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ABSTRACT 

It is well noted that statistical approaches to forecasting of time series have been going on 

since the start of the twentieth century. Advances in the field of computing, motivated 

researchers to develop new models based on Machine Learning. The Artificial Neural 

Network models (ANN) are known to construct good and useful approximations for 

complex sequence dependencies variables.  The past three decades have witnessed active 

research using a class of ANN, the Radial Basis Function Neural Networks, to forecast 

time series.Many techniques for forecasting time series using Radial Basis Function 

Neural Networks (RBFNN) have been proposed and developed in literature. The major 

challenges in RBFNN lie in the optimization of its full parameters: the number and 

location of cluster centres, the number of neurons in the hidden layer as well as the output 

weights. To address these challenges, this study adapted the Clustering Analysis based on 

Glowworm Swarm Optimization (CGSO) algorithm to obtain a modified Clustering 

Analysis based on Glowworm Swarm Optimization (CGSOm) algorithm for solving the 

clustering problem. Adaptation was achieved by incorporating a mechanism that 

determines the sensor range of the CGSO efficiently and automatically, modifying the 

glowworm initialization method, and introducing a function that measures the cluster error 

during the iteration phase. For the weight optimization, the Bioluminescence Swarm 

Optimization algorithm (BSO) was adopted, making it the first time it will be applied in 

training the weights of the RBFNN. Algorithm as well as software development, and 

graphical simulation in this work are implemented using functional programming 

paradigm. The algorithms implemented include the CGSO, CGSOm, BSO, Conjugate 

Gradient Descent (CGD), Gradient Descent (GD) and Particle Swarm Optimization 

algorithm (PSO). Using seven well known datasets in literature, the first set of results 

compared the effectiveness of the CGSOm with the following five well-known clustering 

algorithms: CGSO, K-means, average linking agglomerative Hierarchical Clustering (HC), 

Further First (FF), and Learning Vector Quantization(LVQ). Experimental results indicate 

that the CGSOm gave best entropy and purity values in four out of the seven datasets 

clustered (57%); CGSO gave best results in two datasets (28.5%); and HC gave best result 

in one dataset (14.5%). With respect to the weight training, stock price and currency 

exchange rate data were used to train the combinations of models developed (based on K-

means, CGSO, CGSOm and GD, CGD, PSO, BSO). The results obtained from the training 

showed that the CGSOm-CGD RBFNN gave best forecasting accuracy by yielding lowest 

error values; followed by the CGSOm-BSO RBFNN that gave relatively similar error 

values. Hence, two new training methodologies for time series forecasting resulted from 

this study; they are the CGSOm-BSO RBFNN and the CGSOm-CGD RBFNN. Validation 

of the proposed approaches was done in comparison with other RBFNN models: Auto 

Regressive-Radial Basis Function tuned using Genetic Algorithm and Evolving Radial 

Basis Function Neural Network, using same data. The results obtained showed that 

CGSOm-BSO RBFNN and the CGSOm-CGD RBFNN yielded lowest error values.   

Keywords: Radial Basis Function Neural Network, Time Series Forecasting, Swarm 

Intelligence, Clustering algorithms, Glowworm Swarm Optimization algorithm.  
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CHAPTER ONE 

 INTRODUCTION  

1.1 Background to the Study 

Time series forecasting problems are a difficult type of predictive modelling problem, since 

time series is a chronological sequence of observations on a particular variables(s). Unlike 

regression predictive modelling, time series adds the complexity of sequence dependence 

among the input variables, which are usually taken at regular intervals (days, months, years).  

The goal of building a time series model is the same as the goal for other types of predictive 

models which is to create a model such that the error between the predicted value of the 

target variable and the actual value is as small as possible. The primary difference between 

time series models and other types of models is that the lag values of the target variables are 

used as predictor variables, whereas traditional models use other variables as predictors, and 

the concept of a lag value does not apply because the observations do not represent a 

chronological sequence. 

Time series prediction using Artificial Intelligence (AI)/Machine Learning techniques has 

been ongoing in the last 30-40 years.Recent studies have shown a notable AI technique, the 

Artificial Neural Networks (ANN) can be constructed as a good and useful approximation for 

complex sequence dependencies variable(s). The search for new models of computing based 

on artificial neural networks is motivated by the quest to solve natural (intelligent) tasks by 

exploiting the developments in computer technology (Yegnanarayana,2010). Artificial 

Neural Network extracts relevant features from input data and perform pattern recognition 

tasks by learning from examples without explicitly stating the rules for performing the tasks.  

Machine Learning is known as the domain of knowledge that entails programming computers 

to optimize a performance criterion using example data or past experience (Alpaydin, 

2010;Han et al., 2012). The use of machine learning has spread rapidly throughout computer 

science and beyond and its application areas include websearch, recommender systems, fraud 

detection, robotics, medical diagnosis, and so on. 

A class of ANN,the Radial Basis Function Neural Network (RBFNN) has been applied to 

solvevarious problems such as function approximation, modelingdynamic systems, time 

series prediction, pattern recognition, classification and system controls. For the past three 
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decades, there has been active research on using RBFNN to forecast time series data. This 

work joins this research effort. 

A major challenge in RBFNN optimization is the difficulty in knowing the number and 

location of centres. From survey, most techniques used in clustering the centres require 

stating the numberor using trial and error. This is a limitation as it is practically impossible to 

know the number of clusters in a dataset, except there is a ground truth.  

A bio-inspired swarm intelligence technique,the Clustering Analysis based onGlowworm 

Swarm Optimization (CGSO) algorithm was proposed by Aljarah and Ludwig (2013).It can 

automatically discover number of clusters and it has not yet been used to cluster the RBFNN 

centres. This work adapted the CGSO algorithm toobtain the CGSOm which was used in 

solving the clustering problem in RBFNN. Simulationresultsshow the effectiveness of the 

CGSOm over that of CGSO and other four standard clustering algorithms commonly used in 

the literature when tested on benchmark datasets. 

With respect to optimizing the output weights of the RBFNN, tremendous achievements have 

been recorded with the Swam Intelligence (SI) techniques. One recent SI technique is the 

Bioluminescence Swarm Optimization (BSO) algorithm by Rossato de Oliveira et al.,(2011). 

BSO is attracted to global optimum; it converges more slowly and smoothly, avoiding getting 

trapped into local maxima compared to the Particle Swarm Optimization algorithm (PSO) 

that easily gets trapped into local maxima. Hence,BSO leads to more accurate, optimal 

results than the PSO. An account of the BSO outperforming the PSO was recorded by 

Rossato de Oliveira et al.,(2011). Due to these interesting characteristics of both the CGSO 

and BSO, this research focuses on using the adapted CGSO(the CGSOm) for clustering the 

centres and the BSO for training output weights of the RBFNN network. To the best of our 

knowledge, this is the first time BSO is being used to optimize the RBFNN model. The 

performance of this approach is compared with the performance of existing RBFNN variants 

for time series forecasting problems found in the literature.  

1.2  Statement of the Problem 

Various researchers have established the fact that the major challenge in RBFNN is 

optimization of its full parameters: number and location of cluster centres, the output weights 

along with the number of neurons in the hidden layer (Awad, 2010; Rivas et al.,2004). 

Broomhead and Lowe (1988) also emphasized the need for automatic mechanism to build the 

RBFNNs. 
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The learning process of the RBFNN involves two tasks which are clustering and weight 

optimization. Different clustering algorithms have been used by researchers to select optimal 

centre sets. Conventional clustering algorithms, such as the K-means, experience premature 

convergence and achieve local optimal solutions. The emergence of Swarm Intelligence 

(SI)clustering algorithms solved the problems of conventional clusteringtechniques (Handl 

and Meyer, 2007; Shifeiet al., 2010). However, the limitations in these SIclustering 

approaches are that while in some, the number of clustersare fixedprior to starting the 

clustering process, in others, trial and error approach is used to get the number of cluster 

centres.   

The emergence of the Clustering analysis Based on Glowworm Swarm Optimization 

(CGSO) algorithm by Aljarah and Ludwig (2013) has solved the limitations of earlier SI 

clustering algorithms. CGSO can automatically discover the clusters within a dataset without 

prior knowledge about the number of clusters. However, in CGSO a sensor range parameter 

which determined the number of clusters as well as the cluster quality was obtained 

experimentally by trial and error, thereby making the approach inefficient.  

On weight optimization, different techniques have been developed with varying degrees of 

success. However, it was observed that the Bioluminescence Swarm 

Optimization(BSO)algorithm by Rossato de Oliveira et al., (2011) has not been used to 

optimize the RBFNN.This study therefore sets out to improve the CGSO by incorporating an 

automated mechanism that determines the sensor range efficiently, by modifying the 

glowworm initialization method and introducing a function that measures the cluster error 

during the iteration phase. It also seeks to adopt the BSO to optimize the weights of the 

RBFNN.  

1.3  Aim and Objectives of Study 

The overall aim of this research is to develop a new approach of optimizing the RBFNN 

parameters fully for any given time series forecasting problem. 

 The specific objectives of this research are to: 

(1)efficiently determine the sensor range of the CGSO algorithm. 

(2) automatically determine the optimal number of clusters in a dataset. 

(3)develop a RBFNN model that adapts to the number of clusters in a dataset. 

(4) optimize the RBFNN parameters fully  
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1.4 Scope and Delimitation of the Study 

This study is focused on forecasting time series problems irrespective of application 

domain.However, for the proposed RBFNN model to perform optimally on time series 

problems, the datasets must be clusterable or have clustering tendency.Otherwise, the 

strength of the developed tool cannot be effectively demonstrated 

1.5  Significance of the Study 

As established, the major challenge in RBFNN is optimization of its full parameters: number 

and location of cluster centres, the output weights along with the number of neurons in the 

hidden layer (Awad, 2010; Rivas et al., 2004). Also, Broomhead and Lowe (1988) 

emphasized the need for automatic mechanism to build the RBFNNs.This work through the 

proposed models has been able to tackle these limitations. Thus, the research community will 

be able to use for instance, the CGSOm algorithm to cluster datasets in order to get its 

optimal number of clusters. This is because the CGSOm has a sensor range algorithm 

incorporated into it, whichhelps it to determine the sensor range automatically. The CGSOm 

will be of benefit to researchers in the data mining community who want to know the number 

and location of cluster centres (centroids) in a dataset.  

The proposed CGSOm-BSO and CGSOm-CGD RBFNN models for time series forecasting 

yield good forecast precisions. These models fix the major challenges in RBFNN 

optimization be it the number and location of cluster centres,the number of neurons in the 

hidden layer, as well as the output weights. Additionally, the models serve as automatic 

mechanism to build the RBFNN and will be a useful tool to those faced with such task of 

building automatic RBFNNs. Indeed, these models are major contributions to the statistical 

and machine learning community and will be of benefit to those domains and sectors 

involved in time-series forecasting.  

1.6  Definitions of Terms 

Clustering:otherwise known as cluster analysis, is the process of partitioning a set of data 

objects (or observations) into subsets called clusters. 
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Entropy:is a metric that is a measure of the amount of disorder in a vector.Entropy values 

range from 0 (perfect clustering quality) to 1 (very poor clustering quality). Smaller values of 

entropy indicate less disorder in a clustering, which means a better clustering.  

Optimization: is obtaining the best resultunder the given circumstances. It is the process of 

nding the best result in the form of minimizing or maximizing the benefit desired (profit 

function), expressed in the form of a function of decision variables under certain constraints 

and/or under given conditions (Raju, 2014). 

Principal Components Analysis(PCA):is a statistical technique, designed to reduce the 

number of variables that need to be considered to a small number of indices, the principal 

components that are linear combinations of the original variables. Principal components 

analysis provides an objective way of finding indices of variations in data, so that the 

variations in the data can be accounted for as concisely as possible. 

Purity:measures the percentage of the total number of objects (data points) that were 

classified correctly.Possible values of purity range from 0 (very poor clustering quality) to 1 

(perfect clustering quality).  

Rand Index:is a cluster quality evaluation measure that checks how close the resulting 

cluster is to the original cluster in terms of number of clusters and data points. It checks for 

the extent of agreement of thenumber of clusters as well as data points in the resulting cluster 

and the original cluster (the ground truth).Rand Index values range from 0 (very poor 

clustering quality) to 1 (perfect clustering quality).  

Sensor range:isthe radius around a glowworm that determines its neighbourhood. All 

glowworms within the sensor range (perimeter) of a given glowworm are classified as its 

neighbours.  

Time series:is a collection of observations made sequentially in time. A Time series is a 

sequence of vectors, �(t), t=0,1,…, where t represents elapsed time. Time Series are 

ubiquitous as they occur in virtually most domains including medical, scientific, business, 

and entertainment.They exist in different data formats such as image data, video data, 

handwriting data, brain scan, and numeric data (Keogh, 2003).  

1.7              List of Abbreviations 

BSO  Bioluminescence Swarm Optimization algorithm 

CGD  Conjugate Gradient Descent 
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CGSO  Clustering Analysis based onGlowworm Swarm Optimization (CGSO) 

algorithm 

CGSOm  modified Clustering Analysisbased on Glowworm Swarm Optimization 

CGSOalgorithm 

GSO  Glowworm Swarm Optimization algorithm 

PCA  Principal Component Analysis 

PSO  Particle Swarm Optimization algorithm 

RBFNN Radial Basis Function Neural Network model 

1.8              Thesis Outline 

The remaining chapters of this thesis are structured as follows: 

Chapter two contains the literature review. The chapter presents the approaches to modelling 

time series,and introduces the Radial Basis Function Neural Network. Related work on 

approaches to full optimization of the RBFNN and their limitations are discussed. Also 

presented are limitations of related work on approaches to clustering as well as theories and 

concepts used in this study.  

Chapter three presents the research methodology used to achieve each of the stated 

objectives.  The objectives concerningclustering andweight optimization of the RBFNN 

model as well as the methods used to achieve these objectivesare well covered. Also 

presented are the proposed models: CGSOm-BSO and CGSOm-CGD RBFNN, as well as the 

techniques employed in developing these models for time series forecasting. 

Chapter four presents the results and discussion on the simulation experiment.  

Chapter five covers the summary of key findings, conclusion, contribution to knowledge and 

suggestion for future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter presents the approaches to modelling time series and introduces briefly the 

Radial Basis Function Neural Network. Related work on approaches to full optimization of 

the RBFNN and their limitations are discussed. Also presented are limitations of related work 

on approaches to clustering as well as theories and concepts used in this study.  

2.1 Approaches to Modelling Time Series Data 

Time series prediction is considered a modelling problem. The first step is establishing a 

mapping between the inputs and the outputs. Usually, the mapping is non-linear. After such 

mapping is done, future values are predicted based on past and current observations (Ortegaet 

al., 2000). 

Popular modelling techniques for time series analysis include statistical techniques and 

machine learning techniques. 

2.1.1Statistical Techniquesinvolve use of statistical reasoning, analysis and modeling. 

These techniques make use of statistical probability and methods such as multiple correlation 

analysis, discriminant analysis and principal component analysis, factor analysis, regression 

methods, time series models (the Auto- Regressive Integrated Moving Average Process 

(ARIMA), Auto- Regressive (AR), Moving Average (MA), Vector Auto- Regressive (VAR) 

, Vector Auto- Regressive Moving Average (VARMA), etc. These techniques could be used 

for fitting models to univariate and multivariate data 

2.1.2Machine Learning Techniquesare programs that are able to improve their performance 

with experience. In other words, they are capable of learning. The domain of knowledge 

known as Machine Learning (Alpaydin, 2010) entails programming computers to optimize a 

performance criterion using example data or past experience. Machine Learning (Han et al., 

2012) investigates how computers can learn or improve their performance based on data, and 

it is a fast growing discipline. Machine Learning systems (Domingo, 2012) automatically 

learn programs from data. The use of machine learning has spread rapidly throughout 
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computer science and beyond and its application areas include: web search, spam filters, 

recommender systems, ad placements, credit scoring, fraud detection, drug design, and many 

other applications. Machine learning also finds solutions to problems in vision, speech 

recognition, robotics, medical diagnosis and for time series forecasting problems. 

Machine Learning techniquesincludethe Artificial Neural Networks, Support Vector 

Machine, Decision Tree, among a host of others. 

 

2.1.2.1      Artificial Neural Network(ANN)is a system that is based on the biological neural 

network, such as the brain. The brain has about 100 billion neurons which communicate 

through electro-chemical signals. The neurons are connected through junctions called 

synapses, and each neuron receives thousands of connections with other neurons. The ANN 

attempts to recreate the computational mirror of the biological neural network. An ANN 

comprises of a network of artificial neurons called nodes. There are three types of neurons in 

an ANN: the input nodes, hidden nodes, and output nodes. The input nodes take in 

information from the environment, in form of predictor variables, which is numerically 

expressed as in xj ϵ , j=1,…., d.  Associated with each input is a connecting weights wj ϵ , 

and the output, y, in the simplest case is a weighted sum of the input, as in Figure 1 (Alpaydin, 

2010). 

 

    y 

   ��  �� �� ��  

 

��   =+1               ������ 

Figure 1:Artificial neural network architecture, the Simple Perceptron (Alpaydin, 

2010) 

 

The model for the Simple Perceptron is given as:  

� = ∑ �� �� + ��
�
���    (1) 

Where �� is the intercept to make the model more general, and it is modeled as the weight 

coming from an extra bias unit, ��, which is always +1. The output of the perceptron could 
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be written as a dot product, y=WT�, where W = [�� , �� ,…,�� ]Tand� = [1,��, …, �� ]Tare 

augmented vectors to include the bias weight and input. 

ArtificialNeural Networks provide a robust approach to approximating real-valued, discrete-

valued, and vector valued target functions. ANNs are among the most effective learning 

methods currently known for certain types of problems such as learning to interpret noisy, 

complex real-world sensor data (Mitchell, 1997). A neural network is a two-stage regression 

or classification model. There exist variants of neural networks such as feed-forward, back-

propagation, time delay, radial basis function, among others. ANN can be used for modeling 

univariate and multivariate data.  

2.1.2.2 Support Vector Machine (SVM)is a machine learning algorithm that uses a linear 

hyperplane to create a classifier with a maximal margin. SVM is a powerful classification 

technique (Borgetto et al., 2012); and it is gaining much popularity in time series and 

regression prediction (Bankole and Ajila, 2013).  

2.1.2.3 Decision Tree Learning Method is an efficient non-parametric method that can be 

used for both classification and regression. It is a method (Mitchell, 1997) for approximating 

discrete-valued target functions that is robust to noisy data, in which the learned function is 

represented by a decision tree. It has been successfully applied to a broad range of tasks from 

learning to medical cases to learning to access credit risk of loan applications. Variants of 

Decision tree algorithms exist. 

This work focuses on modeling time series via the use of ANN. Precisely, this study focuses  

on the use of a machine learning technique, a variant of feed-forward neural networks, 

known as Radial basis function neural network (RBFNN). The RBFNN is strongly 

considered because of its ability for solving problems involving function 

approximation, prediction, pattern recognition, and modeling of dynamic systems and time 

series. 

2.2Radial Basis Function Neural Network 

A class of the ANN is the Radial Basis Function Neural Network (RBFNN)model.RBFNN is 

often referred to as model–free estimators as it can be used to approximate the desired 

outputs without requiring a mathematical description of how the output functionally depends 

on the inputs.As noted by Larsson and Fornberg(2005), the history of radial basis function 

approximations goes back to 1968, when multiquadric RBFs were first used to represent 

topographical surfaces given sets of sparse scattered measurements. Today, extensive 
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literature abounds on different aspects of RBF approximations. RBFs are used not only for 

interpolation or approximation of data sets but also as tools for solving differential equations. 

Moody and Darken (1989) popularized RBF networks which have proven to be a useful 

neural network architecture.They are typically configured with a single hidden layer of units 

whose activation function is selected from a class of functions called radial basis functions or 

kernel functions. RBFNN has certain advantages over other types of neural networks such as 

better approximation capabilities, simple network structure and faster learning (Sneha, 2013). 

Though very similar to back propagation in many ways, radial basis function networks 

possess several advantages. They can be trained much more efficiently than the back 

propagation networks (Mitchell, 1997). The major difference between RBF networks and 

back propagation networks is the behavior of the single hidden layer. Rather than using the 

sigmoidal or S-shaped activation function as in back propagation, the hidden units in RBF 

networks use a Gaussian or some other basis kernel function. Radial basis function neural 

network (RBFNN)has received considerable applications in various problems such as 

function approximation, prediction, pattern recognition, and modeling of dynamic systems 

and time series. 

Radial Basis Function Neural Networks typically have three layers: an input layer, a hidden 

layer with a non-linear radial basis functionand a linearoutput layer.The architecture of 

RBFNN is in Figure 2. The input layer consists of input signals which are propagated 

through the network. The transformation from the input space to the hidden unit space is 

nonlinear whereas the transformation from the hidden unit space to the output space is linear. 

Thus RBFNN produces a linear combination of non-linear basis functions where the 

dimension of input matches with the dimension of each radial centre. Each hidden unit or 

node is known as radial centre and each centre is representative of one or some of the input 

patterns. The hidden units in RBF networks use a Gaussian or some other basis kernel 

function. Each hidden unit acts as a locally tuned processor that computes a score for the 

match between the input vector and its connection centers. In effect, the basis units are highly 

specialized pattern detectors. 

The weights connecting the basis units to the outputs are used to take linear combinations of 

the hidden units to produce the final classification or output. The output should ideally be 

equal to a desired output. The difference between the obtained and desired output is used to 

adjust or train the network parameters, so that the error is reduced. The network parameters 

consist of the hidden-to-output layer weights, and parameters associated to the hidden layer 
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functions represented by each hidden layer node. RBFNNs, similarly to all neural networks, 

are associated with a set of parameters that need to be adjusted in order for the neural 

network to “learn” the correct mapping between inputs and outputs. The set of parameters of 

a neural network is directly dependent on the neural network’s architecture. 

 

 

Input layer                            Hidden layer                                 Output layer 

 

 

                        ��,� 

���       ��,� 

            
  

���y1y′1 

.                             ��,�   . 

.                                 ��,���,�. 

.                         .    ��,�. 
����,�. ��,1y′m 

 

��,�      . ��,�  

 

 

 

 

Figure 2:  The Architecture of a basic RBFNN model (Alpaydin, 2010) 

 

The RBFNN model is a function of the form:�� = ��
� + ∑ ��

��(�)�
��� (2) 

where �� is the value at output node m, �� is a set of � number of weights used in mapping 

values from each hidden node to output node m (set of weights that minimize the sum of the 
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squared error, ∑); and ��
� is a bias term.  � is the kernel function which the centroids are 

passed to, in order to compute the output from the hidden layer.  � is the input vector.  

 

 

 

2.3  The Learning Process in RBFNN 

The two tasks in the learning process of RBFNN are clustering of the RBF cluster centres 

and optimization of the output weights.The learning process in RBFNN starts when a training 

set of input patterns (data) is presented to the RBF Neural Network, The input patterns are 

represented as points in the hyper-dimensional space. During the clustering process, the 

clustering algorithms adjust the centres, to get the optimal centre sets: mean and standard 

deviation, for the RBF network. After the clustering aspect is done with, the centroids are 

obtained and these are passed to the kernel function in order to compute the output from the 

hidden layer.Getting an output from hidden node requires the input vector, and the centroids 

and standard deviation at that node. The nodes in the hidden layer are a multidimensional 

vector. Each node in the hidden layer is defined by the values of centroids and the standard 

deviation that define its kernel function. 

The second part is the weight optimization aspect. This entails adjusting the output weights 

via the use of optimization algorithms.The outputs from the hidden layer (kernel functions) 

are then passed as inputs to the output layer that then computes a weighted linear 

combination of these values from the hidden layer. At each output node, there is a calculated 

output, �������.If there is an error, that is, a difference between the calculated ������� (� ′
�,�

) 

and the target output patterns ������� (��,�), the weights are adjusted to reduce this error, until 

the desired error accuracy level is achieved. This adjustment process continues iteratively 

until one gets the weight matrix that enable us attain the desired error accuracy level.The 

resulting weights at this point are then used on data that is not used in the training data. That 

is, it is used on the validation data and test data.At the validation level, if the result is not 

satisfactory, one goes back to the beginning of the training and make adjustments as is 

deemed necessary. 

It is known that the performance of a trained RBF network depends on certain parameters 

such as the number and location of Radial Basis Functions (RBF) centres, the output weights 
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along with the number of neurons in the hidden layer (Rivas et al., 2004; Awad, 2010). It has 

been established that the performance of RBF suffers degradation when the desired locations 

of the centres of the RBF are not suitable (Song et al., 2005). As long as the centres and the 

radii have been fixed, the weights of the links between the hidden and the outputs layers can 

be obtained. 

For the past three decades, there has been active research work on using RBFNN to forecast 

time series data.The next section presents a review and critique of existing work related to 

this study. 

2.4Related Work on Approaches to Full Optimization of RBFNN Model for Time Series 
Forecasting. 

This section reviews existing work on optimizingall the parameters of the RBFNN in order to 

find their global optimum. Time series forecasting from diverse domains areconsidered. 

Awad et al., (2009) proposed a method of optimizing the parameters of the RBFNN. 

Theauthors used well-known heuristics: the k-Nearest Neighbour technique (kNN) for the 

initialization of the radius of each RBF, Singular Value Decomposition (SVD) to directly 

optimize the weights. Finally, the Levenberg-Marquardt algorithm was used to fine-tune the 

obtained RBFNN.The constraint in this approach is that the number of clusters must be stated 

or determined apriori. 

Rivaset al., (2002) used the evolutionary algorithm to optimize all the parameters related to 

the neural network architecture. A set of parameters to run the algorithm was found and 

tested against a set of different problems on time-series forecasting and function 

approximation. Results obtained were compared with those yielded by similar methods. The 

strength of this approach is that it can automatically determine the RBF centres. 

Nekoukar and Beheshti (2009) presented a Local Linear Radial Basis Function Neural 

Network (LLRBFN). A modified Particle Swarm Optimization (PSO) with hunter particles 

was introduced for training the LLRBFN. The proposed methods have been applied for 

prediction of financial time-series and the result shows the feasibility and effectiveness. 

However, in this approach, the constraint is that thenumber of clusters must be known in 

advance. 

Zang et al., (2008) adopted RBF neural network to model univariate and multivariable time 

series. The comparative analysis of the results from the forecast showed that multivariable 
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time series model has higher predictive accuracy for the landslide displacement than the 

univariatemodel. Thelimitation in this approach is that thenumber of clusters must be stated 

before clustering starts. 

Shenet al., (2011) usedK-means clustering algorithm optimized by Artificial Fish Swarm 

Algorithm (AFSA) in the learning process of RBF. To verify the usefulness of algorithm, the 

authors compared the forecasting results of RBF optimized by AFSA, Genetic Algorithms 

(GA) and Particle Swarm O(PSO), as well as forecasting results of ARIMA, BP and Support 

Vector Machine (SVM). Of all the combinations considered in their paper, 

BIAS6+MA5+ASY4 was the optimum group with the least errors. The constraint in this 

approach is the number of clusters must be stated beforeclustering starts. 

Isimeto et al., (2015) proposed an improved radial basis function neural network based on a 

convex cost function for rainfall forecasting. The network was trained by CGD and PSO 

algorithms. The proposed model predicts the occurrence of rainfall in a day with 72.68% 

accuracy, given weather information about the previous day.This approach figures out the 

RBF centres automatically. 

Linand Chen (2005) proposed a time-series forecasting model based on the radial basis 

function network (RBFN) and Self-Organizing Map (SOM). SOM was used to figure out the 

radial basis centres. The proposed model was examined using simulated time series data and 

actual groundwater head data. This approach figures out the RBF centres automatically. 

Ko and Lee (2009) developed the radial basis function neural network (RBFNN) based on a 

Nonlinear Time-Varying Evolution Particle Swarm Optimization (NTVE-PSO) algorithm. 

When training RBFNNs, the NTVE-PSO method is adopted to determine the optimal 

structure of the RBFNN to predict time series, in which the NTVE-PSO algorithm is a 

dynamically adaptive optimization approach using the nonlinear time-varying evolutionary 

functions for adjusting inertia and acceleration coefficients. The proposed PSO method will 

expedite convergence toward the global optimum during the iterations. To compare the 

performance of the proposed NTVE-PSO method with existing PSO methods, the different 

practical load types of Taiwan power system (Taipower) were utilized for time series 

prediction of one-day ahead and five-days ahead. Simulation results illustrate that the 

proposed NTVE-PSO-RBFNN has better forecasting accuracy and computational efficiency 

for different electricity demands than the other PSO-RBFNNs. 
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Chao and Horng (2014) proposed a new algorithm called Firefly RBF network for training 

the radial basis function neural network, and this was tested on classification problems. 

Though a new approach for optimizing the RBFNN, their focus however, is on a 

classification task while our own focus is on a regression task. 

Gan et al., (2012) proposed a novel hybrid algorithm for selecting automatically the proper 

input variables, the number of hidden nodes of the radial basis function (RBF) network, as 

well as the optimization of the network parameters (weights, centers and widths) 

simultaneously. In the proposed algorithm, the inputs and the number of hidden nodes of the 

RBF network are represented by binary-coded strings and evolved by a genetic algorithm 

(GA). The performance of the presented hybrid approach is evaluated by several benchmark 

time series modeling and prediction problems. Experimental results show that the proposed 

approach produces parsimonious RBF networks, and obtains better modeling accuracy than 

some other algorithms. Optimization of the RBFNN parameters is a one-phase process as all 

the parameters were optimized simultaneously at once. This makes this approach to be more 

computationally expensive compared to our approach which entails a 2-stage optimization 

process. Also curse of dimensionality may occur as the number of parameters to be 

optimized at once are many. 

Duand Zhang (2008) presented a new encoding scheme for training radial basis function 

(RBF) networks by genetic algorithms (GAs).  In the proposed encoding scheme, both the 

architecture (numbers and selections of nodes and inputs) and the parameters (centres and 

widths) of the RBF networks are represented in one chromosome and evolved simultaneously 

by GAs in order that the selection of nodes and inputs can be achieved automatically. The 

performance and effectiveness of the presented approach are evaluated using two benchmark 

time series prediction examples and one practical application example, and are then 

compared with other existing methods. It is shown by the simulation tests that the developed 

evolving RBF networks are able to predict the time series accurately with the automatically 

selected nodes and inputs. Though a good approach, optimizing the whole parameters 

simultaneously is computationally more expensive compared to our approach. Also curse of 

dimensionality may occur as the number of parameters to be optimized at once are many. 

Sheta and De Jong(2001) proposed an AutoRegressive Radial Basis Function (AR-RBF) 

model.GA was used to simultaneously optimize all of the RBF parameters so that an 

effective time-series model was designed. The model used for forecasting the exchange rates 

time series data, showed promising results.The limitation in this approach is that tuning the 

http://www.sciencedirect.com/science/article/pii/S002002550100086X
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RBF parameters to get the centre and weight was done via trial and error. Optimizing all the 

parameters at once is computationally expensive. 

Rivas et al., (2004) followed up on Sheta and De Jong (2001). They proposed the 

evolvingRadial Basis Function (Ev-RBF) model. Theparameters of radial basis function 

neural networks (number of neurons, their respective centres and radii) were determined 

automatically using an evolutionaryalgorithm, the genetic algorithm. The weights were 

calculated using singular vector decomposition (SVD).Tested on currency exchange rates 

data, theresults obtained showed an improvement when compared with existing work of 

Sheta andDe Jong (2001).Our own work followed up on these authors’ work. Thelimitation 

in Rivas et al.,’s approach is that it is more computationally expensive compared to our 

approach, as many parameters were optimized at once.Also curse of dimensionality may 

occur as the number of parameters to be optimized at once are many.Our own approach 

entails a 2-stage optimization process. 

From existing work done so far, the limitations are summed up in the next section. 

2.5 Summary of Limitations of Related Work on Approaches to Full Optimization of 
RBFNN Models for Time Series Forecasting. 

A considerable amount of success has been achieved using the conventional and SI 

techniques to optimize fully the parameters of the RBFNN model for time series forecast 

problems. It was noted thatsome of the approaches proposed, for instance(Zhang et al., 2010; 

Armano and Farmani,2014) still depended on knowing the number of clusters before the 

clustering process starts. Other approaches by Sheta and De Jong (2001),Zhu(2009) used trial 

and errormethod to determine the number of clusters. Only a fewnumber of researchers 

(Rivas et al., 2004;Duand Zhang,2008;Gan et al., 2012) found their cluster centres 

automatically. However, these approaches are more computationally expensive compared to 

our approach as the whole parameters were optimized simultaneously.  

From the foregoing, the main challenge in full optimization of the RBFNN parameters is in 

clustering involving optimal determination of the RBF centres. The next section focuses on 

the limitations of the conventional and current approaches to clustering with emphasis on the 

CGSO. 

2.6 Limitations of related work on approaches to Clustering 



 

31 
 

Various clustering algorithms have been used by researchers to select optimal centre sets for 

the RBFNN.  Most conventional clustering algorithms, including K-means, experience 

premature convergence and achieve local optimal solutions. They are not guaranteed to 

converge to the global optimum. It has been established that the performance of RBF suffers 

degradation when the desired locations of the centres of the RBF are not suitable (Song et al., 

2005). Thisresults in local optimal network with low prediction precisions (Awad et 

al.,2009).  

As a contribution to solving the clustering problem, Evolutionary Algorithms emerged. The 

Genetic Algorithm (GA) was used by (Awad, 2010) to cluster the RBF centres. The GA 

partially optimized the centres.The emergence of Swarm Intelligence techniques led to the 

development of the following methods which were used to solve the clustering problem:the 

kABC clustering algorithm proposed by Armano and Farmani(2014); the Artificial Bee 

Colony (ABC) algorithm by Zhang et al., (2010);and the Ant Colony Optimization algorithm 

by Shelokar et al.,(2004). However, the need to specify the number of clusters in advance 

remained a disadvantage. Ben-David (2014) noted that asserting when the optimal cluster 

centre sets have been achieved during the clustering process is a major challenge, as there is 

no ground truth with which to evaluate the resulting clusters. 

This challenge was solved with the development of the Glowworm Swarm Optimization 

(GSO) algorithm meant for multimodal optimization (Krishnand and Ghose, 2005).Though 

GSO was first used by Huangand Zhou(2011) for cluster analysis,Aljarah and Ludwig(2013) 

adapted the GSO to obtainthe Clustering Analysis based onGlowworm Swarm Optimization 

(CGSO) algorithm. The CGSO does not require providing the number of clusters in advance 

as it can automatically discover the number. It alsosolves the problem of slow convergence. 

Survey shows that CGSO algorithm has not yet been used for RBFNN 

optimization(Karegowda and Prasad, 2013). 

2.6.1 Limitationsof CGSO Algorithm 

A critical review of Aljarah and Ludwig (2013) revealed that the CGSO algorithm suffers 

from the following limitations: 

1) Method of Determination of the sensor range:  CGSO has one parameter, the sensor range, 

��, which decides the number of clusters as well as the cluster quality.It was noted that the 

��was determined via preliminary experiments by trial and error. This approach is generally 

inefficient and lacks documentation. 
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2) Method of Initialization: CGSO initializes the population of glowworms byrandomly 

generating a collection of position vectors. This approach does not guaranteethat each 

glowworm covers a data instance.  

 

 

 

2.7  Theories and Concepts used in this study  

2.7.1 The Concept of Clustering 

(i) Clustering:otherwise known as cluster analysis is the process of partitioning a set of data 

objects (or observations) into subsets called clusters. It aims at representing large datasets by 

a fewer number of prototypes or clusters. A cluster is a collection of data objects that are 

similar to one another within the same cluster and are dissimilar to the objects in another 

cluster (Han et al., 2012; Abraham et al., 2008). Clustering is a challenging, dynamic field of 

research in data mining. It brings simplicity in modeling data and hence plays a major role in 

the process of knowledge discovery and data mining (Abraham et al., 2008). It is linked to 

unsupervised learning in machine learning. Its application area is not limited to only pattern 

recognition and web search, it could also be used as a standalone data mining tool to gain 

insight into data distribution. It could be used as a pre-processing step either, for other data 

mining algorithms (such as characterization, attribute subset selection, and classification), 

which would act on the detected clusters (Han et al., 2012); or as a pre-processing step before 

later stage of regression (Alpaydin, 2010).   

Ben-David (2014) asserted that “there exists distressingly little theoretical understanding of 

clustering. In most practical clustering tasks, there is no clear ground truth to evaluate your 

solution by (in contrast with classification tasks, in which you can have a hold-out labeled set 

to evaluate the classifier against)”.  

Literature notes that there are many clustering algorithms in existence. As affirmed by (Han 

et al., 2012), providing a crisp categorization of clustering methods is difficult because these 

categories may overlap and at such, a method may have features from several categories. As 

highlighted by Alpaydin (2010), methods of clustering could be loosely split into two groups: 

the online method and Batch method. Yet some other authors Karayiannis andRandolph-

Gips(2003); Ruiwang and Binwang(2002) noted that the strategies for selecting the RBF 
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centres could be classified as follows: (i) strategies selecting the RBF centers randomly from 

the training data, (ii) strategies employing unsupervised procedures for selecting the RBF 

centers, and (iii) strategies employing supervised procedures for selecting the RBF centers. 

(ii) Online methods: For this method, the whole sample data are not available at hand during 

training. The instances are received one by one and then the model parameters are updated as 

soon as the instances are received. Examples of online methods include: (1) competitive 

methods which are neural network methods for online clustering. Included in this category 

are online k-means, two neural network extensions: Adaptive Resonance Theory (ART) and 

self organizing map (SOM). 

(iii) Batch methods: For this method, the whole sample data are available at hand during 

training the clusters. These methods include: batch K-means, Expectation-maximization 

algorithm, Hierarchical clustering, andOrthogonal least square learning algorithm. 

The advantages of online methods include (1) we do  not need extra memory to store the 

whole training set; (2) updates at each step are simple and easy to implement, for example, in 

hardware; and (3) the input distribution may change in time and the model adapts itself to 

these changes automatically. In comparison with batch methods, one would have to collect a 

new sample and run the batch method from scratch over the new sample (Alpaydin, 2010).  

2.7.2  Approaches to Clustering 

Some approaches to clustering include the following: 

2.7.2.1RandomSelection of Clustersis the simplest clustering technique that uses 

unsupervised method. This approach randomly selects a number of training examples as RBF 

centers. 

This method has the advantage of being very fast, but the network will likely require an 

excessive number of centers. Once the center positions have been selected, the spread 

parameters �j can be estimated, for instance, from the average distance between neighboring 

centers. The limitation of this method is that selecting the Radial basis function centres is not 

guided by the mean square error objective function (Gutierrez-Osuna, 2014). 

2.7.2.2 Partitioning Methodisconsidered as the simplest and most fundamental method of 

cluster analysis. This method organizes the objects of a set into several exclusive groups or 

clusters of spherical shape. They are distance-based, use the mean to represent each cluster.  

Formally, given a data set, D, of n objects, and k, the number of clusters to form, a 

partitioning algorithm organizes the objects into k partitions (k<=n), where each partition 
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represents a cluster. These clusters are formed to optimize an objective partitioning criterion 

such as a dissimilarity function based on distance, so that the objects within a cluster are 

“similar” to one another and “dissimilar” to objects in other clusters in terms of the data set 

attributes.  They are effective for small to medium size datasets (Han et al., 2012). The most 

commonly used partitioning algorithm is the k-means which is discussed below. 

K-means Algorithm is the most well known and commonly used partitioning method. It is 

an unsupervised technique used for clustering. That is, it is used to find groups in the data, 

where the groups are represented by their clusters, which are the typical representatives of 

the groups (Alpaydin, 2010).  As affirmed by Han et al., (2012); K-means algorithm is a 

centroid-based partitioning technique that uses the centroid of a cluster, Ci. The centroid of a 

cluster is its centre point and this can be defined by the mean or medoid that is used to 

represent the cluster centre.  

The quality of a cluster Ci as noted by Han et al.,(2012); Alpaydin (2010) can be measured 

by the within-cluster variation, which is the sum of squared error between all objects in Ci 

and the centroid ci; is defined by an objective function 

E = � � ����(�,��)� � �

�Ɛ��

�

���

                                                            (3) 

 

where E is the sum of the squared error for all objects in the dataset;  p is the point in space 

representing a given object; ci is the centroid of the cluster Ci (both p and ci are 

multidimensional). The difference between an object pϵCi and ci, the representative of the 

cluster, is measured by dist(p,ci), which is the Euclidean distance between two points.  

In other words, for each object in each cluster, the distance from the object to its cluster 

centre is squared, and the distances are summed. This objective function tries to make the 

resulting k clusters as compact and as separate as possible (Alpaydin, 2010). In simple terms, 

this implies an objective function is used to assess the partitioning quality so that objects 

within a cluster are similar to one another but dissimilar to objects in other clusters, thus 

ensuring that the objective aims for high intracluster similarity and low intercluster 

similarity.   

It is noted that optimizing the within-cluster variation is computationally challenging and a 

NP-hard problem, but k-means is commonly used to overcome the prohibitive computational 

cost. 
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The K-means algorithm is shown in Algorithm 1 (Han et al., 2012) 

Algorithm 1: K-means Algorithm 

         Input: 

K: the number of clusters 

D: a data set containing n points 

Method:  

         (1) arbitrarily choose k points from D as the initial cluster centres 

(2) repeat 

(3)(re)assign each point to the cluster to which the points is the most similar,  

                      based on the mean value of the points  in the cluster; 

(4)Update the clusters means, that is, calculate the mean value of the points foreachcluster 

(5) until no change 

Output:  A set of k clusters. 

 

While the strengths of K-means include the following: K-means finds mutually exclusive 

clusters. It is distance-based and uses the mean to represent cluster centre. It is effective for 

small to medium –sized data sets. Its limitations are:K-means is not guaranteed to converge 

to the global optimum, hence it may experience premature convergence; and often it 

terminates at a local optimum. The need to specify the number of cluster, k, in advance can 

be seen as a disadvantage, as the k-means is sensitive to the initial number of centroids 

2.7.2.3Hierarchical Clustering 
 

This method works by grouping data objects into a hierarchy or “tree” of clusters. Grouping 

data in this form is useful for data summarization and visualization. As asserted by Alpaydin 

(2010), Hierarchical clustering are methods of clustering that only use similarities of 

instances, without any other requirement on the data; the aim is to find groups such that 

instances in a group are more similar to each other than instances in different groups. It has 

application in areas such as handwritten character recognition, studies of evolution,  in 

applications that the data bear an underlying hierarchical structure that needs to be 

unrecovered, and so on(Han et al., 2012; Frigui and Krishnapuram, 1999; Leung et al., 

2000).  
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Han et al., (2012) notes that several orthogonal ways to categorize hierarchical clustering 

methods include algorithmic methods, probabilistic methods, and Bayesian methods. 

Algorithmic methods consider data objects as deterministic and compute clusters according 

to the deterministic distances between objects. Examples of these methods include: 

Agglomerative (bottom-up), divisive (top-down), and multiphase methods. Probabilistic 

methods use probabilistic models to capture and measure the quality of clusters by the fitness 

of models. An example is Probabilistic hierarchical clustering. Bayesian methods compute a 

distribution of possible clusterings. That is, conditional on the given data; they return a group 

of clustering structures and their probabilities, instead of a single deterministic clustering.  

The strengths of hierarchical methods include firstly, the number of classes need not be 

speci ed a priori and secondly, they are independent of the initial conditions. It is possible to 

improve the clustering quality of hierarchical methods by integrating these methods with 

other clustering techniques, resulting in multiphase clustering. Examples of multiphase 

clustering methods are: Balanced Iterative Reducing and Clustering using Hierarchies 

(BIRCH) and Chameleon (Han et al., 2012). Its limitation is that this method can encounter 

difficulties regarding the selection of merge or split points. This issue is critical because once 

a group of objects is merged or split, the process at the next step will operate on the newly 

generated clusters. It will not undo what was done previously and will not perform object 

swapping between clusters, that is, it cannot correct erroneous merges or splits. Data-points 

assigned to a cluster cannot move to another cluster. Thus, merge or split decisions, if not 

well chosen, may lead to low-quality clusters. Moreover, the method do not scale well 

because each decision of merge or split needs to examine and evaluate many objects or 

clusters.       

2.7.2.4 Density-Based Methods:these methods (Han et al., 2012) discover clusters that are 

of non spherical and arbitrary shape such as “S” shape and oval clusters. This method model 

clusters as dense regions in the data space, separated by sparse regions. 

The strength of this method is that this method can identify convex regions, where noise or 

outliers are included in the clusters. 

2.7.2.5Bio-Inspired Clustering Algorithms 
  
Most conventional clustering algorithms experience premature convergence andachieve local 

optimal solutions. Research efforts in clustering to overcome this problem are well noted. 

Abraham et al., (2008) asserts that these days, data mining tasks require fast and accurate 
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partitioning of huge datasets, which may come with a variety of attributes or features. This 

fact imposes severe computational requirements on the relevant clustering techniques. A 

family of bio-inspired or nature-inspired algorithms, well-known as Swarm Intelligence (SI) 

techniques has recently emerged that meets these requirements and has successfully been 

applied to a number of real world clustering problems. Clustering with swarm-based 

algorithms has emerged as an alternative to more conventional clustering methods(Handl and 

Meyer, 2007; Shifei et al., 2010).Swarm Intelligence are known to imitate the natural social 

communities such as ant colonies, fish schools, bird flocks. The behavior of these 

communities is based on the receptor of the individual’s interactions by communicating with 

each other to locate the food sources (Engelbrecht, 2007).They locate global solution for the 

given optimization problem.  

One improvement to solving the problem of local minimum was proposed by Awad, et al., 

(2009); who came up with a new method based on K-means and local displacement process 

which locally minimizes the distortion within each cluster. Another achievement was made 

by Armano Farmani (2014) who proposed the kABC clustering algorithm, a combination of 

K–means and ABC algorithms. Their simulation results showed that kABC has more ability 

to search for the global optimum solutions, and more ability for passing local optimum, as it 

converges to optimal solution in most runs. The authors noted that to use the KABC, the 

number of clusters should be known a prior. This is a major limitation as it is not easy to 

know the number of clusters in advance. 

To solve the problem of slow convergence and the problem of determining the number of 

clusters in advance, a new Clustering approach based on Glowworm Swarm Optimization 

algorithm (CGSO) was proposed by Aljarah and Ludwig in Aljarah and Ludwig (2013). The 

CGSO is a modification to the classical GSO proposed by Krishnanand and Ghose (2005), 

first used for optimizing multimodal functions. With this modified GSO, CGSO does not 

need the number of clusters to be provided in advance as it can automatically discover 

number of clusters in advance and it tackles slow convergence problem. A performance 

analysis of CGSO and other clustering algorithms was done by Aljarah and Ludwig (2013) and 

their experimental results on several real and artificial data sets with different characteristics 

showed that their proposed algorithm, CGSO is more efficient compared to other well- 

known clustering methods (such as k-means, hierarchical clustering).  

(1) The Basic Glowworm Swarm Optimization Algorithm 
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The classical Glowworm Swarm Optimization (GSO) algorithm was rst presented 

byKrishnanand and Ghose in 2005(Krishnanand and Ghose, 2005) to model the collective 

behavior in robotics.The classical GSO locates multiple solutions having different or equal 

objective function values. This feature of GSO distinguishes it from other optimization 

techniques (that find one local or global solution). 

In GSO, each glowworm uses a probabilistic mechanismto select a neighbour having higher 

luciferin value, and move towards it. Each glowworm carry its own luciferin value and has 

its own decision range. The luciferin value depends on the objective function value and 

glowworm position. A glowworm with a better position is brighter than others, has higher 

luciferin level value and is very close to one of the optimal solutions.All glowworms are 

attracted,and move to neighbour within their neighbourhood range, that glow brighter. Based 

on local information and interactions with selected neighbour, the swarm of glowworms 

move and divide themselves into disjoint subgroups that eventually converge to multiple 

local optima of a given multimodal function (Rossato de Oliveira et al., 2013; Aljarah and 

Ludwig, 2013). 

GSO begins by populating a given search space with �glowworms of dimension �. Each 

glowworm is assigned a random position inside the search space. Initially,allglowwormsare 

assigned same, initial amount of luciferin �� and neighbourhood range decision ��.The 

position ����� of each glowworm is evaluated by a fitness function �(�����). During each iteration, 

the luciferin and position of each glowworm gets updated. GSO algorithm requires other 

parameters namely: step size (�), sensor range (��), luciferin decay constant (�), luciferin 

enhancement constant (�), number of neighbors (��) and a constant value (�).  

The GSO algorithmis shown in Algorithm 2(Rossato de Oliveira et al., 2013) 

Algorithm 2: The GSO algorithm. 

1: Set parameters: �, ��, ��, �, �, �, �, ��, �� 

 2: Randomly generate the population of glowworms ����� 
 3: for � = 1 to � do 
 4:  Initialize luciferin ��(0) = �� 

 5:  Initialize neighborhood range ��
� (0) = �� 

 6: end for 
 7: � = 1 
 8: while stop condition not met do 
 9:  for each glowworm�do [update luciferin] 
10:   ��(� + 1) = (1 �). ��(�) + �. �(��(�)) 
11:  end for 
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12:  for each glowworm�do [movement phase] 
13:   Find neighbors ��(�) 
14:   for each glowworm� � ��(�)do 

15:    Compute probability ���(�) =
��(�)���(�)

∑ ��(�)���(�)� � � �(�)
 

16:   end for 
17:   Select glowworm� using ��� 
18:   Update glowworm position with 

  ��(� + 1) = ��(�) + ��
��(�)���(�)

���(�)���(�)�
� 

19:   Update decision range: 

20:   ��
� (� + 1) = ��� ���, ����0, ��

� (�) + �. (��  |��(�)|)�� 

21:  end for 
22:  � = � + 1 
23: end while 
 

(ii)        Clustering Analysis Based on Glowworm Swarm Optimization algorithm 

The classicalGSO can capture multiple peaks in multimodal functions; this advantage of 

GSO algorithm was exploited by (Aljarah and Ludwig, 2013) to produce the Clustering 

Analysis Based on Glowworm Swarm Optimization (CGSO) algorithm. That is, due to the 

GSO algorithm’s ability for multimodal optimization, it was adapted to obtain the CGSO to 

solve the clustering problem.GSO locates multiple solutions while other optimization 

techniques find one local or global solution. In CGSO, the objective function is not defined 

by the user. In fact, it is an integral part of the algorithm and can significantly decide the 

cluster quality. According to the authors, the objective function is adjusted to locate multiple 

optimal centroids such that each centroid represents a sub-solution and the combination of 

these sub-solutions formulates the global solution for the clustering problem.  

Applied to cluster datasets, the CGSO can find the number of clusters, as it does not need to 

be provided with the number of clusters in advance. It can automatically discover the number 

of clusters. 

In CGSO, the clustering problem is formulated as a multimodal optimization problem to 

extract the centroids from a data set based on glowworms’ movement. The CGSO partitions 

the given datasets into sets of clusters such that every glowworm in the swarm tries to cover 

larger numbers of data instances. Furthermore, eachglowworm basically gets attracted to 

glowworms that cover a larger amount of data instances.  

The swarm ofglowworms consists of m glowworms, where each glowworm is represented by 

a vector, ��, j= 1 . . .  m. Each �� has 5 parameters:luciferin level(��), fitness function ��,  d-
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dimensional position vector(��), coverage set (Crj) which is the set of data instances covered 

by��, and intra-distance (Intra��) between the (Crj) set members and �� position. The �� 

needs to cover at least one data instance in its neighbourhood range.  

The CGSO Algorithmconsists of four main phases: initialization phase, luciferin level 

update, glowworm movement, and candidate centroids set construction. 

At the initialization phase, first an initial glowworm swarm of size m is created. For every 

glowworm ��, a random position vector is generated within the search space within the 

bounds of the minimum and maximum values of the dataset (line 2). Using the initial 

luciferin level ��, the luciferin level�� is initialized (line 4). The fitness function �� is 

initialized to zero. The neighbourhood range �� is set to an initial constant range ��. Secondly, 

after initializing the swarm, the set of data instances Crjcovered by�� is extracted from the 

dataset X (line 5), and the Intra�� is calculated using equation (in line 6); where ���� is data 

instance i covered by ��;  |���| is number of data instances covered by��. The last step in the 

initialization phase entails the calculation of the swarm level fractions SSE and InterDist. 

To initialize the SSE, the glowworms list that covered the highest number of data instances 

(the glowworms that have the maximum |���|sizes) is extracted. These glowworms should be 

disjointed from each other.  The extracted glowworm list is considered the initial set of the 

candidate centroid �. Next, the candidate centroid �is used to calculate the initial SSE (the 

Equation in line 9).  The same candidate centroid c is used to calculate the InterDist (the 

Equation in line 10). 

After the initialization phase, an iterative process takes place to find optimal glowworms that 

represent the clustering problem centroids. The result of each iteration is an updated swarm 

with updated candidate centroid set c. Firstly, the fitness function F is evaluated to assign 

new �� values for each glowworm using the glowworm position and other information (line 

13). Three fitness functions were proposed to evaluate the goodness of the glowworm. After 

the fitness functions evaluation for glowworm��, the luciferin level �� is updated using (the 

Equation in line 18). Then, each glowworm�� locates the neighbourhood group (line21-22), 

and the neighbour probability values are calculated using Equation in line 23; and using the 

roulette wheel selection method in line 25, the best neighbour is then found. Next, the 

glowworm is moved towards the best neigbour by updating its position vector using 
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Equationin line 26. After that,|���| and IntraDj are updated (using Equation in line 28) based 

on the new glowworm ��positions.  

Next is that the candidate centroid set c is reconstructed based on the highest fitness values 

(��) (from line 30), and not like the way they were extracted during the initialization phase, 

which was based on the highest number of data instances (the glowworms having the 

maximum |���|). Then, the candidate centroid set c is used to calculate the new value for SSE 

which is calculated by the Equation in line 31. Also, the same candidate centroid set c is used 

to calculate InterDist which is calculated from the Equation in line 32. Using the new 

information, the fitness function is reevaluated in line 35. The iterative process continues 

until the size of the candidate centroid set c becomes less than a specific threshold (minimum 

number of centroids is stated), or the maximum number of iterations is achieved. The 

candidate centroid set c decreases throughout the iterative process.After the clustering 

process is completed, the candidate centroid set in line 39 is used to evaluate the clustering 

results.  

The CGSO algorithm(Aljarah and Ludwig, 2013) is Algorithm 3  

Algorithm 3: The CGSO algorithm 

Input: a dataset X consisting of d data instances with �dimensions 

Method: 
//Initialization phase 
1: Set parameters: �,  ��, �, ��, �, � 
2: Generate the initial population of glowworms by randomly generating positions vectors 
within the search space. 
3: for each glowworm gj, where j = 1 to m do 
4:  Initialize luciferin level, ��(0) = �� 

5:      Extract set of data instances Crj covered by gj 

6:  Calculate intra-distance ������ � = ∑ ����� ���
�����

���
 

7: end for  
8: Extract the initial set of the candidate centroid,�. The initial centroid is a list of 
glowworms with maximum |���| sizes and also disjointed from one another. 

9: Calculate ��� = ∑ ∑ ��� ���
�����

���
|�|
���  

10: Calculate ���������= � ∑ ��� ���
��

���

�

���
 

11:  for each glowworm ��, where j = 1 to m do {initializing fitness function} 

12: Calculate fitness function  

13: ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

���×
������ �

��� �������� ��

 

14:  end for 
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15: t = 1 
16: while stop condition not met do 
17:   for each glowworm ��, where j = 1 to m do {update luciferin} 

18:  ��(� + 1) = (1 �). ��(�) +  �. ��(��) 
19: end 
20: for each glowworm ��, where j = 1 to m do {movement phase} 

21:  Find neighbors ��(�) 

22:  for each glowworm � ∈ ��(�)do 

23:   Compute probability ���(�) =
��(�)���(�)

∑ ��(�)�� � � �(�) ��(�)
 

24:  end for 
25:  Select glowworm � using ��� by roulette wheel method 

26:  Update glowworm position with 

��(� + 1) = ��(�) + ��
��(�) ��(�)

���(�) ��(�)�
� 

27:        Extract set of data instances Crj covered by gj 

28:  Calculate intra-distance ������ � = ∑ ����� ���
����

�

���
 

29: end for 
30: Extract the set of the candidate centroids, �. The centroid is a list of glowworms with 
maximum fitness function and also disjointed from one another. 

31: Calculate ��� = ∑ ∑ ��� ���
�����

���
|�|
���  

32: Calculate ���������= � ∑ ��� ���
��

���

�

���
 

33: for each glowworm ��, where j = 1 to m do {fitness function update} 
34:  Calculate fitness function  

35:  ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

���×
����� � �

��� �������� ��

 

36: end for 
37: � = � + 1 
38: end while 
39:  Return the set of candidate centroids, c 
Output: A set of k clusters and k centroids 

 

2.7.3Approaches to Training the Network weights 

Training the network weightsinvolve the use of optimization algorithms to adjust the output 

weights of the RBFNN, in order to get the right set of weights that minimize the objective 

function. In the next sub-section, a brief survey of some training algorithms used in training 

RBFNNmodel is done. The conventional techniques and the bio-inspiredswarm intelligence 

optimization techniques will be looked at. 

2.7.3.1    Conventional Techniques 
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(i)Gradient Descent Algorithm 

Gradient Descent Algorithmis otherwise called the steepestdescent, or the method of steepest 

descent. It is a technique used to find a local minimum of a function. The Minimum of a 

function is found by following the slope of the function. 

To apply this algorithm, one starts with an initial guess of the solution and takes the gradient 

of the function at that point. Then one steps the solution in the negative direction of the 

gradient and repeats the process. The algorithm eventually converges at the point where the 

gradient is zero (which corresponds to a local minimum). It is a first-order algorithm because 

it takes only the first derivative of the function.TheGradient Descent algorithmisshown in 

Algorithm 4 

Algorithm 4:Gradient Descent algorithm 

Start with a point (guess) 

Repeat  

  Determine a descent direction 

  Choose a step 

  Update 

Until stopping criterion is satisfied 

 

The limitation of this algorithm is that Gradient Descent finds the nearest minimum that can 

be a local minimum, and there is no guarantee of finding the global minimum unless the 

function has only one minimum. The use of good value for the step size is critical. If it is too 

small; the convergence may be too slow, and a large value may cause oscillations and even 

divergence (Alpaydin, 2010). 

2.7.3.2 Swarm Intelligence Techniques 
 
(i)  Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a stochastic optimization technique based on 

movement and intelligence of swarm of birds. PSO was presented by Kennedy and Eberhart 

in 1995 in (kennnedy and Eberhart, 1995). It applies the concept of social interaction to 

problem solving. Each individual in the swarm, called a particle is treated as a point in space, 

and represents a potential solution.  Each particle in the swarm as noted by Binitha and 
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Sathya(2012) represents a solution in a high-dimensional space with four vectors, its current 

position, best position found so far, the best position found by its neighborhood so far and its 

velocity and adjusts its position in the search space based on the best position reached by 

itself (pbest) and on the best position reached by its neighborhood (gbest) during the search 

process. In each iteration, each particle updates its position and velocity.  

The simplicity of implementation, quick convergence, and few parameters have resulted in 

PSO gaining popularity. Many researchers have made modifications to the PSO. PSO has been used 

for problems across various applications such as image classification by Omran et al., 

(2002); pattern classification, biological system modeling, scheduling, signal processing, 

robotic application by Hardin et al., (2004); and for training neural networks by Engelbrecht 

(2007).  

Originally, two PSO algorithms were developed which differ in the size of their 

neighbourhoods. These are the global best (gbest) PS0 and the local best (lbest) PSO. For the 

gbest PSO, the neighbourhood for each particle is the entire swarm while for the lbest, 

smaller neighbourhoods are defined for each particle. Basic PSO has been shown to 

outperform optimizers such as gradient descent, scaled conjugate descent and genetic 

algorithm. Although the PSO algorithm has been proven to be effective, its theoretical 

foundation is rather weak. The gbest PSO algorithm is faster but might converge to local 

optimum for some problems. The lbest PSO is a little bit slower but not easy to be trapped 

into local optimum (Engelbrecht, 2007). 

A step by step overview of how the basic global best PSO algorithm is used in training 

RBFNN entails the following procedures:  (1)  initialize the particles, including the value 

assignment for hidden center vector, base width vector, weight of the network; 2) Calculate 

the fitness value (best solution) of each particle, and make the current position of the particle 

as the individual’s maximum pbest, find out the particle of the minimum fitness value, and 

make it the initial global best, gbest; 3) Compare fitness value of the current particle with 

pbest, if the fitness value of the current one is smaller, then update pbest with the current 

fitness value; 4) For each particle, compare pbest with gbest, if pbest is better, then update 

gbest; 5) Update the speed and location of the particle . Repeat steps 4)-6), until the terminal 

condition is met, which is either to meet the maximum iterations or the error accuracy 

requirement; 7) Set gbest as the parameter of the RBF neural network (Shuai, 2013). The 

gbest PSO algorithm(Engelbrecht, 2007) isAlgorithm 5  
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Algorithm 5: gbest PSO algorithm 

Create and initialize an ��-dimensional swarm; 

repeat  

for each particle i =1,...,�� do    

 //set the personal best position 

 if�(xi) <�(yi) then 

 yi = xi; 

 end  

 //set the global best position  

if�(yi) < �(ŷ) then 

 ŷ = yi;  

 end  

end   

for each particle i =1,...,�� do  

 update the velocity using 

 ���(� + 1) = ���(�) + �����(�)[���(�) ���(�)]+ �����(�)[ŷ�(�) ���(�)] 
 update the position using 

 xi(� + 1)= xi(�) +  vi(� + 1) 

 end  

until stopping condition is true; 

 

(ii)  Bioluminescence Swarm optimization 

Bioluminescence Swarm optimization (BSO) is a new swarm-based evolutionary approach 

based on the bioluminescence behavior of fireflies. The BSO algorithm can be loosely seen 

as a hybrid between PSO and GSO, but with some unique features.The BSO uses two basic 

characteristics of the Glowworm Swarm Optimization (GSO) algorithm proposed by 

Krishnanand & Ghose, (2005); the luciferin attractant, and the stochastic neighbor selection. 

BSO goes further introducing new features such as: stochastic adaptive step sizing, global 

optimum attraction, leader movement, and mass extinction. BSO is hybridized with two local 

search techniques: local unimodal sampling and single-dimension perturbation. All these 

features make BSO a powerful algorithm for hard optimization problems (Rossato de 

Oliveira, et al., 2011).While the concept of global optimum does not exist in the GSO 

algorithm, every particle inBSO is attracted to the global optimum, like PSO. 
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As in GSO and many other algorithms, the rst step is initializing n particles in the d-

dimensional search space. All particles, de ned by ����� =[ ���, ���,, …, ���], are evaluated by a 

tness function �(�����), i = 1,...,n. BSO uses luciferin-based attraction instead of tness-based 

attraction between the particles, as proposed by the GSO. This process is controlled by the 

parameters ρ and γ, which are the luciferin decay constant and the luciferin enhancement 

constant, respectively. It also uses stochastic step size, similarly to PSO, instead of xed step 

as in the GSO. This step size also varies for each particle, according to its luciferin value, and 

controlled by the cs parameter.  

The BSO algorithm (Rossato de Oliveira, et al., 2011) is Algorithm 6  

Algorithm 6: The BSO algorithm  

1: Set parameters: �, �, �, ��, ��, ��, ��, �� 

2: Randomly generate the bioluminescent particle population �� 

3: for � = 1 to � do 

4:  Initialize luciferin ��(0) = 0 

5: end for  

6: Find the global best �(�) 

7: � = 1 

8: while stop condition not met do  

9:  for each particle � do {updateluciferin}  

10:   ��(� + 1) = (1 �). ��(�) + �. �(��(�)) 

11:  end for 

12:  for each glowworm � do {movement phase} 

13:   Find neighbors ��(�) 

14:   for each particle j ∈�� (t) do  

15:      Compute probability ���(�) =
��(�)���(�)

∑ ��(�)�� � � �(�) ��(�)
 

16:   end for        

17:   Select glowworm � using ��� 

18:   Update particle step size with � = �� +
�

�� ��.��(�)
 

19:   Update glowworm position with 

  w�(t + 1) = w�(�) + ����. �. �
� �(�)�� �(�)

�� �(�)�� �(�)�
�+ ��. ����. �. �

�(�)�� �(�)

‖�(�)�� �(�)‖
� 

20:   Find the global best �(�) 



 

47 
 

21:   if t%lR= 0 then {LocalSearchProcedures}  

22:    Perform strong local search on �(�) 

23:   else 

24:    Perform weak local search on �(�) 

25:   end if 

26:   if iterations without a new �(�) = �� then {MassExtinction}  

27:    Reinitialize all particles but �(�) 

28:   end if  

29:  end for   

30:  � = � + 1 

31: end while 

 

CHAPTER THREE 

METHODOLOGY 

This chapter presents the research methodology used to achieve each of the stated objectives 

in Section 1.3. Optimization of the parameters of the RBFNN model involves clustering and 

weight optimization processes. The objectives 1,2 and 3 concern clustering and the methods 

used to achieve these objectivesare covered in Sections3.1, 3.2, and 3.3respectively.Objective 

4 pertains to weightoptimization of the RBFNN model andthe method to achieve this is 

covered in Section 3.4. This sub-section presents the RBFNN, the proposed models: 

CGSOm-BSO and CGSOm-CGD RBFNN, as well as the techniques employed in developing 

these models for time series forecasting. 

To address the first objective of efficiently determining the sensor range of the CGSO 

algorithm,an automated mechanism in the form of an algorithm for determining the value of 

��was developed, and this is discussed in Section 3.1.Next, the glowworm initialization 

method was modified as explained in Section 3.1.1 and a function that measures the cluster 

error during the iteration phase (in Section 3.1.3) was introduced into the CGSO.These 

modifications to the CGSO resulted to the CGSOm algorithm presented (in Section 

3.1.2).The CGSO algorithm exploited the advantages of GSO algorithm. 

3.1 Efficient determination ofLocal Sensor Range (��) of the CGSO algorithm 

Conventionally, �� is determined via preliminary experiments by trial and error. This is the 

same approach adopted by Aljarah and Ludwig,(2013). This approach is generally inefficient 
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and lacks documentation. In this work, we propose an algorithm for determining the value of 

��.  

The basic idea behind the algorithm is that �� samples of �� are generated between its limits; 

each value of �� is then evaluated to produce �(��). Then a quadratic function is fitted on  

�� ��� �(��) data. The value of �� at the turning point of the quadratic function becomes the 

required local sensor range. Among the various functions tried while fitting the �(��) vs. ��  

curve, the quadratic function was used because it converged to a turning point which is the 

minimum point unlike exponential function which gave a minimum that tends to infinity with 

no visible turning point. Using complicated exponential functions yielded multiple turning 

points and this would be computationally expensive to use. The algorithmwith the modified 

initialization is given in Algorithm 7. 

Algorithm 7:  Algorithm for determination of value of sensor range, �� 

 1: Set parameter�, ��
���, �� 

 2: Generate the initial population of glowworms by randomly selecting data instances from 
datasets and assigning to each glowworm. 
 3: Compute mean of the data set, � ̅

 4: Compute ��
��� =

∑ ‖��̅��‖�
�

�
 

 5: Initialize �, � , �, �, �, � , �, � , � = 0 
 6: for� = 1to ��do 

 7:  ��(�) = ��
��� + (� 1)

��
��� ���

��� � �

��
//Derived from Langrange scale interpolation 

 8:  for each glowworm�� (where j = 1 to m) do 

 9:    Extract set of data instances ��� covered by �� 
 10:  end for 
 11:  Extract the set of the candidate centroids, � 

 12: Compute ���� = ∑
∑ ������ ���

������

�� �

�����

|�|
���  

//�����= ���������������������������������� � �;���� = �������������������� 

 13:  Compute �(��) = ���� × |�|+
�

|�|
//|�|  = No. of clusters;�(��)= error at each iteration ��(�); 

14: � = � + ��
�(�) 

15:  � = � + ��
�(�) 

16:  � = � + ��
�(�) 

17: � = � + ��(�) 
18:  � = � + ��

�(�) × �(��) 
19:  � = � + ��(�) × �(��) 
20:  � = � + �(��) 
21: end for 

22: Compute � =
�

�
 

23: Compute � =
��

�
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24: Compute �� = 0.5
(� ��� )(���� )�(� ��� )(���� )

(� ��� )(���� )�(���� )(����)
 //�� =computed sensor range 

 

3.1.1Initialization of Glowworm 

CGSO initializes the population of glowworms by randomly generating a collection of 

position vectors. This approach does not guarantee that each glowworm covers a data 

instance. CGSOm implements a new approach that initializes the glowworms. The initial 

population of glowworms are generated by randomly selecting data instances from datasets. 

This approach guarantees that each glowworm is within the search space and covers at least a 

data instance. 

3.1.2  The Modified CGSO(CGSOm) 

CGSOm, a modified version of CGSO, is proposed in this work. Two key aspects of CGSO 

are modified – determination of the value of sensor range, �� and the initialization of 

glowworms. Also, a function that measures cluster error quality during the iteration phase 

was introduced. 

The CGSOm algorithm is Algorithm 8  

Algorithm 8: The CGSOm algorithm 

Input: a dataset X consisting of d data instances with �dimensions 

Method: 

//Initialization phase 
1: Set parameters: �,  ��, �, �, �, ��

���, �� 
2: Generate the initial population of glowworms by randomly selecting data instances from 
datasets and assigning to each glowworm. 
3: Determine ��//From Sensor Range DeterminationAlgorithm in Algorithm 3 

4: for each glowworm gj, where j = 1 to m do 
5:  Initialize luciferin level, ��(0) = �� 

6:  Extract set of data instances Crj covered by gj 

7: Calculate intra-distance ������ � = ∑ ����� ���
�����

���
 

8: end for  
9: Extract the initial set of the candidate centroid,�. The initial centroid is a list of 
glowworms with maximum |���| sizes and also disjointed from one another. 

10: Calculate ��� = ∑ ∑ ��� ���
�����

���
|�|
���  

11: Calculate ���������= � ∑ ��� ���
��

���

�

���
 

12:  for each glowworm��, where j = 1 to m do {initializing fitness function} 

13: Calculate fitness function  
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14: ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

���×
������ �

��� �������� ��

 

15:  end for 
16: t = 1 
17: while stop condition not met do 
18:   for each glowworm��, where j = 1 to m do {update luciferin} 

19:  ��(� + 1) = (1 �). ��(�) +  �. ��(��) 
20: end 
21: for each glowworm��, where j = 1 to m do {movement phase} 

22:  Find neighbors ��(�) 

23:  for each glowworm� ∈ ��(�)do 

24:   Compute probability ���(�) =
��(�)���(�)

∑ ��(�)�� � � �(�) ��(�)
 

25:  end for 
26:  Select glowworm� using ��� by roulette wheel method 
27:  Update glowworm position with 

��(� + 1) = ��(�) + ��
��(�) ��(�)

���(�) ��(�)�
� 

28:        Extract set of data instances Crj covered by gj 

29:  Calculate intra-distance ������ � = ∑ ����� ���
����

�

���
 

30: end for 
 31: Extract the set of the candidate centroids, �. The centroid is a list of glowworms with 

maximum fitness function and also disjointed from one another. 
32: Calculate��� = ∑ ∑ ��� ���

�����

���

|�|
���  

33: Calculate ���������= � ∑ ��� ���
��

���

�

���
 

34: for each glowworm��, where j = 1 to m do {fitness function update} 
35:  Calculate fitness function  

36:  ���� �� =
�

�
�����

���×
������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

������ �

��� �������� ��

 ��  
��������� ×

�

�
�����

���×
������ �

��� �������� ��

 

37: end for 
38: � = � + 1 
39: end while 
40:  Return the set of candidate centroids, c 
Output: A set of k clusters and k centroids 

 

3.1.3 Clustering Error Function    

Unlike K-means, sum of squared errors (SSE) is not a true representation of error in CGSO 

or CGSOm since the number of clusters changes with iteration. In fact, SSE will tend to 

increase as the number of iteration increases. This is due to the fact that as the number of 

centroids declines, the intra-distance in each cluster increases which leads to an increase in 

SSE. In this work, to visualize how the CGSOm algorithm improves the cluster quality, a 
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function that measures the error at each iteration was formulated. The error function is a sum 

of the mean squared error (SMSE) multiplied by the number of clusters (Equation 4). The 

formulated error function generally decreases with iteration. 

       �����  =  |�| × �
∑ �����  g��

������

���

�����

|�|

���

                                                              (4) 

3.1.3.1  Cluster Quality Evaluation Measures   

To measureour clustering algorithm with data set with known truth, we use three different 

measures for the evaluation of the cluster quality: Entropy (Equation 5), Purity (Equation 

6)(Zhao and Karypis, 2002)and Rand Index, RI (Rand, 1971;Vinhet al.,2009) (Equation 7). 

                                 ������� = � �
����

�

1

log �
�

��� ∩ ���

����

�

���

����
��� ∩ ���

����
��

�

���

                         (5) 

            ������ =  
1

�
� max

�
���� ∩ ����

�

���

                                                                      (6) 

                       �� =
� + �

�
�
2

�
                                                                                                 (7) 

where �� is a set of data instance in cluster �;�� is the true assignments of the data instances in 

cluster �;� is the number of pairs of data instance that are in the same set in � and in the same 

set in �;� is the number of pairs of data instance that are in different sets in � and in different 

sets in �;� is the number of data instances in the data set;� is the number of clusters that is 

generated from the clustering process; and q is the number of actual clusters in the dataset.  

Entropy values range from 0 (perfect clustering quality) to 1 (very poor clustering quality). 

Possible values of purity range from 0 (very poor clustering quality) to 1 (perfect clustering 

quality).  

The rand index is a cluster quality evaluation measure that checks how close the resulting 

cluster is to the original cluster in terms of number of clusters and data points. It checks for 

the extent of agreement of thenumber of clusters as well as data points in the resulting cluster 

and the original cluster (the ground truth). Rand index results,though not appliedin the 

CGSO, are included in this work to provide more information about the cluster quality. Its 

value is between 0 and 1 and it is interpreted in a similar way as purity. 

3.2 Automatic determination of the optimal number of clusters in a dataset. 
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To addressthis objective, the CGSOm was used to cluster the datasets/ RBF centres. This 

produced the clusters automatically and optimally due to the sensor range mechanism 

incorporated into the CGSOm. Toshow that theproposed CGSOm produces the optimal 

number of clusters in a dataset, the modified glowworm initialization method was replaced 

with the glowworm initialization method of CGSO and the performances of both resulting 

clustering algorithms in clustering datasets were compared.  

3.3 Development of a RBFNN model that adapts to the number of clusters in a 
dataset. 

This objective is achieved after the determination of the optimal number of clusters in a 

dataset. Once the number of clusters is determined, the topology of the network is 

reconfigured. As a rule in neural networks, the number of clusters is equal to the number of 

the neurons in the hidden layer which determines the topology of the network.  

 

 

3.4 Optimization of the RBFNN parameters fully  

To address this objective, the following were achieved:A machine learning platform was 

developed. The platform offers an approach allowing the user to explore and run simulation 

experiments of combinations of training techniques considered in this work. Next, training 

the RBFNN model was done with existing techniques and the BSO algorithm, after which 

theperformances of thetechniques were evaluated.The results from this experimentation 

produced two novel RBFNN training methodologies: CGSOm-CGD-RBFNN and the 

CGSOm-BSO-RBFNN models which were able to train the RBFNN model parameters fully 

and optimally.  

The CGSOm-CGD-RBFNN and the CGSOm-BSO-RBFNN models are presented in Section 

3.4.2.The processes involved in modelling multivariate time series data using the 2 models 

are discussed in Section 3.4.3.First, an introduction of the RBFNN model and the process of 

trainingthe network are outlined in Section 3.4.1.Furthermore, a description of how the 

software used in this work was developed is in Section 3.4.4.  
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3.4.1 The Basic RBFNN Model 

Every RBFNN architecture has three layers and each layer is made up of one or more nodes. 

Figure 2 shows the architecture of a basic RBFNN.  The input layer contains the feature 

nodes,������ � expressed as: 

� =  �

��� ��� … ���

��� ��� … ���

…
��� ��� … ���

� 

Where � represents the feature size and � the size of the data set. 

The only hidden layer in RBFNN consists of � nodes. Each node in the hidden layer 

encapsulates two data: cluster centroid�� and its standard deviation ��. The cluster centroids 

are usually determined by unsupervised learning algorithm. A typical example of such 

algorithm is K-means. K-means algorithm clusters hyper-dimensional points into � units by 

minimizing the sum of squared errors between each point and its centroid. K-means suffers 

one limitation – the value of � must be specified. One way to tackle this problem is to try-out 

different � valuesand eventually select the one which resulted in the least error (Isimeto et 

al., 2015). Alternatively, a swarm-based clustering approach, the CGSO can be used to find 

the value of � automatically.  

The clustering process yields �centroids positioned at each hidden node. The matrix 

representation of the centroids is: 

� =  �

��� ��� … ���

��� ��� … ���

…
��� ��� … ���

�   

The centroids are critical in computing the outputs from each hidden node. This is done via 

kernel functions. The most commonly used are:  

I. Gaussian function: 

�(�) = e��‖���‖�
             (8) 

Where‖� �‖ represents Euclidean distance andγ could be a constant or a function of � 

II. Multi-Quadric function: 

�(�) = �‖� �‖� + ��            (9) 

III. Inverse Multi-Quadric function: 

�(�) =
�

�‖���‖�� ��
             (10) 

IV. Thin-plate spline function: 
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�(�) = ‖� �‖�log (‖� �‖)           (11) 

V. Cubic function: 

�(�) = ‖� �‖�             (12) 

VI. Linear: 

�(�) = ‖� �‖            (13) 

The most widely used among these kernels is Gaussian function. The matrix representation 

of the hidden layer output is given as: 

� =  

1 1 … 1

�� �� … ��

�� �� … ��

…

�� �� … ��

 

One or more nodes constitute the output layer.Values at each of the �  output nodes are 

computed by: 

�� = ��
� + ∑ ��

��(�)�
���       (14) 

where �� is the value at output node m, �� is a set of � number of weights used in mapping 

hidden nodes values to output node m and ��
�is a bias term, � is the input vector. 

The matrix representation of the weights is given as: 

� =  �

��� ��� ��� … ���

��� ��� ��� … ���

…
��� ��� ��� … ���

�  

By matrix multiplication of �  and �, the matrix representation of the output nodes can be 

derived: 

� =   � × � =     �

��� ��� … ���

��� ��� … ���

…
��� ��� … ���

�  

Getting the right set of weights that minimizes the prediction error requires solving an 

optimization problem.The evaluation or cost function (Equation 15) is represented as: 

� =
1

�
� � ����

��� ����
�

�

���

�

���

+  
�

2�
� � ��

�

���

�

���

                                                 (15) 

Where���
��� is the target at output node � for sample data� ; and � is the regularization term 

for controlling over-fitting. 

The optimization algorithms commonly used in previous work include Gradient Descent, 

Conjugate Gradient Descent and PSO. In this work, however, a novel optimization algorithm 
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known as BSO was used and its performance compared with existing techniques that have 

been used to optimize the RBFNN. 

3.4.2 Proposed CGSOm-BSO and CGSOm-CGD RBFNN Models 

The CGSOm-BSO RBFNN Model is a RBFNN variant. It is a RBFNN model whose 

centroids are determined by the proposed CGSOm and the weights are determined by BSO. 

Figure3 is a schematic diagram of the network flow. 

 

 

 

 

 

 

 

 

 

Figure 3:The Flow of the proposed models 

 

3.4.3  Procedures for Modelling CGSOm-BSO and CGD RBFNN Model 

The specific steps for training and validating our proposed model is outlined. It covers data 

collection, data pre-processing, data partitioning, feature extraction and parametertuning. 

3.4.3.1Data Collection 

Two sets of data are used. The data for case 1 is extracted from General Electric Company’s 

daily historical stock prices dataat(YAHOO! FINANCE, 2009).The data used consists of two 

variables – openstock price data and closestock price data. It is made up of 2,000 data 

samples.For case 2 experiment, currency exchange rate data at (PACIFIC Exchange Rate 

Service, 1996)was used. The currency exchange rate data employed in the investigation of 

the forecasting problem composed of real data representing the weekly averaged exchange 

rates between British pound and US dollar during the period from 31 December 1979 to 26 

December 1983.  

3.4.3.2 Data Pre-processing 

The range of values of data are mostly widely varied. This could lead to poor performance by 

clustering and optimization functions because the variable with large values will dominate 

the result of the objective function. Data pre-processing is required to prevent this kind of 

 Training Data 

Determine Centroids by CGSOm 

Determine Weights by BSO and CGD 

Output Trained Network 
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problem.The data collected were pre-processed by standardization of the data for each 

variable. The formula for standardization (Equation 16) is given as:  

 ���� =
� �̅

�
(16) 

Where � ̅and  � are the means and standard deviation respectively. 

This process ensures that the new values in each variable has a zero-mean and unit-variance.  

3.4.3.3 Data Partitioning 

Every data set used in this work is partitioned into training set (70%), validation set (20%) 

and test set (10%).  

3.4.3.4 Feature Extraction 

For time series data, the features for each input vector consists of data samples from the past 

� days. � stands for lag. For example, if lag happens to be 2, the first input vector would 

consist of data points for the first two days unrolled into a row vector. One major challenge is 

determining the right value of lag. To solve this problem various values of lag were tested 

and the right value selected for each data set. 

 

3.4.3.5 Parameter Tuning 

The proposed model has several parameters that require tuning. These parameters include 

CGSOm parameters, regularization term and BSO parameters. In this work, the parameters 

were tuned by going through a training-validation cycle until the results are satisfactory and 

can be generalized. 

3.4.4 The Software Development 

A Matlab-based software application was built specifically for this work. It is important to 

note that this application does not depend on Matlab in-built neural network toolbox. The 

clustering and training algorithms were written from scratch. This choice was made because 

the work requires having full control of every variable that affects the successful 

implementation of RBFNN; also, the novel algorithms used in this work do not exist in 

Matlab toolbox. 

The application has graphical user interface (GUI) and was built in Matlab Graphical User 

Interface Development Environment (GUIDE). The application was written using functional 

programming paradigm. It has custom-built Matlab functions. Figure 4shows a snapshot of 

the application interface. 
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The features of the application include data importation from excel and automatic data pre-

processing. It allows users to change options including training algorithm, clustering 

algorithms, RB function, lag, and use of PCA. The effect of PCA, number of hidden units, 

regularization term, kernel function and many others can be diagnosed. Also, the core 

components of the trained network can be saved and used in building a commercial or open-

source application. 

 

Figure 4:The Application Interface 

CHAPTER FOUR 

EXPERIMENTAL RESULTS AND DISCUSSION 

Two experiments were conducted in this work. First, the experiment on the clustering aspect 

of this researchis presented in Sections 4.1 to 4.3. This is to demonstrate the effectiveness of 

CGSOm over CGSO and other four well-known clustering algorithms. Secondly, the 

experiment for training the RBFNN model follows in Sections 4.4 to 4.7. Validation of the 

proposed approaches is presented in Section 4.8.  

4.1 Experimental Results and Discussions of Effectiveness of CGSOm 

This section demonstrates the effectiveness of CGSOm in data clustering.Each experiment is 

run on a PC with 6GB of RAM and 3 Intel cores (1.90 GHz each).  

4.1.1  Test Data 

Seven data sets were collected and pre-processed by rescaling each feature to value between 

0 and 1. The first five data sets are real data obtained from UCI Machine Learning 
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Repository (Lichman, 2013), while the last two are artificial data sets from (ELKI, n.d.) data 

repository.Table 1 summarizes the properties of each data set.   

Table 1: Summary of the data sets 
  

Data Set Record Featur
e 

Cluster
r 

Type Source 

Iris 150 4 2 Real UCI 

Balance 625 4 3 Real UCI 

Seed 210 7 3 Real UCI 

Ecoli 327 7 5 Real UCI 

Glass 214 9 6 Real UCI 

Mouse 490 2 3 Artificial ELKI 

VaryDensity 150 2 3 Artificial ELKI 

 
 

4.1.2 Parameter Settings 

Table 2 summarizes the constant parameters used in all experiments. 

Table 2: The CGSOm constant parameters 

Parameter Value 

�� 5.0 

� 0.4 

� 0.6 

���������� �� ���������, � 1000 

������� �� 

��
��� 

0.0001 

������ �� ���� ������, �� 30 

������� ������ �� ��������� 200 

 

4.1.3 Efficient determination of Local Sensor Range (��) of the CGSO 

There is need to show that the sensor range determinationalgorithm (in Section 3.1, algorithm 

7) efficiently determines the sensor range when compared to the trial and error technique in 

the CGSO. This was achieved by evaluating the efficiency of the CGSOm in clustering data 

and comparing the results with that of CGSO as well as other clustering techniques. A 

summary of theresults of experimental simulations showing the effectiveness of the 

CGSOmalgorithmin data clusteringwas compared against those of the CGSOand other four 

standard, well-known clustering techniques commonly used in the literature as benchmarks. 

Evaluation of theperformances of these clustering algorithms were based on cluster quality 

measures of entropy, purity and rand index. The cluster quality results from these are in 

Tables4, 5 and 6. 



 

59 
 

First, the average sensor range of each data set using the sensor range (r�) algorithm is 

firstcomputed. Table 3summarizes the computed mean sensor ranges and standard deviation 

of  each data. From the table,it can be observed that the standard deviations are very small 

with respect to the mean. This shows that the values for all the runs do not differ much. 

Table 3: Computed mean sensor range for each data set for 50 runs   

Data Set Sensor Range Mean 
Sensor Range Standard 

Deviation 

Iris 0.3040 0.0314 

Balance 0.4441 0.0050 

Seed 0.2311 0.0138 

Ecoli 0.3812 0.0160 

Glass 0.4100 0.0444 

Mouse 0.1734 0.0012 

VaryDensity 0.2045 0.0465 

 

A comparison of the clustering qualityof the CGSOm with the CGSO as well as with thefour 

well-known clustering methods, in terms of entropy and purity, are shown in Tables 4 and 5 

respectively. The clustering quality (the mean and the standard deviation of entropy and 

purity results) for each data is determined for 50 runs and for each fitness function. Best 

results are placed in square brackets. In each case, the underlined are the highest purity and 

lowest entropy values. The four well-known clustering algorithms commonly used in the 

literature are K-means clustering (Macqueen, 1967), average linking agglomerative 

Hierarchical Clustering, HC (Zhao and Karypis, 2002), Further First, FF (Hochbaum and 

Shmoys, 1985), and Learning Vector Quantization, LVQ (Kohonen, 2003). Rand Index result 

is contained in Table6which is not reported in CGSO.  

Table 4: Entropy Results 

Data Set 
CGSOm CGSO 

K Means HC FF LVQ 

F1 F2 F3 F1 F2 F3 

Iris 0.382 ± 0.091 

[0.136] 

0.408 ± 0.052 

[0.195] 

0.405 ± 0.062 

[0.136] 
0.209 0.241 0.233 0.264 0.230 0.307 0.790 

Balance 0.499 ± 0.021 

[0.460] 

0.498 ± 0.020 

[0.453] 

0.497 ± 0.019 

[0.465] 
0.622 0.690 0.669 0.701 0.739 0.654 0.753 

Seed 0.327 ± 0.032 

[0.276] 

0.323 ± 0.028 

[0.276] 

0.329 ± 0.031 

[0.265] 
0.302 0.317 0.305 0.327 0.298 0.537 0.577 

Ecoli 0.249 ± 0.011 

[0.231] 

0.250 ± 0.015 

[0.224] 

0.253 ± 0.015 

[0.226] 
0.325 0.342 0.324 0.307 0.522 0.611 0.579 
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Glass 0.337± 0.035 

[0.270] 

0.328 ± 0.036 

[0.269] 

0.332 ± 0.033 

[0.244] 
0.543 0.569 0.568 0.567 0.662 0.646 0.754 

Mouse 0.130 ± 0.019 

[0.096] 

0.135 ± 0.023 

[0.096] 

0.138 ± 0.021 

[0.085] 
0.299 0.302 0.304 0.319 0.165 0.351 0.262 

VaryDensity 0.252 ± 0.153 

[0.030] 

0.243 ± 0.150 

[0.116] 

0.238 ± 0.159 

[0.000] 
0.141 0.141 0.138 0.145 0.421 0.466 0.728 

 

  

Table 5:Purity Results 

Data Set 
CGSOm CGSO 

K Means HC FF LVQ 

F1 F2 F3 F1 F2 F3 

Iris 0.708 ± 0.096 

[0.960] 

0.681 ± 0.058 

[0.913] 

0.683 ± 0.065 

[0.960] 
0.919 0.903 0.909 0.887 0.877 0.860 0.507 

Balance 0.762 ± 0.017 

[0.794] 

0.765 ± 0.016 

[0.811] 

0.765  ± 0.014 

[0.786] 
0.726 0.685 0.694 0.659 0.632 0.653 0.619 

Seed 0.892 ± 0.013 

[0.910] 

0.894 ± 0.013 

[0.910] 

0.891 ± 0.014 

[0.914] 
0.900 0.889 0.897 0.876 0.895 0.667 0.667 

Ecoli 0.846 ± 0.006 

[0.857] 

0.845 ± 0.007 

[0.857] 

0.845 ± 0.007 

[0.857] 
0.792 0.779 0.789 0.774 0.654 0.599 0.654 

Glass 0.730 ± 0.068 

[0.808] 

0.741 ± 0.056 

[0.804] 

0.732 ± 0.061 

[0.822] 
0.541 0.533 0.529 0.542 0.463 0.481 0.411 

Mouse 0.955 ± 0.009 

[0.969] 

0.953 ± 0.012 

[0.969] 

0.952 ± 0.010 

[0.971] 
0.837 0.834 0.833 0.827 0.910 0.800 0.843 

VaryDensity 0.859 ± 0.134 

[0.993] 

0.867 ± 0.132 

[0.960] 

0.868 ± 0.134 

[1.000] 
0.956 0.956 0.957 0.953 0.667 0.667 0.567 

 

 

 

 

 

Table 6: Rand Index Results 

Data Set CGSOm 

F1 F2 F3 
Iris 0.798 ± 0.051 [0.950] 0.783 ± 0.028 [0.899] 0.785 ± 0.035 [0.950] 

Balance 0.593 ± 0.004 [0.599] 0.593 ± 0.004 [0.602] 0.593 ± 0.004 [0.600] 

Seed 0.831 ± 0.014 [0.854] 0.834 ± 0.015 [0.878] 0.831 ± 0.014 [0.859] 

Ecoli 0.901 ± 0.006 [0.909] 0.900 ± 0.007 [0.909] 0.900 ± 0.007 [0.909] 

Glass 0.770 ± 0.036 [0.841] 0.774 ± 0.035 [0.817] 0.771 ± 0.032 [0.827] 

Mouse 0.717 ± 0.008 [0.741] 0.720 ± 0.009 [0.737] 0.721 ± 0.010 [0.743] 

VaryDensity 0.820 ± 0.083 [0.919] 0.824 ± 0.080 [0.911] 0.826 ± 0.084 [0.934] 

 

In Table 4, where a smaller entropy implies a better result, theentropy resultsshowthat 

CGSOmperforms better than CGSO and other clustering algorithms in most data sets which 

are Balance, Ecoli, Glass and Mouse, with an average entropy of 0.497, 0.249, 0.328 and 

0.130 respectively. Although for the Mouse data, it is noted that HC algorithm obtained an 

entropy of 0.165, however our CGSOm obtained a much better entropy of 0.130 thus 



 

 

outperforming the HC.Also, it is noted that for Ecoli data, K

while CGSOm performed better 

CGSO-F3 and CGSO-F1 gave best entropy values

for the Seed data, HC obtained the best entropy.

out of the 7 datasets clustered

gave best result in only 1 dataset

in Figure 5. 
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.Also, it is noted that for Ecoli data, K-means gave 

CGSOm performed better with entropy of 0.249. For VaryDensity and Iris data, 

F1 gave best entropy values of 0.138 and 0.209respectively. However, 

eed data, HC obtained the best entropy.In Summary, CGSOm gave best results in 4 

out of the 7 datasets clustered (57%); CGSO gave best results in 2 datasets

dataset (14.5%).A pictorial representation of this result is 

  Entropy and Purity Results  

CGSOm
57%

CGSO 
28.5%

HC
14.5%

ns gave entropy of 0.307, 

249. For VaryDensity and Iris data, 

respectively. However, 

Summary, CGSOm gave best results in 4 

datasets(28.5%); and HC 

A pictorial representation of this result is presented 
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Figure 5:Comparing clustering quality of CGSOm with other Clustering techniques 

 

In Table 5, where a higher purity implies a better result, the purity resultsshowthat CGSOm 

performs better than CGSO and other clustering methods in the data sets: Balance, Ecoli, 

Glass and Mouse, with an average purity of 0.765, 0.846, 0.741 and 0.955 respectively. 

However, for the Iris and VaryDensity data, CGSO-F1 and CGSO-F3 gave best purity values 

of 0.919 and 0.957 respectively, while for the Seed data, CGSO and CGSOm have similar 

values.In summary, again CGSOm gave best results in 4 out of the 7 datasets clustered(57%); 

CGSO gave best results in 2 datasets (28.5%); and HC gave best result in only 1(14.5%). 

Figure 5 also serves as the pictorial representation of this result. 

Though the Mouse data has the best entropy and purity, it does not have the best rand index. 

This shows that entropy and purity are not sufficient indicators of cluster quality. In fact, it is 

practically possible to have 0 entropy and 1 purity and not have 1 rand index. Rand index 

results are presented in Table 6.The datasets: Mouse, Balance, Ecoli, Glass, Iris, Seed and 

VarDensity have a rand index of 0.721, 0.593, 0.901, 0.774, 0.798, 0.834 and 0.826 

respectively. It can be deduced that theCGSOm produces clusters that agree to a large degree 

with the ground truth since it gave rand index values of 0.70 and above in 6 out of the 7 cases 

considered (86%). This result is presented graphically in Figures 6 and 7. 

 

 

Figure 6:Rand Index Resultof the CGSOm 
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Figure 7:  Showing Agreement 

 

4.2Automatic determination of the optimal number of clusters in a dataset.

This section shows that the method of initializing the 

results.The result of comparing the

presented in Figures8b and Figure 

To evaluate the effectiveness of the modified 

initialization technique in CGSOm was compared with that

Comparing Figures 8b and 9b 

thatthe CGSOm based on the modified 

curve for determining sensor range,

ofCGSO. The decision range from Figure 8

method) is 0.218 whereas that of Figure 

method) is 0.173. The number of clusters for the CGSO is 2

which is the same number of clusters (ground truth) in the original mouse data. 

that the way the glowworms are initialized plays a vital 

correctly and consequently determines the number of clusters found.
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Agreement of CGSOm result with the ground truth 

Automatic determination of the optimal number of clusters in a dataset.

shows that the method of initializing the glowworm affects the 

The result of comparing the two glowworm initialization method

Figure 9b; 

To evaluate the effectiveness of the modified initialization of the glowworm

CGSOm was compared with thatin CGSO, using Mou

b for the CGSO and CGSOm respectively, 

the modified glowworminitializationmethod produced a better 

sensor range,�� than that obtained using the initializ

The decision range from Figure 8b (based on CGSO glowworm

is 0.218 whereas that of Figure 9b (based on CGSOmglowworm

The number of clusters for the CGSO is 2; while that for the CGSOm

which is the same number of clusters (ground truth) in the original mouse data. 

s are initialized plays a vital role in determining

correctly and consequently determines the number of clusters found. 

[87%]     
≥0.7 

[14%]
<0.7

 

Automatic determination of the optimal number of clusters in a dataset. 

affects the clustering 

glowworm initialization methods described is 

glowworm, the glowworms 

using Mouse data set. 

for the CGSO and CGSOm respectively, it can be observed 

method produced a better 

initializationmethod 

glowworminitialization 

glowworm initialization 

or the CGSOm is 3, 

which is the same number of clusters (ground truth) in the original mouse data. This proves 

role in determining sensor range, �� 
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 Data instances with initial glowworms 

  

(�)    ��  determination 

  
(c)    Clusters   Clustering Error with iteration 

 

Figure 8:Clustering result for Mouse data set using original CGSO initialization. 
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 Data instances and initial glowworms  ��  determination 
  

 (c)  Clusters (d)  Clustering Error with iteration 

 

Figure9:Clustering result for Mouse data set using modified CGSOm initialization 

 

4.3 Development of a RBFNN model that adapts to the number of clusters in a 
dataset 

The number of clusters in a datasetdetermines the topology of the network, since 

theoretically the number of clusters is equal to the number of the neurons in the hidden layer 

and the topology of the network. Hence, for any given clusterable datasets, as soon as the 

CGSOm gets the number of clusters, the RBFNN adapts its architecture accordingly based on 

the number of clusters. For instance, if the number of clusters obtained is k, the network 

adapts its architecture to have same k number of neurons in the hidden layer. This adaptive 

architecture of the RBFNN is shown in figure 2 in chapter 2. 
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In this work, CGSO has been improved by developing an algorithm for determining sensor 

range and by modifying the glowworm initialization. It was shown that the modified 

initialization phase improves the performance of the algorithm that determines the sensor 

range. It was also demonstrated that the computed sensor range in CGSOm leads to better 

cluster quality for most data sets when compared with the results of CGSO andthose of other 

four well-known clustering algorithms.  

4.4Experimental Results and Discussion on RBFNN Weight Optimization 

Thefollowing sections present the experimental results and discussion on RBFNN training 

and testing 

4.5Optimizing the RBFNN parameters fully  

Presented in this section are the experimental results of the training methodologies of 

existing RBFNN models compared withthe proposed training approach. Results from an 

empirical study are presented to show how the proposed approacheswere realized. To train 

the RBFNN models, two sets of experiments were conducted; these involved the use of two 

case-study problems namely: Stock Price Forecasting problemin Section 4.6and Currency 

Exchange Rate Forecasting problem in Section 4.6.In each case, several variants of RBFNN 

models were developed.  

TheRBFNN models implemented are as listed in Table 9.The performance of the RBFNN 

models were determined and compared by the mean of the Mean Squared Error (MMSE) and 

R2values of 10 independent runs.All results were obtained by training the model with 70% of 

the data. 

Details of the results/findings are discussed in Section 4.6.3and results shown in Tables 9, 10 

(for case 1: Stock Price problem) as well as in Section 4.7.3with results shown in Tables 13, 

14 (for case 2: the Currency Exchange problem).  

The results from the study achieved theobjective (4) ofoptimizing the RBFNN parameters 

fully. This study produced two new training methodologies for optimizing the RBFNN 

parameters fully.These are: the CGSOm-CGD RBFNN model and the CGSOm-BSO 

RBFNN model. These are new and optimal RBFNN models for time series forecasting 

problems. 

 



 

 

 

4.6 Case 1: Stock Price Forecasting problem

In this case,RBFNN models were

Electric Company’s daily historical s

of the forecasting problem composed of 

data” and 2000 instances of this data

is in Figure10. 

Figure 10:Time series plot of Stock Price data

 

4.6.1 Parameter Settings 

The parameter settings for the CGSO and

settings for BSO algorithm used for S

 

Table 7:Parameters settings for CGSO and CGSOm algorithm used

forecasting problem 

S/no Parameter 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

glowworms population  
Initial Luciferin,L0 
Decision range, r0 
luciferin decay constant,rho 
luciferin enhancement constant,
constant value,B 
step size,s  
number of neighbours, nt 
maxIter  
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Case 1: Stock Price Forecasting problem 

RBFNN models weredeveloped using stock price data extracted from 

istorical stock prices data. The dataemployed in the investigation

of the forecasting problem composed of data attributes “Open price data” and “C

and 2000 instances of this data. The time series plot of how the data

Time series plot of Stock Price data 

settings for the CGSO and CGSOm algorithms as well as the 

settings for BSO algorithm used for Stock Price Forecasting problem are in 

Parameters settings for CGSO and CGSOm algorithm used for stock price 

Value 
s population   

Initial Luciferin,L0  
Decision range, r0  
luciferin decay constant,rho  
luciferin enhancement constant,y 
constant value,B  

number of neighbours, nt  

70 
4 
1.2 
0.2 
0.2 
0.5 
0.2 
4 
70 

data extracted from General 

employed in the investigation 

data” and “Close price 

the data evolves over time 

 

 

as well as the parameter 

are in Tables 7 and 8 

for stock price 
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Table 8: Parameters settings for BSO algorithm used for stock price forecasting 
problem 
S/no Parameter Value 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10              

glowworms population   
Initial Luciferin,L0  
luciferin decay constant,rho  
luciferin enhancement constant,y 
step size, s  
global best attraction constant, cg  
maxIter  
adaptive step sizing control, cs    
mass extinction control, eT   
strong local search control, IR 

700 
4 
0.2 
0.2 
0.7 
0.03 
500 
3 
70 
10 
 

 

 

4.6.2 Plots of Optimized RBFNN Models 

Figures 11 and 12showthe time series plot and regression plot of actual and predicted stock 

pricerespectivelyusing CGSO-BSOtrained RBFNN. Figures13 and 14displaythe time series 

plot and regression plot of actual and predicted stock price respectively using CGSOm-BSO 

trained RBFNN. Figures 15 and 16showthe time series plotand regression plot of actual and 

predicted stock price respectively using the PCA-CGSOm-BSO RBFNN. 

 

 

 
Figure 11:Time series plot of actual and predicted stock price using CGSO-BSO   trained 
RBFNN 
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Figure 12:Regression plot of actual and predicted stock price from CGSO-BSO trained 
RBFNN 

 
 

 

 
Figure 13:Time series plot of Actual and  Predicted stock price from CGSOm-
BSO trained RBFNN 
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Figure 14:Regression plot of actual and predicted stock price using CGSOm-BSO RBFNN 

 

 
 

 
Figure 15:Time series plot of actual and predicted stock price trained by PCA-CGSOm-BSO 
RBFNN 
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Figure 16:Regression plot of actual and predicted stock price trained by PCA-CGSOm-BSO 
RBFNN 
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4.6.3Comparative Analysis 

This sub-section presents the results of the variants of RBFNN models optimized by different 

techniques and developed using stock price data.The mean of the mean squared error (MMSE) 

of 10 runs and the standard deviations for each RBFNN model variant are computed.  

In Tables 9and 10, the summary of results for average of 10 runs of Open stock price and 

Closestock price data are shown respectively, for the RBFNN models considered.Experimental 

results show that for the Open price data, the CGSO-BSO trained RBFNN taken as control in 

this study, yields a MMSE of 4.01x10-2 
, the CGSOm-BSOtrained RBFNN yields a MMSE of 

2.77 x10-2. The CGSOm-CGDtrained RBFNN yields MMSE of 7.8 x 10-3, while the PCA-

CGSOm-CGD RBFNN yields MMSE value of 7.9x10-3 indicating that the PCA does not have 

much influence on the result of the CGSOm-CGDtrained RBFNN, as both have almost same 

error values.It is noted that the BSO variant slightly outperforms the CGSOm-PSO RBFNN 

with an error of 5.4x10-2. This is an advantage for the BSO. 
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Table 9: Comparative Summary of Results for average of 10 Simulation Runs for Open 

stock price  

Model 

 

Open 

Training Test 

MMSE          ±     �� R2 MMSE           ±     �� R2 

CGSO-BSO trained 

RBFNN =CONTROL 
     4.01 × 10�� ± 0.006 

  

0.9606 2.74 × 10�� ± 0.0003 

  

0.9732 

CGSOm-BSO trained 

RBFNN 
2.77 × 10�� ± 0.0004 

  

0.9733 1.80 × 10�� ± 0.0002 

  

0.9837 

PCA-CGSOm-BSO 

trained RBFNN 
2.04 × 10�� ± 0.0022 

  

0.9616 4.19 × 10�� ± 0.0002 

  

0.9745 

Other RBFNN 

Variants : 

 

 

   

CGSOm-CGD-

RBFNN 

7.8 × 10�� ± 0.0003 

 

0.9924 7.8 × 10�� ± 0.0002 0.9932 

PCA-CGSOm-CGD-

RBFNN 

7.9 × 10�� 0.9926 7.6 × 10�� 0.9899 

CGSOm-GD-RBFNN 1.64 × 10�� 0.8505 1.60 × 10�� 0.8701 

CGSOm-PSO-RBFNN 5.4 × 10�� 0.9602 4.4 × 10�� 0.9592 

CGSO-CGD-RBFNN 3.0 × 10�� 0.9505 2.7 × 10�� 0.9612 

Kmeans-GD-RBFNN 164 × 10�� 0.1011 1.02 × 10�� 0.3011 

Kmeans-CGD-RBFNN 9.77 × 10�� 0.9888 5.60 × 10�� 0.9688 

Kmeans-PSO-RBFNN 1.4 × 10�� 0.8631 1.0 × 10�� 0.8721 

 

For the results ofClose price data (in table 10), CGSO-BSO trained RBFNN gives MMSE of 

3.89x10-2, CGSOm-BSORBFNN gives MMSE of 2.71x10-2.. Also, the effect of PCA is not felt 

in theClose stock data as the CGSOm-CGD RBFNN and the PCA-CGSOm-CGD RBFNN 

yieldsimilar MMSE values.Further, the R2 values are all on the high side for these models for 

both the Open and Close data indicating that all the models fit the data well. The standard 

deviations are very small with respect to the mean indicating that the values for all the runs do 

not differ much.  
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Table 10: Comparative Summary of Results for average of 10 Simulation Runs  for Close 

stock price  

 

Model 
 

Close 
Training Test 

   MMSE   ±     �� R2 MMSE         ±    �� R2 

CGSO-BSO trained 

RBFNN =CONTROL 3.89 × 10�� ± 0.028 

  

0.9616 2.51 × 10�� ± 0.0022 

  

0.9740 

CGSOm-BSO trained 

RBFNN 

 

2.71 × 10�� ± 0.0005 

  

0.9790 1.30 × 10�� ± 0.0004 

  

0.9842 

PCA-CGSOm-BSO 

trained RBFNN 1.56 × 10�� ± 0.0018 

  

0.9630 3.2 × 10�� ± 0.0011 

  

0.9742 

Other RBFNN 

Variants : 

    

CGSOm-CGD-RBFNN 5.7 × 10�� ± 0.0005 0.9945 4.4 × 10�� ± 0.0002 0.9948 

PCA-CGSOm-CGD-

RBFNN 

5.2 × 10�� ± 0.0018 0.9950 8.2 × 10�� ± 0.0012 0.9895 

CGSOm-GD-RBFNN 1.85 × 10�� 0.8701 1.1 × 10�� 0.8901 

CGSOm-PSO-RBFNN 5.71 × 10�� 0.9589 3.57 × 10�� 0.9692 

CGSO-CGD-RBFNN 3.5 × 10�� 0.9521 1.71 × 10�� 0.9712 

Kmeans-GD-RBFNN 3.5 × 10�� 0.6567 1.5 × 10�� 0.6767 

Kmeans-CGD-RBFNN 7.99 × 10�� 0.9908 5.20 × 10�� 0.9421 

Kmeans-PSO-RBFNN 1.25 × 10�� 0.9859 1.0 × 10�� 0.9590 

 

Next, the test data is used on the models to determine their predictive accuracy on unseen 

data.For the Open stock Price data, the CGSO-BSO RBFNN gives MMSE= 2.74x10-2 with a 

R2 value of 0.9732. The CGSOm-BSO-RBFNN model yields MMSE = 1.8 x10-2 and R2 

=0.9837. Also, it was observed that the CGSOm-CGD RBFNN yields 7.8x10-3
,while PCA-

CGSOm-CGD RBFNN yields MMSE of 7.9x10-3.This again indicates that the PCA does not 

have much influence on the result of the CGSOm-CGDtrained RBFNN.A similar trend is 

observed for Close price data. This shows that the RBFNN models are generalizing well for 

unseen data. 
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Taylor (2006) noted that traditionally, it is accepted that the best forecast model is that with the 

smallest overall error measurement value using the test data. In order words, the predictive 

accuracy of a model can be measured by the mean squared error on the test set. This is the 

conventional method used by most researchers in validating their predictive models.  

Using test dataset, the CGSOm-CGD RBFNN and CGSOm-BSO RBFNN seem tohavelower 

error values compared to the CGSOm-PSO RBFNN. However, the CGD variant has a slightly 

lower error with an error value of 7.8x10-3 compared to the BSO variant with error of 1.8 x10-2. 

The BSO slightly outperformsthe PSO variant having an error of 4.4 x 10-2 . 

 

4.7Case 2: Currency Exchange Rate Forecasting problem 

In this case, currency exchange rate data was used to develop the RBFNN models.The currency 

exchange rate datafrom (PACIFIC Exchange Rate Service, 1996)was used and it is composed 

of real data representing the weekly averaged exchange rates between British pound and US 

dollar during the period going from 31 December 1979 to 26 December 1983. The time series 

plot of the data is in Figure 17. 

 

 Figure 17: Time series plot of the Currency Exchangedata 

 

4.7.1Parameter Settings 

he parameter settings for the CGSO and CGSOm algorithm as well as for the BSO algorithm 

used for Currency Exchange Rate Forecasting problem are in Tables 11 and 12. 

Table 11: Parameters settings for CGSO and CGSOm algorithm used for Currency 
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Exchange Rate Forecasting problem 

S/n Parameter Value 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

glowworms population   
Initial Luciferin,L0  
Decision range, r0  
luciferin decay constant,rho  
luciferin enhancement constant, y 
constant value, B  
step size, s  
sensor range,�� 
number of neighbours, nt  
maxIter  

3500 
1 
0.2  
0.3 
0.05 
0.04 
0.3 
0.25 
4 
1800 

 

 

Table 12: Parameters settings for BSO algorithm For Currency Exchange Rate 

Forecastingproblem 

S/n
o 

Parameter Value 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11   
12   
13             

glowworms population   
Initial Luciferin,L0  
Decision range, r0  
luciferin decay constant,rho  
luciferin enhancement constant,y 
constant value,B  
step size,s =  
sensor range,rs  
global best attraction constant, cg  
maxIter  
adaptive step sizing control, cs    
mass extinction control, eT   
strong local search control, IR 

2000 
1 
0.3 
0.3 
0.05 
0.04 
0.4 
0.25 
0.3 
1000 
0.2 
30 
10 
 

4.7.2Plots of Optimized RBFNN Models 

Figures 18 and 19show the time series plot and regression plot of actual and predicted currency 

exchange rate respectivelyusing CGSOm-BSO trained RBFNN. Figures 20 and 21display the 

time series plot and regression plot of actual and predicted currency exchange rate respectively 

using CGSO-BSO trained RBFNN.  
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Figure 18: Time series plot of actual values vs. predicted currency exchange rate using 

CGSOm-BSO trained RBFNN 

 

Figure 19:Regression plot of actual and predicted currency exchange rate using CGSOm-

BSO trained RBFNN 

 

Figure 20: 

Time series plot of actual values vs. predicted currency exchange rate using CGSO-BSO 

trained RBFNN. 

 

 

Figure 21:Regression plot of actual and predicted currency exchange rate using CGSO-BSO 

trained RBFNN 
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4.7.3Comparative Analysis 

This sub-section presents the results of RBFNN models optimized by different techniques and 

developed using currency exchange rate data. The mean of the mean squared error (MMSE) of 

10 runs and the standard deviations for each RBFNN model variant were computed.  

In Table13, the summary of results for average of the RBFNN models considered is presented. 

Experimental results show that usingtest data,the CGSO-BSO trained RBFNN yields a MMSE 

of 8.3x10-3with a R2 value of 0.9219. The CGSOm-BSOtrained RBFNN yields a MMSE of 

5.6x10-5 with a R2 value of 0.9977. The CGSOm-CGDtrained RBFNN yields MMSE of 

4.9x10-5with a R2 value of 0.9977, while the PCA-CGSOm-CGD RBFNN yields MMSE value 

of 7.6x10-3 indicating that the PCA does not have a positive influence on the result of the 

CGSOm-CGDtrained RBFNN as the error values increases. Also noted is that the R2 values are 

high for these models indicating that all the models fit the data well. 

Table 13:Comparative Performance of RBFNN variants for average of 10 simulation runs 

RBFNN VARIANTS MMSE R2 

CGSO-BSO-RBFNN. 

= CONTROL 

8.311x 10-3 0.9219 

 

 CGSOm-BSO-RBFNN 5.64 x 10-5 0.9977 

PCA-CGSOm-BSO-RBFNN 7.06  x 10-5 0.9969 

CGSO-PSO-RBFNN 1.4442 x 10-4 0.9933 

CGSOm-PSO-RBFNN 5.4183 x 10-5 0.9975 

CGSO-CGD-RBFNN 1.5158 x 10-4 0.9930 

CGSOm-CGD-RBFNN 4.9362 x 10-5 0.9977 

PCA- CGSOm-CGD-RBFNN 7.6 x 10-3 0.9807 

CGSOm-GD-RBFNN 6.5 x10-3 0.9658 

Kmeans-GD-RBFNN 8.8x10-3 0.9902 

Kmeans-CGD-RBFNN 3.6602 x 10-5 0.9983 

Kmeans-PSO-RBFNN 1.4700 x 10-4 0.9932 

 

The CGSOm-BSO RBFNN has MMSE of 5.6 x10-5; CGSOm-CGD RBFNN hasMMSE of 4.9 

x10-5; the CGSOm-PSO-RBFNN has MMSE of 5.4x10-5 ; all three    have similar error values. 

4.8Validation of approach 

This section presents a benchmarkingof the approaches from this study against existing 

RBFNN models. The models considered are Evolving Radial basis Function Neural Network 
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(EvRBF)(Rivas et al., 2004); the Auto Regressive-RBF tuned using GA (Sheta and De Jong, 

2001), the-Auto Regressive model tuned using Least Square Estimate (LSE). These models 

were chosen because they were designed for the same application domain as this study, which 

is time series forecasting. The RBFNN models developed in this study were trained using same 

dataset that the afore-mentioned 3 models applied. 

 

Table14:Comparative Performance of RBFNN variantsbased on proposedand  

         Existing approaches. 

 

Dataset 

AR-RBF 

tuned using-

LSE 

AR-RBF 

tuned using-

GA 

EvRBF CGSOm-

BSO-

RBFNN 

CGSOm-CGD-

RBFNN 

Training 

(MSE) 

7.2601x 10-4 5.1407 x 10 -4 3 x 10-4 5.64 x10-5 4.9x10 -5 

 

Full 

dataset 

(MSE) 

12.001 x 10-4 8.7220 x 10-4 6 x 10-4 8.03x10-5 7.1 x 10 – 5 

 

 

Simulations were done for 10 runs as initiated in EvRBF(Rivas et al.,2004). Table 14 gives the 

MSE computed over the training and full data sets for all the models. The results indicate lower 

error values for CGSOm-BSO-RBFNN andCGSOm-CGD-RBFNN when compared to the ones 

obtained from the other 3 benchmark models. For example, using the training datasets, the AR-

RBF tuned using LSE gave MSE=7.2601x 10-4; the AR-RBF tuned usingGA gave MSE = 

5.1407 x 10 -4;EvRBFgave MSE = 3 x 10-4, the CGSOm-BSO-RBFNN yielded MSE = 5.64 x 

10-5 andCGSOm-CGD-RBFNNyieldedMSE=4.9x10 -5.These results validate the 

modelsdeveloped in this study for optimizing the RBFNN parameters. 
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CHAPTER FIVE 

SUMMARY OF FINDINGS, CONCLUSION,CONTRIBUTIONS TO KNOWLEDGE  

AND FURTHER WORK 

5.1Summary of Findings 

Based on the discussions of results in Chapter four, Table15 shows the summary of findings 

Table 15:  Summary of Findings 

Objectives Findings/Results 

For objective 1: 

To efficiently determine the 

sensor range of the CGSO 

algorithm. 

The CGSOm algorithm was developed. 

 

The CGSOmcomputes efficiently the sensor range (��) 

automatically, modified the glowworm initialization 

method and introduced a function that measures the 

cluster error during the iteration phase. 

 

Results showed the effectiveness of the CGSOm against 

the CGSO, and existing standard clustering techniques 

used as benchmarks. Using  cluster quality evaluation 

measures of Entropy, Purity and Rand Index values;  

CGSOm gave best entropy and purity values in four of 

the seven datasets clustered (57%), CGSO gave best 

results in two datasets (28.5%), and HC gave best result 

in one dataset(14.5%).Additionally, it was noted that 

CGSOm produced clusters that agree to a large degree 

with the ground truth since it gave rand index value of 

0.70 and above in six of the the seven datasets 

considered. 

 

For objective 2: 

To automatically determine the 

optimal number of clusters in a 

dataset. 

 

It was observed that the way the glowworms are 

initialized plays a vital role in determining sensor 

range, �� correctly and consequently determines the 

number of clusters found. Hence, the glowworm 
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 initialization method of CGSOm was compared with that 

of CGSO. It was observed that the method based on 

CGSOm produced a better curve for determining sensor 

range,�� than that obtained using the initializationmethod 

of CGSO.This was observed from the several clustering 

experiments carried out.For instance, for the mouse data, 

the sensor range (based on CGSO glowworm 

initialization method) is 0.218; whereas that (based on 

CGSOm glowworm initialization method) is 0.173. The 

number of clusters for the CGSO is 2; while that for the 

CGSOm is 3, which is the same number of clusters 

(ground truth) in the original mouse data. This proves 

that the way the glowworms are initialized plays a vital 

role in determining sensor range, �� correctly and 

consequently determines the number of clusters found. 

This CGSOm glowworm initialization method 

contributes to the performance of the sensor range 

determination algorithm.   

 

 

 

For objective 3: 

To develop a RBFNN model 

that adapts to the number of 

clusters in a dataset. 

As soon as the number of clusters is determined, the 

topology of the network adapts to this number, resulting 

in an neural network with an adaptive architecture.  
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For objective 4: 

To optimize the RBFNN 

parameters fully  

 

Two new training methodologies for optimizing the 

RBFNN parameters fully resulted from this work, 

yielding the CGSOm-CGD RBFNN and CGSOm-BSO 

RBFNN models. These are new and optimal RBFNN 

models for time series forecasting problems. Comparing 

the performance of these models with existing models, 

results obtained showed that the CGSOm-CGD RBFNN 

and CGSOm-BSO RBFNN gave betterforecasting 

accuracy by yielding lowest error values.   

5.2Conclusion 

The overall goal of this work is to optimize fully the RBFNN models in such a manner that the 

limitations of existing models are addressed.The clustering aspect of theRBFNN learning 

process was improved upon; in this case,an improved version of CGSO,the CGSOm,was 

proposed. The CGSOm solves the challenge in RBFNN optimization as it finds the number of 

clusters in an efficient manner and fixes the configuration of the network in an adaptable 

manner.The CGSO was improved upon by incorporating an algorithm for determining the 

sensor range automatically, modifying the glowworm initializationmethod, and introducing a 

function that measures cluster error during the iteration phase. It was shown that the modified 

initialization phase improves the performance of the algorithm that determines the sensor 

range. It was also demonstrated that the computed sensor range in CGSOm leads to better 

cluster quality for most data sets when compared with other existing clustering techniques. 

In optimizing the weights, the fact that the BSO based RBFNN model competes favourably with the 

standard CGD based RBFNN, thereby leading to development of two new RBFNN training 

methodologies-CGSOm-BSO and CGSOm-CGD.The newmodels determine automatically the 

optimal number of RBF centres in a given problem, the number of hidden neuronsin the 

network and the configuring of the network.This result yields high forecastaccuracy.  

 

5.3Contributions to Knowledge  

This study made the following contributions to knowledge: 

(1) A new clustering algorithm, CGSOm was developed. It incorporates an efficient 
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mechanism for determining the sensor range (sensor range determination algorithm), in place 

of the existing trial and error method.It includes a function that measures the cluster error 

during the iteration phase, and an improved glowworm initialization method that assists in 

obtaining the optimal number and quality of clusters. 

(2) This work derived two new, efficient and adaptive techniques, namely the CGSOm-CGD-

RBFNN and CGSOm-BSO-RBFNN models for training the Radial basis Function Neural 

Network. These models are major contributions to the statistical and machine learning 

community and will be of benefit to all those domains and sectors involved in time-series 

forecasting. 

(3) The efficient mechanism for determining the sensor range, the sensor range determination 

algorithm labeled as “Algorithm 7” was created from this research work.This algorithm helps 

the CGSOm to determine the number of clusters in an efficient manner. 

5.4 Further Work 

(1) The fitness function significantly affects the cluster quality. Further work can be done as 

regards finding a more effective and efficient fitness function.  

(2) In this work, the CGSOm has been applied in time-series forecasting. Its effectiveness could 

be investigated in big data mining. 
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function varargout = Predictor(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Predictor_OpeningFcn, ... 
                   'gui_OutputFcn',  @Predictor_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
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handles.output = hObject; 
handles.VarNames = {}; 
%set(handles.summaryTable,'data',[handles.tableVar,{'';'';'';''},{'';'';''
;''}]) 
handles.noVar = 4; 
handles.featureSize = 12; 
handles.noSamples = []; 
handles.data = []; 
 
handles.rbfNames = {'Gaussian', 'Multi-Quadric', 'Inverse Multi-
Quadric','Thin Plate Spline','Cubic', 'Linear'}; 
handles.rbfcns = 
{'gaussRBF','multiQuadRBF','invMultiQuadRBF','thinPlateSplineRBF','cubicRB
F','linearRBF'}; 
set(handles.rbFunctions, 'string', handles.rbfNames) 
 
optData, optNames, optH] = ExtractOptFcn('optsettings.txt'); 
handles.optfcnsString = optNames; 
handles.optfcnsData = optData; 
handles.optfcnsHandle = optH; 
set(handles.optMenu,'string', optNames); 
set(handles.optMenu,'string',handles.optfcnsString) 
 
% Extracting the clustering function from file 
[clusterData, clusterNames, clusterH] = 
ExtractOptFcn('clustersettings.txt'); 
handles.clusterData = clusterData; 
handles.clusterNames = clusterNames; 
handles.clusterHandles = clusterH; 
set(handles.clustFunctions,'string',handles.clusterNames) 
 
handles.actualOptFcn = {}; 
handles.timeAgo = 3; 
handles.currentRBF = handles.rbfcns{2}; 
 
handles.lambda = 0.00001; 
handles.noHidden = 10; 
handles.fracTrainSet = 0.7; 
handles.fracTestSet = 0.1; 
handles.fracValSet = 1 - handles.fracTestSet - handles.fracTrainSet; 
 
% Default values 
defaultVar.dataPartition = [0.7,0.2]; 
defaultVar.timeAgo = 3; 
defaultVar.numHidden = 10; 
defaultVar.lambda = 0.000001; 
defaultVar.rbf = 1; 
defaultVar.pcaDim = 0; 
defaultVar.optimFcn = 1; 
defaultVar.clusterFcn = 1; 
 
handles.defaultVar = defaultVar; 
 
handles.plotHandles = []; 
handles.plotHolderInitPos = get(handles.primaryPlotHolder,'position');  
set(handles.regTerm,'string',num2str(handles.lambda)); 
 
handles.fsMethod = 1; 
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handles.dataMins = []; 
handles.dataMaxs = []; 
handles.dataMeans = []; 
handles.dataSDs = []; 
 
handles.allX = []; 
handles.allY = []; 
handles.allXRaw = []; 
handles.allYRaw = []; 
 
handles.maintainDim = 0; 
handles.PC = []; 
 
%plotdata = {(1:10)',(1:10)','r--','X','Y';(1:10)',(1:10)','go-
','X','Y';(1:10)',(1:10)','b*-','X','Y';(1:10)',sin(1:10)','k*-','X','Y'}; 
%plotHandler(plotdata,handles); 
 
guidata(hObject, handles); 
 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Predictor_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% -------------------------------------------------------------------- 
function aboutMenu_Callback(hObject, eventdata, handles) 
 
aboutHdles.figure1 = 
figure('parent',0,'menubar','none','units','characters',... 
'toolbar','auto','handlevisibility','callback','color',[0.831  0.816  
0.784],... 
'position',[102.8   15.23077  130.8   39.53846],... 
'visible','on','windowstyle','normal','name','About','resize','off',... 
'windowstyle','normal'); 
 
aboutHdles.uipanel1 = 
uipanel('parent',aboutHdles.figure1,'fontsize',[8],... 
'units','characters','fontweight','normal','foregroundcolor',[0  0  0],... 
'fontangle','normal','backgroundcolor',[1       1        1],... 
'BorderType','beveledout','position',[9.8      6         110.4            
25],... 
'visible','on','title','','BorderWidth',[3],'TitlePosition','lefttop'); 
 
aboutHdles.text1 = 
uicontrol('parent',aboutHdles.uipanel1,'style','text','fontsize',[13],... 
'units','characters','fontweight','bold','foregroundcolor',[0  0  1],... 
'fontangle','normal','backgroundcolor',[1           1         1],... 
'horizontalalignment','center','position',[4.6     0.8           100      
23],... 
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'visible','on','string',{'  ','This program is designed for a PhD Thesis 
titled:','  ',... 
'A Framework for the Automatic Generation of an Optimal Radial Basis 
Function Neural Network For Time Series Data Forecasting Problems ','  
',... 
'Author''s Name: Roselyn Isimeto',' No: ','Department: Computer 
Science','Institution: University of Lagos','Email: '},... 
'enable','on','tooltipstring',''); 
 
fid = fopen(filename, 'r');   
optNames = {};    
optH = {};        
optData = [];     
handlePattern = 'opt';    
counter = 0;             
currentTag = '';          
currentData = struct();    
currentOptions = struct(); 
currentOptionType = ''; 
currentSetField = {}; 
nameTag = 'name:'; 
funcTag = 'function:'; 
optionTypeTag = 'option_type:'; 
optionTag = 'options:'; 
allTags = {nameTag, funcTag, optionTypeTag, optionTag}; 
while true 
    aline = fgetl(fid);    
    if (aline==-1)         
        break; 
    end 
    aline = strtrim(aline); 
    if isempty(aline) 
        continue; 
    end 
    if any(strcmpi(aline, allTags))   
        currentTag = aline;   
        if strcmpi(aline, nameTag)   
            currentData = struct();   
            currentOptions = struct(); 
            currentOptionType = ''; 
            currentSetField = {}; 
            counter = counter + 1; 
        end 
        continue; 
    end 
 
    if strcmpi(currentTag,nameTag) 
        optNames = [optNames,{aline}]; 
        anOptH = [handlePattern,num2str(counter)]; 
        optH = [optH,{anOptH}]; 
        currentData.name = aline; 
        currentData.options = currentOptions; 
    elseif strcmpi(currentTag, optionTypeTag) 
        currentOptionType = aline; 
        if ~strcmpi(currentOptionType,'general') 
            currentOptions = eval(aline); 
        end 
    elseif strcmpi(currentTag, funcTag) 
        currentData.function = aline;   
    elseif strcmpi(currentTag, optionTag) 
        [field,val] = strtok(aline,'='); 
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        [val,notin] = strtok(val,'='); 
        if ~isempty(str2num(val))   
            val = str2num(val); 
        end 
        currentOptions.(field) = val; 
        currentData.options = currentOptions; 
        currentSetField = [currentSetField, {field}]; 
        currentData.setfield = currentSetField; 
    end 
 
    optData.(anOptH) = currentData; 
 
end 
fclose(fid); 
 
% -------------------------------------------------------------------- 
function lcMenu_Callback(hObject, eventdata, handles) 
 
 
 
function [dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, 
optimFcn, clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles) 
dataPartition = handles.defaultVar.dataPartition; 
timeAgo = handles.defaultVar.timeAgo; 
numHidden = handles.defaultVar.numHidden; 
lambda = handles.defaultVar.lambda; 
rbf = handles.rbfcns{handles.defaultVar.rbf}; 
pcaDim = handles.defaultVar.pcaDim; 
[optimFcn, optimOptions] = GetOptimFcn(handles.defaultVar.optimFcn, 
handles); 
[clusterFcn, clusterOptions] = 
GetClusterFcn(handles.defaultVar.clusterFcn, handles); 
 
 
function [clusterFcn, clusterOptions] = GetClusterFcn(pos, handles) 
% The clustering function 
clusterData = handles.clusterData; 
clusterHandle = handles.clusterHandles; 
clusterFcnObj = clusterData.(clusterHandle{pos}); 
clusterFcn = clusterFcnObj.function; 
clusterOptions = clusterFcnObj.options; 
 
function [optimFcn, optimOptions] = GetOptimFcn(pos, handles) 
% The optimisation function 
optData = handles.optfcnsData; % Optimisation data holder 
optH = handles.optfcnsHandle;  % A list of handles to optimization object 
curOptObj = optData.(optH{pos});  % The current optimization function 
position 
optimFcn = curOptObj.function; 
optimOptions = curOptObj.options; 
 
function hlMenu_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
inputdata = inputdlg('Provide number of hidden nodes'); 
if isempty(inputdata) 
    return 
end 
xdata =  str2num(inputdata{1}); 
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sz = length(xdata); 
if isempty(xdata) 
    return 
end 
numHidden = num2cell(xdata); 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 4, sz, 
xdata); 
 
% -------------------------------------------------------------------- 
function regMenu_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
inputdata = inputdlg('Provide range of regularisation term'); 
if isempty(inputdata) 
    return 
end 
xdata =  str2num(inputdata{1}); 
sz = length(xdata); 
if isempty(xdata) 
    return 
end 
lambda = num2cell(xdata); 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 5, sz, 
xdata); 
 
function UpdateInterface(theState, handles) 
 
hdlesToEnable = 
[handles.trainBtn,handles.validateBtn,handles.testBtn,handles.predictBtn, 
handles.allData]; 
sz = length(hdlesToEnable); 
 
for h = hdlesToEnable; 
    set(h, 'enable', theState) 
end 
if strcmpi(theState,'on') 
    oppState = 'off'; 
else 
    oppState = 'on'; 
end 
set(handles.pleaseWait,'visible',oppState); % The "Please Wait" shows up 
drawnow 
 
 
% --- Executes on button press in trainBtn. 
function trainBtn_Callback(hObject, eventdata, handles) 
try 
    tic                % The timer ticks 
    UpdateInterface('off', handles); 
 
    noRun = str2double(get(handles.runEditBox,'string')); 
    wbar = waitbar(0,char('Please wait...',['Run 0/', num2str(noRun)])); 
    lambda = str2double(get(handles.regTerm,'string'));  % The 
regularisation term is fetched from its control 
    numHidden = str2double(get(handles.numHiddenLayer,'string')); % The 
number of hidden layer is fetched from its control 
    trainR = str2num(get(handles.numTrainSet,'string'))/100;     
    testR = str2num(get(handles.numTestSet,'string'))/100;       
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    valR = 1 - trainR - testR;                                   
    handles = ShuffleData(handles);                
    allY = handles.allY;                 
    allX = handles.allX;                 
    tempAllX = allX; 
    %ReverseFeatureScaling(allY, handles); 
    handles.pcaUsed = 0; 
    if get(handles.applyPCARadBtn,'value') % Should pca be applied 
        noComp = str2num(get(handles.pcaDimTextBox,'string')); % Get the 
new feature size or dimension 
        if isempty(noComp) 
            set(handles.pleaseWait,'visible','off') 
            errordlg('The PCA number of dimension is invalid','Error 
message','modal'); 
            return 
        end 
        [allX, PC] = pca(allX,noComp);   
        handles.PC = PC(:,1:noComp); 
        handles.pcaUsed = 1; 
    end 
 
    actualSamSize = handles.actualSamSize;    
    noTrain = floor(trainR*actualSamSize);     
    noTest = floor(testR*actualSamSize);       
    noVal = actualSamSize - noTrain - noTest;    
    handles.trainR = trainR;                     
    handles.testR = testR;                       
    handles.valR = valR;                         
    handles.lambda = lambda;                     
    handles.noHidden = numHidden;                
    handles.noTVT = [noTrain,noVal,noTest];          
    trainSetY = allY(1:noTrain,:)            
    trainSetX = allX(1:noTrain,:)            
    valSetY = allY(noTrain+(1:noVal),:);      
    valSetX = allX(noTrain+(1:noVal),:);       
    testSetY = allY(noTrain+noVal+(1:noTest),:);     
    testSetX = allX(noTrain+noVal+(1:noTest),:);     
 
    handles.maintainX = tempAllX(1:noTrain,:); 
 
    % The clustering function 
    clusterData = handles.clusterData; 
    clusterHandle = handles.clusterHandles; 
    clusterFcnObj = 
clusterData.(clusterHandle{get(handles.clustFunctions,'value')}); 
    clusterFcn = clusterFcnObj.function; 
    clusterOptions = clusterFcnObj.options; 
 
    % The optimisation function 
    optData = handles.optfcnsData;  
    optH = handles.optfcnsHandle;   
    curOptObj = optData.(optH{get(handles.optMenu,'value')});      
curOptimFcn = curOptObj.function; 
    options = curOptObj.options; 
 
    set(handles.numHiddenLayer, 'enable', 'off') 
    meanR = 0; 
    meanMSE = 0; 
    ishandle(wbar) 
    mseList = zeros(noRun, size(allY,2)); 
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    for ii = 1:noRun; 
 
        if ishandle(wbar)  
            waitbar(ii/noRun, wbar,char('Please wait...',['Run 
',num2str(ii),'/', num2str(noRun)])); 
        end 
        param = 
RBFTrainingAlgorithm(trainSetX,trainSetY,numHidden,lambda,handles.currentR
BF, curOptimFcn, options, clusterFcn, clusterOptions, handles, true);  
        if handles.maintainDim 
            yPredicted = predict(handles.maintainX, param);   
        else 
            yPredicted = predict(trainSetX, param);   
        end 
        [CofTrain,allMSE] = computeStatistics(trainSetY,yPredicted);   
        meanR = meanR + CofTrain; 
        meanMSE = meanMSE + allMSE; 
        mseList(ii,:) = allMSE(:)'; 
    end 
    if handles.maintainDim 
        trainSetX = tempAllX(1:noTrain,:);             
        valSetX = tempAllX(noTrain+(1:noVal),:);      
        testSetX = tempAllX(noTrain+noVal+(1:noTest),:);     
    end 
    meanR = meanR/noRun; 
    meanMSE = meanMSE/noRun; 
 
    save('mseSaved','mseList');   
 
    plotdata = makePlotData(ReverseFeatureScaling(trainSetY, 
handles),ReverseFeatureScaling(yPredicted, handles), handles);       
    handles.plotHandles = plotHandler(plotdata,handles);      
    plotRegression(trainSetY,yPredicted,handles)     
    handles.trainSetY = trainSetY;                   
    handles.trainSetX = trainSetX;                    
    handles.valSetY = valSetY;                       
    handles.valSetX = valSetX;                       
    handles.testSetY = testSetY;                     
    handles.testSetX = testSetX;     
    handles.param = param;                            
        delete(wbar); 
    end 
    tm = toc;     
    
set(handles.summaryTable,'data',[handles.VarNames',num2cell(meanMSE),num2c
ell(meanR)])  
    set(handles.timeResult,'string',num2str(tm))   
    UpdateInterface('on', handles);        
    guidata(hObject,handles);                      
catch  error 
    UpdateInterface('on', handles); 
    errordlg(char('An error occurred while training the network','Please 
check the input parameters and try again', ... 
        ['Error Details: ',error.message]),'Error message','modal'); 
end 
 
function plotdat = makePlotData(allY,allPY,handles) 
sz = size(allPY,2); 
nox = size(allPY,1); 
xrange = repmat((1:nox)',1,1); 
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plotdat{sz,6} = [];  
if isempty(allY) 
    xrange = repmat((1:nox)',1,1); 
    for k = 1:sz; 
        plotdat(k,1:6) = 
{xrange,allPY(:,k),'r:','Days',handles.VarNames{k},char('Actual','Predicte
d')}; 
    end 
else 
    xrange = repmat((1:nox)',1,2); 
    for k = 1:sz; 
        plotdat(k,1:6) = 
{xrange,[allY(:,k),allPY(:,k)],{'r:','b'},'Days',handles.VarNames{k},char(
'Actual','Predicted')}; 
    end 
end 
 
function makePlot(allY,allPY,handles) 
axeHdles = 
[handles.rainPlot,handles.temPlot,handles.humPlot,handles.windPlot]; 
ylab = handles.tableVar; 
nox = size(allY,1); 
for k = 1:4; 
    axes(axeHdles(k)); 
    pl1 = plot((1:nox)',allY(:,k),'r:','linewidth',1); 
    hold on 
    pl2 = plot((1:nox)',allPY(:,k),'b','linewidth',1); 
    legend([pl1,pl2],char('Actual','Predicted')); 
    ylabel(ylab{k}); 
    axis tight 
    if k<4 
        set(gca,'xtick',[]) 
    end 
    hold off 
end 
function plotRegression(y,yp,handles) 
lab = handles.VarNames; 
sz = handles.noVar; 
figure 
for k = 1:sz; 
    subplot(ceil(sqrt(sz)),sz/ceil(sqrt(sz)),k) 
    
plot(y(:,k),yp(:,k),'mo','markerfacecolor','m','markeredgecolor','b','mark
ersize',3) 
    hold on  
    
plot(linspace(0.95*min(y(:,k)),1.05*max(y(:,k)),5),linspace(0.95*min(y(:,k
)),1.05*max(y(:,k)),5),'r') 
    xlabel(['Actual ',lab{k}]) 
    ylabel(['Predicted ',lab{k}]) 
    hold off 
end  
 
% --- Executes on button press in testBtn. 
function testBtn_Callback(hObject, eventdata, handles) 
try 
    tic 
    UpdateInterface('off', handles); 
 
    testSetY = handles.testSetY; 
    testSetX = handles.testSetX; 
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    param = handles.param; 
    yPredicted = predict(testSetX,param); 
    [CofTrain,allMSE] = computeStatistics(testSetY,yPredicted); 
    plotdata = makePlotData(ReverseFeatureScaling(testSetY, handles), 
ReverseFeatureScaling(yPredicted, handles),handles); 
    handles.plotHandles = plotHandler(plotdata,handles); 
    plotRegression(testSetY,yPredicted,handles) 
 
    tm = toc; 
    
set(handles.summaryTable,'data',[handles.VarNames',num2cell(allMSE),num2ce
ll(CofTrain)]) 
    set(handles.timeResult,'string',num2str(tm)) 
    UpdateInterface('on', handles); 
    guidata(hObject,handles); 
catch  error 
    disp(error.message) 
    UpdateInterface('on', handles); 
    errordlg(char('An error occurred while testing the network','Please 
check the input parameters and try again'),'Error message','modal'); 
end 
 
 
% --- Executes on button press in predictBtn. 
function predictBtn_Callback(hObject, eventdata, handles) 
try 
    tic 
    UpdateInterface('off', handles); 
    noFeatures = handles.featureSize; 
    lag = handles.timeAgo; 
    allY = handles.allYRaw; 
    allX = handles.allXRaw; 
 
    param = handles.param; 
 
    inputDay = inputdlg('How many days away from now would you like to 
predict?','Day to predict'); 
 
    if ~isempty(inputDay) 
        inputDay = str2double(inputDay{1}); 
        for k = 1:inputDay; 
            hldY = allY((end-lag+1):end,:); 
            hldX = hldY(:)'; 
            yPred = predict(hldX,param); 
            allY(end+1,:) = yPred; 
        end 
        yPredicted = allY((end-inputDay+1):end,:); 
        yPredicted = ReverseFeatureScaling(yPredicted, handles); 
        plotdata = makePlotData('', yPredicted, handles); 
        handles.plotHandles = plotHandler(plotdata,handles); 
    end 
    tm = toc; 
    % 
set(handles.summaryTable,'data',[handles.VarNames,num2cell(allMSE),num2cel
l(CofTrain)]) 
    set(handles.timeResult,'string',num2str(tm)) 
    UpdateInterface('on', handles); 
    guidata(hObject,handles); 
catch  error 
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    disp(error.message) 
    UpdateInterface('on', handles); 
    errordlg(char('An error occurred while testing the network','Please 
check the input parameters and try again'),'Error message','modal'); 
end 
 
 
function numTrainSet_Callback(hObject, eventdata, handles) 
% hObject    handle to numTrainSet (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of numTrainSet as text 
%        str2double(get(hObject,'String')) returns contents of numTrainSet 
as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function numTrainSet_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to numTrainSet (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function numTestSet_Callback(hObject, eventdata, handles) 
% hObject    handle to numTestSet (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of numTestSet as text 
%        str2double(get(hObject,'String')) returns contents of numTestSet 
as a double 
 
 
function numTestSet_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to numTestSet (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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% --- Executes during object creation, after setting all properties. 
function regTerm_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to regTerm (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function numHiddenLayer_Callback(hObject, eventdata, handles) 
% hObject    handle to numHiddenLayer (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of numHiddenLayer as text 
%        str2double(get(hObject,'String')) returns contents of 
numHiddenLayer as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function numHiddenLayer_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to numHiddenLayer (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
function gaMax_Callback(hObject, eventdata, handles) 
% hObject    handle to gaMax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of gaMax as text 
%        str2double(get(hObject,'String')) returns contents of gaMax as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function gaMax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to gaMax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function rbFunctions_Callback(hObject, eventdata, handles) 
handles.currentRBF = handles.rbfcns{get(hObject,'value')}; 
guidata(hObject,handles); 
 
% --- Executes during object creation, after setting all properties. 
function rbFunctions_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to rbFunctions (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end   
 
 
% --- Executes on selection change in optMenu. 
function optMenu_Callback(hObject, eventdata, handles) 
 
% --- Executes during object creation, after setting all properties. 
function optMenu_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to optMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
% --- Executes on key press with focus on numTrainSet and none of its 
controls. 
function numTrainSet_KeyPressFcn(hObject, eventdata, handles) 
 
% --- Executes on key press with focus on numTestSet and none of its 
controls. 
function numTestSet_KeyPressFcn(hObject, eventdata, handles) 
 
function popSize_Callback(hObject, eventdata, handles) 
% hObject    handle to popSize (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of popSize as text 
%        str2double(get(hObject,'String')) returns contents of popSize as 
a double 
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% --- Executes during object creation, after setting all properties. 
function popSize_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popSize (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on selection change in timeAgoMenu. 
function timeAgoMenu_Callback(hObject, eventdata, handles) 
val = get(hObject,'Value'); 
allStr = get(hObject,'string'); 
handles.timeAgo = str2double(allStr{val}); 
featureSize = (handles.timeAgo)*(handles.noVar); 
handles.featureSize = featureSize; 
if ~isempty(handles.data) 
    [allY,allX] = makeFullDataSet(handles.data,handles.timeAgo); 
    handles.allY = allY; 
    handles.allX = allX; 
    handles.actualSamSize = size(allY,1); 
end 
 
set(handles.numFeatures,'string',num2str(featureSize)); 
guidata(hObject,handles); 
 
% Hints: contents = cellstr(get(hObject,'String')) returns timeAgoMenu 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
timeAgoMenu 
 
 
% --- Executes during object creation, after setting all properties. 
function timeAgoMenu_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to timeAgoMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% -------------------------------------------------------------------- 
 
 
% -------------------------------------------------------------------- 
function popsizeMenu_Callback(hObject, eventdata, handles) 
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% -------------------------------------------------------------------- 
function generationMenu_Callback(hObject, eventdata, handles) 
 
% -------------------------------------------------------------------- 
function lagMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
inputdata = inputdlg('Provide range of time lag'); 
if isempty(inputdata) 
    return 
end 
xdata =  str2num(inputdata{1}); 
if isempty(xdata) 
    return 
end 
timeAgo = num2cell(xdata); 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 2, 
length(xdata), xdata); 
 
%%============================ Helper Functions  ========================= 
 
function [filename,ext] = ImportPath 
    [flname,flpath,findex] = uigetfile({'*.xls;*.xlsx*','Excel 
Files(*.xls,*xlsx)'},'Import Data'); 
    if findex ~= 0 & flname ~= 0 
        filename = fullfile(flpath,flname); 
        [a,b,ext] = fileparts(filename); 
    else 
        filename = 0; 
        ext = 0; 
    end 
function [dat,dataname] = ImportFunction 
    [filename,ext] = ImportPath; 
    dat = {}; 
    dataname = {}; 
    if ischar(filename) & ischar(ext)  
        [data,dataname] = xlsread(filename); 
        dat = data; 
    end 
 
function ret = EuclidDistance(pos1,pos2) 
ret = sqrt(sum((pos1-pos2).^2,2)); 
 
function SetNoHiddenLayer(no_hidden,handles) 
set(handles.numHiddenLayer,'string',num2str(no_hidden), 'enable', 'on'); 
drawnow 
 
function param = 
RBFTrainingAlgorithm(X,y,no_hidden,lambda,rbfcn,optfcn,options,clusterfcn, 
clusterOptions, handles, setHidden) 
 
output_layer_size  = size(y,2); 
[theMeans,theSDs] = eval(clusterfcn)  % This clusters the data in X 
%%theMeans  to see centroids 
%% Takes care of redimensioning the centroids to the original dimension of 
the input space 
if handles.maintainDim 
   pc = handles.PC;         % the reduced principal component (PC) 
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   theMeans = theMeans*pinv(pc);  % calulating the centroid from the 
reduced centroid and PC 
   X = handles.maintainX;     % X switches to the original input space 
end 
 
 
no_hidden = length(theSDs); 
if setHidden 
    SetNoHiddenLayer(no_hidden,handles); 
end 
hValues = eval([rbfcn,'(X,theMeans,theSDs)']);    
initial_Theta = randInitializeWeights(no_hidden, output_layer_size);    
initial_params = initial_Theta(:); 
no_param = length(initial_params); 
 
costFunction = @(p) nnCostFunction(p,no_hidden,output_layer_size, hValues, 
y, lambda);  
[nn_params, cost] = eval(optfcn)   
 
Theta = reshape(nn_params, no_hidden+1,output_layer_size);              
param = {theMeans,theSDs,Theta,rbfcn};   
 
function [J,grad] = nnCostFunction(nn_params, no_hidden, out_layer_size, 
X, y, lambda) 
 
Theta = reshape(nn_params, (no_hidden + 1),out_layer_size); 
 
% Setup some useful variables 
m = size(X, 1); 
J = 0; 
X = [ones(m,1),X]; 
z = X*Theta; 
sqError = (z-y)'; 
J = sum(sum((z - y).^2))/(2*m) + 
lambda/(2*m)*(sum(sum(Theta(2:end,:).^2))); 
 
grad = 1/m*(sqError*X)'; 
grad(2:end,:) = grad(2:end,:) + lambda/m*Theta(2:end,:); 
grad = grad(:); 
% 
========================================================================= 
 
function yPredicted = predict(X,params) 
theMeans = params{1}; 
theSDs = params{2}; 
theta = params{3}; 
rbfcn = params{4}; 
hValues = eval([rbfcn,'(X,theMeans,theSDs)']); 
m = size(hValues,1); 
hValues = [ones(m,1),hValues]; 
yPredicted = hValues*theta; 
 
function W = randInitializeWeights(L_in, L_out) 
epsilon = sqrt(6)/sqrt(L_in + L_out); 
W = 2*epsilon*rand(1 + L_in,L_out) - epsilon; 
 
function [allCof,allMSE] = computeStatistics(y,ypred) 
m = size(y,1); 
mse = sum((y-ypred).^2)/m; 
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r = corrcoef(y,ypred); 
sz = size(y,2); 
allCof = zeros(sz,1); 
for k = 1:sz; 
    R = corrcoef(y(:,k),ypred(:,k)); 
    %allCof(k) = R(2); 
    allCof(k) = R(2)^2; 
end 
res = ypred - y; 
allMSE = mean(res.^2)'; 
 
function dataMenu_Callback(hObject, eventdata, handles) 
 
try 
    [rawData,dataNames] = ImportFunction;  
    if isempty(rawData)  
        return 
    end 
    UpdateInterface('off', handles);  
    drawnow;               handles.VarNames = dataNames;    
    theMin = min(rawData);           
    handles.noVar = nocl;            
    plotdata{nocl,5} = [];           
    noSamples = size(rawData,1);     
    xrange = (1:noSamples)';            
    styleList = {'b','r','g','m','c','k','y'};    
    stySz = length(styleList); 
    dataMeans = mean(rawData); 
    dataSDs = std(rawData); 
    for k = 1:nocl;                               
        spos = mod(k-1,stySz) + 1; 
        plotdata(k,:) = 
{xrange,rawData(:,k),styleList{spos},'Time/Days',dataNames{k}}; 
        if handles.fsMethod == 1 
            rawData(:,k) = (rawData(:,k)-dataMeans(k))/dataSDs(k);   
        elseif handles.fsMethod == 2 
            rawData(:,k) = rawData(:,k)/theMax(k);                       
        else 
            rawData(:,k) = (rawData(:,k) - theMin(k))/(theMax(k) - 
theMin(k));                  
        end 
    end 
 
    handles.plotHandles = plotHandler(plotdata,handles);   
    handles.data = rawData;                                   
handles.dataMeans = dataMeans;                         
    handles.dataSDs = dataSDs;                             
handles.dataMins = theMin;                                    
handles.dataMaxs  = theMax;                           
    handles.noSamples = noSamples;                         
    featureSize = handles.noVar*handles.timeAgo;           
    [allY,allX] = makeFullDataSet(rawData,handles.timeAgo);   
    handles.allXRaw = allX; 
    handles.allYRaw = allY; 
 
    noSam = size(allY,1); 
    rangePos = randperm(noSam); 
    allX = allX(rangePos,:); 
    allY = allY(rangePos,:); 
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    mnX = min(max(allX)); 
    mzX = max(max(allX)); 
    %disp(['Min X: ', num2str(mnX), ', Max X: ', num2str(mzX)]) 
    handles.allY = allY;                  
    handles.allX = allX;                  
    handles.actualSamSize = size(allY,1); 
    handles.featureSize = featureSize;       
set(handles.numFeatures,'string',num2str(handles.featureSize));       
set(handles.numDataSet ,'string',num2str(noSamples));       
    UpdateInterface('on', handles);     
catch er 
 
    disp(er.message)  
    UpdateInterface('on', handles); 
    errordlg(char('An error occurred while importing data','Please check 
the data you want to import'),'Error message','modal'); 
end 
guidata(hObject,handles); 
 
function [retY,retX] = makeFullDataSet(data,timeAgo) 
% Inputs/Argument: 
% data - the raw data 
% timeAgo - also known as the lag 
% nofactor - feature size 
% Returns: 
% retY - the output space 
% retX - the input space 
 
rw = size(data,1);  
cl = size(data,2); 
 
nofactor = cl*timeAgo; 
 
if rw <= timeAgo 
    retY = []; 
    retX = []; 
    return  
end 
sz = rw-timeAgo; 
retY = data((timeAgo+1):rw,:); 
retX = zeros(sz,nofactor); 
for k = 1:sz; 
    hld = data(k-1+(1:timeAgo),:); 
    retX(k,:) = hld(:)';  
end 
 
function ret = gaussRBF(X,mn,sd) 
mnSz = size(mn,1); 
samSz = size(X,1); 
ret = zeros(samSz,mnSz); 
 
% Recompute SD 
sd = computeCentroidWidth(mn); 
 
for k = 1:mnSz; 
    amean = mn(k,:); 
    thedist = exp(-
(EuclidDistance(repmat(amean,samSz,1),X)).^2/(2*sd(k)^2)); 
    ret(:,k) = thedist; 
end 
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function ret = multiQuadRBF(X,mn,sd) 
mnSz = size(mn,1); 
samSz = size(X,1); 
ret = zeros(samSz,mnSz); 
 
sd = computeCentroidWidth(mn); 
 
for k = 1:mnSz; 
    amean = mn(k,:); 
    thedist = (EuclidDistance(repmat(amean,samSz,1),X).^2 + sd(k)^2).^0.5; 
    ret(:,k) = thedist; 
end 
 
function ret = invMultiQuadRBF(X,mn,sd) 
mnSz = size(mn,1); 
samSz = size(X,1); 
ret = zeros(samSz,mnSz); 
% Recompute SD 
sd = computeCentroidWidth(mn); 
 
for k = 1:mnSz; 
    amean = mn(k,:); 
    thedist = (EuclidDistance(repmat(amean,samSz,1),X).^2 + sd(k)^2).^-
0.5; 
    ret(:,k) = thedist; 
end 
 
function ret = thinPlateSplineRBF(X,mn,varargin) 
mnSz = size(mn,1); 
samSz = size(X,1); 
ret = zeros(samSz,mnSz); 
for k = 1:mnSz; 
    amean = mn(k,:); 
    eudist = EuclidDistance(repmat(amean,samSz,1),X); 
    thedist = eudist.^2.*log(eudist); 
    ret(:,k) = thedist; 
end 
 
function ret = cubicRBF(X,mn,varargin) 
mnSz = size(mn,1); 
samSz = size(X,1); 
ret = zeros(samSz,mnSz); 
for k = 1:mnSz; 
    amean = mn(k,:); 
    eudist = EuclidDistance(repmat(amean,samSz,1),X); 
    thedist = eudist.^3; 
    ret(:,k) = thedist; 
end 
 
function ret = linearRBF(X,mn,varargin) 
mnSz = size(mn,1); 
samSz = size(X,1); 
ret = zeros(samSz,mnSz); 
for k = 1:mnSz; 
    amean = mn(k,:); 
    eudist = EuclidDistance(repmat(amean,samSz,1),X); 
    thedist = eudist; 
    ret(:,k) = thedist; 
end 
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function ret = computeCentroidWidth(X) 
rw = size(X,1); 
dm = 0; 
for k = 1:(rw-1); 
    arow = X(k,:); 
    n = rw-k; 
    dm = max(dm, max(EuclidDistance(repmat(arow,n,1), X(k+1:end,:)))); 
end 
ret = dm/sqrt(2*rw); 
ret = repmat(ret,1,rw); 
 
function validateBtn_Callback(hObject, eventdata, handles) 
try 
    tic 
    UpdateInterface('off', handles);  %just wait 
 
    valSetY = handles.valSetY;  % extracting  
    valSetX = handles.valSetX; 
 
    param = handles.param; 
    yPredicted = predict(valSetX,param); 
    [CofTrain,allMSE] = computeStatistics(valSetY,yPredicted); 
    plotdata = makePlotData(ReverseFeatureScaling(valSetY, 
handles),ReverseFeatureScaling(yPredicted, handles), handles); 
    handles.plotHandles = plotHandler(plotdata,handles); 
    plotRegression(valSetY,yPredicted,handles) 
 
    tm = toc; 
    
set(handles.summaryTable,'data',[handles.VarNames',num2cell(allMSE),num2ce
ll(CofTrain)]) 
    set(handles.timeResult,'string',num2str(tm)) 
    UpdateInterface('on', handles); 
    guidata(hObject,handles); 
catch  error 
    disp(error.message) 
    UpdateInterface('on', handles); 
    errordlg(char('An error occurred while testing the network','Please 
check the input parameters and try again'),'Error message','modal'); 
end 
 
 
% --- Executes on button press in allData. 
function allData_Callback(hObject, eventdata, handles) 
try 
    tic 
    UpdateInterface('off', handles); 
 
    allY = handles.allY; 
    allX = handles.allX; 
 
    if handles.pcaUsed == 1 
        allX = allX*(handles.PC); 
    end 
 
    param = handles.param; 
    yPredicted = predict(allX,param); 
    [CofTrain,allMSE] = computeStatistics(allY,yPredicted); 
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    plotdata = makePlotData(ReverseFeatureScaling(allY, handles), 
ReverseFeatureScaling(yPredicted, handles),handles); 
    handles.plotHandles = plotHandler(plotdata,handles); 
    plotRegression(allY, yPredicted,handles) 
 
    tm = toc; 
    
set(handles.summaryTable,'data',[handles.VarNames',num2cell(allMSE),num2ce
ll(CofTrain)]) 
    set(handles.timeResult,'string',num2str(tm)) 
    UpdateInterface('on', handles); 
    guidata(hObject,handles); 
catch  error 
    disp(error.message) 
    UpdateInterface('on', handles); 
    errordlg(char('An error occurred while evaluating the error of all the 
data','Please check the input parameters and try again'),'Error 
message','modal'); 
end 
 
function clustFunctions_Callback(hObject, eventdata, handles)  
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
% --- Executes on slider movement. 
function plotSlider_Callback(hObject, eventdata, handles) 
val = get(hObject,'value'); 
mx = get(hObject,'max'); 
intPos = handles.plotHolderInitPos; 
pos = get(handles.primaryPlotHolder,'position'); 
pos(2) = intPos(2) - val; 
set(handles.primaryPlotHolder,'position',pos) 
 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
function [plHdles] = plotHandler(plotdata,handles) 
sz = size(plotdata,1); 
plHdles = zeros(1,sz); 
graphWidth = 210.4; 
graphHeight = 15.6; 
graphLeft = 13.4; 
graphSpacing = 6; 
startTop = 1.65; 
lastPlotHandles = handles.plotHandles; 
holderPos = handles.plotHolderInitPos; 
totalHeight = max([sz*graphHeight + (sz-1)*graphSpacing + 
2*startTop,holderPos(4)]); 
extension = max([totalHeight - holderPos(4),0]); 
if extension > get(handles.plotSlider,'min') 
    set(handles.plotSlider,'max',extension,'value',extension, 
'visible','on') 
else 
    set(handles.plotSlider,'visible','off') 
end 
curTop = holderPos(4) - totalHeight; 
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holderPos(2) = curTop; 
holderPos(4) = totalHeight; 
set(handles.primaryPlotHolder,'position',holderPos); 
if ~isempty(lastPlotHandles) 
    delete(lastPlotHandles); 
end 
 
newTop = startTop; 
for k = 1:sz; 
    pos = [graphLeft,holderPos(4)-newTop-
graphHeight,graphWidth,graphHeight]; 
 
    newTop = newTop + graphHeight + graphSpacing; 
    x = plotdata{k,1}; 
    y = plotdata{k,2}; 
    styl = plotdata{k,3}; 
    xlab = plotdata{k,4}; 
    ylab = plotdata{k,5}; 
    plHdles(k) = 
axes('parent',handles.primaryPlotHolder,'units',get(handles.primaryPlotHol
der,'units'),'position',pos); 
    axes(plHdles(k)); 
    noInnerPlot = size(x,2); 
    if noInnerPlot>1 
        legendStr = plotdata{k,6}; 
        allPlots = zeros(1,noInnerPlot); 
        hold on 
        for r = 1:noInnerPlot; 
            xx = x(:,r); 
            yy = y(:,r); 
            allPlots(r) = plot(xx,yy,styl{r}); 
        end 
        legend(allPlots,legendStr) 
        hold off 
    else 
        plot(x,y,styl) 
    end 
    ylabel(ylab) 
    xlabel(xlab) 
end 
 
function Fx = getFcn(objfcn,Xs) 
    n = size(Xs,1); 
    Fx = ones(n,1); 
    for k = 1:n; 
        Fx(k) = objfcn(Xs(k,:)); 
    end 
 
 
 

 
function applyPCARadBtn_Callback(hObject, eventdata, handles) 
if get(hObject,'value') == 1 
    set(handles.pcaDimLabel,'visible','on'); 
    set(handles.pcaDimTextBox,'visible','on'); 
else 
    set(handles.pcaDimLabel,'visible','off'); 
    set(handles.pcaDimTextBox,'visible','off'); 
end 
guidata(hObject,handles); 
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if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
function setOptimOptBtn_Callback(hObject, eventdata, handles) 
handles.optfcnsData = SetOptionHandler(handles.optMenu, 
handles.optfcnsData, handles.optfcnsHandle, handles); 
guidata(hObject, handles); 
 
function setCGSOOptBtn_Callback(hObject, eventdata, handles) 
handles.clusterData = SetOptionHandler(handles.clustFunctions, 
handles.clusterData, handles.clusterHandles, handles); 
guidata(hObject, handles); 
 
function data = SetOptionHandler(popMenuHandle, data, objHs, handles) 
optData = data;  
optH = objHs;   
curOptObj = optData.(optH{get(popMenuHandle,'value')});    
options = curOptObj.options; 
setfields = curOptObj.setfield; 
sz = length(setfields); 
defaultValues{sz} = ''; 
variableType = zeros(1,sz); 
for k = 1:sz; 
    op = options.(setfields{k}); 
    if (isnumeric(op)) 
        op = num2str(op); 
        variableType(k) = 1; 
    elseif ~ischar(op) 
        op = func2str(op); 
        variableType(k) = 2; 
    else 
        variableType(k) = 3; 
    end 
    defaultValues{k} = op; 
end 
 
newOptions = inputdlg(setfields,'Set Options',1,defaultValues); 
if isempty(newOptions) 
    return 
end 
 
for k = 1:sz; 
    op = newOptions{k}; 
    typ = variableType(k); 
    if typ == 1 
        options.(setfields{k}) = str2num(op); 
    elseif typ == 2 
        options.(setfields{k}) = str2func(op); 
    else 
        options.(setfields{k}) = op; 
    end 
end 
curOptObj.options = options; 
optData.(optH{get(popMenuHandle,'value')}) = curOptObj; 
 
data = optData; 
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function RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, 
lambda, rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 
variableNumber, variableSize, xdata, varargin) 
 
try 
     try 
        matlabpool open 
     catch 
        matlabpool close 
        matlabpool open 
     end 
 
     %wbH = waitbar(0,'0% Done'); 
 
     xlab = ''; 
     ylab = 'MSE'; 
     trainMSE = zeros(1,variableSize); 
     valMSE = zeros(1,variableSize); 
     testMSE = zeros(1,variableSize); 
     trainR = zeros(1,variableSize); 
     valR = zeros(1,variableSize); 
     testR = zeros(1,variableSize); 
     counter = 0; 
     if variableNumber == 1   
         xlab = 'Data Partition'; 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition{k}, timeAgo, 
pcaDim, numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
         end 
     elseif variableNumber == 2 
         xlab = 'Time Lag'; 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo{k}, 
pcaDim, numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
         end 
     elseif variableNumber == 3 
         xlab = 'PCA Dimension'; 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, 
pcaDim{k}, numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
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            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
         end 
     elseif variableNumber == 4 
         xlab = 'Number of hidden nodes'; 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden{k}, lambda, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
      elseif variableNumber == 5 
         xlab = 'Regularisation Term'; 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda{k}, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
      elseif variableNumber == 6 
         xlab = 'Radial Basis function'; 
 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda, rbf{k}, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
      elseif variableNumber == 7 
         xlab = 'Optimization function'; 
 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda, rbf, optimFcn{k}, clusterFcn, optimOptions{k}, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
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            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
     elseif variableNumber == 8 
         xlab = 'Clustering Function'; 
 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda, rbf, optimFcn, clusterFcn{k}, optimOptions, 
clusterOptions{k}, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
     elseif variableNumber == 9 
         xlab = varargin{1}; 
 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions{k}, 
clusterOptions, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
     elseif variableNumber == 10 
         xlab = varargin{1}; 
 
         parfor k = 1:variableSize; 
            [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions{k}, handles); 
            trainMSE(k) = theMSE(1); 
            valMSE(k) = theMSE(2); 
            testMSE(k) = theMSE(3); 
            trainR(k) = theR(1); 
            valR(k) = theR(2); 
            testR(k) = theR(3); 
            %waitbar(k/variableSize,sprintf('%12.9f', 
100*k/variableSize)); 
         end 
     end 
     figure; 
     if iscell(xdata) 
         xrange = 1:length(xdata); 
         pl = bar(xrange,[trainMSE(:),valMSE(:),testMSE(:)]); 
         set(get(pl(1),'parent'),'xticklabel',xdata) 
         xlabel(xlab) 
         ylabel('MSE'); 
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         figure; 
         plR = bar(xrange,[trainR(:),valR(:),testR(:)]); 
         set(get(plR(1),'parent'),'xticklabel',xdata) 
         xlabel(xlab) 
         ylabel('R') 
 
     else 
         pl1 = plot(xdata, trainMSE, 'r', 'linewidth', 2); 
         hold on 
         pl2 = plot(xdata, valMSE, 'b', 'linewidth', 2); 
         pl3 = plot(xdata, testMSE, 'm', 'linewidth', 2); 
         pl = [pl1, pl2, pl3]; 
         xlabel(xlab) 
         ylabel('MSE') 
         hold off 
         figure; 
         pl1R = plot(xdata, trainR, 'r', 'linewidth', 2); 
         hold on 
         pl2R = plot(xdata, valR, 'b', 'linewidth', 2); 
         pl3R = plot(xdata, testR, 'm', 'linewidth', 2); 
         plR = [pl1R, pl2R, pl3R]; 
         xlabel(xlab) 
         ylabel('R') 
         hold off 
     end 
     legend(pl, char('Training','Validation','Test')) 
     legend(plR, char('Training','Validation','Test')) 
 
     %delete(wbH) 
     matlabpool close 
catch e 
    disp(e.message) 
    %delete(wbH) 
    matlabpool close 
end 
 
 
function [theMSE, theR] = DiagnoseOnce(dataPartition, timeAgo, pcaDim, 
numHidden, lambda, rbf, optimFcn, clusterFcn, optimOptions, 
clusterOptions, handles) 
 
    trainR = dataPartition(1);     
    valR = dataPartition(2);       
    testR = 1 - trainR - valR;                                   
    [allY,allX] = makeFullDataSet(handles.data, timeAgo);  
    tempAllX = allX; 
 
    if pcaDim > 1  
        [allX,PC] = pca(allX,pcaDim);   
        handles.PC = PC(:,1:pcaDim); 
    end 
 
    actualSamSize = size(allX,1);    
    noTrain = floor(trainR*actualSamSize);     
    noTest = floor(testR*actualSamSize);       
    noVal = actualSamSize - noTrain - noTest;    
 
    trainSetY = allY(1:noTrain,:);           
    trainSetX = allX(1:noTrain,:);            
    valSetY = allY(noTrain+(1:noVal),:);       
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    valSetX = allX(noTrain+(1:noVal),:);      
    testSetY = allY(noTrain+noVal+(1:noTest),:);     
    testSetX = allX(noTrain+noVal+(1:noTest),:);    
 
    handles.maintainX = tempAllX(1:noTrain,:); 
 
    param = RBFTrainingAlgorithm(trainSetX, trainSetY, numHidden,lambda, 
rbf, optimFcn, optimOptions, clusterFcn, clusterOptions, handles, false); 
% This clusters and trains the weight. It returns the trained weights 
among other parameters 
 
    if handles.maintainDim 
        trainSetX = tempAllX(1:noTrain,:);           % Here is training 
set input space 
        valSetX = tempAllX(noTrain+(1:noVal),:);     % Here is validation 
set input space 
        testSetX = tempAllX(noTrain+noVal+(1:noTest),:);    % Here is test 
set output space 
    end 
 
    % Training set accuracy 
    yPredicted = predict(trainSetX,param);  % The Y predicted 
    [trainCof,trainMSE] = computeStatistics(trainSetY,yPredicted);  % 
Computing MSE and R value 
 
    % Validation set accuracy 
    yPredicted = predict(valSetX,param);  % The Y predicted 
    [valCof,valMSE] = computeStatistics(valSetY,yPredicted);  % Computing 
MSE and R value 
 
    % Test set accuracy 
    yPredicted = predict(testSetX,param);  % The Y predicted 
    [testCof, testMSE] = computeStatistics(testSetY,yPredicted);  % 
Computing MSE and R value 
 
    theR = [trainCof, valCof, testCof]; 
    theMSE = [trainMSE, valMSE, testMSE]; 
 
 
function OptimMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
 
xdata =  handles.optfcnsString; 
sz = length(xdata); 
optimFcn = {}; 
optimOptions = {}; 
 
for k = 1:sz; 
    [optim, options] = GetOptimFcn(k, handles); 
    optimFcn{k} = optim; 
    optimOptions{k} = options; 
end 
 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 7, sz, 
xdata); 
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function ClusterMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
 
xdata =  handles.clusterNames; 
sz = length(xdata); 
clusterFcn = {}; 
clusterOptions = {}; 
 
for k = 1:sz; 
    [clusterF, options] = GetClusterFcn(1, handles); 
    clusterFcn{k} = clusterF; 
    clusterOptions{k} = options; 
end 
 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 8, sz, 
xdata); 
 
 
function PCAMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
inputdata = inputdlg('Provide range of PCA dimension'); 
if isempty(inputdata) 
    return 
end 
xdata =  str2num(inputdata{1}); 
if isempty(xdata) 
    return 
end 
pcaDim = num2cell(xdata); 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 3, 
length(xdata), xdata); 
 
function RBFunctionMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
 
xdata =  handles.rbfNames; 
sz = length(xdata); 
rbf = {}; 
 
for k = 1:sz; 
    rbf{k} = handles.rbfcns{k}; 
end 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 6, sz, 
xdata); 
 
function OptimOptionsMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
 
[optimIndex, ok] = listdlg('ListString', 
handles.optfcnsString,'SelectionMode',... 
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    'single','Name', 'Optimisation', 'PromptString', 'Select an 
optimisation algorithm'); 
if ok == 0 
    return 
end 
[optimFcn, options] = GetOptimFcn(optimIndex, handles); 
optFields = fieldnames(options); 
[optionIndex, ok] = listdlg('ListString', optFields,'SelectionMode',... 
    'single','Name', 'Optimisation Options', 'PromptString', 'Select an 
option'); 
if ok == 0 
    return 
end 
optionName = optFields{optionIndex}; 
inputdata = inputdlg(['Provide range of for ', optionName]); 
if isempty(inputdata) 
    return 
end 
xdata =  str2num(inputdata{1}); 
sz = length(xdata); 
if isempty(xdata) 
    return 
end 
optimOptions = {}; 
 
for k = 1:sz; 
    options.(optionName) = xdata(k); 
    optimOptions{k} = options; 
end 
xlab = [optionName,' for ', handles.optfcnsString{optimIndex}]; 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 9, sz, 
xdata, xlab); 
 
 
function ClusteringMenuBar_Callback(hObject, eventdata, handles) 
[dataPartition, timeAgo, pcaDim, numHidden, lambda, rbf, optimFcn, 
clusterFcn, optimOptions, clusterOptions] = DefaultVar(handles); 
 
[clusterIndex, ok] = listdlg('ListString', 
handles.clusterNames,'SelectionMode',... 
    'single','Name', 'Clustering Algorithm', 'PromptString', 'Select a 
clustering algorithm'); 
if ok == 0 
    return 
end 
[clusterFcn, options] = GetClusterFcn(clusterIndex, handles); 
optFields = fieldnames(options); 
[optionIndex, ok] = listdlg('ListString', optFields,'SelectionMode',... 
    'single','Name', 'Clustering Options', 'PromptString', 'Select an 
option'); 
if ok == 0 
    return 
end 
optionName = optFields{optionIndex}; 
inputdata = inputdlg(['Provide range of for ', optionName]); 
if isempty(inputdata) 
    return 
end 
xdata =  str2num(inputdata{1}); 
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sz = length(xdata); 
if isempty(xdata) 
    return 
end 
clusterOptions = {}; 
 
for k = 1:sz; 
    options.(optionName) = xdata(k); 
    clusterOptions{k} = options; 
end 
xlab = [optionName,' for ', handles.clusterNames{clusterIndex}]; 
RunDiagnoseInParallel(dataPartition, timeAgo, pcaDim, numHidden, lambda, 
rbf, optimFcn, clusterFcn, optimOptions, clusterOptions, handles, 10, sz, 
xdata, xlab); 
 
function DefaultMenuBar_Callback(hObject, eventdata, handles) 
defaultVar = handles.defaultVar; 
theFields = fieldnames(defaultVar); 
sz = length(theFields); 
lastAns = {}; 
for k = 1:sz; 
    op = theFields{k}; 
    lastAns{k} = num2str(defaultVar.(op)); 
end 
newDefault = inputdlg(theFields,'Set Default Values',1, lastAns); 
if isempty(newDefault) 
    return 
end 
 
for k = 1:sz; 
    op = newDefault{k}; 
    defaultVar.(theFields{k}) = str2num(op); 
end 
 
handles.defaultVar = defaultVar; 
guidata(hObject, handles); 
 
function MNMenu_Callback(hObject, eventdata, handles) 
st = get(hObject, 'checked'); 
menuH = [handles.MNMenu, handles.RescalingMenu, handles.MinMaxMenu]; 
set(menuH, 'checked', 'off'); 
if (strcmpi(st,'on')) 
    set(hObject, 'checked','off'); 
else 
    set(hObject, 'checked','on'); 
end 
handles.fsMethod = 1; 
guidata(hObject,handles); 
 
function RescalingMenu_Callback(hObject, eventdata, handles) 
st = get(hObject, 'checked'); 
menuH = [handles.MNMenu, handles.RescalingMenu, handles.MinMaxMenu]; 
set(menuH, 'checked', 'off'); 
if (strcmpi(st,'on')) 
    set(hObject, 'checked','off'); 
else 
    set(hObject, 'checked','on'); 
end 
handles.fsMethod = 2; 
guidata(hObject,handles); 
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function MinMaxMenu_Callback(hObject, eventdata, handles) 
st = get(hObject, 'checked'); 
menuH = [handles.MNMenu, handles.RescalingMenu, handles.MinMaxMenu]; 
set(menuH, 'checked', 'off'); 
if (strcmpi(st,'on')) 
    set(hObject, 'checked','off'); 
else 
    set(hObject, 'checked','on'); 
end 
handles.fsMethod = 3; 
guidata(hObject,handles); 
 
function result = ReverseFeatureScaling(rescaledValues, handles) 
rw  = size(rescaledValues,1); 
if handles.fsMethod == 1 
    result = rescaledValues.*repmat(handles.dataSDs, rw,1) + 
repmat(handles.dataMeans, rw,1); 
elseif handles.fsMethod == 2 
    result = rescaledValues.*repmat(handles.dataMaxs, rw,1); 
else 
    theMin = repmat(handles.dataMins, rw,1); 
    theMax = repmat(handles.dataMaxs, rw,1); 
    result = rescaledValues.*(theMax - theMin) + theMin; 
end 
 
function hdles = ShuffleData(handles) 
 
allY = handles.allY; 
allX = handles.allX; 
noSam = size(allY,1); 
rangePos = randperm(noSam); 
allX = allX(rangePos,:); 
allY = allY(rangePos,:); 
handles.allX = allX; 
handles.allY = allY; 
 
hdles = handles; 
 
 
function mDimRad_Callback(hObject, eventdata, handles) 
handles.maintainDim = get(hObject,'value'); 
 
guidata(hObject, handles); 
 
 
 
 
function runEditBox_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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