse domains areconsidered.

Awad et al., (2009) proposed a method of optimizing the parameters of the RBFNN.

Theauthors used well-known heuristics: the k-Nearest Neighbour technique (kNN) for the

initialization of the radius of each RBF, Singular Value Decomposition (SVD) to directly

optimize the weights. Finally, the Levenberg-Marquardt algorithm was used to fine-tune the

obtained RBFNN.The constraint in this approach is that the number of clusters must be stated

or determined apriori.

Rivaset al., (2002) used the evolutionary algorithm to optimize all the parameters related to

the neural network architecture. A set of parameters to run the algorithm was found and

tested against a set of different problems on time-series forecasting and function

approximation. Results obtained were compared with those yielded by similar methods. The

strength of this approach is that it can automatically determine the RBF centres.

Nekoukar and Beheshti (2009) presented a Local Linear Radial Basis Function Neural

Network (LLRBFN). A modified Particle Swarm Optimization (PSO) with hunter particles

was introduced for training the LLRBFN. The proposed methods have been applied for

prediction of financial time-series and the result shows the feasibility and effectiveness.

However, in this approach, the constraint is that thenumber of clusters must be known in

advance.

Zang et al., (2008) adopted RBF neural network to model univariate and multivariable time

series. The comparative analysis of the results from the forecast showed that multivariable

28

time series model has higher predictive accuracy for the landslide displacement than the

univariatemodel. Thelimitation in this approach is that thenumber of clusters must be stated

before clustering starts.

Shenet al., (2011) usedK-means clustering algorithm optimized by Artificial Fish Swarm

Algorithm (AFSA) in the learning process of RBF. To verify the usefulness of algorithm, the

authors compared the forecasting results of RBF optimized by AFSA, Genetic Algorithms

(GA) and Particle Swarm O(PSO), as well as forecasting results of ARIMA, BP and Support

Vector Machine (SVM). Of all the combinations considered in their paper,

BIAS6+MA5+ASY4 was the optimum group with the least errors. The constraint in this

approach is the number of clusters must be stated beforeclustering starts.

Isimeto et al., (2015) proposed an improved radial basis function neural network based on a

convex cost function for rainfall forecasting. The network was trained by CGD and PSO

algorithms. The proposed model predicts the occurrence of rainfall in a day with 72.68%

accuracy, given weather information about the previous day.This approach figures out the

RBF centres automatically.

Linand Chen (2005) proposed a time-series forecasting model based on the radial basis

function network (RBFN) and Self-Organizing Map (SOM). SOM was used to figure out the

radial basis centres. The proposed model was examined using simulated time series data and

actual groundwater head data. This approach figures out the RBF centres automatically.

Ko and Lee (2009) developed the radial basis function neural network (RBFNN) based on a

Nonlinear Time-Varying Evolution Particle Swarm Optimization (NTVE-PSO) algorithm.

When training RBFNNs, the NTVE-PSO method is adopted to determine the optimal

structure of the RBFNN to predict time series, in which the NTVE-PSO algorithm is a

dynamically adaptive optimization approach using the nonlinear time-varying evolutionary

functions for adjusting inertia and acceleration coefficients. The proposed PSO method will

expedite convergence toward the global optimum during the iterations. To compare the

performance of the proposed NTVE-PSO method with existing PSO methods, the different

practical load types of Taiwan power system (Taipower) were utilized for time series

prediction of one-day ahead and five-days ahead. Simulation results illustrate that the

proposed NTVE-PSO-RBFNN has better forecasting accuracy and computational efficiency

for different electricity demands than the other PSO-RBFNNs.

29

Chao and Horng (2014) proposed a new algorithm called Firefly RBF network for training

the radial basis function neural network, and this was tested on classification problems.

Though a new approach for optimizing the RBFNN, their focus however, is on a

classification task while our own focus is on a regression task.

Gan et al., (2012) proposed a novel hybrid algorithm for selecting automatically the proper

input variables, the number of hidden nodes of the radial basis function (RBF) network, as

well as the optimization of the network parameters (weights, centers and widths)

simultaneously. In the proposed algorithm, the inputs and the number of hidden nodes of the

RBF network are represented by binary-coded strings and evolved by a genetic algorithm

(GA). The performance of the presented hybrid approach is evaluated by several benchmark

time series modeling and prediction problems. Experimental results show that the proposed

approach produces parsimonious RBF networks, and obtains better modeling accuracy than

some other algorithms. Optimization of the RBFNN parameters is a one-phase process as all

the parameters were optimized simultaneously at once. This makes this approach to be more

computationally expensive compared to our approach which entails a 2-stage optimization

process. Also curse of dimensionality may occur as the number of parameters to be

optimized at once are many.

Duand Zhang (2008) presented a new encoding scheme for training radial basis function

(RBF) networks by genetic algorithms (GAs). In the proposed encoding scheme, both the

architecture (numbers and selections of nodes and inputs) and the parameters (centres and

widths) of the RBF networks are represented in one chromosome and evolved simultaneously

by GAs in order that the selection of nodes and inputs can be achieved automatically. The

performance and effectiveness of the presented approach are evaluated using two benchmark

time series prediction examples and one practical application example, and are then

compared with other existing methods. It is shown by the simulation tests that the developed

evolving RBF networks are able to predict the time series accurately with the automatically

selected nodes and inputs. Though a good approach, optimizing the whole parameters

simultaneously is computationally more expensive compared to our approach. Also curse of

dimensionality may occur as the number of parameters to be optimized at once are many.

Sheta and De Jong(2001) proposed an AutoRegressive Radial Basis Function (AR-RBF)

model.GA was used to simultaneously optimize all of the RBF parameters so that an

effective time-series model was designed. The model used for forecasting the exchange rates

time series data, showed promising results.The limitation in this approach is that tuning the

http://www.sciencedirect.com/science/article/pii/S002002550100086X

30

RBF parameters to get the centre and weight was done via trial and error. Optimizing all the

parameters at once is computationally expensive.

Rivas et al., (2004) followed up on Sheta and De Jong (2001). They proposed the

evolvingRadial Basis Function (Ev-RBF) model. Theparameters of radial basis function

neural networks (number of neurons, their respective centres and radii) were determined

automatically using an evolutionaryalgorithm, the genetic algorithm. The weights were

calculated using singular vector decomposition (SVD).Tested on currency exchange rates

data, theresults obtained showed an improvement when compared with existing work of

Sheta andDe Jong (2001).Our own work followed up on these authors’ work. Thelimitation

in Rivas et al.,’s approach is that it is more computationally expensive compared to our

approach, as many parameters were optimized at once.Also curse of dimensionality may

occur as the number of parameters to be optimized at once are many.Our own approach

entails a 2-stage optimization process.

From existing work done so far, the limitations are summed up in the next section.

2.5 Summary of Limitations of Related Work on Approaches to Full Optimization of
RBFNN Models for Time Series Forecasting.

A considerable amount of success has been achieved using the conventional and SI

techniques to optimize fully the parameters of the RBFNN model for time series forecast

problems. It was noted thatsome of the approaches proposed, for instance(Zhang et al., 2010;

Armano and Farmani,2014) still depended on knowing the number of clusters before the

clustering process starts. Other approaches by Sheta and De Jong (2001),Zhu(2009) used trial

and errormethod to determine the number of clusters. Only a fewnumber of researchers

(Rivas et al., 2004;Duand Zhang,2008;Gan et al., 2012) found their cluster centres

automatically. However, these approaches are more computationally expensive compared to

our approach as the whole parameters were optimized simultaneously.

From the foregoing, the main challenge in full optimization of the RBFNN parameters is in

clustering involving optimal determination of the RBF centres. The next section focuses on

the limitations of the conventional and current approaches to clustering with emphasis on the

CGSO.

2.6 Limitations of related work on approaches to Clustering

31

Various clustering algorithms have been used by researchers to select optimal centre sets for

the RBFNN. Most conventional clustering algorithms, including K-means, experience

premature convergence and achieve local optimal solutions. They are not guaranteed to

converge to the global optimum. It has been established that the performance of RBF suffers

degradation when the desired locations of the centres of the RBF are not suitable (Song et al.,

2005). Thisresults in local optimal network with low prediction precisions (Awad et

al.,2009).

As a contribution to solving the clustering problem, Evolutionary Algorithms emerged. The

Genetic Algorithm (GA) was used by (Awad, 2010) to cluster the RBF centres. The GA

partially optimized the centres.The emergence of Swarm Intelligence techniques led to the

development of the following methods which were used to solve the clustering problem:the

kABC clustering algorithm proposed by Armano and Farmani(2014); the Artificial Bee

Colony (ABC) algorithm by Zhang et al., (2010);and the Ant Colony Optimization algorithm

by Shelokar et al.,(2004). However, the need to specify the number of clusters in advance

remained a disadvantage. Ben-David (2014) noted that asserting when the optimal cluster

centre sets have been achieved during the clustering process is a major challenge, as there is

no ground truth with which to evaluate the resulting clusters.

This challenge was solved with the development of the Glowworm Swarm Optimization

(GSO) algorithm meant for multimodal optimization (Krishnand and Ghose, 2005).Though

GSO was first used by Huangand Zhou(2011) for cluster analysis,Aljarah and Ludwig(2013)

adapted the GSO to obtainthe Clustering Analysis based onGlowworm Swarm Optimization

(CGSO) algorithm. The CGSO does not require providing the number of clusters in advance

as it can automatically discover the number. It alsosolves the problem of slow convergence.

Survey shows that CGSO algorithm has not yet been used for RBFNN

optimization(Karegowda and Prasad, 2013).

2.6.1 Limitationsof CGSO Algorithm

A critical review of Aljarah and Ludwig (2013) revealed that the CGSO algorithm suffers

from the following limitations:

1) Method of Determination of the sensor range: CGSO has one parameter, the sensor range,

��, which decides the number of clusters as well as the cluster quality.It was noted that the

��was determined via preliminary experiments by trial and error. This approach is generally

inefficient and lacks documentation.

32

2) Method of Initialization: CGSO initializes the population of glowworms byrandomly

generating a collection of position vectors. This approach does not guaranteethat each

glowworm covers a data instance.

2.7 Theories and Concepts used in this study

2.7.1 The Concept of Clustering

(i) Clustering:otherwise known as cluster analysis is the process of partitioning a set of data

objects (or observations) into subsets called clusters. It aims at representing large datasets by

a fewer number of prototypes or clusters. A cluster is a collection of data objects that are

similar to one another within the same cluster and are dissimilar to the objects in another

cluster (Han et al., 2012; Abraham et al., 2008). Clustering is a challenging, dynamic field of

research in data mining. It brings simplicity in modeling data and hence plays a major role in

the process of knowledge discovery and data mining (Abraham et al., 2008). It is linked to

unsupervised learning in machine learning. Its application area is not limited to only pattern

recognition and web search, it could also be used as a standalone data mining tool to gain

insight into data distribution. It could be used as a pre-processing step either, for other data

mining algorithms (such as characterization, attribute subset selection, and classification),

which would act on the detected clusters (Han et al., 2012); or as a pre-processing step before

later stage of regression (Alpaydin, 2010).

Ben-David (2014) asserted that “there exists distressingly little theoretical understanding of

clustering. In most practical clustering tasks, there is no clear ground truth to evaluate your

solution by (in contrast with classification tasks, in which you can have a hold-out labeled set

to evaluate the classifier against)”.

Literature notes that there are many clustering algorithms in existence. As affirmed by (Han

et al., 2012), providing a crisp categorization of clustering methods is difficult because these

categories may overlap and at such, a method may have features from several categories. As

highlighted by Alpaydin (2010), methods of clustering could be loosely split into two groups:

the online method and Batch method. Yet some other authors Karayiannis andRandolph-

Gips(2003); Ruiwang and Binwang(2002) noted that the strategies for selecting the RBF

33

centres could be classified as follows: (i) strategies selecting the RBF centers randomly from

the training data, (ii) strategies employing unsupervised procedures for selecting the RBF

centers, and (iii) strategies employing supervised procedures for selecting the RBF centers.

(ii) Online methods: For this method, the whole sample data are not available at hand during

training. The instances are received one by one and then the model parameters are updated as

soon as the instances are received. Examples of online methods include: (1) competitive

methods which are neural network methods for online clustering. Included in this category

are online k-means, two neural network extensions: Adaptive Resonance Theory (ART) and

self organizing map (SOM).

(iii) Batch methods: For this method, the whole sample data are available at hand during

training the clusters. These methods include: batch K-means, Expectation-maximization

algorithm, Hierarchical clustering, andOrthogonal least square learning algorithm.

The advantages of online methods include (1) we do not need extra memory to store the

whole training set; (2) updates at each step are simple and easy to implement, for example, in

hardware; and (3) the input distribution may change in time and the model adapts itself to

these changes automatically. In comparison with batch methods, one would have to collect a

new sample and run the batch method from scratch over the new sample (Alpaydin, 2010).

2.7.2 Approaches to Clustering

Some approaches to clustering include the following:

2.7.2.1RandomSelection of Clustersis the simplest clustering technique that uses

unsupervised method. This approach randomly selects a number of training examples as RBF

centers.

This method has the advantage of being very fast, but the network will likely require an

excessive number of centers. Once the center positions have been selected, the spread

parameters �j can be estimated, for instance, from the average distance between neighboring

centers. The limitation of this method is that selecting the Radial basis function centres is not

guided by the mean square error objective function (Gutierrez-Osuna, 2014).

2.7.2.2 Partitioning Methodisconsidered as the simplest and most fundamental method of

cluster analysis. This method organizes the objects of a set into several exclusive groups or

clusters of spherical shape. They are distance-based, use the mean to represent each cluster.

Formally, given a data set, D, of n objects, and k, the number of clusters to form, a

partitioning algorithm organizes the objects into k partitions (k<=n), where each partition

34

represents a cluster. These clusters are formed to optimize an objective partitioning criterion

such as a dissimilarity function based on distance, so that the objects within a cluster are

“similar” to one another and “dissimilar” to objects in other clusters in terms of the data set

attributes. They are effective for small to medium size datasets (Han et al., 2012). The most

commonly used partitioning algorithm is the k-means which is discussed below.

K-means Algorithm is the most well known and commonly used partitioning method. It is

an unsupervised technique used for clustering. That is, it is used to find groups in the data,

where the groups are represented by their clusters, which are the typical representatives of

the groups (Alpaydin, 2010). As affirmed by Han et al., (2012); K-means algorithm is a

centroid-based partitioning technique that uses the centroid of a cluster, Ci. The centroid of a

cluster is its centre point and this can be defined by the mean or medoid that is used to

represent the cluster centre.

The quality of a cluster Ci as noted by Han et al.,(2012); Alpaydin (2010) can be measured

by the within-cluster variation, which is the sum of squared error between all objects in Ci

and the centroid ci; is defined by an objective function

E = � � ����(�,��)� � �

�Ɛ��

�

���

 (3)

where E is the sum of the squared error for all objects in the dataset; p is the point in space

representing a given object; ci is the centroid of the cluster Ci (both p and ci are

multidimensional). The difference between an object pϵCi and ci, the representative of the

cluster, is measured by dist(p,ci), which is the Euclidean distance between two points.

In other words, for each object in each cluster, the distance from the object to its cluster

centre is squared, and the distances are summed. This objective function tries to make the

resulting k clusters as compact and as separate as possible (Alpaydin, 2010). In simple terms,

this implies an objective function is used to assess the partitioning quality so that objects

within a cluster are similar to one another but dissimilar to objects in other clusters, thus

ensuring that the objective aims for high intracluster similarity and low intercluster

similarity.

It is noted that optimizing the within-cluster variation is computationally challenging and a

NP-hard problem, but k-means is commonly used to overcome the prohibitive computational

cost.

35

The K-means algorithm is shown in Algorithm 1 (Han et al., 2012)

Algorithm 1: K-means Algorithm

 Input:

K: the number of clusters

D: a data set containing n points

Method:

 (1) arbitrarily choose k points from D as the initial cluster centres

(2) repeat

(3)(re)assign each point to the cluster to which the points is the most similar,

 based on the mean value of the points in the cluster;

(4)Update the clusters means, that is, calculate the mean value of the points foreachcluster

(5) until no change

Output: A set of k clusters.

While the strengths of K-means include the following: K-means finds mutually exclusive

clusters. It is distance-based and uses the mean to represent cluster centre. It is effective for

small to medium –sized data sets. Its limitations are:K-means is not guaranteed to converge

to the global optimum, hence it may experience premature convergence; and often it

terminates at a local optimum. The need to specify the number of cluster, k, in advance can

be seen as a disadvantage, as the k-means is sensitive to the initial number of centroids

2.7.2.3Hierarchical Clustering

This method works by grouping data objects into a hierarchy or “tree” of clusters. Grouping

data in this form is useful for data summarization and visualization. As asserted by Alpaydin

(2010), Hierarchical clustering are methods of clustering that only use similarities of

instances, without any other requirement on the data; the aim is to find groups such that

instances in a group are more similar to each other than instances in different groups. It has

application in areas such as handwritten character recognition, studies of evolution, in

applications that the data bear an underlying hierarchical structure that needs to be

unrecovered, and so on(Han et al., 2012; Frigui and Krishnapuram, 1999; Leung et al.,

2000).

36

Han et al., (2012) notes that several orthogonal ways to categorize hierarchical clustering

methods include algorithmic methods, probabilistic methods, and Bayesian methods.

Algorithmic methods consider data objects as deterministic and compute clusters according

to the deterministic distances between objects. Examples of these methods include:

Agglomerative (bottom-up), divisive (top-down), and multiphase methods. Probabilistic

methods use probabilistic models to capture and measure the quality of clusters by the fitness

of models. An example is Probabilistic hierarchical clustering. Bayesian methods compute a

distribution of possible clusterings. That is, conditional on the given data; they return a group

of clustering structures and their probabilities, instead of a single deterministic clustering.

The strengths of hierarchical methods include firstly, the number of classes need not be

speci ed a priori and secondly, they are independent of the initial conditions. It is possible to

improve the clustering quality of hierarchical methods by integrating these methods with

other clustering techniques, resulting in multiphase clustering. Examples of multiphase

clustering methods are: Balanced Iterative Reducing and Clustering using Hierarchies

(BIRCH) and Chameleon (Han et al., 2012). Its limitation is that this method can encounter

difficulties regarding the selection of merge or split points. This issue is critical because once

a group of objects is merged or split, the process at the next step will operate on the newly

generated clusters. It will not undo what was done previously and will not perform object

swapping between clusters, that is, it cannot correct erroneous merges or splits. Data-points

assigned to a cluster cannot move to another cluster. Thus, merge or split decisions, if not

well chosen, may lead to low-quality clusters. Moreover, the method do not scale well

because each decision of merge or split needs to examine and evaluate many objects or

clusters.

2.7.2.4 Density-Based Methods:these methods (Han et al., 2012) discover clusters that are

of non spherical and arbitrary shape such as “S” shape and oval clusters. This method model

clusters as dense regions in the data space, separated by sparse regions.

The strength of this method is that this method can identify convex regions, where noise or

outliers are included in the clusters.

2.7.2.5Bio-Inspired Clustering Algorithms

Most conventional clustering algorithms experience premature convergence andachieve local

optimal solutions. Research efforts in clustering to overcome this problem are well noted.

Abraham et al., (2008) asserts that these days, data mining tasks require fast and accurate

37

partitioning of huge datasets, which may come with a variety of attributes or features. This

fact imposes severe computational requirements on the relevant clustering techniques. A

family of bio-inspired or nature-inspired algorithms, well-known as Swarm Intelligence (SI)

techniques has recently emerged that meets these requirements and has successfully been

applied to a number of real world clustering problems. Clustering with swarm-based

algorithms has emerged as an alternative to more conventional clustering methods(Handl and

Meyer, 2007; Shifei et al., 2010).Swarm Intelligence are known to imitate the natural social

communities such as ant colonies, fish schools, bird flocks. The behavior of these

communities is based on the receptor of the individual’s interactions by communicating with

each other to locate the food sources (Engelbrecht, 2007).They locate global solution for the

given optimization problem.

One improvement to solving the problem of local minimum was proposed by Awad, et al.,

(2009); who came up with a new method based on K-means and local displacement process

which locally minimizes the distortion within each cluster. Another achievement was made

by Armano Farmani (2014) who proposed the kABC clustering algorithm, a combination of

K–means and ABC algorithms. Their simulation results showed that kABC has more ability

to search for the global optimum solutions, and more ability for passing local optimum, as it

converges to optimal solution in most runs. The authors noted that to use the KABC, the

number of clusters should be known a prior. This is a major limitation as it is not easy to

know the number of clusters in advance.

To solve the problem of slow convergence and the problem of determining the number of

clusters in advance, a new Clustering approach based on Glowworm Swarm Optimization

algorithm (CGSO) was proposed by Aljarah and Ludwig in Aljarah and Ludwig (2013). The

CGSO is a modification to the classical GSO proposed by Krishnanand and Ghose (2005),

first used for optimizing multimodal functions. With this modified GSO, CGSO does not

need the number of clusters to be provided in advance as it can automatically discover

number of clusters in advance and it tackles slow convergence problem. A performance

analysis of CGSO and other clustering algorithms was done by Aljarah and Ludwig (2013) and

their experimental results on several real and artificial data sets with different characteristics

showed that their proposed algorithm, CGSO is more efficient compared to other well-

known clustering methods (such as k-means, hierarchical clustering).

(1) The Basic Glowworm Swarm Optimization Algorithm

38

The classical Glowworm Swarm Optimization (GSO) algorithm was rst presented

byKrishnanand and Ghose in 2005(Krishnanand and Ghose, 2005) to model the collective

behavior in robotics.The classical GSO locates multiple solutions having different or equal

objective function values. This feature of GSO distinguishes it from other optimization

techniques (that find one local or global solution).

In GSO, each glowworm uses a probabilistic mechanismto select a neighbour having higher

luciferin value, and move towards it. Each glowworm carry its own luciferin value and has

its own decision range. The luciferin value depends on the objective function value and

glowworm position. A glowworm with a better position is brighter than others, has higher

luciferin level value and is very close to one of the optimal solutions.All glowworms are

attracted,and move to neighbour within their neighbourhood range, that glow brighter. Based

on local information and interactions with selected neighbour, the swarm of glowworms

move and divide themselves into disjoint subgroups that eventually converge to multiple

local optima of a given multimodal function (Rossato de Oliveira et al., 2013; Aljarah and

Ludwig, 2013).

GSO begins by populating a given search space with �glowworms of dimension �. Each

glowworm is assigned a random position inside the search space. Initially,allglowwormsare

assigned same, initial amount of luciferin �� and neighbourhood range decision ��.The

position ����� of each glowworm is evaluated by a fitness function �(�����). During each iteration,

the luciferin and position of each glowworm gets updated. GSO algorithm requires other

parameters namely: step size (�), sensor range (��), luciferin decay constant (�), luciferin

enhancement constant (�), number of neighbors (��) and a constant value (�).

The GSO algorithmis shown in Algorithm 2(Rossato de Oliveira et al., 2013)

Algorithm 2: The GSO algorithm.

1: Set parameters: �, ��, ��, �, �, �, �, ��, ��

 2: Randomly generate the population of glowworms �����
 3: for � = 1 to � do
 4: Initialize luciferin ��(0) = ��

 5: Initialize neighborhood range ��
� (0) = ��

 6: end for
 7: � = 1
 8: while stop condition not met do
 9: for each glowworm�do [update luciferin]
10: ��(� + 1) = (1 �). ��(�) + �. �(��(�))
11: end for

39

12: for each glowworm�do [movement phase]
13: Find neighbors ��(�)
14: for each glowworm� � ��(�)do

15: Compute probability ���(�) =
��(�)���(�)

∑ ��(�)���(�)� � � �(�)

16: end for
17: Select glowworm� using ���
18: Update glowworm position with

 ��(� + 1) = ��(�) + ��
��(�)���(�)

���(�)���(�)�
�

19: Update decision range:

20: ��
� (� + 1) = ��� ���, ����0, ��

� (�) + �. (�� |��(�)|)��

21: end for
22: � = � + 1
23: end while

(ii) Clustering Analysis Based on Glowworm Swarm Optimization algorithm

The classicalGSO can capture multiple peaks in multimodal functions; this advantage of

GSO algorithm was exploited by (Aljarah and Ludwig, 2013) to produce the Clustering

Analysis Based on Glowworm Swarm Optimization (CGSO) algorithm. That is, due to the

GSO algorithm’s ability for multimodal optimization, it was adapted to obtain the CGSO to

solve the clustering problem.GSO locates multiple solutions while other optimization

techniques find one local or global solution. In CGSO, the objective function is not defined

by the user. In fact, it is an integral part of the algorithm and can significantly decide the

cluster quality. According to the authors, the objective function is adjusted to locate multiple

optimal centroids such that each centroid represents a sub-solution and the combination of

these sub-solutions formulates the global solution for the clustering problem.

Applied to cluster datasets, the CGSO can find the number of clusters, as it does not need to

be provided with the number of clusters in advance. It can automatically discover the number

of clusters.

In CGSO, the clustering problem is formulated as a multimodal optimization problem to

extract the centroids from a data set based on glowworms’ movement. The CGSO partitions

the given datasets into sets of clusters such that every glowworm in the swarm tries to cover

larger numbers of data instances. Furthermore, eachglowworm basically gets attracted to

glowworms that cover a larger amount of data instances.

The swarm ofglowworms consists of m glowworms, where each glowworm is represented by

a vector, ��, j= 1 . . . m. Each �� has 5 parameters:luciferin level(��), fitness function ��, d-

40

dimensional position vector(��), coverage set (Crj) which is the set of data instances covered

by��, and intra-distance (Intra��) between the (Crj) set members and �� position. The ��

needs to cover at least one data instance in its neighbourhood range.

The CGSO Algorithmconsists of four main phases: initialization phase, luciferin level

update, glowworm movement, and candidate centroids set construction.

At the initialization phase, first an initial glowworm swarm of size m is created. For every

glowworm ��, a random position vector is generated within the search space within the

bounds of the minimum and maximum values of the dataset (line 2). Using the initial

luciferin level ��, the luciferin level�� is initialized (line 4). The fitness function �� is

initialized to zero. The neighbourhood range �� is set to an initial constant range ��. Secondly,

after initializing the swarm, the set of data instances Crjcovered by�� is extracted from the

dataset X (line 5), and the Intra�� is calculated using equation (in line 6); where ���� is data

instance i covered by ��; |���| is number of data instances covered by��. The last step in the

initialization phase entails the calculation of the swarm level fractions SSE and InterDist.

To initialize the SSE, the glowworms list that covered the highest number of data instances

(the glowworms that have the maximum |���|sizes) is extracted. These glowworms should be

disjointed from each other. The extracted glowworm list is considered the initial set of the

candidate centroid �. Next, the candidate centroid �is used to calculate the initial SSE (the

Equation in line 9). The same candidate centroid c is used to calculate the InterDist (the

Equation in line 10).

After the initialization phase, an iterative process takes place to find optimal glowworms that

represent the clustering problem centroids. The result of each iteration is an updated swarm

with updated candidate centroid set c. Firstly, the fitness function F is evaluated to assign

new �� values for each glowworm using the glowworm position and other information (line

13). Three fitness functions were proposed to evaluate the goodness of the glowworm. After

the fitness functions evaluation for glowworm��, the luciferin level �� is updated using (the

Equation in line 18). Then, each glowworm�� locates the neighbourhood group (line21-22),

and the neighbour probability values are calculated using Equation in line 23; and using the

roulette wheel selection method in line 25, the best neighbour is then found. Next, the

glowworm is moved towards the best neigbour by updating its position vector using

41

Equationin line 26. After that,|���| and IntraDj are updated (using Equation in line 28) based

on the new glowworm ��positions.

Next is that the candidate centroid set c is reconstructed based on the highest fitness values

(��) (from line 30), and not like the way they were extracted during the initialization phase,

which was based on the highest number of data instances (the glowworms having the

maximum |���|). Then, the candidate centroid set c is used to calculate the new value for SSE

which is calculated by the Equation in line 31. Also, the same candidate centroid set c is used

to calculate InterDist which is calculated from the Equation in line 32. Using the new

information, the fitness function is reevaluated in line 35. The iterative process continues

until the size of the candidate centroid set c becomes less than a specific threshold (minimum

number of centroids is stated), or the maximum number of iterations is achieved. The

candidate centroid set c decreases throughout the iterative process.After the clustering

process is completed, the candidate centroid set in line 39 is used to evaluate the clustering

results.

The CGSO algorithm(Aljarah and Ludwig, 2013) is Algorithm 3

Algorithm 3: The CGSO algorithm

Input: a dataset X consisting of d data instances with �dimensions

Method:
//Initialization phase
1: Set parameters: �, ��, �, ��, �, �
2: Generate the initial population of glowworms by randomly generating positions vectors
within the search space.
3: for each glowworm gj, where j = 1 to m do
4: Initialize luciferin level, ��(0) = ��

5: Extract set of data instances Crj covered by gj

6: Calculate intra-distance ������ � = ∑ ����� ���
�����

���

7: end for
8: Extract the initial set of the candidate centroid,�. The initial centroid is a list of
glowworms with maximum |���| sizes and also disjointed from one another.

9: Calculate ��� = ∑ ∑ ��� ���
�����

���
|�|
���

10: Calculate ���������= � ∑ ��� ���
��

���

�

���

11: for each glowworm ��, where j = 1 to m do {initializing fitness function}

12: Calculate fitness function

13: ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��
��������� ×

�

�
�����

������ �

��� �������� ��

 ��
��������� ×

�

�
�����

���×
������ �

��� �������� ��

14: end for

42

15: t = 1
16: while stop condition not met do
17: for each glowworm ��, where j = 1 to m do {update luciferin}

18: ��(� + 1) = (1 �). ��(�) + �. ��(��)
19: end
20: for each glowworm ��, where j = 1 to m do {movement phase}

21: Find neighbors ��(�)

22: for each glowworm � ∈ ��(�)do

23: Compute probability ���(�) =
��(�)���(�)

∑ ��(�)�� � � �(�) ��(�)

24: end for
25: Select glowworm � using ��� by roulette wheel method

26: Update glowworm position with

��(� + 1) = ��(�) + ��
��(�) ��(�)

���(�) ��(�)�
�

27: Extract set of data instances Crj covered by gj

28: Calculate intra-distance ������ � = ∑ ����� ���
����

�

���

29: end for
30: Extract the set of the candidate centroids, �. The centroid is a list of glowworms with
maximum fitness function and also disjointed from one another.

31: Calculate ��� = ∑ ∑ ��� ���
�����

���
|�|
���

32: Calculate ���������= � ∑ ��� ���
��

���

�

���

33: for each glowworm ��, where j = 1 to m do {fitness function update}
34: Calculate fitness function

35: ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��
��������� ×

�

�
�����

������ �

��� �������� ��

 ��
��������� ×

�

�
�����

���×
����� � �

��� �������� ��

36: end for
37: � = � + 1
38: end while
39: Return the set of candidate centroids, c
Output: A set of k clusters and k centroids

2.7.3Approaches to Training the Network weights

Training the network weightsinvolve the use of optimization algorithms to adjust the output

weights of the RBFNN, in order to get the right set of weights that minimize the objective

function. In the next sub-section, a brief survey of some training algorithms used in training

RBFNNmodel is done. The conventional techniques and the bio-inspiredswarm intelligence

optimization techniques will be looked at.

2.7.3.1 Conventional Techniques

43

(i)Gradient Descent Algorithm

Gradient Descent Algorithmis otherwise called the steepestdescent, or the method of steepest

descent. It is a technique used to find a local minimum of a function. The Minimum of a

function is found by following the slope of the function.

To apply this algorithm, one starts with an initial guess of the solution and takes the gradient

of the function at that point. Then one steps the solution in the negative direction of the

gradient and repeats the process. The algorithm eventually converges at the point where the

gradient is zero (which corresponds to a local minimum). It is a first-order algorithm because

it takes only the first derivative of the function.TheGradient Descent algorithmisshown in

Algorithm 4

Algorithm 4:Gradient Descent algorithm

Start with a point (guess)

Repeat

 Determine a descent direction

 Choose a step

 Update

Until stopping criterion is satisfied

The limitation of this algorithm is that Gradient Descent finds the nearest minimum that can

be a local minimum, and there is no guarantee of finding the global minimum unless the

function has only one minimum. The use of good value for the step size is critical. If it is too

small; the convergence may be too slow, and a large value may cause oscillations and even

divergence (Alpaydin, 2010).

2.7.3.2 Swarm Intelligence Techniques

(i) Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization technique based on

movement and intelligence of swarm of birds. PSO was presented by Kennedy and Eberhart

in 1995 in (kennnedy and Eberhart, 1995). It applies the concept of social interaction to

problem solving. Each individual in the swarm, called a particle is treated as a point in space,

and represents a potential solution. Each particle in the swarm as noted by Binitha and

44

Sathya(2012) represents a solution in a high-dimensional space with four vectors, its current

position, best position found so far, the best position found by its neighborhood so far and its

velocity and adjusts its position in the search space based on the best position reached by

itself (pbest) and on the best position reached by its neighborhood (gbest) during the search

process. In each iteration, each particle updates its position and velocity.

The simplicity of implementation, quick convergence, and few parameters have resulted in

PSO gaining popularity. Many researchers have made modifications to the PSO. PSO has been used

for problems across various applications such as image classification by Omran et al.,

(2002); pattern classification, biological system modeling, scheduling, signal processing,

robotic application by Hardin et al., (2004); and for training neural networks by Engelbrecht

(2007).

Originally, two PSO algorithms were developed which differ in the size of their

neighbourhoods. These are the global best (gbest) PS0 and the local best (lbest) PSO. For the

gbest PSO, the neighbourhood for each particle is the entire swarm while for the lbest,

smaller neighbourhoods are defined for each particle. Basic PSO has been shown to

outperform optimizers such as gradient descent, scaled conjugate descent and genetic

algorithm. Although the PSO algorithm has been proven to be effective, its theoretical

foundation is rather weak. The gbest PSO algorithm is faster but might converge to local

optimum for some problems. The lbest PSO is a little bit slower but not easy to be trapped

into local optimum (Engelbrecht, 2007).

A step by step overview of how the basic global best PSO algorithm is used in training

RBFNN entails the following procedures: (1) initialize the particles, including the value

assignment for hidden center vector, base width vector, weight of the network; 2) Calculate

the fitness value (best solution) of each particle, and make the current position of the particle

as the individual’s maximum pbest, find out the particle of the minimum fitness value, and

make it the initial global best, gbest; 3) Compare fitness value of the current particle with

pbest, if the fitness value of the current one is smaller, then update pbest with the current

fitness value; 4) For each particle, compare pbest with gbest, if pbest is better, then update

gbest; 5) Update the speed and location of the particle . Repeat steps 4)-6), until the terminal

condition is met, which is either to meet the maximum iterations or the error accuracy

requirement; 7) Set gbest as the parameter of the RBF neural network (Shuai, 2013). The

gbest PSO algorithm(Engelbrecht, 2007) isAlgorithm 5

45

Algorithm 5: gbest PSO algorithm

Create and initialize an ��-dimensional swarm;

repeat

for each particle i =1,...,�� do

 //set the personal best position

 if�(xi) <�(yi) then

 yi = xi;

 end

 //set the global best position

if�(yi) < �(ŷ) then

 ŷ = yi;

 end

end

for each particle i =1,...,�� do

 update the velocity using

 ���(� + 1) = ���(�) + �����(�)[���(�) ���(�)]+ �����(�)[ŷ�(�) ���(�)]
 update the position using

 xi(� + 1)= xi(�) + vi(� + 1)

 end

until stopping condition is true;

(ii) Bioluminescence Swarm optimization

Bioluminescence Swarm optimization (BSO) is a new swarm-based evolutionary approach

based on the bioluminescence behavior of fireflies. The BSO algorithm can be loosely seen

as a hybrid between PSO and GSO, but with some unique features.The BSO uses two basic

characteristics of the Glowworm Swarm Optimization (GSO) algorithm proposed by

Krishnanand & Ghose, (2005); the luciferin attractant, and the stochastic neighbor selection.

BSO goes further introducing new features such as: stochastic adaptive step sizing, global

optimum attraction, leader movement, and mass extinction. BSO is hybridized with two local

search techniques: local unimodal sampling and single-dimension perturbation. All these

features make BSO a powerful algorithm for hard optimization problems (Rossato de

Oliveira, et al., 2011).While the concept of global optimum does not exist in the GSO

algorithm, every particle inBSO is attracted to the global optimum, like PSO.

46

As in GSO and many other algorithms, the rst step is initializing n particles in the d-

dimensional search space. All particles, de ned by ����� =[���, ���,, …, ���], are evaluated by a

tness function �(�����), i = 1,...,n. BSO uses luciferin-based attraction instead of tness-based

attraction between the particles, as proposed by the GSO. This process is controlled by the

parameters ρ and γ, which are the luciferin decay constant and the luciferin enhancement

constant, respectively. It also uses stochastic step size, similarly to PSO, instead of xed step

as in the GSO. This step size also varies for each particle, according to its luciferin value, and

controlled by the cs parameter.

The BSO algorithm (Rossato de Oliveira, et al., 2011) is Algorithm 6

Algorithm 6: The BSO algorithm

1: Set parameters: �, �, �, ��, ��, ��, ��, ��

2: Randomly generate the bioluminescent particle population ��

3: for � = 1 to � do

4: Initialize luciferin ��(0) = 0

5: end for

6: Find the global best �(�)

7: � = 1

8: while stop condition not met do

9: for each particle � do {updateluciferin}

10: ��(� + 1) = (1 �). ��(�) + �. �(��(�))

11: end for

12: for each glowworm � do {movement phase}

13: Find neighbors ��(�)

14: for each particle j ∈�� (t) do

15: Compute probability ���(�) =
��(�)���(�)

∑ ��(�)�� � � �(�) ��(�)

16: end for

17: Select glowworm � using ���

18: Update particle step size with � = �� +
�

�� ��.��(�)

19: Update glowworm position with

 w�(t + 1) = w�(�) + ����. �. �
� �(�)�� �(�)

�� �(�)�� �(�)�
�+ ��. ����. �. �

�(�)�� �(�)

‖�(�)�� �(�)‖
�

20: Find the global best �(�)

47

21: if t%lR= 0 then {LocalSearchProcedures}

22: Perform strong local search on �(�)

23: else

24: Perform weak local search on �(�)

25: end if

26: if iterations without a new �(�) = �� then {MassExtinction}

27: Reinitialize all particles but �(�)

28: end if

29: end for

30: � = � + 1

31: end while

CHAPTER THREE

METHODOLOGY

This chapter presents the research methodology used to achieve each of the stated objectives

in Section 1.3. Optimization of the parameters of the RBFNN model involves clustering and

weight optimization processes. The objectives 1,2 and 3 concern clustering and the methods

used to achieve these objectivesare covered in Sections3.1, 3.2, and 3.3respectively.Objective

4 pertains to weightoptimization of the RBFNN model andthe method to achieve this is

covered in Section 3.4. This sub-section presents the RBFNN, the proposed models:

CGSOm-BSO and CGSOm-CGD RBFNN, as well as the techniques employed in developing

these models for time series forecasting.

To address the first objective of efficiently determining the sensor range of the CGSO

algorithm,an automated mechanism in the form of an algorithm for determining the value of

��was developed, and this is discussed in Section 3.1.Next, the glowworm initialization

method was modified as explained in Section 3.1.1 and a function that measures the cluster

error during the iteration phase (in Section 3.1.3) was introduced into the CGSO.These

modifications to the CGSO resulted to the CGSOm algorithm presented (in Section

3.1.2).The CGSO algorithm exploited the advantages of GSO algorithm.

3.1 Efficient determination ofLocal Sensor Range (��) of the CGSO algorithm

Conventionally, �� is determined via preliminary experiments by trial and error. This is the

same approach adopted by Aljarah and Ludwig,(2013). This approach is generally inefficient

48

and lacks documentation. In this work, we propose an algorithm for determining the value of

��.

The basic idea behind the algorithm is that �� samples of �� are generated between its limits;

each value of �� is then evaluated to produce �(��). Then a quadratic function is fitted on

�� ��� �(��) data. The value of �� at the turning point of the quadratic function becomes the

required local sensor range. Among the various functions tried while fitting the �(��) vs. ��

curve, the quadratic function was used because it converged to a turning point which is the

minimum point unlike exponential function which gave a minimum that tends to infinity with

no visible turning point. Using complicated exponential functions yielded multiple turning

points and this would be computationally expensive to use. The algorithmwith the modified

initialization is given in Algorithm 7.

Algorithm 7: Algorithm for determination of value of sensor range, ��

 1: Set parameter�, ��
���, ��

 2: Generate the initial population of glowworms by randomly selecting data instances from
datasets and assigning to each glowworm.
 3: Compute mean of the data set, � ̅

 4: Compute ��
��� =

∑ ‖��̅��‖�
�

�

 5: Initialize �, � , �, �, �, � , �, � , � = 0
 6: for� = 1to ��do

 7: ��(�) = ��
��� + (� 1)

��
��� ���

��� � �

��
//Derived from Langrange scale interpolation

 8: for each glowworm�� (where j = 1 to m) do

 9: Extract set of data instances ��� covered by ��
 10: end for
 11: Extract the set of the candidate centroids, �

 12: Compute ���� = ∑
∑ ������ ���

������

�� �

�����

|�|
���

//�����= ���������������������������������� � �;���� = ��������������������

 13: Compute �(��) = ���� × |�|+
�

|�|
//|�| = No. of clusters;�(��)= error at each iteration ��(�);

14: � = � + ��
�(�)

15: � = � + ��
�(�)

16: � = � + ��
�(�)

17: � = � + ��(�)
18: � = � + ��

�(�) × �(��)
19: � = � + ��(�) × �(��)
20: � = � + �(��)
21: end for

22: Compute � =
�

�

23: Compute � =
��

�

49

24: Compute �� = 0.5
(� ���)(����)�(� ���)(����)

(� ���)(����)�(����)(����)
 //�� =computed sensor range

3.1.1Initialization of Glowworm

CGSO initializes the population of glowworms by randomly generating a collection of

position vectors. This approach does not guarantee that each glowworm covers a data

instance. CGSOm implements a new approach that initializes the glowworms. The initial

population of glowworms are generated by randomly selecting data instances from datasets.

This approach guarantees that each glowworm is within the search space and covers at least a

data instance.

3.1.2 The Modified CGSO(CGSOm)

CGSOm, a modified version of CGSO, is proposed in this work. Two key aspects of CGSO

are modified – determination of the value of sensor range, �� and the initialization of

glowworms. Also, a function that measures cluster error quality during the iteration phase

was introduced.

The CGSOm algorithm is Algorithm 8

Algorithm 8: The CGSOm algorithm

Input: a dataset X consisting of d data instances with �dimensions

Method:

//Initialization phase
1: Set parameters: �, ��, �, �, �, ��

���, ��
2: Generate the initial population of glowworms by randomly selecting data instances from
datasets and assigning to each glowworm.
3: Determine ��//From Sensor Range DeterminationAlgorithm in Algorithm 3

4: for each glowworm gj, where j = 1 to m do
5: Initialize luciferin level, ��(0) = ��

6: Extract set of data instances Crj covered by gj

7: Calculate intra-distance ������ � = ∑ ����� ���
�����

���

8: end for
9: Extract the initial set of the candidate centroid,�. The initial centroid is a list of
glowworms with maximum |���| sizes and also disjointed from one another.

10: Calculate ��� = ∑ ∑ ��� ���
�����

���
|�|
���

11: Calculate ���������= � ∑ ��� ���
��

���

�

���

12: for each glowworm��, where j = 1 to m do {initializing fitness function}

13: Calculate fitness function

50

14: ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��
��������� ×

�

�
�����

������ �

��� �������� ��

 ��
��������� ×

�

�
�����

���×
������ �

��� �������� ��

15: end for
16: t = 1
17: while stop condition not met do
18: for each glowworm��, where j = 1 to m do {update luciferin}

19: ��(� + 1) = (1 �). ��(�) + �. ��(��)
20: end
21: for each glowworm��, where j = 1 to m do {movement phase}

22: Find neighbors ��(�)

23: for each glowworm� ∈ ��(�)do

24: Compute probability ���(�) =
��(�)���(�)

∑ ��(�)�� � � �(�) ��(�)

25: end for
26: Select glowworm� using ��� by roulette wheel method
27: Update glowworm position with

��(� + 1) = ��(�) + ��
��(�) ��(�)

���(�) ��(�)�
�

28: Extract set of data instances Crj covered by gj

29: Calculate intra-distance ������ � = ∑ ����� ���
����

�

���

30: end for
 31: Extract the set of the candidate centroids, �. The centroid is a list of glowworms with

maximum fitness function and also disjointed from one another.
32: Calculate��� = ∑ ∑ ��� ���

�����

���

|�|
���

33: Calculate ���������= � ∑ ��� ���
��

���

�

���

34: for each glowworm��, where j = 1 to m do {fitness function update}
35: Calculate fitness function

36: ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��
��������� ×

�

�
�����

������ �

��� �������� ��

 ��
��������� ×

�

�
�����

���×
������ �

��� �������� ��

37: end for
38: � = � + 1
39: end while
40: Return the set of candidate centroids, c
Output: A set of k clusters and k centroids

3.1.3 Clustering Error Function

Unlike K-means, sum of squared errors (SSE) is not a true representation of error in CGSO

or CGSOm since the number of clusters changes with iteration. In fact, SSE will tend to

increase as the number of iteration increases. This is due to the fact that as the number of

centroids declines, the intra-distance in each cluster increases which leads to an increase in

SSE. In this work, to visualize how the CGSOm algorithm improves the cluster quality, a

51

function that measures the error at each iteration was formulated. The error function is a sum

of the mean squared error (SMSE) multiplied by the number of clusters (Equation 4). The

formulated error function generally decreases with iteration.

 ����� = |�| × �
∑ ����� g��

������

���

�����

|�|

���

 (4)

3.1.3.1 Cluster Quality Evaluation Measures

To measureour clustering algorithm with data set with known truth, we use three different

measures for the evaluation of the cluster quality: Entropy (Equation 5), Purity (Equation

6)(Zhao and Karypis, 2002)and Rand Index, RI (Rand, 1971;Vinhet al.,2009) (Equation 7).

 ������� = � �
����

�

1

log �
�

��� ∩ ���

����

�

���

����
��� ∩ ���

����
��

�

���

 (5)

 ������ =
1

�
� max

�
���� ∩ ����

�

���

 (6)

 �� =
� + �

�
�
2

�
 (7)

where �� is a set of data instance in cluster �;�� is the true assignments of the data instances in

cluster �;� is the number of pairs of data instance that are in the same set in � and in the same

set in �;� is the number of pairs of data instance that are in different sets in � and in different

sets in �;� is the number of data instances in the data set;� is the number of clusters that is

generated from the clustering process; and q is the number of actual clusters in the dataset.

Entropy values range from 0 (perfect clustering quality) to 1 (very poor clustering quality).

Possible values of purity range from 0 (very poor clustering quality) to 1 (perfect clustering

quality).

The rand index is a cluster quality evaluation measure that checks how close the resulting

cluster is to the original cluster in terms of number of clusters and data points. It checks for

the extent of agreement of thenumber of clusters as well as data points in the resulting cluster

and the original cluster (the ground truth). Rand index results,though not appliedin the

CGSO, are included in this work to provide more information about the cluster quality. Its

value is between 0 and 1 and it is interpreted in a similar way as purity.

3.2 Automatic determination of the optimal number of clusters in a dataset.

52

To addressthis objective, the CGSOm was used to cluster the datasets/ RBF centres. This

produced the clusters automatically and optimally due to the sensor range mechanism

incorporated into the CGSOm. Toshow that theproposed CGSOm produces the optimal

number of clusters in a dataset, the modified glowworm initialization method was replaced

with the glowworm initialization method of CGSO and the performances of both resulting

clustering algorithms in clustering datasets were compared.

3.3 Development of a RBFNN model that adapts to the number of clusters in a
dataset.

This objective is achieved after the determination of the optimal number of clusters in a

dataset. Once the number of clusters is determined, the topology of the network is

reconfigured. As a rule in neural networks, the number of clusters is equal to the number of

the neurons in the hidden layer which determines the topology of the network.

3.4 Optimization of the RBFNN parameters fully

To address this objective, the following were achieved:A machine learning platform was

developed. The platform offers an approach allowing the user to explore and run simulation

experiments of combinations of training techniques considered in this work. Next, training

the RBFNN model was done with existing techniques and the BSO algorithm, after which

theperformances of thetechniques were evaluated.The results from this experimentation

produced two novel RBFNN training methodologies: CGSOm-CGD-RBFNN and the

CGSOm-BSO-RBFNN models which were able to train the RBFNN model parameters fully

and optimally.

The CGSOm-CGD-RBFNN and the CGSOm-BSO-RBFNN models are presented in Section

3.4.2.The processes involved in modelling multivariate time series data using the 2 models

are discussed in Section 3.4.3.First, an introduction of the RBFNN model and the process of

trainingthe network are outlined in Section 3.4.1.Furthermore, a description of how the

software used in this work was developed is in Section 3.4.4.

53

3.4.1 The Basic RBFNN Model

Every RBFNN architecture has three layers and each layer is made up of one or more nodes.

Figure 2 shows the architecture of a basic RBFNN. The input layer contains the feature

nodes,������ � expressed as:

� = �

��� ��� … ���

��� ��� … ���

…
��� ��� … ���

�

Where � represents the feature size and � the size of the data set.

The only hidden layer in RBFNN consists of � nodes. Each node in the hidden layer

encapsulates two data: cluster centroid�� and its standard deviation ��. The cluster centroids

are usually determined by unsupervised learning algorithm. A typical example of such

algorithm is K-means. K-means algorithm clusters hyper-dimensional points into � units by

minimizing the sum of squared errors between each point and its centroid. K-means suffers

one limitation – the value of � must be specified. One way to tackle this problem is to try-out

different � valuesand eventually select the one which resulted in the least error (Isimeto et

al., 2015). Alternatively, a swarm-based clustering approach, the CGSO can be used to find

the value of � automatically.

The clustering process yields �centroids positioned at each hidden node. The matrix

representation of the centroids is:

� = �

��� ��� … ���

��� ��� … ���

…
��� ��� … ���

�

The centroids are critical in computing the outputs from each hidden node. This is done via

kernel functions. The most commonly used are:

I. Gaussian function:

�(�) = e��‖���‖�
 (8)

Where‖� �‖ represents Euclidean distance andγ could be a constant or a function of �

II. Multi-Quadric function:

�(�) = �‖� �‖� + �� (9)

III. Inverse Multi-Quadric function:

�(�) =
�

�‖���‖�� ��
 (10)

IV. Thin-plate spline function:

54

�(�) = ‖� �‖�log (‖� �‖) (11)

V. Cubic function:

�(�) = ‖� �‖� (12)

VI. Linear:

�(�) = ‖� �‖ (13)

The most widely used among these kernels is Gaussian function. The matrix representation

of the hidden layer output is given as:

� =

1 1 … 1

�� �� … ��

�� �� … ��

…

�� �� … ��

One or more nodes constitute the output layer.Values at each of the � output nodes are

computed by:

�� = ��
� + ∑ ��

��(�)�
��� (14)

where �� is the value at output node m, �� is a set of � number of weights used in mapping

hidden nodes values to output node m and ��
�is a bias term, � is the input vector.

The matrix representation of the weights is given as:

� = �

��� ��� ��� … ���

��� ��� ��� … ���

…
��� ��� ��� … ���

�

By matrix multiplication of � and �, the matrix representation of the output nodes can be

derived:

� = � × � = �

��� ��� … ���

��� ��� … ���

…
��� ��� … ���

�

Getting the right set of weights that minimizes the prediction error requires solving an

optimization problem.The evaluation or cost function (Equation 15) is represented as:

� =
1

�
� � ����

��� ����
�

�

���

�

���

+
�

2�
� � ��

�

���

�

���

 (15)

Where���
��� is the target at output node � for sample data� ; and � is the regularization term

for controlling over-fitting.

The optimization algorithms commonly used in previous work include Gradient Descent,

Conjugate Gradient Descent and PSO. In this work, however, a novel optimization algorithm

55

known as BSO was used and its performance compared with existing techniques that have

been used to optimize the RBFNN.

3.4.2 Proposed CGSOm-BSO and CGSOm-CGD RBFNN Models

The CGSOm-BSO RBFNN Model is a RBFNN variant. It is a RBFNN model whose

centroids are determined by the proposed CGSOm and the weights are determined by BSO.

Figure3 is a schematic diagram of the network flow.

Figure 3:The Flow of the proposed models

3.4.3 Procedures for Modelling CGSOm-BSO and CGD RBFNN Model

The specific steps for training and validating our proposed model is outlined. It covers data

collection, data pre-processing, data partitioning, feature extraction and parametertuning.

3.4.3.1Data Collection

Two sets of data are used. The data for case 1 is extracted from General Electric Company’s

daily historical stock prices dataat(YAHOO! FINANCE, 2009).The data used consists of two

variables – openstock price data and closestock price data. It is made up of 2,000 data

samples.For case 2 experiment, currency exchange rate data at (PACIFIC Exchange Rate

Service, 1996)was used. The currency exchange rate data employed in the investigation of

the forecasting problem composed of real data representing the weekly averaged exchange

rates between British pound and US dollar during the period from 31 December 1979 to 26

December 1983.

3.4.3.2 Data Pre-processing

The range of values of data are mostly widely varied. This could lead to poor performance by

clustering and optimization functions because the variable with large values will dominate

the result of the objective function. Data pre-processing is required to prevent this kind of

 Training Data

Determine Centroids by CGSOm

Determine Weights by BSO and CGD

Output Trained Network

56

problem.The data collected were pre-processed by standardization of the data for each

variable. The formula for standardization (Equation 16) is given as:

 ���� =
� �̅

�
(16)

Where � ̅and � are the means and standard deviation respectively.

This process ensures that the new values in each variable has a zero-mean and unit-variance.

3.4.3.3 Data Partitioning

Every data set used in this work is partitioned into training set (70%), validation set (20%)

and test set (10%).

3.4.3.4 Feature Extraction

For time series data, the features for each input vector consists of data samples from the past

� days. � stands for lag. For example, if lag happens to be 2, the first input vector would

consist of data points for the first two days unrolled into a row vector. One major challenge is

determining the right value of lag. To solve this problem various values of lag were tested

and the right value selected for each data set.

3.4.3.5 Parameter Tuning

The proposed model has several parameters that require tuning. These parameters include

CGSOm parameters, regularization term and BSO parameters. In this work, the parameters

were tuned by going through a training-validation cycle until the results are satisfactory and

can be generalized.

3.4.4 The Software Development

A Matlab-based software application was built specifically for this work. It is important to

note that this application does not depend on Matlab in-built neural network toolbox. The

clustering and training algorithms were written from scratch. This choice was made because

the work requires having full control of every variable that affects the successful

implementation of RBFNN; also, the novel algorithms used in this work do not exist in

Matlab toolbox.

The application has graphical user interface (GUI) and was built in Matlab Graphical User

Interface Development Environment (GUIDE). The application was written using functional

programming paradigm. It has custom-built Matlab functions. Figure 4shows a snapshot of

the application interface.

57

The features of the application include data importation from excel and automatic data pre-

processing. It allows users to change options including training algorithm, clustering

algorithms, RB function, lag, and use of PCA. The effect of PCA, number of hidden units,

regularization term, kernel function and many others can be diagnosed. Also, the core

components of the trained network can be saved and used in building a commercial or open-

source application.

Figure 4:The Application Interface

CHAPTER FOUR

EXPERIMENTAL RESULTS AND DISCUSSION

Two experiments were conducted in this work. First, the experiment on the clustering aspect

of this researchis presented in Sections 4.1 to 4.3. This is to demonstrate the effectiveness of

CGSOm over CGSO and other four well-known clustering algorithms. Secondly, the

experiment for training the RBFNN model follows in Sections 4.4 to 4.7. Validation of the

proposed approaches is presented in Section 4.8.

4.1 Experimental Results and Discussions of Effectiveness of CGSOm

This section demonstrates the effectiveness of CGSOm in data clustering.Each experiment is

run on a PC with 6GB of RAM and 3 Intel cores (1.90 GHz each).

4.1.1 Test Data

Seven data sets were collected and pre-processed by rescaling each feature to value between

0 and 1. The first five data sets are real data obtained from UCI Machine Learning

58

Repository (Lichman, 2013), while the last two are artificial data sets from (ELKI, n.d.) data

repository.Table 1 summarizes the properties of each data set.

Table 1: Summary of the data sets

Data Set Record Featur
e

Cluster
r

Type Source

Iris 150 4 2 Real UCI

Balance 625 4 3 Real UCI

Seed 210 7 3 Real UCI

Ecoli 327 7 5 Real UCI

Glass 214 9 6 Real UCI

Mouse 490 2 3 Artificial ELKI

VaryDensity 150 2 3 Artificial ELKI

4.1.2 Parameter Settings

Table 2 summarizes the constant parameters used in all experiments.

Table 2: The CGSOm constant parameters

Parameter Value

�� 5.0

� 0.4

� 0.6

���������� �� ���������, � 1000

������� ��

��
���

0.0001

������ �� ���� ������, �� 30

������� ������ �� ��������� 200

4.1.3 Efficient determination of Local Sensor Range (��) of the CGSO

There is need to show that the sensor range determinationalgorithm (in Section 3.1, algorithm

7) efficiently determines the sensor range when compared to the trial and error technique in

the CGSO. This was achieved by evaluating the efficiency of the CGSOm in clustering data

and comparing the results with that of CGSO as well as other clustering techniques. A

summary of theresults of experimental simulations showing the effectiveness of the

CGSOmalgorithmin data clusteringwas compared against those of the CGSOand other four

standard, well-known clustering techniques commonly used in the literature as benchmarks.

Evaluation of theperformances of these clustering algorithms were based on cluster quality

measures of entropy, purity and rand index. The cluster quality results from these are in

Tables4, 5 and 6.

59

First, the average sensor range of each data set using the sensor range (r�) algorithm is

firstcomputed. Table 3summarizes the computed mean sensor ranges and standard deviation

of each data. From the table,it can be observed that the standard deviations are very small

with respect to the mean. This shows that the values for all the runs do not differ much.

Table 3: Computed mean sensor range for each data set for 50 runs

Data Set Sensor Range Mean
Sensor Range Standard

Deviation

Iris 0.3040 0.0314

Balance 0.4441 0.0050

Seed 0.2311 0.0138

Ecoli 0.3812 0.0160

Glass 0.4100 0.0444

Mouse 0.1734 0.0012

VaryDensity 0.2045 0.0465

A comparison of the clustering qualityof the CGSOm with the CGSO as well as with thefour

well-known clustering methods, in terms of entropy and purity, are shown in Tables 4 and 5

respectively. The clustering quality (the mean and the standard deviation of entropy and

purity results) for each data is determined for 50 runs and for each fitness function. Best

results are placed in square brackets. In each case, the underlined are the highest purity and

lowest entropy values. The four well-known clustering algorithms commonly used in the

literature are K-means clustering (Macqueen, 1967), average linking agglomerative

Hierarchical Clustering, HC (Zhao and Karypis, 2002), Further First, FF (Hochbaum and

Shmoys, 1985), and Learning Vector Quantization, LVQ (Kohonen, 2003). Rand Index result

is contained in Table6which is not reported in CGSO.

Table 4: Entropy Results

Data Set
CGSOm CGSO

K Means HC FF LVQ

F1 F2 F3 F1 F2 F3

Iris 0.382 ± 0.091

[0.136]

0.408 ± 0.052

[0.195]

0.405 ± 0.062

[0.136]
0.209 0.241 0.233 0.264 0.230 0.307 0.790

Balance 0.499 ± 0.021

[0.460]

0.498 ± 0.020

[0.453]

0.497 ± 0.019

[0.465]
0.622 0.690 0.669 0.701 0.739 0.654 0.753

Seed 0.327 ± 0.032

[0.276]

0.323 ± 0.028

[0.276]

0.329 ± 0.031

[0.265]
0.302 0.317 0.305 0.327 0.298 0.537 0.577

Ecoli 0.249 ± 0.011

[0.231]

0.250 ± 0.015

[0.224]

0.253 ± 0.015

[0.226]
0.325 0.342 0.324 0.307 0.522 0.611 0.579

60

Glass 0.337± 0.035

[0.270]

0.328 ± 0.036

[0.269]

0.332 ± 0.033

[0.244]
0.543 0.569 0.568 0.567 0.662 0.646 0.754

Mouse 0.130 ± 0.019

[0.096]

0.135 ± 0.023

[0.096]

0.138 ± 0.021

[0.085]
0.299 0.302 0.304 0.319 0.165 0.351 0.262

VaryDensity 0.252 ± 0.153

[0.030]

0.243 ± 0.150

[0.116]

0.238 ± 0.159

[0.000]
0.141 0.141 0.138 0.145 0.421 0.466 0.728

Table 5:Purity Results

Data Set
CGSOm CGSO

K Means HC FF LVQ

F1 F2 F3 F1 F2 F3

Iris 0.708 ± 0.096

[0.960]

0.681 ± 0.058

[0.913]

0.683 ± 0.065

[0.960]
0.919 0.903 0.909 0.887 0.877 0.860 0.507

Balance 0.762 ± 0.017

[0.794]

0.765 ± 0.016

[0.811]

0.765 ± 0.014

[0.786]
0.726 0.685 0.694 0.659 0.632 0.653 0.619

Seed 0.892 ± 0.013

[0.910]

0.894 ± 0.013

[0.910]

0.891 ± 0.014

[0.914]
0.900 0.889 0.897 0.876 0.895 0.667 0.667

Ecoli 0.846 ± 0.006

[0.857]

0.845 ± 0.007

[0.857]

0.845 ± 0.007

[0.857]
0.792 0.779 0.789 0.774 0.654 0.599 0.654

Glass 0.730 ± 0.068

[0.808]

0.741 ± 0.056

[0.804]

0.732 ± 0.061

[0.822]
0.541 0.533 0.529 0.542 0.463 0.481 0.411

Mouse 0.955 ± 0.009

[0.969]

0.953 ± 0.012

[0.969]

0.952 ± 0.010

[0.971]
0.837 0.834 0.833 0.827 0.910 0.800 0.843

VaryDensity 0.859 ± 0.134

[0.993]

0.867 ± 0.132

[0.960]

0.868 ± 0.134

[1.000]
0.956 0.956 0.957 0.953 0.667 0.667 0.567

Table 6: Rand Index Results

Data Set CGSOm

F1 F2 F3
Iris 0.798 ± 0.051 [0.950] 0.783 ± 0.028 [0.899] 0.785 ± 0.035 [0.950]

Balance 0.593 ± 0.004 [0.599] 0.593 ± 0.004 [0.602] 0.593 ± 0.004 [0.600]

Seed 0.831 ± 0.014 [0.854] 0.834 ± 0.015 [0.878] 0.831 ± 0.014 [0.859]

Ecoli 0.901 ± 0.006 [0.909] 0.900 ± 0.007 [0.909] 0.900 ± 0.007 [0.909]

Glass 0.770 ± 0.036 [0.841] 0.774 ± 0.035 [0.817] 0.771 ± 0.032 [0.827]

Mouse 0.717 ± 0.008 [0.741] 0.720 ± 0.009 [0.737] 0.721 ± 0.010 [0.743]

VaryDensity 0.820 ± 0.083 [0.919] 0.824 ± 0.080 [0.911] 0.826 ± 0.084 [0.934]

In Table 4, where a smaller entropy implies a better result, theentropy resultsshowthat

CGSOmperforms better than CGSO and other clustering algorithms in most data sets which

are Balance, Ecoli, Glass and Mouse, with an average entropy of 0.497, 0.249, 0.328 and

0.130 respectively. Although for the Mouse data, it is noted that HC algorithm obtained an

entropy of 0.165, however our CGSOm obtained a much better entropy of 0.130 thus

outperforming the HC.Also, it is noted that for Ecoli data, K

while CGSOm performed better

CGSO-F3 and CGSO-F1 gave best entropy values

for the Seed data, HC obtained the best entropy.

out of the 7 datasets clustered

gave best result in only 1 dataset

in Figure 5.

61

.Also, it is noted that for Ecoli data, K-means gave

CGSOm performed better with entropy of 0.249. For VaryDensity and Iris data,

F1 gave best entropy values of 0.138 and 0.209respectively. However,

eed data, HC obtained the best entropy.In Summary, CGSOm gave best results in 4

out of the 7 datasets clustered (57%); CGSO gave best results in 2 datasets

dataset (14.5%).A pictorial representation of this result is

 Entropy and Purity Results

CGSOm
57%

CGSO
28.5%

HC
14.5%

ns gave entropy of 0.307,

249. For VaryDensity and Iris data,

respectively. However,

Summary, CGSOm gave best results in 4

datasets(28.5%); and HC

A pictorial representation of this result is presented

62

Figure 5:Comparing clustering quality of CGSOm with other Clustering techniques

In Table 5, where a higher purity implies a better result, the purity resultsshowthat CGSOm

performs better than CGSO and other clustering methods in the data sets: Balance, Ecoli,

Glass and Mouse, with an average purity of 0.765, 0.846, 0.741 and 0.955 respectively.

However, for the Iris and VaryDensity data, CGSO-F1 and CGSO-F3 gave best purity values

of 0.919 and 0.957 respectively, while for the Seed data, CGSO and CGSOm have similar

values.In summary, again CGSOm gave best results in 4 out of the 7 datasets clustered(57%);

CGSO gave best results in 2 datasets (28.5%); and HC gave best result in only 1(14.5%).

Figure 5 also serves as the pictorial representation of this result.

Though the Mouse data has the best entropy and purity, it does not have the best rand index.

This shows that entropy and purity are not sufficient indicators of cluster quality. In fact, it is

practically possible to have 0 entropy and 1 purity and not have 1 rand index. Rand index

results are presented in Table 6.The datasets: Mouse, Balance, Ecoli, Glass, Iris, Seed and

VarDensity have a rand index of 0.721, 0.593, 0.901, 0.774, 0.798, 0.834 and 0.826

respectively. It can be deduced that theCGSOm produces clusters that agree to a large degree

with the ground truth since it gave rand index values of 0.70 and above in 6 out of the 7 cases

considered (86%). This result is presented graphically in Figures 6 and 7.

Figure 6:Rand Index Resultof the CGSOm

0.798

0.593

0.831
0.901

0.77
0.717

0.82

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
a
n

d
 l
n

d
e
x

v
a
lu

e
s

Data

Figure 7: Showing Agreement

4.2Automatic determination of the optimal number of clusters in a dataset.

This section shows that the method of initializing the

results.The result of comparing the

presented in Figures8b and Figure

To evaluate the effectiveness of the modified

initialization technique in CGSOm was compared with that

Comparing Figures 8b and 9b

thatthe CGSOm based on the modified

curve for determining sensor range,

ofCGSO. The decision range from Figure 8

method) is 0.218 whereas that of Figure

method) is 0.173. The number of clusters for the CGSO is 2

which is the same number of clusters (ground truth) in the original mouse data.

that the way the glowworms are initialized plays a vital

correctly and consequently determines the number of clusters found.

63

Agreement of CGSOm result with the ground truth

Automatic determination of the optimal number of clusters in a dataset.

shows that the method of initializing the glowworm affects the

The result of comparing the two glowworm initialization method

Figure 9b;

To evaluate the effectiveness of the modified initialization of the glowworm

CGSOm was compared with thatin CGSO, using Mou

b for the CGSO and CGSOm respectively,

the modified glowworminitializationmethod produced a better

sensor range,�� than that obtained using the initializ

The decision range from Figure 8b (based on CGSO glowworm

is 0.218 whereas that of Figure 9b (based on CGSOmglowworm

The number of clusters for the CGSO is 2; while that for the CGSOm

which is the same number of clusters (ground truth) in the original mouse data.

s are initialized plays a vital role in determining

correctly and consequently determines the number of clusters found.

[87%]
≥0.7

[14%]
<0.7

Automatic determination of the optimal number of clusters in a dataset.

affects the clustering

glowworm initialization methods described is

glowworm, the glowworms

using Mouse data set.

for the CGSO and CGSOm respectively, it can be observed

method produced a better

initializationmethod

glowworminitialization

glowworm initialization

or the CGSOm is 3,

which is the same number of clusters (ground truth) in the original mouse data. This proves

role in determining sensor range, ��

64

 Data instances with initial glowworms

(�) �� determination

(c) Clusters Clustering Error with iteration

Figure 8:Clustering result for Mouse data set using original CGSO initialization.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of itereration

S
M

S
E

 ×
 N

u
m

b
e
r

o
f

C
e
n

tr
o
id

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

Data Instances

Glow-worms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

Local Sensor Range, r
s

f(
r s

)

Error versus Decision range

65

 Data instances and initial glowworms �� determination

 (c) Clusters (d) Clustering Error with iteration

Figure9:Clustering result for Mouse data set using modified CGSOm initialization

4.3 Development of a RBFNN model that adapts to the number of clusters in a
dataset

The number of clusters in a datasetdetermines the topology of the network, since

theoretically the number of clusters is equal to the number of the neurons in the hidden layer

and the topology of the network. Hence, for any given clusterable datasets, as soon as the

CGSOm gets the number of clusters, the RBFNN adapts its architecture accordingly based on

the number of clusters. For instance, if the number of clusters obtained is k, the network

adapts its architecture to have same k number of neurons in the hidden layer. This adaptive

architecture of the RBFNN is shown in figure 2 in chapter 2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Local Sensor Range, r
s

f(
r s

)

Error versus Decision range

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

0 10 20 30 40 50 60
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Number of itereration

S
M

S
E

 ×
 N

u
m

b
e
r

o
f

C
e
n
tr

o
id

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

 Data Instances

Glow-worms

66

In this work, CGSO has been improved by developing an algorithm for determining sensor

range and by modifying the glowworm initialization. It was shown that the modified

initialization phase improves the performance of the algorithm that determines the sensor

range. It was also demonstrated that the computed sensor range in CGSOm leads to better

cluster quality for most data sets when compared with the results of CGSO andthose of other

four well-known clustering algorithms.

4.4Experimental Results and Discussion on RBFNN Weight Optimization

Thefollowing sections present the experimental results and discussion on RBFNN training

and testing

4.5Optimizing the RBFNN parameters fully

Presented in this section are the experimental results of the training methodologies of

existing RBFNN models compared withthe proposed training approach. Results from an

empirical study are presented to show how the proposed approacheswere realized. To train

the RBFNN models, two sets of experiments were conducted; these involved the use of two

case-study problems namely: Stock Price Forecasting problemin Section 4.6and Currency

Exchange Rate Forecasting problem in Section 4.6.In each case, several variants of RBFNN

models were developed.

TheRBFNN models implemented are as listed in Table 9.The performance of the RBFNN

models were determined and compared by the mean of the Mean Squared Error (MMSE) and

R2values of 10 independent runs.All results were obtained by training the model with 70% of

the data.

Details of the results/findings are discussed in Section 4.6.3and results shown in Tables 9, 10

(for case 1: Stock Price problem) as well as in Section 4.7.3with results shown in Tables 13,

14 (for case 2: the Currency Exchange problem).

The results from the study achieved theobjective (4) ofoptimizing the RBFNN parameters

fully. This study produced two new training methodologies for optimizing the RBFNN

parameters fully.These are: the CGSOm-CGD RBFNN model and the CGSOm-BSO

RBFNN model. These are new and optimal RBFNN models for time series forecasting

problems.

4.6 Case 1: Stock Price Forecasting problem

In this case,RBFNN models were

Electric Company’s daily historical s

of the forecasting problem composed of

data” and 2000 instances of this data

is in Figure10.

Figure 10:Time series plot of Stock Price data

4.6.1 Parameter Settings

The parameter settings for the CGSO and

settings for BSO algorithm used for S

Table 7:Parameters settings for CGSO and CGSOm algorithm used

forecasting problem

S/no Parameter
1
2
3
4
5
6
7
8
9

glowworms population
Initial Luciferin,L0
Decision range, r0
luciferin decay constant,rho
luciferin enhancement constant,
constant value,B
step size,s
number of neighbours, nt
maxIter

67

Case 1: Stock Price Forecasting problem

RBFNN models weredeveloped using stock price data extracted from

istorical stock prices data. The dataemployed in the investigation

of the forecasting problem composed of data attributes “Open price data” and “C

and 2000 instances of this data. The time series plot of how the data

Time series plot of Stock Price data

settings for the CGSO and CGSOm algorithms as well as the

settings for BSO algorithm used for Stock Price Forecasting problem are in

Parameters settings for CGSO and CGSOm algorithm used for stock price

Value
s population

Initial Luciferin,L0
Decision range, r0
luciferin decay constant,rho
luciferin enhancement constant,y
constant value,B

number of neighbours, nt

70
4
1.2
0.2
0.2
0.5
0.2
4
70

data extracted from General

employed in the investigation

data” and “Close price

the data evolves over time

as well as the parameter

are in Tables 7 and 8

for stock price

68

Table 8: Parameters settings for BSO algorithm used for stock price forecasting
problem
S/no Parameter Value
1
2
3
4
5
6
7
8
9
10

glowworms population
Initial Luciferin,L0
luciferin decay constant,rho
luciferin enhancement constant,y
step size, s
global best attraction constant, cg
maxIter
adaptive step sizing control, cs
mass extinction control, eT
strong local search control, IR

700
4
0.2
0.2
0.7
0.03
500
3
70
10

4.6.2 Plots of Optimized RBFNN Models

Figures 11 and 12showthe time series plot and regression plot of actual and predicted stock

pricerespectivelyusing CGSO-BSOtrained RBFNN. Figures13 and 14displaythe time series

plot and regression plot of actual and predicted stock price respectively using CGSOm-BSO

trained RBFNN. Figures 15 and 16showthe time series plotand regression plot of actual and

predicted stock price respectively using the PCA-CGSOm-BSO RBFNN.

Figure 11:Time series plot of actual and predicted stock price using CGSO-BSO trained
RBFNN

69

Figure 12:Regression plot of actual and predicted stock price from CGSO-BSO trained
RBFNN

Figure 13:Time series plot of Actual and Predicted stock price from CGSOm-
BSO trained RBFNN

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.4

0.6

0.8

1

Actual open

P
re

d
ic

te
d
 o

p
e
n

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.4

0.6

0.8

1

Actual close

P
re

d
ic

te
d
 c

lo
s
e

70

Figure 14:Regression plot of actual and predicted stock price using CGSOm-BSO RBFNN

Figure 15:Time series plot of actual and predicted stock price trained by PCA-CGSOm-BSO
RBFNN

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.4

0.6

0.8

1

Actual open

P
re

di
ct

ed
 o

pe
n

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.4

0.6

0.8

1

Actual close

P
re

di
ct

ed
 c

lo
se

71

Figure 16:Regression plot of actual and predicted stock price trained by PCA-CGSOm-BSO
RBFNN

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.4

0.6

0.8

1

Actual open

P
re

d
ic

te
d
 o

p
en

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.4

0.6

0.8

1

Actual close

P
re

d
ic

te
d
 c

lo
s
e

4.6.3Comparative Analysis

This sub-section presents the results of the variants of RBFNN models optimized by different

techniques and developed using stock price data.The mean of the mean squared error (MMSE)

of 10 runs and the standard deviations for each RBFNN model variant are computed.

In Tables 9and 10, the summary of results for average of 10 runs of Open stock price and

Closestock price data are shown respectively, for the RBFNN models considered.Experimental

results show that for the Open price data, the CGSO-BSO trained RBFNN taken as control in

this study, yields a MMSE of 4.01x10-2
, the CGSOm-BSOtrained RBFNN yields a MMSE of

2.77 x10-2. The CGSOm-CGDtrained RBFNN yields MMSE of 7.8 x 10-3, while the PCA-

CGSOm-CGD RBFNN yields MMSE value of 7.9x10-3 indicating that the PCA does not have

much influence on the result of the CGSOm-CGDtrained RBFNN, as both have almost same

error values.It is noted that the BSO variant slightly outperforms the CGSOm-PSO RBFNN

with an error of 5.4x10-2. This is an advantage for the BSO.

72

Table 9: Comparative Summary of Results for average of 10 Simulation Runs for Open

stock price

Model

Open

Training Test

MMSE ± �� R2 MMSE ± �� R2

CGSO-BSO trained

RBFNN =CONTROL
 4.01 × 10�� ± 0.006

0.9606 2.74 × 10�� ± 0.0003

0.9732

CGSOm-BSO trained

RBFNN
2.77 × 10�� ± 0.0004

0.9733 1.80 × 10�� ± 0.0002

0.9837

PCA-CGSOm-BSO

trained RBFNN
2.04 × 10�� ± 0.0022

0.9616 4.19 × 10�� ± 0.0002

0.9745

Other RBFNN

Variants :

CGSOm-CGD-

RBFNN

7.8 × 10�� ± 0.0003

0.9924 7.8 × 10�� ± 0.0002 0.9932

PCA-CGSOm-CGD-

RBFNN

7.9 × 10�� 0.9926 7.6 × 10�� 0.9899

CGSOm-GD-RBFNN 1.64 × 10�� 0.8505 1.60 × 10�� 0.8701

CGSOm-PSO-RBFNN 5.4 × 10�� 0.9602 4.4 × 10�� 0.9592

CGSO-CGD-RBFNN 3.0 × 10�� 0.9505 2.7 × 10�� 0.9612

Kmeans-GD-RBFNN 164 × 10�� 0.1011 1.02 × 10�� 0.3011

Kmeans-CGD-RBFNN 9.77 × 10�� 0.9888 5.60 × 10�� 0.9688

Kmeans-PSO-RBFNN 1.4 × 10�� 0.8631 1.0 × 10�� 0.8721

For the results ofClose price data (in table 10), CGSO-BSO trained RBFNN gives MMSE of

3.89x10-2, CGSOm-BSORBFNN gives MMSE of 2.71x10-2.. Also, the effect of PCA is not felt

in theClose stock data as the CGSOm-CGD RBFNN and the PCA-CGSOm-CGD RBFNN

yieldsimilar MMSE values.Further, the R2 values are all on the high side for these models for

both the Open and Close data indicating that all the models fit the data well. The standard

deviations are very small with respect to the mean indicating that the values for all the runs do

not differ much.

73

Table 10: Comparative Summary of Results for average of 10 Simulation Runs for Close

stock price

Model

Close
Training Test

 MMSE ± �� R2 MMSE ± �� R2

CGSO-BSO trained

RBFNN =CONTROL 3.89 × 10�� ± 0.028

0.9616 2.51 × 10�� ± 0.0022

0.9740

CGSOm-BSO trained

RBFNN

2.71 × 10�� ± 0.0005

0.9790 1.30 × 10�� ± 0.0004

0.9842

PCA-CGSOm-BSO

trained RBFNN 1.56 × 10�� ± 0.0018

0.9630 3.2 × 10�� ± 0.0011

0.9742

Other RBFNN

Variants :

CGSOm-CGD-RBFNN 5.7 × 10�� ± 0.0005 0.9945 4.4 × 10�� ± 0.0002 0.9948

PCA-CGSOm-CGD-

RBFNN

5.2 × 10�� ± 0.0018 0.9950 8.2 × 10�� ± 0.0012 0.9895

CGSOm-GD-RBFNN 1.85 × 10�� 0.8701 1.1 × 10�� 0.8901

CGSOm-PSO-RBFNN 5.71 × 10�� 0.9589 3.57 × 10�� 0.9692

CGSO-CGD-RBFNN 3.5 × 10�� 0.9521 1.71 × 10�� 0.9712

Kmeans-GD-RBFNN 3.5 × 10�� 0.6567 1.5 × 10�� 0.6767

Kmeans-CGD-RBFNN 7.99 × 10�� 0.9908 5.20 × 10�� 0.9421

Kmeans-PSO-RBFNN 1.25 × 10�� 0.9859 1.0 × 10�� 0.9590

Next, the test data is used on the models to determine their predictive accuracy on unseen

data.For the Open stock Price data, the CGSO-BSO RBFNN gives MMSE= 2.74x10-2 with a

R2 value of 0.9732. The CGSOm-BSO-RBFNN model yields MMSE = 1.8 x10-2 and R2

=0.9837. Also, it was observed that the CGSOm-CGD RBFNN yields 7.8x10-3
,while PCA-

CGSOm-CGD RBFNN yields MMSE of 7.9x10-3.This again indicates that the PCA does not

have much influence on the result of the CGSOm-CGDtrained RBFNN.A similar trend is

observed for Close price data. This shows that the RBFNN models are generalizing well for

unseen data.

74

Taylor (2006) noted that traditionally, it is accepted that the best forecast model is that with the

smallest overall error measurement value using the test data. In order words, the predictive

accuracy of a model can be measured by the mean squared error on the test set. This is the

conventional method used by most researchers in validating their predictive models.

Using test dataset, the CGSOm-CGD RBFNN and CGSOm-BSO RBFNN seem tohavelower

error values compared to the CGSOm-PSO RBFNN. However, the CGD variant has a slightly

lower error with an error value of 7.8x10-3 compared to the BSO variant with error of 1.8 x10-2.

The BSO slightly outperformsthe PSO variant having an error of 4.4 x 10-2 .

4.7Case 2: Currency Exchange Rate Forecasting problem

In this case, currency exchange rate data was used to develop the RBFNN models.The currency

exchange rate datafrom (PACIFIC Exchange Rate Service, 1996)was used and it is composed

of real data representing the weekly averaged exchange rates between British pound and US

dollar during the period going from 31 December 1979 to 26 December 1983. The time series

plot of the data is in Figure 17.

 Figure 17: Time series plot of the Currency Exchangedata

4.7.1Parameter Settings

he parameter settings for the CGSO and CGSOm algorithm as well as for the BSO algorithm

used for Currency Exchange Rate Forecasting problem are in Tables 11 and 12.

Table 11: Parameters settings for CGSO and CGSOm algorithm used for Currency

75

Exchange Rate Forecasting problem

S/n Parameter Value

1
2
3
4
5
6
7
8
9
10

glowworms population
Initial Luciferin,L0
Decision range, r0
luciferin decay constant,rho
luciferin enhancement constant, y
constant value, B
step size, s
sensor range,��
number of neighbours, nt
maxIter

3500
1
0.2
0.3
0.05
0.04
0.3
0.25
4
1800

Table 12: Parameters settings for BSO algorithm For Currency Exchange Rate

Forecastingproblem

S/n
o

Parameter Value

1
2
3
4
5
6
7
8
9
10
11
12
13

glowworms population
Initial Luciferin,L0
Decision range, r0
luciferin decay constant,rho
luciferin enhancement constant,y
constant value,B
step size,s =
sensor range,rs
global best attraction constant, cg
maxIter
adaptive step sizing control, cs
mass extinction control, eT
strong local search control, IR

2000
1
0.3
0.3
0.05
0.04
0.4
0.25
0.3
1000
0.2
30
10

4.7.2Plots of Optimized RBFNN Models

Figures 18 and 19show the time series plot and regression plot of actual and predicted currency

exchange rate respectivelyusing CGSOm-BSO trained RBFNN. Figures 20 and 21display the

time series plot and regression plot of actual and predicted currency exchange rate respectively

using CGSO-BSO trained RBFNN.

76

Figure 18: Time series plot of actual values vs. predicted currency exchange rate using

CGSOm-BSO trained RBFNN

Figure 19:Regression plot of actual and predicted currency exchange rate using CGSOm-

BSO trained RBFNN

Figure 20:

Time series plot of actual values vs. predicted currency exchange rate using CGSO-BSO

trained RBFNN.

Figure 21:Regression plot of actual and predicted currency exchange rate using CGSO-BSO

trained RBFNN

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Actual USD/GBP

Pr
ed

ict
ed

 U
SD

/G
BP

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

Actual USD/GBP

P
re

d
ic

te
d
 U

S
D

/G
B

P

77

4.7.3Comparative Analysis

This sub-section presents the results of RBFNN models optimized by different techniques and

developed using currency exchange rate data. The mean of the mean squared error (MMSE) of

10 runs and the standard deviations for each RBFNN model variant were computed.

In Table13, the summary of results for average of the RBFNN models considered is presented.

Experimental results show that usingtest data,the CGSO-BSO trained RBFNN yields a MMSE

of 8.3x10-3with a R2 value of 0.9219. The CGSOm-BSOtrained RBFNN yields a MMSE of

5.6x10-5 with a R2 value of 0.9977. The CGSOm-CGDtrained RBFNN yields MMSE of

4.9x10-5with a R2 value of 0.9977, while the PCA-CGSOm-CGD RBFNN yields MMSE value

of 7.6x10-3 indicating that the PCA does not have a positive influence on the result of the

CGSOm-CGDtrained RBFNN as the error values increases. Also noted is that the R2 values are

high for these models indicating that all the models fit the data well.

Table 13:Comparative Performance of RBFNN variants for average of 10 simulation runs

RBFNN VARIANTS MMSE R2

CGSO-BSO-RBFNN.

= CONTROL

8.311x 10-3 0.9219

 CGSOm-BSO-RBFNN 5.64 x 10-5 0.9977

PCA-CGSOm-BSO-RBFNN 7.06 x 10-5 0.9969

CGSO-PSO-RBFNN 1.4442 x 10-4 0.9933

CGSOm-PSO-RBFNN 5.4183 x 10-5 0.9975

CGSO-CGD-RBFNN 1.5158 x 10-4 0.9930

CGSOm-CGD-RBFNN 4.9362 x 10-5 0.9977

PCA- CGSOm-CGD-RBFNN 7.6 x 10-3 0.9807

CGSOm-GD-RBFNN 6.5 x10-3 0.9658

Kmeans-GD-RBFNN 8.8x10-3 0.9902

Kmeans-CGD-RBFNN 3.6602 x 10-5 0.9983

Kmeans-PSO-RBFNN 1.4700 x 10-4 0.9932

The CGSOm-BSO RBFNN has MMSE of 5.6 x10-5; CGSOm-CGD RBFNN hasMMSE of 4.9

x10-5; the CGSOm-PSO-RBFNN has MMSE of 5.4x10-5 ; all three have similar error values.

4.8Validation of approach

This section presents a benchmarkingof the approaches from this study against existing

RBFNN models. The models considered are Evolving Radial basis Function Neural Network

78

(EvRBF)(Rivas et al., 2004); the Auto Regressive-RBF tuned using GA (Sheta and De Jong,

2001), the-Auto Regressive model tuned using Least Square Estimate (LSE). These models

were chosen because they were designed for the same application domain as this study, which

is time series forecasting. The RBFNN models developed in this study were trained using same

dataset that the afore-mentioned 3 models applied.

Table14:Comparative Performance of RBFNN variantsbased on proposedand

 Existing approaches.

Dataset

AR-RBF

tuned using-

LSE

AR-RBF

tuned using-

GA

EvRBF CGSOm-

BSO-

RBFNN

CGSOm-CGD-

RBFNN

Training

(MSE)

7.2601x 10-4 5.1407 x 10 -4 3 x 10-4 5.64 x10-5 4.9x10 -5

Full

dataset

(MSE)

12.001 x 10-4 8.7220 x 10-4 6 x 10-4 8.03x10-5 7.1 x 10 – 5

Simulations were done for 10 runs as initiated in EvRBF(Rivas et al.,2004). Table 14 gives the

MSE computed over the training and full data sets for all the models. The results indicate lower

error values for CGSOm-BSO-RBFNN andCGSOm-CGD-RBFNN when compared to the ones

obtained from the other 3 benchmark models. For example, using the training datasets, the AR-

RBF tuned using LSE gave MSE=7.2601x 10-4; the AR-RBF tuned usingGA gave MSE =

5.1407 x 10 -4;EvRBFgave MSE = 3 x 10-4, the CGSOm-BSO-RBFNN yielded MSE = 5.64 x

10-5 andCGSOm-CGD-RBFNNyieldedMSE=4.9x10 -5.These results validate the

modelsdeveloped in this study for optimizing the RBFNN parameters.

79

CHAPTER FIVE

SUMMARY OF FINDINGS, CONCLUSION,CONTRIBUTIONS TO KNOWLEDGE

AND FURTHER WORK

5.1Summary of Findings

Based on the discussions of results in Chapter four, Table15 shows the summary of findings

Table 15: Summary of Findings

Objectives Findings/Results

For objective 1:

To efficiently determine the

sensor range of the CGSO

algorithm.

The CGSOm algorithm was developed.

The CGSOmcomputes efficiently the sensor range (��)

automatically, modified the glowworm initialization

method and introduced a function that measures the

cluster error during the iteration phase.

Results showed the effectiveness of the CGSOm against

the CGSO, and existing standard clustering techniques

used as benchmarks. Using cluster quality evaluation

measures of Entropy, Purity and Rand Index values;

CGSOm gave best entropy and purity values in four of

the seven datasets clustered (57%), CGSO gave best

results in two datasets (28.5%), and HC gave best result

in one dataset(14.5%).Additionally, it was noted that

CGSOm produced clusters that agree to a large degree

with the ground truth since it gave rand index value of

0.70 and above in six of the the seven datasets

considered.

For objective 2:

To automatically determine the

optimal number of clusters in a

dataset.

It was observed that the way the glowworms are

initialized plays a vital role in determining sensor

range, �� correctly and consequently determines the

number of clusters found. Hence, the glowworm

80

 initialization method of CGSOm was compared with that

of CGSO. It was observed that the method based on

CGSOm produced a better curve for determining sensor

range,�� than that obtained using the initializationmethod

of CGSO.This was observed from the several clustering

experiments carried out.For instance, for the mouse data,

the sensor range (based on CGSO glowworm

initialization method) is 0.218; whereas that (based on

CGSOm glowworm initialization method) is 0.173. The

number of clusters for the CGSO is 2; while that for the

CGSOm is 3, which is the same number of clusters

(ground truth) in the original mouse data. This proves

that the way the glowworms are initialized plays a vital

role in determining sensor range, �� correctly and

consequently determines the number of clusters found.

This CGSOm glowworm initialization method

contributes to the performance of the sensor range

determination algorithm.

For objective 3:

To develop a RBFNN model

that adapts to the number of

clusters in a dataset.

As soon as the number of clusters is determined, the

topology of the network adapts to this number, resulting

in an neural network with an adaptive architecture.

81

For objective 4:

To optimize the RBFNN

parameters fully

Two new training methodologies for optimizing the

RBFNN parameters fully resulted from this work,

yielding the CGSOm-CGD RBFNN and CGSOm-BSO

RBFNN models. These are new and optimal RBFNN

models for time series forecasting problems. Comparing

the performance of these models with existing models,

results obtained showed that the CGSOm-CGD RBFNN

and CGSOm-BSO RBFNN gave betterforecasting

accuracy by yielding lowest error values.

5.2Conclusion

The overall goal of this work is to optimize fully the RBFNN models in such a manner that the

limitations of existing models are addressed.The clustering aspect of theRBFNN learning

process was improved upon; in this case,an improved version of CGSO,the CGSOm,was

proposed. The CGSOm solves the challenge in RBFNN optimization as it finds the number of

clusters in an efficient manner and fixes the configuration of the network in an adaptable

manner.The CGSO was improved upon by incorporating an algorithm for determining the

sensor range automatically, modifying the glowworm initializationmethod, and introducing a

function that measures cluster error during the iteration phase. It was shown that the modified

initialization phase improves the performance of the algorithm that determines the sensor

range. It was also demonstrated that the computed sensor range in CGSOm leads to better

cluster quality for most data sets when compared with other existing clustering techniques.

In optimizing the weights, the fact that the BSO based RBFNN model competes favourably with the

standard CGD based RBFNN, thereby leading to development of two new RBFNN training

methodologies-CGSOm-BSO and CGSOm-CGD.The newmodels determine automatically the

optimal number of RBF centres in a given problem, the number of hidden neuronsin the

network and the configuring of the network.This result yields high forecastaccuracy.

5.3Contributions to Knowledge

This study made the following contributions to knowledge:

(1) A new clustering algorithm, CGSOm was developed. It incorporates an efficient

82

mechanism for determining the sensor range (sensor range determination algorithm), in place

of the existing trial and error method.It includes a function that measures the cluster error

during the iteration phase, and an improved glowworm initialization method that assists in

obtaining the optimal number and quality of clusters.

(2) This work derived two new, efficient and adaptive techniques, namely the CGSOm-CGD-

RBFNN and CGSOm-BSO-RBFNN models for training the Radial basis Function Neural

Network. These models are major contributions to the statistical and machine learning

community and will be of benefit to all those domains and sectors involved in time-series

forecasting.

(3) The efficient mechanism for determining the sensor range, the sensor range determination

algorithm labeled as “Algorithm 7” was created from this research work.This algorithm helps

the CGSOm to determine the number of clusters in an efficient manner.

5.4 Further Work

(1) The fitness function significantly affects the cluster quality. Further work can be done as

regards finding a more effective and efficient fitness function.

(2) In this work, the CGSOm has been applied in time-series forecasting. Its effectiveness could

be investigated in big data mining.

83

REFERENCES
Abraham, A. Das, S. Roy, S. (2008) Swarm Intelligence Algorithms for Data Clustering, In

Maimon, O. Ro
L. (Eds.),Soft Computing for Knowledge Discovery and Data Mining, Springer, US, 279-313.

Aljarah, I. and Ludwig, S. (2013) A New Clustering Approach based on Glowworm Swarm

Optimization, 2013IEEE Congress on Evolutionary Computation, Cancun, 2642-2649, doi:
10.1109/CEC.2013.6557888

Alpaydin, E. (2010) Introduction to Machine Learning, 2nd Edition, Massachusetts: The MIT Press,
Cambridge, Boston, USA.

Armano, G. and Farmani, M. R. (2014) Clustering Analysis with Combination of Artificial Bee
Colony Algorithm and k-Means Technique, International Journal of Computer Theory and
Engineering, 6(2), 141-145.

Awad, M. Pomares, H. Rojas, I. Salameh, O. and Hamdon, M. (2009) Prediction of Time Series Using
RBF Neural Networks: A New Approach of Clustering, The International Arab Journal of
Information Technology, 6(2), 138-144.

Awad, M. (2010) Optimization RBFNNs Parameters using Genetic Algorithms: Applied on Function
Approximation, International Journal of Computer Science and Security (IJCSS),4 (3), 295 –
307.

Bankole, A. and Ajila, S.A. (2013) Cloud Client Prediction Models for Cloud Resource Provisioning
in a Multitier Web Application Environment, 7th IEEE International Symposium on service-
Oriented System Engineering (IEEESOSE 2013), San Francisco Bay, USA

David, S. (2014) Theoretical Foundations of Clustering – Few Results, Many Challenges, Tutorial
Machine Learning Summer School 2014 Workshop, Remnin University, Beijing, China.

Binitha, S. and Sathya, S.S. (2012) A Survey of Bio inspired Optimization Algorithms,International
Journal of Soft Computing and Engineering (IJSCE), Vol.2 (2), 2231-2307.

Borgetto, D. Maurer, M. Da-Costa, G. Pierson, J. and Brandic, I. (2012) Energy-Efficient andSLA-
Aware Management of IaaS clouds, 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet (E-Energy), Madrid, Spain.

84

Broomhead, D.S and Lowe, D. (1988) Multivariate Functional Interpolation and Adaptive Networks,
Complex Systems, 2, 321-355.

Chao C-F. and Horng M. (2014) Firefly algorithm for training the radial basis function network in
ultrasonic supraspinatus image classification, Computer Modelling & New Technologies,18(3),
77-83.

Domingo, P. (2012) A Few Useful Things to Know about Machine Learning, Communications of the
ACM, 55(10), 78-87.

. and Zhang, N. (2008) Time series prediction using evolving radial basis function networkswith
new encoding scheme, Journal of Neurocomputing,71(7-9), 1388-1400.

ELKI (n.d.) Environment for DeveLoping KDD-Applications Supported by Index-Structures,
Retrieved from: http://elki.dbs.ifi.lmu.de/wiki/DataSets [Accessed on 20th March, 2016]

Engelbrecht, A., (2007) Computational Intelligence, An Introduction, 2nd Ed, England: John Wiley and
Sons Ltd, England, Great Britain.

Frigui, H and Krishnapuram, R. (1999) A Robust Competitive Clustering Algorithm with Applications
in Computer Vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (5),
450-465.

Gan, M. Peng, H. and Dong, X. (2012) A Hybrid Algorithm to optimize RBF Network Architecture
and Parameters for Nonlinear Time Series Prediction, Applied Mathematical Modelling,36(7),
2911–2919.

Gutierrez-Osuna, R. (2014) CSCE 666 Pattern Analysis, Texas A&M University, Retrieved from:
http://research.cs.tamu.edu/prism/lectures/pr/pr_l19.pdf [Accessed on 25th May,2014].

Han, J. Kamber, M. and Pei, J. (2012) Data Mining: Concepts and Techniques. 3rd edition. CA, USA:
Morgan Kaufmann Publishers, CA, USA.

Handl, J. and Meyer, B. (2007) Ant-Based and Swarm-Based Clustering, Swarm Intell.1, 95-
113.

Hardin, T. Cui, X. Ragade, R. K. Graham, J. H. and Elmaghraby, A. S. (2004) A Modified Particle
Swarm Algorithm for Robotic Mapping of Hazardous Environments, The 2004
WorldAutomation Congress, SEVILLE, Spain.

Hochbaum D. S. and Shmoys, D. B. (1985) A Best Possible Heuristic for the k-Analysis, Journal of
Problem, Mathematics of Operations Research, 10(2), 180–184.

Huang, Z and Zhou, Y. (2011) Using Glowworm Swarm Optimization Algorithm for
ClusteringAnalysis, Journal of Convergence Information Technology, 6(29), DOI: 10.4156/jcit

Isimeto, R. Fasina, E.P. Alienyi, C.D. and Uwadia, C.O. (2015) Predicting the Occurrence of Rainfall
using Improved Radial Basis Function Neural Network, Journal of the Computer Science and
its Applications: An International Journal of the Nigerian Computer Society,22(2), 66-72.

Karayiannis, Nicolaos B., and Randolph-Gips, Mary M. (2003) The Construction and Training of
Reformulated Radial Basis Function Neural Networks, IEEE Transactions on Neural

85

Networks, 4, 835-844.

Karegowda, A. G. and Prasad, M. (2013) A Survey of Applications of Glowworm Swarm
Optimization Algorithm, International Journal of Computer Applications (0975 – 8887)
International Conference on Computing and information Technology (IC2IT-2013), 39-42

edy, J. and Eberhart, R. (1995) Particle Swarm Optimization, Proceedings of IEEE International
Conference on Neural Networks, 1942–1948.

Keogh, E. (2003) Data mining and machine learning in time series databases, Tutorial ECML/PKDD-

2003: Fourteenth European Conference on Machine Learning and Seventh European

Conference on Principles and Practice of Knowledge Discovery in Databases, Cavtat-

Dubrovnik, Croatia.

N. Lee, C-M. (2009) Time series prediction using RBF neural networks with anonlinear time-
varying evolution PSO algorithm, Journal Neurocomputing, 73 (1-3), 449-460.

Kohonen, T. (2003) Learning Vector Quantization: The Handbook of Brain Theory and Neural
Networks, 2nd Edition, Massachusetts: The MIT Press, MA, USA, 631-634

Krishnanand, K. and Ghose, D. (2005) Detection of Multiple Source Locations using a Glowworm
Metaphor with Applications to Collective Robotics, Proceedings of the IEEE Swarm
Intelligence Symposium, CA, USA, 84 – 91.

Larsson, E. and Fornberg, B. (2005) Theoretical and Computational Aspects of Multivariate
Interpolation with increasingly Flat Radial Basis Functions, Computers & Mathematics with
Applications,49(1), 103–130.

Leung, Y. Zhang, J. and Xu, Z. (2000) Clustering by Space-Space Filtering, IEEE Transactions on
Pattern Analysis and Machine Intelligence,22 (12), 1396-1410.

Lichman, M. (2013) UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science, CA, USA.

-F. and Chen, L.-H. (2005) Time Series Forecasting by Combining the Radial Basis Function
Network and the Self-Organizing Map, Hydrological Processes, 19(10), 1925–1937.

MacQueen, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations, in
Proc. Fifth Berkeley Symp. on Math. Statist. and Prob. 1, University of California Press, CA,
USA, 281–297.

Mitchell, T.M. (1997) Machine Learning,Massachusetts: The MIT Press, Cambridge, Boston, USA.

Moody, E. and Darken, C. (1989) Fast Learning in Networks of Locally Tuned Processing Units,
Computer Journal Neural Computation, 2(1), 281-294.

Nekoukar,V. and Beheshti, M.T. (2009) A Local Linear Radial Basis Function Neural Network for
Financial Time-Series Forecasting, Appl Intell (2010), Springer US, 33(3), 352-356.

Omran, M. Salman, A. and Engelbrecht, A. P. (2002) Image classification using particle swarm
optimization, Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and
Learning, (SEAL 2002),370-374.

http://link.springer.com/search?facet-author=%22Vahab+Nekoukar%22
http://link.springer.com/journal/10489/33/3/page/1

86

Ortega, J. González, M. Salmeron, A. Prieto, A. Pomares, H. Ros, A. and Rojas, I. (2000) A New
Radial Basis Function Networks Structure: Application to Time Series Prediction, Proceedings
of IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN-2000),
Italy, 445-449.

PACIFIC Exchange Rate Service (1996) Sauder School of Business, University of British Columbia,
Retrieved from: http://pacific.commerce.ubc.ca/xr/data.html [Accessed on 30th March, 2016]

Raju, N.V.S. (2014) Optimization Methods for Engineers, Delhi, India: PHI Learning Private Limited,

Delhi, India.

Rand, W.M. (1971) Objective criteria for the evaluation of clustering methods, Journal of the
American Statistical Association. American Statistical Association,66 (336), 846–850.

Rivas, V.M. Castillo,P.A. Merelo,J.J. (2002) Evolved RBF Networks for Time-Series Forecasting
and Function Approximation. In: Guervós, J.J.M. Adamidis P. Beyer HG. Schwefel HP.
Fernández-Villacañas JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN
2002. Lecture Notes in Computer Science, 2439. Springer, Berlin, Heidelberg

Rivas, V.M. Merelo, J.J. Castillo, P.A. Arenas, M.G. and Castellano, J.G. (2004) Evolving RBF
Neural Networks for Time-Series Forecasting with EvRBF, Information Sciences, 165, 207–
220.

Rossato de Oliveira, D. Parpinelli, R.S. and Lopes, H.S. (2011) Bioluminescent Swarm Optimization
Algorithm, Evolutionary Algorithms, Prof. Eisuke Kita (Ed.), InTech, ISBN: 978-953-307-
171-8

Ruiwang, H. and Binwang, H. (2002) A New Algorithm of Selection the Radial BasisFunction
Networks Center, Proceedings of the First International Conference on Machine Learning and
Cybernetics, Beijing, 1801-1804.

Shelokar, P. Jayaraman, V. and Kulkarni, B. (2004) An ant colony approach for clustering, Analytica
Chimica Acta, 509(2), 187 – 195.

Shen,W. Guo, X. Wu C. Wu, D. (2011) Forecasting stock indices using Radial Basis Function Neural
Networks optimized by Artificial Fish Swarm algorithm, Knowl.-Based Syst 24,378-385.

, A.F. and De Jong, K. (2001) Time-series Forecasting using GA-tuned Radial Basis Functions,
Information Sciences, Elsevier, 133(3), 221-228(8),

Shifei, D. Li, X. Hang, X. Liwen, Z. (2010) Research and Progress of Cluster Algorithms based on
Granular Computing , JDCTA,4(5), 96-104.

Sneha, P. M. and Bapat, A. U. (2013) Clustering Algorithms for Radial Basis Function Neural
Network, ITSI Transactions on Electrical and Electronics Engineering (ITSI TEEE),1(1), 113-
116.

 S. Zhigang, Y. Chen, X (2005) A Novel Radial Basis Function Neural Network for
Approximation, International Journal of Information Technology, 11(9), 110-118.

87

 B.J. (2006) Methods and Procedures for the Verification and Validation of Artificial Neural
Networks, Springer USA.

Vinh, N.X. Epps, J. and Bailey, J. (2009), Information Theoretic Measures for Clustering
Comparison: Is a Correction for Chance Necessary?, ICML '09: Proceedings of the 26th
Annual International Conference on Machine Learning, ACM, 1073–1080.

YAHOO! FINANCE (2009) [Online]: http://finance.yahoo.com/quote/GE/history?ltr=1 , [Accessed on
27th March, 2016]

Yegnanarayana, B. (2010) Artificial Neural Networks, New Delhi: PHI Learning Private Limited, New
Delhi, India.

ao, Y. and Karypis, G. (2002) Evaluation of hierarchical clustering algorithms for document
datasets,” in Proceedings of the eleventh CIKM ’02, NY, USA, 515–524.

ang, Y. Yan, E. Li, C. and Li, Y. (2008) Application of Multivariable Time Series Based on RBF
Neural Network in Prediction of Landslide Displacement, The 9th International Conference for
Young Computer Scientists, ICYCS 2008, 2707 – 2712.

Zhang, C. Ouyang, D. and Ning, J. (2010) An Artificial Bee Colony Approach for Clustering, Expert
Systems with Applications, 37, 4761–4767.

Zhu, L. (2009) Nonlinear Time Series Prediction by Using RBF Network, Advances in Neural
Networks – ISNN 2009Lecture Notes in Computer Science, 5551, 901-908.

http://link.springer.com/bookseries/558

88

function varargout = Predictor(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Predictor_OpeningFcn, ...
 'gui_OutputFcn', @Predictor_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

APPENDIXA

89

handles.output = hObject;
handles.VarNames = {};
%set(handles.summaryTable,'data',[handles.tableVar,{'';'';'';''},{'';'';''
;''}])
handles.noVar = 4;
handles.featureSize = 12;
handles.noSamples = [];
handles.data = [];

handles.rbfNames = {'Gaussian', 'Multi-Quadric', 'Inverse Multi-
Quadric','Thin Plate Spline','Cubic', 'Linear'};
handles.rbfcns =
{'gaussRBF','multiQuadRBF','invMultiQuadRBF','thinPlateSplineRBF','cubicRB
F','linearRBF'};
set(handles.rbFunctions, 'string', handles.rbfNames)

optData, optNames, optH] = ExtractOptFcn('optsettings.txt');
handles.optfcnsString = optNames;
handles.optfcnsData = optData;
handles.optfcnsHandle = optH;
set(handles.optMenu,'string', optNames);
set(handles.optMenu,'string',handles.optfcnsString)

% Extracting the clustering function from file
[clusterData, clusterNames, clusterH] =
ExtractOptFcn('clustersettings.txt');
handles.clusterData = clusterData;
handles.clusterNames = clusterNames;
handles.clusterHandles = clusterH;
set(handles.clustFunctions,'string',handles.clusterNames)

handles.actualOptFcn = {};
handles.timeAgo = 3;
handles.currentRBF = handles.rbfcns{2};

handles.lambda = 0.00001;
handles.noHidden = 10;
handles.fracTrainSet = 0.7;
handles.fracTestSet = 0.1;
handles.fracValSet = 1 - handles.fracTestSet - handles.fracTrainSet;

% Default values
defaultVar.dataPartition = [0.7,0.2];
defaultVar.timeAgo = 3;
defaultVar.numHidden = 10;
defaultVar.lambda = 0.000001;
defaultVar.rbf = 1;
defaultVar.pcaDim = 0;
defaultVar.optimFcn = 1;
defaultVar.clusterFcn = 1;

handles.defaultVar = defaultVar;

handles.plotHandles = [];
handles.plotHolderInitPos = get(handles.primaryPlotHolder,'position');
set(handles.regTerm,'string',num2str(handles.lambda));

handles.fsMethod = 1;

90

handles.dataMins = [];
handles.dataMaxs = [];
handles.dataMeans = [];
handles.dataSDs = [];

handles.allX = [];
handles.allY = [];
handles.allXRaw = [];
handles.allYRaw = [];

handles.maintainDim = 0;
handles.PC = [];

%plotdata = {(1:10)',(1:10)','r--','X','Y';(1:10)',(1:10)','go-
','X','Y';(1:10)',(1:10)','b*-','X','Y';(1:10)',sin(1:10)','k*-','X','Y'};
%plotHandler(plotdata,handles);

guidata(hObject, handles);

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Predictor_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --
function aboutMenu_Callback(hObject, eventdata, handles)

aboutHdles.figure1 =
figure('parent',0,'menubar','none','units','characters',...
'toolbar','auto','handlevisibility','callback','color',[0.831 0.816
0.784],...
'position',[102.8 15.23077 130.8 39.53846],...
'visible','on','windowstyle','normal','name','About','resize','off',...
'windowstyle','normal');

aboutHdles.uipanel1 =
uipanel('parent',aboutHdles.figure1,'fontsize',[8],...
'units','characters','fontweight','normal','foregroundcolor',[0 0 0],...
'fontangle','normal','backgroundcolor',[1 1 1],...
'BorderType','beveledout','position',[9.8 6 110.4
25],...
'visible','on','title','','BorderWidth',[3],'TitlePosition','lefttop');

aboutHdles.text1 =
uicontrol('parent',aboutHdles.uipanel1,'style','text','fontsize',[13],...
'units','characters','fontweight','bold','foregroundcolor',[0 0 1],...
'fontangle','normal','backgroundcolor',[1 1 1],...
'horizontalalignment','center','position',[4.6 0.8 100
23],...

91

'visible','on','string',{' ','This program is designed for a PhD Thesis
titled:',' ',...
'A Framework for the Automatic Generation of an Optimal Radial Basis
Function Neural Network For Time Series Data Forecasting Problems ','
',...
'Author''s Name: Roselyn Isimeto',' No: ','Department: Computer
Science','Institution: University of Lagos','Email: '},...
'enable','on','tooltipstring','');

fid = fopen(filename, 'r');
optNames = {};
optH = {};
optData = [];
handlePattern = 'opt';
counter = 0;
currentTag = '';
currentData = struct();
currentOptions = struct();
currentOptionType = '';
currentSetField = {};
nameTag = 'name:';
funcTag = 'function:';
optionTypeTag = 'option_type:';
optionTag = 'options:';
allTags = {nameTag, funcTag, optionTypeTag, optionTag};
while true
 aline = fgetl(fid);
 if (aline==-1)
 break;
 end
 aline = strtrim(aline);
 if isempty(aline)
 continue;
 end
 if any(strcmpi(aline, allTags))
 currentTag = aline;
 if strcmpi(aline, nameTag)
 currentData = struct();
 currentOptions = struct();
 currentOptionType = '';
 currentSetField = {};
 counter = counter + 1;
 end
 continue;
 end

 if strcmpi(currentTag,nameTag)
 optNames = [optNames,{aline}];
 anOptH = [handlePattern,num2str(counter)];
 optH = [optH,{anOptH}];
 currentData.name = aline;
 currentData.options = currentOptions;
 elseif strcmpi(currentTag, optionTypeTag)
 currentOptionType = aline;
 if ~strcmpi(currentOptionType,'general')
 currentOptions = eval(aline);
 end
 elseif strcmpi(currentTag, funcTag)
 currentData.function = aline;
 elseif strcmpi(currentTag, optionTag)
 [field,val] = strtok(aline,'=');

92

 [val,notin] = strtok(val,'=');
 if ~isempty(str2num(val))
 val = str2num(val);
 end
 currentOptions.(field) = val;
 currentData.options = currentOptions;
 currentSetField = [currentSetField, {field}];
 currentData.setfield = currentSetField;
 end

 optData.(anOptH) = currentData;

end
fclose(fid);

% --
function lcMenu_Callback(hObject, eventdata, handles)

function [dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf,
optimFcn, clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles)
dataPartition = handles.defaultVar.dataPartition;
timeAgo = handles.defaultVar.timeAgo;
numHidden = handles.defaultVar.numHidden;
lambda = handles.defaultVar.lambda;
rbf = handles.rbfcns{handles.defaultVar.rbf};
pcaDim = handles.defaultVar.pcaDim;
[optimFcn, optimOptions] = GetOptimFcn(handles.defaultVar.optimFcn,
handles);
[clusterFcn, clusterOptions] =
GetClusterFcn(handles.defaultVar.clusterFcn, handles);

function [clusterFcn, clusterOptions] = GetClusterFcn(pos, handles)
% The clustering function
clusterData = handles.clusterData;
clusterHandle = handles.clusterHandles;
clusterFcnObj = clusterData.(clusterHandle{pos});
clusterFcn = clusterFcnObj.function;
clusterOptions = clusterFcnObj.options;

function [optimFcn, optimOptions] = GetOptimFcn(pos, handles)
% The optimisation function
optData = handles.optfcnsData; % Optimisation data holder
optH = handles.optfcnsHandle; % A list of handles to optimization object
curOptObj = optData.(optH{pos}); % The current optimization function
position
optimFcn = curOptObj.function;
optimOptions = curOptObj.options;

function hlMenu_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);
inputdata = inputdlg('Provide number of hidden nodes');
if isempty(inputdata)
 return
end
xdata = str2num(inputdata{1});

93

sz = length(xdata);
if isempty(xdata)
 return
end
numHidden = num2cell(xdata);
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 4, sz,
xdata);

% --
function regMenu_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);
inputdata = inputdlg('Provide range of regularisation term');
if isempty(inputdata)
 return
end
xdata = str2num(inputdata{1});
sz = length(xdata);
if isempty(xdata)
 return
end
lambda = num2cell(xdata);
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 5, sz,
xdata);

function UpdateInterface(theState, handles)

hdlesToEnable =
[handles.trainBtn,handles.validateBtn,handles.testBtn,handles.predictBtn,
handles.allData];
sz = length(hdlesToEnable);

for h = hdlesToEnable;
 set(h, 'enable', theState)
end
if strcmpi(theState,'on')
 oppState = 'off';
else
 oppState = 'on';
end
set(handles.pleaseWait,'visible',oppState); % The "Please Wait" shows up
drawnow

% --- Executes on button press in trainBtn.
function trainBtn_Callback(hObject, eventdata, handles)
try
 tic % The timer ticks
 UpdateInterface('off', handles);

 noRun = str2double(get(handles.runEditBox,'string'));
 wbar = waitbar(0,char('Please wait...',['Run 0/', num2str(noRun)]));
 lambda = str2double(get(handles.regTerm,'string')); % The
regularisation term is fetched from its control
 numHidden = str2double(get(handles.numHiddenLayer,'string')); % The
number of hidden layer is fetched from its control
 trainR = str2num(get(handles.numTrainSet,'string'))/100;
 testR = str2num(get(handles.numTestSet,'string'))/100;

94

 valR = 1 - trainR - testR;
 handles = ShuffleData(handles);
 allY = handles.allY;
 allX = handles.allX;
 tempAllX = allX;
 %ReverseFeatureScaling(allY, handles);
 handles.pcaUsed = 0;
 if get(handles.applyPCARadBtn,'value') % Should pca be applied
 noComp = str2num(get(handles.pcaDimTextBox,'string')); % Get the
new feature size or dimension
 if isempty(noComp)
 set(handles.pleaseWait,'visible','off')
 errordlg('The PCA number of dimension is invalid','Error
message','modal');
 return
 end
 [allX, PC] = pca(allX,noComp);
 handles.PC = PC(:,1:noComp);
 handles.pcaUsed = 1;
 end

 actualSamSize = handles.actualSamSize;
 noTrain = floor(trainR*actualSamSize);
 noTest = floor(testR*actualSamSize);
 noVal = actualSamSize - noTrain - noTest;
 handles.trainR = trainR;
 handles.testR = testR;
 handles.valR = valR;
 handles.lambda = lambda;
 handles.noHidden = numHidden;
 handles.noTVT = [noTrain,noVal,noTest];
 trainSetY = allY(1:noTrain,:)
 trainSetX = allX(1:noTrain,:)
 valSetY = allY(noTrain+(1:noVal),:);
 valSetX = allX(noTrain+(1:noVal),:);
 testSetY = allY(noTrain+noVal+(1:noTest),:);
 testSetX = allX(noTrain+noVal+(1:noTest),:);

 handles.maintainX = tempAllX(1:noTrain,:);

 % The clustering function
 clusterData = handles.clusterData;
 clusterHandle = handles.clusterHandles;
 clusterFcnObj =
clusterData.(clusterHandle{get(handles.clustFunctions,'value')});
 clusterFcn = clusterFcnObj.function;
 clusterOptions = clusterFcnObj.options;

 % The optimisation function
 optData = handles.optfcnsData;
 optH = handles.optfcnsHandle;
 curOptObj = optData.(optH{get(handles.optMenu,'value')});
curOptimFcn = curOptObj.function;
 options = curOptObj.options;

 set(handles.numHiddenLayer, 'enable', 'off')
 meanR = 0;
 meanMSE = 0;
 ishandle(wbar)
 mseList = zeros(noRun, size(allY,2));

95

 for ii = 1:noRun;

 if ishandle(wbar)
 waitbar(ii/noRun, wbar,char('Please wait...',['Run
',num2str(ii),'/', num2str(noRun)]));
 end
 param =
RBFTrainingAlgorithm(trainSetX,trainSetY,numHidden,lambda,handles.currentR
BF, curOptimFcn, options, clusterFcn, clusterOptions, handles, true);
 if handles.maintainDim
 yPredicted = predict(handles.maintainX, param);
 else
 yPredicted = predict(trainSetX, param);
 end
 [CofTrain,allMSE] = computeStatistics(trainSetY,yPredicted);
 meanR = meanR + CofTrain;
 meanMSE = meanMSE + allMSE;
 mseList(ii,:) = allMSE(:)';
 end
 if handles.maintainDim
 trainSetX = tempAllX(1:noTrain,:);
 valSetX = tempAllX(noTrain+(1:noVal),:);
 testSetX = tempAllX(noTrain+noVal+(1:noTest),:);
 end
 meanR = meanR/noRun;
 meanMSE = meanMSE/noRun;

 save('mseSaved','mseList');

 plotdata = makePlotData(ReverseFeatureScaling(trainSetY,
handles),ReverseFeatureScaling(yPredicted, handles), handles);
 handles.plotHandles = plotHandler(plotdata,handles);
 plotRegression(trainSetY,yPredicted,handles)
 handles.trainSetY = trainSetY;
 handles.trainSetX = trainSetX;
 handles.valSetY = valSetY;
 handles.valSetX = valSetX;
 handles.testSetY = testSetY;
 handles.testSetX = testSetX;
 handles.param = param;
 delete(wbar);
 end
 tm = toc;

set(handles.summaryTable,'data',[handles.VarNames',num2cell(meanMSE),num2c
ell(meanR)])
 set(handles.timeResult,'string',num2str(tm))
 UpdateInterface('on', handles);
 guidata(hObject,handles);
catch error
 UpdateInterface('on', handles);
 errordlg(char('An error occurred while training the network','Please
check the input parameters and try again', ...
 ['Error Details: ',error.message]),'Error message','modal');
end

function plotdat = makePlotData(allY,allPY,handles)
sz = size(allPY,2);
nox = size(allPY,1);
xrange = repmat((1:nox)',1,1);

96

plotdat{sz,6} = [];
if isempty(allY)
 xrange = repmat((1:nox)',1,1);
 for k = 1:sz;
 plotdat(k,1:6) =
{xrange,allPY(:,k),'r:','Days',handles.VarNames{k},char('Actual','Predicte
d')};
 end
else
 xrange = repmat((1:nox)',1,2);
 for k = 1:sz;
 plotdat(k,1:6) =
{xrange,[allY(:,k),allPY(:,k)],{'r:','b'},'Days',handles.VarNames{k},char(
'Actual','Predicted')};
 end
end

function makePlot(allY,allPY,handles)
axeHdles =
[handles.rainPlot,handles.temPlot,handles.humPlot,handles.windPlot];
ylab = handles.tableVar;
nox = size(allY,1);
for k = 1:4;
 axes(axeHdles(k));
 pl1 = plot((1:nox)',allY(:,k),'r:','linewidth',1);
 hold on
 pl2 = plot((1:nox)',allPY(:,k),'b','linewidth',1);
 legend([pl1,pl2],char('Actual','Predicted'));
 ylabel(ylab{k});
 axis tight
 if k<4
 set(gca,'xtick',[])
 end
 hold off
end
function plotRegression(y,yp,handles)
lab = handles.VarNames;
sz = handles.noVar;
figure
for k = 1:sz;
 subplot(ceil(sqrt(sz)),sz/ceil(sqrt(sz)),k)

plot(y(:,k),yp(:,k),'mo','markerfacecolor','m','markeredgecolor','b','mark
ersize',3)
 hold on

plot(linspace(0.95*min(y(:,k)),1.05*max(y(:,k)),5),linspace(0.95*min(y(:,k
)),1.05*max(y(:,k)),5),'r')
 xlabel(['Actual ',lab{k}])
 ylabel(['Predicted ',lab{k}])
 hold off
end

% --- Executes on button press in testBtn.
function testBtn_Callback(hObject, eventdata, handles)
try
 tic
 UpdateInterface('off', handles);

 testSetY = handles.testSetY;
 testSetX = handles.testSetX;

97

 param = handles.param;
 yPredicted = predict(testSetX,param);
 [CofTrain,allMSE] = computeStatistics(testSetY,yPredicted);
 plotdata = makePlotData(ReverseFeatureScaling(testSetY, handles),
ReverseFeatureScaling(yPredicted, handles),handles);
 handles.plotHandles = plotHandler(plotdata,handles);
 plotRegression(testSetY,yPredicted,handles)

 tm = toc;

set(handles.summaryTable,'data',[handles.VarNames',num2cell(allMSE),num2ce
ll(CofTrain)])
 set(handles.timeResult,'string',num2str(tm))
 UpdateInterface('on', handles);
 guidata(hObject,handles);
catch error
 disp(error.message)
 UpdateInterface('on', handles);
 errordlg(char('An error occurred while testing the network','Please
check the input parameters and try again'),'Error message','modal');
end

% --- Executes on button press in predictBtn.
function predictBtn_Callback(hObject, eventdata, handles)
try
 tic
 UpdateInterface('off', handles);
 noFeatures = handles.featureSize;
 lag = handles.timeAgo;
 allY = handles.allYRaw;
 allX = handles.allXRaw;

 param = handles.param;

 inputDay = inputdlg('How many days away from now would you like to
predict?','Day to predict');

 if ~isempty(inputDay)
 inputDay = str2double(inputDay{1});
 for k = 1:inputDay;
 hldY = allY((end-lag+1):end,:);
 hldX = hldY(:)';
 yPred = predict(hldX,param);
 allY(end+1,:) = yPred;
 end
 yPredicted = allY((end-inputDay+1):end,:);
 yPredicted = ReverseFeatureScaling(yPredicted, handles);
 plotdata = makePlotData('', yPredicted, handles);
 handles.plotHandles = plotHandler(plotdata,handles);
 end
 tm = toc;
 %
set(handles.summaryTable,'data',[handles.VarNames,num2cell(allMSE),num2cel
l(CofTrain)])
 set(handles.timeResult,'string',num2str(tm))
 UpdateInterface('on', handles);
 guidata(hObject,handles);
catch error

98

 disp(error.message)
 UpdateInterface('on', handles);
 errordlg(char('An error occurred while testing the network','Please
check the input parameters and try again'),'Error message','modal');
end

function numTrainSet_Callback(hObject, eventdata, handles)
% hObject handle to numTrainSet (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numTrainSet as text
% str2double(get(hObject,'String')) returns contents of numTrainSet
as a double

% --- Executes during object creation, after setting all properties.
function numTrainSet_CreateFcn(hObject, eventdata, handles)
% hObject handle to numTrainSet (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numTestSet_Callback(hObject, eventdata, handles)
% hObject handle to numTestSet (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numTestSet as text
% str2double(get(hObject,'String')) returns contents of numTestSet
as a double

function numTestSet_CreateFcn(hObject, eventdata, handles)
% hObject handle to numTestSet (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

99

% --- Executes during object creation, after setting all properties.
function regTerm_CreateFcn(hObject, eventdata, handles)
% hObject handle to regTerm (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numHiddenLayer_Callback(hObject, eventdata, handles)
% hObject handle to numHiddenLayer (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numHiddenLayer as text
% str2double(get(hObject,'String')) returns contents of
numHiddenLayer as a double

% --- Executes during object creation, after setting all properties.
function numHiddenLayer_CreateFcn(hObject, eventdata, handles)
% hObject handle to numHiddenLayer (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function gaMax_Callback(hObject, eventdata, handles)
% hObject handle to gaMax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of gaMax as text
% str2double(get(hObject,'String')) returns contents of gaMax as a
double

% --- Executes during object creation, after setting all properties.
function gaMax_CreateFcn(hObject, eventdata, handles)
% hObject handle to gaMax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

100

if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function rbFunctions_Callback(hObject, eventdata, handles)
handles.currentRBF = handles.rbfcns{get(hObject,'value')};
guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.
function rbFunctions_CreateFcn(hObject, eventdata, handles)
% hObject handle to rbFunctions (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in optMenu.
function optMenu_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function optMenu_CreateFcn(hObject, eventdata, handles)
% hObject handle to optMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on key press with focus on numTrainSet and none of its
controls.
function numTrainSet_KeyPressFcn(hObject, eventdata, handles)

% --- Executes on key press with focus on numTestSet and none of its
controls.
function numTestSet_KeyPressFcn(hObject, eventdata, handles)

function popSize_Callback(hObject, eventdata, handles)
% hObject handle to popSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of popSize as text
% str2double(get(hObject,'String')) returns contents of popSize as
a double

101

% --- Executes during object creation, after setting all properties.
function popSize_CreateFcn(hObject, eventdata, handles)
% hObject handle to popSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in timeAgoMenu.
function timeAgoMenu_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
allStr = get(hObject,'string');
handles.timeAgo = str2double(allStr{val});
featureSize = (handles.timeAgo)*(handles.noVar);
handles.featureSize = featureSize;
if ~isempty(handles.data)
 [allY,allX] = makeFullDataSet(handles.data,handles.timeAgo);
 handles.allY = allY;
 handles.allX = allX;
 handles.actualSamSize = size(allY,1);
end

set(handles.numFeatures,'string',num2str(featureSize));
guidata(hObject,handles);

% Hints: contents = cellstr(get(hObject,'String')) returns timeAgoMenu
contents as cell array
% contents{get(hObject,'Value')} returns selected item from
timeAgoMenu

% --- Executes during object creation, after setting all properties.
function timeAgoMenu_CreateFcn(hObject, eventdata, handles)
% hObject handle to timeAgoMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --

% --
function popsizeMenu_Callback(hObject, eventdata, handles)

102

% --
function generationMenu_Callback(hObject, eventdata, handles)

% --
function lagMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);
inputdata = inputdlg('Provide range of time lag');
if isempty(inputdata)
 return
end
xdata = str2num(inputdata{1});
if isempty(xdata)
 return
end
timeAgo = num2cell(xdata);
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 2,
length(xdata), xdata);

%%============================ Helper Functions =========================

function [filename,ext] = ImportPath
 [flname,flpath,findex] = uigetfile({'*.xls;*.xlsx*','Excel
Files(*.xls,*xlsx)'},'Import Data');
 if findex ~= 0 & flname ~= 0
 filename = fullfile(flpath,flname);
 [a,b,ext] = fileparts(filename);
 else
 filename = 0;
 ext = 0;
 end
function [dat,dataname] = ImportFunction
 [filename,ext] = ImportPath;
 dat = {};
 dataname = {};
 if ischar(filename) & ischar(ext)
 [data,dataname] = xlsread(filename);
 dat = data;
 end

function ret = EuclidDistance(pos1,pos2)
ret = sqrt(sum((pos1-pos2).^2,2));

function SetNoHiddenLayer(no_hidden,handles)
set(handles.numHiddenLayer,'string',num2str(no_hidden), 'enable', 'on');
drawnow

function param =
RBFTrainingAlgorithm(X,y,no_hidden,lambda,rbfcn,optfcn,options,clusterfcn,
clusterOptions, handles, setHidden)

output_layer_size = size(y,2);
[theMeans,theSDs] = eval(clusterfcn) % This clusters the data in X
%%theMeans to see centroids
%% Takes care of redimensioning the centroids to the original dimension of
the input space
if handles.maintainDim
 pc = handles.PC; % the reduced principal component (PC)

103

 theMeans = theMeans*pinv(pc); % calulating the centroid from the
reduced centroid and PC
 X = handles.maintainX; % X switches to the original input space
end

no_hidden = length(theSDs);
if setHidden
 SetNoHiddenLayer(no_hidden,handles);
end
hValues = eval([rbfcn,'(X,theMeans,theSDs)']);
initial_Theta = randInitializeWeights(no_hidden, output_layer_size);
initial_params = initial_Theta(:);
no_param = length(initial_params);

costFunction = @(p) nnCostFunction(p,no_hidden,output_layer_size, hValues,
y, lambda);
[nn_params, cost] = eval(optfcn)

Theta = reshape(nn_params, no_hidden+1,output_layer_size);
param = {theMeans,theSDs,Theta,rbfcn};

function [J,grad] = nnCostFunction(nn_params, no_hidden, out_layer_size,
X, y, lambda)

Theta = reshape(nn_params, (no_hidden + 1),out_layer_size);

% Setup some useful variables
m = size(X, 1);
J = 0;
X = [ones(m,1),X];
z = X*Theta;
sqError = (z-y)';
J = sum(sum((z - y).^2))/(2*m) +
lambda/(2*m)*(sum(sum(Theta(2:end,:).^2)));

grad = 1/m*(sqError*X)';
grad(2:end,:) = grad(2:end,:) + lambda/m*Theta(2:end,:);
grad = grad(:);
%
===

function yPredicted = predict(X,params)
theMeans = params{1};
theSDs = params{2};
theta = params{3};
rbfcn = params{4};
hValues = eval([rbfcn,'(X,theMeans,theSDs)']);
m = size(hValues,1);
hValues = [ones(m,1),hValues];
yPredicted = hValues*theta;

function W = randInitializeWeights(L_in, L_out)
epsilon = sqrt(6)/sqrt(L_in + L_out);
W = 2*epsilon*rand(1 + L_in,L_out) - epsilon;

function [allCof,allMSE] = computeStatistics(y,ypred)
m = size(y,1);
mse = sum((y-ypred).^2)/m;

104

r = corrcoef(y,ypred);
sz = size(y,2);
allCof = zeros(sz,1);
for k = 1:sz;
 R = corrcoef(y(:,k),ypred(:,k));
 %allCof(k) = R(2);
 allCof(k) = R(2)^2;
end
res = ypred - y;
allMSE = mean(res.^2)';

function dataMenu_Callback(hObject, eventdata, handles)

try
 [rawData,dataNames] = ImportFunction;
 if isempty(rawData)
 return
 end
 UpdateInterface('off', handles);
 drawnow; handles.VarNames = dataNames;
 theMin = min(rawData);
 handles.noVar = nocl;
 plotdata{nocl,5} = [];
 noSamples = size(rawData,1);
 xrange = (1:noSamples)';
 styleList = {'b','r','g','m','c','k','y'};
 stySz = length(styleList);
 dataMeans = mean(rawData);
 dataSDs = std(rawData);
 for k = 1:nocl;
 spos = mod(k-1,stySz) + 1;
 plotdata(k,:) =
{xrange,rawData(:,k),styleList{spos},'Time/Days',dataNames{k}};
 if handles.fsMethod == 1
 rawData(:,k) = (rawData(:,k)-dataMeans(k))/dataSDs(k);
 elseif handles.fsMethod == 2
 rawData(:,k) = rawData(:,k)/theMax(k);
 else
 rawData(:,k) = (rawData(:,k) - theMin(k))/(theMax(k) -
theMin(k));
 end
 end

 handles.plotHandles = plotHandler(plotdata,handles);
 handles.data = rawData;
handles.dataMeans = dataMeans;
 handles.dataSDs = dataSDs;
handles.dataMins = theMin;
handles.dataMaxs = theMax;
 handles.noSamples = noSamples;
 featureSize = handles.noVar*handles.timeAgo;
 [allY,allX] = makeFullDataSet(rawData,handles.timeAgo);
 handles.allXRaw = allX;
 handles.allYRaw = allY;

 noSam = size(allY,1);
 rangePos = randperm(noSam);
 allX = allX(rangePos,:);
 allY = allY(rangePos,:);

105

 mnX = min(max(allX));
 mzX = max(max(allX));
 %disp(['Min X: ', num2str(mnX), ', Max X: ', num2str(mzX)])
 handles.allY = allY;
 handles.allX = allX;
 handles.actualSamSize = size(allY,1);
 handles.featureSize = featureSize;
set(handles.numFeatures,'string',num2str(handles.featureSize));
set(handles.numDataSet ,'string',num2str(noSamples));
 UpdateInterface('on', handles);
catch er

 disp(er.message)
 UpdateInterface('on', handles);
 errordlg(char('An error occurred while importing data','Please check
the data you want to import'),'Error message','modal');
end
guidata(hObject,handles);

function [retY,retX] = makeFullDataSet(data,timeAgo)
% Inputs/Argument:
% data - the raw data
% timeAgo - also known as the lag
% nofactor - feature size
% Returns:
% retY - the output space
% retX - the input space

rw = size(data,1);
cl = size(data,2);

nofactor = cl*timeAgo;

if rw <= timeAgo
 retY = [];
 retX = [];
 return
end
sz = rw-timeAgo;
retY = data((timeAgo+1):rw,:);
retX = zeros(sz,nofactor);
for k = 1:sz;
 hld = data(k-1+(1:timeAgo),:);
 retX(k,:) = hld(:)';
end

function ret = gaussRBF(X,mn,sd)
mnSz = size(mn,1);
samSz = size(X,1);
ret = zeros(samSz,mnSz);

% Recompute SD
sd = computeCentroidWidth(mn);

for k = 1:mnSz;
 amean = mn(k,:);
 thedist = exp(-
(EuclidDistance(repmat(amean,samSz,1),X)).^2/(2*sd(k)^2));
 ret(:,k) = thedist;
end

106

function ret = multiQuadRBF(X,mn,sd)
mnSz = size(mn,1);
samSz = size(X,1);
ret = zeros(samSz,mnSz);

sd = computeCentroidWidth(mn);

for k = 1:mnSz;
 amean = mn(k,:);
 thedist = (EuclidDistance(repmat(amean,samSz,1),X).^2 + sd(k)^2).^0.5;
 ret(:,k) = thedist;
end

function ret = invMultiQuadRBF(X,mn,sd)
mnSz = size(mn,1);
samSz = size(X,1);
ret = zeros(samSz,mnSz);
% Recompute SD
sd = computeCentroidWidth(mn);

for k = 1:mnSz;
 amean = mn(k,:);
 thedist = (EuclidDistance(repmat(amean,samSz,1),X).^2 + sd(k)^2).^-
0.5;
 ret(:,k) = thedist;
end

function ret = thinPlateSplineRBF(X,mn,varargin)
mnSz = size(mn,1);
samSz = size(X,1);
ret = zeros(samSz,mnSz);
for k = 1:mnSz;
 amean = mn(k,:);
 eudist = EuclidDistance(repmat(amean,samSz,1),X);
 thedist = eudist.^2.*log(eudist);
 ret(:,k) = thedist;
end

function ret = cubicRBF(X,mn,varargin)
mnSz = size(mn,1);
samSz = size(X,1);
ret = zeros(samSz,mnSz);
for k = 1:mnSz;
 amean = mn(k,:);
 eudist = EuclidDistance(repmat(amean,samSz,1),X);
 thedist = eudist.^3;
 ret(:,k) = thedist;
end

function ret = linearRBF(X,mn,varargin)
mnSz = size(mn,1);
samSz = size(X,1);
ret = zeros(samSz,mnSz);
for k = 1:mnSz;
 amean = mn(k,:);
 eudist = EuclidDistance(repmat(amean,samSz,1),X);
 thedist = eudist;
 ret(:,k) = thedist;
end

107

function ret = computeCentroidWidth(X)
rw = size(X,1);
dm = 0;
for k = 1:(rw-1);
 arow = X(k,:);
 n = rw-k;
 dm = max(dm, max(EuclidDistance(repmat(arow,n,1), X(k+1:end,:))));
end
ret = dm/sqrt(2*rw);
ret = repmat(ret,1,rw);

function validateBtn_Callback(hObject, eventdata, handles)
try
 tic
 UpdateInterface('off', handles); %just wait

 valSetY = handles.valSetY; % extracting
 valSetX = handles.valSetX;

 param = handles.param;
 yPredicted = predict(valSetX,param);
 [CofTrain,allMSE] = computeStatistics(valSetY,yPredicted);
 plotdata = makePlotData(ReverseFeatureScaling(valSetY,
handles),ReverseFeatureScaling(yPredicted, handles), handles);
 handles.plotHandles = plotHandler(plotdata,handles);
 plotRegression(valSetY,yPredicted,handles)

 tm = toc;

set(handles.summaryTable,'data',[handles.VarNames',num2cell(allMSE),num2ce
ll(CofTrain)])
 set(handles.timeResult,'string',num2str(tm))
 UpdateInterface('on', handles);
 guidata(hObject,handles);
catch error
 disp(error.message)
 UpdateInterface('on', handles);
 errordlg(char('An error occurred while testing the network','Please
check the input parameters and try again'),'Error message','modal');
end

% --- Executes on button press in allData.
function allData_Callback(hObject, eventdata, handles)
try
 tic
 UpdateInterface('off', handles);

 allY = handles.allY;
 allX = handles.allX;

 if handles.pcaUsed == 1
 allX = allX*(handles.PC);
 end

 param = handles.param;
 yPredicted = predict(allX,param);
 [CofTrain,allMSE] = computeStatistics(allY,yPredicted);

108

 plotdata = makePlotData(ReverseFeatureScaling(allY, handles),
ReverseFeatureScaling(yPredicted, handles),handles);
 handles.plotHandles = plotHandler(plotdata,handles);
 plotRegression(allY, yPredicted,handles)

 tm = toc;

set(handles.summaryTable,'data',[handles.VarNames',num2cell(allMSE),num2ce
ll(CofTrain)])
 set(handles.timeResult,'string',num2str(tm))
 UpdateInterface('on', handles);
 guidata(hObject,handles);
catch error
 disp(error.message)
 UpdateInterface('on', handles);
 errordlg(char('An error occurred while evaluating the error of all the
data','Please check the input parameters and try again'),'Error
message','modal');
end

function clustFunctions_Callback(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function plotSlider_Callback(hObject, eventdata, handles)
val = get(hObject,'value');
mx = get(hObject,'max');
intPos = handles.plotHolderInitPos;
pos = get(handles.primaryPlotHolder,'position');
pos(2) = intPos(2) - val;
set(handles.primaryPlotHolder,'position',pos)

if isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function [plHdles] = plotHandler(plotdata,handles)
sz = size(plotdata,1);
plHdles = zeros(1,sz);
graphWidth = 210.4;
graphHeight = 15.6;
graphLeft = 13.4;
graphSpacing = 6;
startTop = 1.65;
lastPlotHandles = handles.plotHandles;
holderPos = handles.plotHolderInitPos;
totalHeight = max([sz*graphHeight + (sz-1)*graphSpacing +
2*startTop,holderPos(4)]);
extension = max([totalHeight - holderPos(4),0]);
if extension > get(handles.plotSlider,'min')
 set(handles.plotSlider,'max',extension,'value',extension,
'visible','on')
else
 set(handles.plotSlider,'visible','off')
end
curTop = holderPos(4) - totalHeight;

109

holderPos(2) = curTop;
holderPos(4) = totalHeight;
set(handles.primaryPlotHolder,'position',holderPos);
if ~isempty(lastPlotHandles)
 delete(lastPlotHandles);
end

newTop = startTop;
for k = 1:sz;
 pos = [graphLeft,holderPos(4)-newTop-
graphHeight,graphWidth,graphHeight];

 newTop = newTop + graphHeight + graphSpacing;
 x = plotdata{k,1};
 y = plotdata{k,2};
 styl = plotdata{k,3};
 xlab = plotdata{k,4};
 ylab = plotdata{k,5};
 plHdles(k) =
axes('parent',handles.primaryPlotHolder,'units',get(handles.primaryPlotHol
der,'units'),'position',pos);
 axes(plHdles(k));
 noInnerPlot = size(x,2);
 if noInnerPlot>1
 legendStr = plotdata{k,6};
 allPlots = zeros(1,noInnerPlot);
 hold on
 for r = 1:noInnerPlot;
 xx = x(:,r);
 yy = y(:,r);
 allPlots(r) = plot(xx,yy,styl{r});
 end
 legend(allPlots,legendStr)
 hold off
 else
 plot(x,y,styl)
 end
 ylabel(ylab)
 xlabel(xlab)
end

function Fx = getFcn(objfcn,Xs)
 n = size(Xs,1);
 Fx = ones(n,1);
 for k = 1:n;
 Fx(k) = objfcn(Xs(k,:));
 end

function applyPCARadBtn_Callback(hObject, eventdata, handles)
if get(hObject,'value') == 1
 set(handles.pcaDimLabel,'visible','on');
 set(handles.pcaDimTextBox,'visible','on');
else
 set(handles.pcaDimLabel,'visible','off');
 set(handles.pcaDimTextBox,'visible','off');
end
guidata(hObject,handles);

110

if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function setOptimOptBtn_Callback(hObject, eventdata, handles)
handles.optfcnsData = SetOptionHandler(handles.optMenu,
handles.optfcnsData, handles.optfcnsHandle, handles);
guidata(hObject, handles);

function setCGSOOptBtn_Callback(hObject, eventdata, handles)
handles.clusterData = SetOptionHandler(handles.clustFunctions,
handles.clusterData, handles.clusterHandles, handles);
guidata(hObject, handles);

function data = SetOptionHandler(popMenuHandle, data, objHs, handles)
optData = data;
optH = objHs;
curOptObj = optData.(optH{get(popMenuHandle,'value')});
options = curOptObj.options;
setfields = curOptObj.setfield;
sz = length(setfields);
defaultValues{sz} = '';
variableType = zeros(1,sz);
for k = 1:sz;
 op = options.(setfields{k});
 if (isnumeric(op))
 op = num2str(op);
 variableType(k) = 1;
 elseif ~ischar(op)
 op = func2str(op);
 variableType(k) = 2;
 else
 variableType(k) = 3;
 end
 defaultValues{k} = op;
end

newOptions = inputdlg(setfields,'Set Options',1,defaultValues);
if isempty(newOptions)
 return
end

for k = 1:sz;
 op = newOptions{k};
 typ = variableType(k);
 if typ == 1
 options.(setfields{k}) = str2num(op);
 elseif typ == 2
 options.(setfields{k}) = str2func(op);
 else
 options.(setfields{k}) = op;
 end
end
curOptObj.options = options;
optData.(optH{get(popMenuHandle,'value')}) = curOptObj;

data = optData;

111

function RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden,
lambda, rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles,
variableNumber, variableSize, xdata, varargin)

try
 try
 matlabpool open
 catch
 matlabpool close
 matlabpool open
 end

 %wbH = waitbar(0,'0% Done');

 xlab = '';
 ylab = 'MSE';
 trainMSE = zeros(1,variableSize);
 valMSE = zeros(1,variableSize);
 testMSE = zeros(1,variableSize);
 trainR = zeros(1,variableSize);
 valR = zeros(1,variableSize);
 testR = zeros(1,variableSize);
 counter = 0;
 if variableNumber == 1
 xlab = 'Data Partition';
 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition{k}, timeAgo,
pcaDim, numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 end
 elseif variableNumber == 2
 xlab = 'Time Lag';
 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo{k},
pcaDim, numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 end
 elseif variableNumber == 3
 xlab = 'PCA Dimension';
 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo,
pcaDim{k}, numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);

112

 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 end
 elseif variableNumber == 4
 xlab = 'Number of hidden nodes';
 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden{k}, lambda, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 elseif variableNumber == 5
 xlab = 'Regularisation Term';
 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda{k}, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 elseif variableNumber == 6
 xlab = 'Radial Basis function';

 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda, rbf{k}, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 elseif variableNumber == 7
 xlab = 'Optimization function';

 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda, rbf, optimFcn{k}, clusterFcn, optimOptions{k},
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);

113

 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 elseif variableNumber == 8
 xlab = 'Clustering Function';

 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda, rbf, optimFcn, clusterFcn{k}, optimOptions,
clusterOptions{k}, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 elseif variableNumber == 9
 xlab = varargin{1};

 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions{k},
clusterOptions, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 elseif variableNumber == 10
 xlab = varargin{1};

 parfor k = 1:variableSize;
 [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions{k}, handles);
 trainMSE(k) = theMSE(1);
 valMSE(k) = theMSE(2);
 testMSE(k) = theMSE(3);
 trainR(k) = theR(1);
 valR(k) = theR(2);
 testR(k) = theR(3);
 %waitbar(k/variableSize,sprintf('%12.9f',
100*k/variableSize));
 end
 end
 figure;
 if iscell(xdata)
 xrange = 1:length(xdata);
 pl = bar(xrange,[trainMSE(:),valMSE(:),testMSE(:)]);
 set(get(pl(1),'parent'),'xticklabel',xdata)
 xlabel(xlab)
 ylabel('MSE');

114

 figure;
 plR = bar(xrange,[trainR(:),valR(:),testR(:)]);
 set(get(plR(1),'parent'),'xticklabel',xdata)
 xlabel(xlab)
 ylabel('R')

 else
 pl1 = plot(xdata, trainMSE, 'r', 'linewidth', 2);
 hold on
 pl2 = plot(xdata, valMSE, 'b', 'linewidth', 2);
 pl3 = plot(xdata, testMSE, 'm', 'linewidth', 2);
 pl = [pl1, pl2, pl3];
 xlabel(xlab)
 ylabel('MSE')
 hold off
 figure;
 pl1R = plot(xdata, trainR, 'r', 'linewidth', 2);
 hold on
 pl2R = plot(xdata, valR, 'b', 'linewidth', 2);
 pl3R = plot(xdata, testR, 'm', 'linewidth', 2);
 plR = [pl1R, pl2R, pl3R];
 xlabel(xlab)
 ylabel('R')
 hold off
 end
 legend(pl, char('Training','Validation','Test'))
 legend(plR, char('Training','Validation','Test'))

 %delete(wbH)
 matlabpool close
catch e
 disp(e.message)
 %delete(wbH)
 matlabpool close
end

function [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim,
numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions,
clusterOptions, handles)

 trainR = dataPartition(1);
 valR = dataPartition(2);
 testR = 1 - trainR - valR;
 [allY,allX] = makeFullDataSet(handles.data, timeAgo);
 tempAllX = allX;

 if pcaDim > 1
 [allX,PC] = pca(allX,pcaDim);
 handles.PC = PC(:,1:pcaDim);
 end

 actualSamSize = size(allX,1);
 noTrain = floor(trainR*actualSamSize);
 noTest = floor(testR*actualSamSize);
 noVal = actualSamSize - noTrain - noTest;

 trainSetY = allY(1:noTrain,:);
 trainSetX = allX(1:noTrain,:);
 valSetY = allY(noTrain+(1:noVal),:);

115

 valSetX = allX(noTrain+(1:noVal),:);
 testSetY = allY(noTrain+noVal+(1:noTest),:);
 testSetX = allX(noTrain+noVal+(1:noTest),:);

 handles.maintainX = tempAllX(1:noTrain,:);

 param = RBFTrainingAlgorithm(trainSetX, trainSetY, numHidden,lambda,
rbf, optimFcn, optimOptions, clusterFcn, clusterOptions, handles, false);
% This clusters and trains the weight. It returns the trained weights
among other parameters

 if handles.maintainDim
 trainSetX = tempAllX(1:noTrain,:); % Here is training
set input space
 valSetX = tempAllX(noTrain+(1:noVal),:); % Here is validation
set input space
 testSetX = tempAllX(noTrain+noVal+(1:noTest),:); % Here is test
set output space
 end

 % Training set accuracy
 yPredicted = predict(trainSetX,param); % The Y predicted
 [trainCof,trainMSE] = computeStatistics(trainSetY,yPredicted); %
Computing MSE and R value

 % Validation set accuracy
 yPredicted = predict(valSetX,param); % The Y predicted
 [valCof,valMSE] = computeStatistics(valSetY,yPredicted); % Computing
MSE and R value

 % Test set accuracy
 yPredicted = predict(testSetX,param); % The Y predicted
 [testCof, testMSE] = computeStatistics(testSetY,yPredicted); %
Computing MSE and R value

 theR = [trainCof, valCof, testCof];
 theMSE = [trainMSE, valMSE, testMSE];

function OptimMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);

xdata = handles.optfcnsString;
sz = length(xdata);
optimFcn = {};
optimOptions = {};

for k = 1:sz;
 [optim, options] = GetOptimFcn(k, handles);
 optimFcn{k} = optim;
 optimOptions{k} = options;
end

RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 7, sz,
xdata);

116

function ClusterMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);

xdata = handles.clusterNames;
sz = length(xdata);
clusterFcn = {};
clusterOptions = {};

for k = 1:sz;
 [clusterF, options] = GetClusterFcn(1, handles);
 clusterFcn{k} = clusterF;
 clusterOptions{k} = options;
end

RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 8, sz,
xdata);

function PCAMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);
inputdata = inputdlg('Provide range of PCA dimension');
if isempty(inputdata)
 return
end
xdata = str2num(inputdata{1});
if isempty(xdata)
 return
end
pcaDim = num2cell(xdata);
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 3,
length(xdata), xdata);

function RBFunctionMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);

xdata = handles.rbfNames;
sz = length(xdata);
rbf = {};

for k = 1:sz;
 rbf{k} = handles.rbfcns{k};
end
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 6, sz,
xdata);

function OptimOptionsMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);

[optimIndex, ok] = listdlg('ListString',
handles.optfcnsString,'SelectionMode',...

117

 'single','Name', 'Optimisation', 'PromptString', 'Select an
optimisation algorithm');
if ok == 0
 return
end
[optimFcn, options] = GetOptimFcn(optimIndex, handles);
optFields = fieldnames(options);
[optionIndex, ok] = listdlg('ListString', optFields,'SelectionMode',...
 'single','Name', 'Optimisation Options', 'PromptString', 'Select an
option');
if ok == 0
 return
end
optionName = optFields{optionIndex};
inputdata = inputdlg(['Provide range of for ', optionName]);
if isempty(inputdata)
 return
end
xdata = str2num(inputdata{1});
sz = length(xdata);
if isempty(xdata)
 return
end
optimOptions = {};

for k = 1:sz;
 options.(optionName) = xdata(k);
 optimOptions{k} = options;
end
xlab = [optionName,' for ', handles.optfcnsString{optimIndex}];
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 9, sz,
xdata, xlab);

function ClusteringMenuBar_Callback(hObject, eventdata, handles)
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn,
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles);

[clusterIndex, ok] = listdlg('ListString',
handles.clusterNames,'SelectionMode',...
 'single','Name', 'Clustering Algorithm', 'PromptString', 'Select a
clustering algorithm');
if ok == 0
 return
end
[clusterFcn, options] = GetClusterFcn(clusterIndex, handles);
optFields = fieldnames(options);
[optionIndex, ok] = listdlg('ListString', optFields,'SelectionMode',...
 'single','Name', 'Clustering Options', 'PromptString', 'Select an
option');
if ok == 0
 return
end
optionName = optFields{optionIndex};
inputdata = inputdlg(['Provide range of for ', optionName]);
if isempty(inputdata)
 return
end
xdata = str2num(inputdata{1});

118

sz = length(xdata);
if isempty(xdata)
 return
end
clusterOptions = {};

for k = 1:sz;
 options.(optionName) = xdata(k);
 clusterOptions{k} = options;
end
xlab = [optionName,' for ', handles.clusterNames{clusterIndex}];
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda,
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 10, sz,
xdata, xlab);

function DefaultMenuBar_Callback(hObject, eventdata, handles)
defaultVar = handles.defaultVar;
theFields = fieldnames(defaultVar);
sz = length(theFields);
lastAns = {};
for k = 1:sz;
 op = theFields{k};
 lastAns{k} = num2str(defaultVar.(op));
end
newDefault = inputdlg(theFields,'Set Default Values',1, lastAns);
if isempty(newDefault)
 return
end

for k = 1:sz;
 op = newDefault{k};
 defaultVar.(theFields{k}) = str2num(op);
end

handles.defaultVar = defaultVar;
guidata(hObject, handles);

function MNMenu_Callback(hObject, eventdata, handles)
st = get(hObject, 'checked');
menuH = [handles.MNMenu, handles.RescalingMenu, handles.MinMaxMenu];
set(menuH, 'checked', 'off');
if (strcmpi(st,'on'))
 set(hObject, 'checked','off');
else
 set(hObject, 'checked','on');
end
handles.fsMethod = 1;
guidata(hObject,handles);

function RescalingMenu_Callback(hObject, eventdata, handles)
st = get(hObject, 'checked');
menuH = [handles.MNMenu, handles.RescalingMenu, handles.MinMaxMenu];
set(menuH, 'checked', 'off');
if (strcmpi(st,'on'))
 set(hObject, 'checked','off');
else
 set(hObject, 'checked','on');
end
handles.fsMethod = 2;
guidata(hObject,handles);

119

function MinMaxMenu_Callback(hObject, eventdata, handles)
st = get(hObject, 'checked');
menuH = [handles.MNMenu, handles.RescalingMenu, handles.MinMaxMenu];
set(menuH, 'checked', 'off');
if (strcmpi(st,'on'))
 set(hObject, 'checked','off');
else
 set(hObject, 'checked','on');
end
handles.fsMethod = 3;
guidata(hObject,handles);

function result = ReverseFeatureScaling(rescaledValues, handles)
rw = size(rescaledValues,1);
if handles.fsMethod == 1
 result = rescaledValues.*repmat(handles.dataSDs, rw,1) +
repmat(handles.dataMeans, rw,1);
elseif handles.fsMethod == 2
 result = rescaledValues.*repmat(handles.dataMaxs, rw,1);
else
 theMin = repmat(handles.dataMins, rw,1);
 theMax = repmat(handles.dataMaxs, rw,1);
 result = rescaledValues.*(theMax - theMin) + theMin;
end

function hdles = ShuffleData(handles)

allY = handles.allY;
allX = handles.allX;
noSam = size(allY,1);
rangePos = randperm(noSam);
allX = allX(rangePos,:);
allY = allY(rangePos,:);
handles.allX = allX;
handles.allY = allY;

hdles = handles;

function mDimRad_Callback(hObject, eventdata, handles)
handles.maintainDim = get(hObject,'value');

guidata(hObject, handles);

function runEditBox_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

120

APPENDIX B

121

Publications from this Study

 Isimeto, R. Fasina, E.P. Alienyi, C.D. and Uwadia, C.O. (2015) Predicting the Occurrence

of Rainfall using Improved Radial Basis Function Neural Network, Journal of the Computer

Science and its Applications: An International Journal of the Nigerian Computer Society,

22(2), 66-72

Isimeto, R., Yinka-Banjo, C., Alienyi, C.D., and Uwadia, C.O. (2017)An Enhanced

Clustering Analysis Based on Glowworm Swarm Optimization, Proceedings of the

4thInternational conference on Soft Computing and Machine Intelligence (ISCMI2017),

Mauritius.

	By
	By
	CHAPTER ONE
	 INTRODUCTION
	1.1 Background to the Study
	1.2 Statement of the Problem
	1.3 Aim and Objectives of Study
	1.4 Scope and Delimitation of the Study
	1.5 Significance of the Study
	1.6 Definitions of Terms
	1.7 List of Abbreviations
	1.8 Thesis Outline
	CHAPTER TWO
	LITERATURE REVIEW
	2.1 Approaches to Modelling Time Series Data
	2.1.2.1 Artificial Neural Network(ANN)is a system that is based on the biological neural network, such as the brain. The brain has about 100 billion neurons which communicate through electro-chemical signals. The neurons are connected through junctions called synapses, and each neuron receives thousands of connections with other neurons. The ANN attempts to recreate the computational mirror of the biological neural network. An ANN comprises of a network of artificial neurons called nodes. There are three types of neurons in an ANN: the input nodes, hidden nodes, and output nodes. The input nodes take in information from the environment, in form of predictor variables, which is numerically expressed as in xj ϵ ℝ, j=1,…., d. Associated with each input is a connecting weights wj ϵ ℝ, and the output, y, in the simplest case is a weighted sum of the input, as in Figure 1 (Alpaydin, 2010).

	2.3 The Learning Process in RBFNN
	2.4Related Work on Approaches to Full Optimization of RBFNN Model for Time Series Forecasting.
	2.5 Summary of Limitations of Related Work on Approaches to Full Optimization of RBFNN Models for Time Series Forecasting.
	2.6 Limitations of related work on approaches to Clustering
	2.6.1 Limitationsof CGSO Algorithm

	2.7 Theories and Concepts used in this study
	2.7.1 The Concept of Clustering
	2.7.2 Approaches to Clustering
	2.7.2.1RandomSelection of Clustersis the simplest clustering technique that uses unsupervised method. This approach randomly selects a number of training examples as RBF centers.
	2.7.2.2 Partitioning Methodisconsidered as the simplest and most fundamental method of cluster analysis. This method organizes the objects of a set into several exclusive groups or clusters of spherical shape. They are distance-based, use the mean to represent each cluster. Formally, given a data set, D, of n objects, and k, the number of clusters to form, a partitioning algorithm organizes the objects into k partitions (k<=n), where each partition represents a cluster. These clusters are formed to optimize an objective partitioning criterion such as a dissimilarity function based on distance, so that the objects within a cluster are “similar” to one another and “dissimilar” to objects in other clusters in terms of the data set attributes. They are effective for small to medium size datasets (Han et al., 2012). The most commonly used partitioning algorithm is the k-means which is discussed below.
	2.7.2.3Hierarchical Clustering
	2.7.2.4 Density-Based Methods:these methods (Han et al., 2012) discover clusters that are of non spherical and arbitrary shape such as “S” shape and oval clusters. This method model clusters as dense regions in the data space, separated by sparse regions.
	2.7.2.5Bio-Inspired Clustering Algorithms
	

	(1) The Basic Glowworm Swarm Optimization Algorithm
	2.7.3Approaches to Training the Network weights
	(i)Gradient Descent Algorithm
	2.7.3.2 Swarm Intelligence Techniques
	(i) Particle Swarm Optimization
	(ii) Bioluminescence Swarm optimization

	CHAPTER THREE
	METHODOLOGY
	3.1 Efficient determination ofLocal Sensor Range (𝐫 𝐬) of the CGSO algorithm
	3.1.1Initialization of Glowworm
	3.1.2 The Modified CGSO(CGSOm)
	3.1.3 Clustering Error Function
	3.1.3.1 Cluster Quality Evaluation Measures

	3.2 Automatic determination of the optimal number of clusters in a dataset.
	3.3 Development of a RBFNN model that adapts to the number of clusters in a dataset.
	3.4 Optimization of the RBFNN parameters fully
	3.4.1 The Basic RBFNN Model
	3.4.2 Proposed CGSOm-BSO and CGSOm-CGD RBFNN Models
	3.4.3 Procedures for Modelling CGSOm-BSO and CGD RBFNN Model
	3.4.3.1Data Collection
	3.4.3.2 Data Pre-processing
	3.4.3.3 Data Partitioning
	3.4.3.4 Feature Extraction
	3.4.3.5 Parameter Tuning

	3.4.4 The Software Development

	CHAPTER FOUR
	EXPERIMENTAL RESULTS AND DISCUSSION
	4.1 Experimental Results and Discussions of Effectiveness of CGSOm
	4.1.1 Test Data
	4.1.2 Parameter Settings
	4.1.3 Efficient determination of Local Sensor Range (𝐫 𝐬) of the CGSO

	4.2Automatic determination of the optimal number of clusters in a dataset.
	4.3 Development of a RBFNN model that adapts to the number of clusters in a dataset
	4.4Experimental Results and Discussion on RBFNN Weight Optimization
	4.5Optimizing the RBFNN parameters fully
	4.6 Case 1: Stock Price Forecasting problem
	4.6.1 Parameter Settings
	4.6.2 Plots of Optimized RBFNN Models

