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enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic
wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral
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acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial
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by replacing their noise transmission systems with laminated enclosures.
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1. Introduction

The control of vibration and noise propagation from indus-
trial plants, aircraft engines and noise generating machines
has remained an active research area for several decades.
Nonetheless, limited literature exist in the area of noise-
structure dynamic interaction modeling. However, within
the context of analytical and experimental studies in acoustic
-structure dynamics, a number of investigations have been
reported in [1–9]. For these problems, analytical techniques
were employed to study active control of acoustic-structure
interaction in 2-D and 3-D enclosures.

In particular, Fang et al. [10], investigated acoustic-
structure interaction through a 3-D rectangular enclosure
to improve control design analysis. Nevertheless, reliable
low-order finite model of 3-D acoustic-structure interaction
has posed a formidable challenge in the field, given the
fact that model density and order increase from 1-D to 3-
D configurations, especially for severe multiple input and

output systems. In the field of acoustic-structure interaction,
the scarcity of literature in analytical modeling of 3-D
enclosures having complex boundary conditions has been
attributed mainly to the intractability of dynamic equations
which preclude closed form solutions.

For some cases, with simplified assumptions, closed-
form solutions are possible usually with rigorous mathe-
matical intrigues and manipulations. One of such methods
involves the computation of a transfer function from the
frequency response data. Even at that, the limit of these
identification techniques is that, the system identification
algorithms work satisfactorily only for low-order systems and
systems with separated nodes.

However, for 3-D acoustic enclosures, with vibrat-
ing boundary surfaces, these identification techniques are
fronted with difficulty, especially with two-input one-output
systems. Nevertheless, investigations of vibroacoustic pres-
sure waves propagation through a 3-D acoustic enclosure
having vibrating laminated boundary surfaces has not been
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widely reported in literature. Within the context of transverse
vibrations of laminated structures, with non-uniform inter-
facial pressure distribution, some interesting results have
been reported recently in [11–15]. The effect of structural
vibration on the propagation of acoustic pressure waves
through a cantilevered 3-D laminated beam-plate enclosure
is investigated. For this problem, a set of well posed partial
differential equations governing the vibroacoustic pressure
waves interaction phenomenon are formulated and matched
for the various vibrating boundary surfaces. This paper
is organized as follows. Section 1 introduces the problem
under investigation within a general context. In the next
section, the essential analytical mechanics is briefly reviewed.
In Section 3, these relationships are incorporated into a
simplified analytical model for the mathematical analysis
of the vibroacoustic pressure waves problem. Section 4 is
concerned with the analysis of the transmission intensity as
modulated by interfacial pressure variation and excitation
frequency.

In Section 5, simulated results for the vibroacoustic
pressure waves, as influenced by the linear interface pressure
variations across the axes of the vibrating boundary surfaces
are analyzed whilst in Section 6, the paper ends with the
summary and conclusion.

2. Problem Formulation

The problem here is to examine analytically, the effect of the
nature of load, frequency variation and the pressure gradient
on the acoustic pressure waves propagation.

A general theory of the energy dissipation properties
of press-fit joints in the presence of Coulomb friction as
originally developed by Goodman and Klumpp provides
the basis for the physics of the problem. As illustrated in
Figure 1(a) below the proposed 3-D enclosures is constructed
with laminated elastic structure for each boundary surface.
The contact conditions between the mating layers as itemised
in Damisa et al. [11] hold, namely,

(i) there is continuity of stress distributions at the
interface to sufficiently hold the equivalent layers
together both in the pre- and post-slip conditions,

(ii) a stick elastic slip with presence of Coulomb friction
occurs at the interface of the sandwich vibrating
boundary to dissipate energy and does not remain
constant as a function of some other variables such
as spatial distance, time or velocity.

The formulated vibroacoustic wave equation is given by
the relation

∇2P − 1∂2P

c2
1∂t2

− 2ux∂2P

c2
1∂t∂x

− ux2

c2
1

∂2P

∂x2
= −1∂2W1

ρ∂t2
(1)

while the governing equations for each vibrating boundaries
Ω1, Ω2,Ω3,Ω4 are derived in the appendix. In the meantime,
the 2-D views of the structural loadings through Ω3, Ω4 are
illustrated in Figures (1(b) and 1(c)) for brevity.
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(a) Problem geometry of 3-D composite structure.

F3 = F03eiw3t

a

Ω3

b

(b) 2-D view of the composite structure geometry through Ω3
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(c) 2-D view of the composite structure geometry through Ω4

Figure 1:

3. Mathematical Analysis of the Vibroacoustic
Pressure Waves Equation

In this investigation we will simplify the solution of (1) by
assuming that the prompting vibrating membrane is through
domain Ω1 while the boundary effects on the pressure waves
propagation are restricted to the following domains (Ω2, Ω3,
Ω4).
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Figure 2: Acoustic natural frequency profile for the casem = 1;n =
1; k = 1; b = 0.3; c = 0.8.

0 1 2 3 4 5 6

Mach number M

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

N
at

u
ra

lf
re

qu
en

cy
Ω

(r
ad

/s
)

a = 0.4 m
a = 0.6 m
a = 0.8 m

a = 1 m
a = 1.2 m

Figure 3: Acoustic natural frequency profile for the casem = 2;n =
2; k = 2; b = 0.3; c = 0.8.
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Figure 4: Acoustic natural frequency profile for the casem = 3;n =
3; k = 3; b = 0.3; c = 0.8.
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Figure 5: Acoustic natural frequency profile for the casem = 6;n =
6; k = 6; b = 0.3; c = 0.8.

Under this circumstance, (1) takes the form, viz,

∇2P − 1
c0

2

∂2P

∂t2
− 2M

c0

∂2P

∂t∂x
−M2 ∂

2P

∂x2
= −1

ρ

∂2W1

∂t2
,

∀M = ux
c0
.

(2)

Equation (2) can be further expressed as

(
1−M2)∂

2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
−
(

1 + 2M
c0

2

)
∂2P

∂t2
= −1

ρ

∂2W1

∂t2
.

(3)

By introducing the triple Fourier Finite Sine Transform,
namely

FFFs{[•]} = [•]

=
∫ b

0

∫ a

0

∫ c

0
[•]Xdxdydz,

[•] = 8
abc

∞∑

k=1

∞∑

m=1

∞∑

n=1

[•]X,

(4)

where X denotes sin(nπx/a) sin(mπy/b) sin(kπz/c), in con-
junction with the Laplace transform, viz,

(•̃) =
∫∞

0
(•)e−stdt, (•) = 1

2πi

∫ η+i∞

η−i∞
(•̃)estds. (5)



4 Advances in Acoustics and Vibration

Equation (3) in the transform plane, subject to zero initial
conditions takes the following form, viz,

(
1−M2)

(

−n
2π2

a2
P̃FxFyFz (λn, λm, λk, s)

+
nπ

a
(−1)n+1P̃FyFz (a, λm, λk, s)

+
nπ

a
P̃FyFz (0, λm, λk, s)

)

+

(

−m
2π2

b2
P̃FxFyFz (λn, λm, λk, s)

+
mπ

b
(−1)mP̃FxFz (λm, b, λk, s)

+
mπ

b
P̃FxFz (λm, 0, λk, s)

)

+

(

−k
2π2

c2
P̃FxFyFz (λn, λm, λk, s)

+
kπ

c
(−1)k+1P̃FxFy (λn, λm, c, s)

+
kπ

c
P̃FxFy (λn, λm, 0, s)

)

−
(

1 + 2M
c0

2

)
s2P̃FxFyFz (λn, λm, λk, s)

= 1
ρ
s2W1

FxFyFz (λn, λm, λk, s),

(6)

where the following have been defined

P̃FxFyFz (λn, λm, λk, s)

= −
∫ b

0

∫ a

0

∫ c

0

[
P̃
]

sin
(
nπx

a

)
sin
(
mπy

b

)
sin
(
kπz

c

)
dxdydz;

P̃FyFz (a, λm, λk, s)

= −
∫ b

0

∫ c

0

[
P̃
(
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)]
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(
mπy

b

)
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(
kπz

c

)
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∫ b
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∫ c

0
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(
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)]
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(
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b

)
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(
kπz

c

)
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∫ a

0

∫ c

0

[
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]
sin
(
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a

)
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(
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c

)
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∫ b

0
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0
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]
sin
(
nπx

a

)
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(
kπz

c

)
dydz.

(7)

Next we can evaluate the boundary stresses through the
domains Ω2, Ω3, Ω4 from the following relations, viz,

P̃FyFz (0, λm, λk, s)

=
∫ b

0

∫ c

0

[
μPav

]
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(
mπy

b

)
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(
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c

)
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∫ c
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]
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)
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c
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=
∫ b

0

∫ a

0
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s

]
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a

)
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b
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0
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0
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]
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a
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b

)

dxdy,

P̃FxFz (λn, b, λk, s)
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∫ a

0

∫ c

0
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(
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a

)
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(
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c
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dxdz,
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0

∫ c
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[
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s

]
sin
(
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a

)
sin
(
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(8)

So that on appropriate substitution, (6) is now expressed in
Fourier-Laplace transform plane as

(
1−M2)

⎛

⎝− n2π2

a2
P̃FxFyFz (λn, λm, λk, s)

+ k

⎛

⎝

⎛

⎝

(
1 + (−1)m+1

)

mπ

⎞

⎠
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⎝
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μPav(0, b)

s
(b)

− k2π2

c2
P̃FxFyFz (λn, λm, λk, s)

+
(
kπ

c
(−1)k+1 +

kπ

c

)
Pav(a, b)

s
(N )

−
(

1 + 2M
c0

2

)
s2P̃FxFyFz (λn, λm, λk, s)

= 1
ρ
s2W1

FxFyFz (λn, λm, λk, s),

(9)

where k denotes (nπ/a(−1)n+1 + nπ/a)μPav(a, 0)/s, b

denotes ((1 + (−1)m+1)/mπ)((1 + (−1)k+1)/kπ), N denotes
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((1 + (−1)n+1)/nπ)((1 + (−1)m+1)/mπ). Subject to the fol-
lowing pressure profiles prescribed in Olunloyo et al. [12],
viz,

p(x, 0) = p0

(
1 + ψ1

x

a

)
,

p
(
0, y

) = p0

(
1 + ψ2

y

b

)
,

(10)

This now allows us to obtain the vibroacoustic pressure in
the transform plane as

P̃FxFyFz (λn, λm, λk, s)

= c0
2

(
(
1−M2)

((
nπ

a
(−1)n+1 +

nπ

a

)

× μPav(a, 0)
s

×
⎛

⎝bc

⎛

⎝

(
1 + (−1)m+1

)

mπ

⎞

⎠

⎛

⎝

(
1 + (−1)k+1

)

kπ

⎞

⎠

⎞

⎠

⎞

⎠

+
(
mπ

b
(−1)m+1 +

mπ

b

)
μPav(0, b)

s

×
⎛

⎝bc

⎛

⎝

(
1 + (−1)m+1

)

mπ

⎞

⎠

⎛

⎝

(
1 + (−1)k+1

)

kπ

⎞

⎠

⎞

⎠

+
kπ

c

(
(−1)k + 1

)Pav(a, b)
s

×
⎛

⎝ab

⎛

⎝

(
1 + (−1)n+1

)

nπ

⎞

⎠

⎛

⎝

(
1 + (−1)m+1

)

mπ

⎞

⎠

⎞

⎠

+

(
1
ρ

)

s2W1
FxFyFz (λn, λm, λk, s)

)

/(1 + 2M)

×
(

s2 +

(
c0

2

1 + 2M

)(
(
1−M2)n

2π2

a2
+
m2π2

b2
+
k2π2

c2

))

,

(11)

∀Pav(a, 0) = P0

(
1 +

ψ1

2

)
a,

Pav(0, b) = P0

(
1 +

ψ2

2

)
b,

Pav(a, b)

= P0a

√
√
√√
(((

1 +
(
ψ1/2

))2

(1 + r2)

)

+

((
r
(
1 +

(
ψ1/2

)))2

(1 + r2)

))

,

r = b

a
.

(12)

To complete the solution of (10), we have employed the
following double Fourier sine transform relations, namely,

FFS
{[
W̃xxxx

]}
= m4π4

a4
W̃FxFy (s, λm, λn)

− m3π3

a3

{
W̃Fy (s, 0, λn)+

(−1)m+1W̃(s, 0, λn)
}

+
mπ

a

{
W̃

Fy
xx (s, 0, λn)+

(−1)m+1W̃xx(s, a, λn)
}

,

(13)

FFS
{
W̃xxyy

(
s, x, y

)} = m2n2π4

a2b2
W̃FxFy (s, λm, λn)

− m2nπ3

a2b

{
W̃Fy (s, λm, 0)

+(−1)n+1W̃(s, λmb)
}

− mn2π3

ab2

{
W̃Fy (s, 0, λn)

+(−1)m+1W̃(s, a, λn)
}

+
mnπ2

ab
(−1)n+1

{
W̃(s, 0, 0)

+(−1)m+1W̃(s, 0, b)
}

+ (−1)m
mnπ2

ab

{
W̃(s, 0, 0)

+(−1)m+1W̃(s, 0, b)
}

,

(14)

FFS
{
W̃yyyy

(
s, x, y

)} = n4π4

b4
W̃FyFx (s, λn, λm)

− n3π3

b3

{
W̃Fx (s, λm, 0)

+(−1)n+1W̃(s, λm, 0)
}

+
nπ

b

{
W̃Fx

yy(s, λm, 0)

+(−1)n+1W̃yy(s, λm, b)
}
.

(15)

By employing (11), (13), and (14) subject to (A.5), (A.6),
(A.7), (A.8), (A.9), and (A.10), W1

FxFyFz (λn, λm, λk, s) can be
evaluated from (A.1) as

W1
F(λn, λm, λk, s)

=
(

c

(((
mπ

a
+
nπ

b

(
−r2

υ

))(

w− 6μp0
(
1 +

(
ψ1/2

))

sEHz
2

)

×a +
(
μHz

2

)(
p0

a
ψ1 +

p0

b
ψ2

))
/ρHz

(

s2 +
D

ρHz

×
(
n4π4

a4
+ 2

n2m2π4

a2b2
+
m4π4

b4

))))

(S),

(16)
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where w denotes 6F̃/EbHz
3, and S denotes (1+(−1)k+1)/kπ.

So that on appropriate substitution into (10), the vibroa-
coustic pressure can be evaluated in the transform plane as

P̃F(s, λn, λm, λk)

= c2
0

((
1−M2)χ1(m,n, k)μρ0

(
1 +

ψ1

2

)

+ χ2(m,n, k)μρ0

(
1 +

ψ1

2

)
+ χ3(m,n, k)μρ0Ψ

+ c

(

χ4(m,n, k)

(
6F01

EbH3
3 (s− iω)

− 6μρ0
(
1 + ψ2/2

)

sEH2
z

)

+χ5(m,n, k)μr−1bHzρ0
(
ψ1 + r−1ψ2

))
/z
)

/(1 + 2M)
(
s2 +Ω2)

(

1 + 2
(
n

m

)2

r2 +
(
n

m

)4

r4

)

ω−2
0 ,

(17)

where z denotes ρ2(s2 + ω2
0), where the following have been

defined, viz,

χ1(m,n, k)

=
(n/m)

(
ρHzbc/a4D

)(
A
(

1 + (−1)k+1/kπ
))

(
1 + 2(n/m)2r2 + (n/m)4r4

) ,

χ2(m,n, k)

=
a4bc (n/m)

(
1 + (−1)m+1/m3π3

)
B

(
1 + 2(n/m)2r2 + (n/m)4r4

) ,

χ3(m,n, k)

=
ab/c (k/m)2

(
1 + (−1)m+1/m3π3

)
C

(
1 + 2(n/m)2r2 + (n/m)4r4

) ,

χ4(m,n, k)

=
a4
(
D
(

1 + (−1)k+1/kπ
))

(
1 + 2(n/m)2r2 + (n/m)4r4

) ,

χ5(m,n, k)

=
(
n

m

)
(E)

(
1 + 2(n/m)2r2 + (n/m)4r4

) ,

Ψ =
√
√√
√
((

F2

(1 + r2)

)

+

(
(G)2

(1 + r2)

))

,

(18)

where A denotes (1 + (−1)m+1/m3π3)(1 + (−1)n+1/nπ), B
denotes (2/nπ)(1 + (−1)k+1/kπ), C (1 + (−1)n+1/nπ)(1 +
(−1)k+1/kπ), D denotes (1−(n/m)r3/υ2)(1/m3π3), E denotes
(1 + (−1)k+1/kπ)(a4/m3π3)(1/nπ), F denotes (1 + (ψ1/2)), G
denotes r(1 + (ψ1/2)).

By invoking the Fourier inversion, the solution of (16) in
the Laplace transform plane can be written as

P̃
(
x, y, z

) = 8
abc

∞∑

k=1

∞∑

n=1

∞∑

m=1

(
P̃F(λm, λn, λk)H

)
, (19)

where H denotes sin(mπx/a) sin(nπy/b) sin(kπz/c).
The above equation can be simplified via the following

relations, viz,

∞∑

k=1

∞∑

n=1

∞∑

m=1

χ1(m,n, k)I

=
∞∑

k=1

∞∑

n=1

∞∑

m=1

⎛

⎝ (n/m)
(
ρHzbc/a4D

)
L

(
1 + 2(n/m)2r2 + (n/m)4r4

)

⎞

⎠I,

(20)

where I denotes sin(mπx/a) sin(nπy/b) sin(kπz/c), L de-
notes ((1+(−1)m+1/m3π3)(1+(−1)n+1/nπ)(1+(−1)k+1/kπ)).

∞∑

k=1

∞∑

n=1

∞∑

m=1

χ2(m,n, k)f

=
∞∑

k=1

∞∑

n=1

∞∑

m=1

⎛

⎝ a4bc (n/m)h
(

1 + 2(n/m)2r2 + (n/m)4r4
)

⎞

⎠f,

(21)

where f denotes sin(mπx/a) sin(nπy/b) sin(kπz/c), h denotes
(1 + (−1)m+1/m3π3)(2/nπ)(1 + (−1)k+1/kπ):

∞∑

k=1

∞∑

n=1

∞∑

m=1

χ3(m,n, k)Z

=
∞∑

k=1

∞∑

n=1

∞∑

m=1

⎛

⎝
ab/c (k/m)2

(
1 + (−1)m+1/m3π3

)
Z

(
1 + 2(n/m)2r2 + (n/m)4r4

)

⎞

⎠Z,

(22)

where Z denotes sin(mπx/a) sin(nπy/b) sin (kπz/c), Z
denotes (1 + (−1)n+1/nπ)(1 + (−1)k+1/kπ):

∞∑

k=1

∞∑

n=1

∞∑

m=1

χ4(m,n, k)R

=
∞∑

k=1

∞∑

n=1

∞∑

m=1

⎛

⎝
πa4

(
Q
(

1 + (−1)k+1/kπ
)

(1/nπ)
)

(
1 + 2(n/m)2r2 + (n/m)4r4

)

⎞

⎠R,

(23)

where R denotes sin (mπx/a) sin (nπy/b) sin (kπz/c), Q
denotes (n− (n2/m)r3/υ2)(1/m3π3).

∞∑

k=1

∞∑

n=1

∞∑

m=1

(
χ5(m,n, k)s

)

=
∞∑

k=1

∞∑

n=1

∞∑

m=1

(
n

m

)
(T )

(
1 + 2(n/m)2r2 + (n/m)4r4

)s,

(24)

where s denotes sin (mπx/a) sin (nπy/b) sin (kπz/c), T

denotes (1 + (−1)k+1/kπ)(a4/m3π3)(1/nπ), in conjunction
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with the following Fourier closed form representations,
namely,

q = 1
π

∞∑

ξ=1

(−1)ξ+1

ξ
sin ξπq, ∀0 < q < 1, (25)

∞∑

ξ=1

sin ξπq
ξ3

= π2q

6
− πq2

4
+
q3

12
,

∀0 < q < 2, ∀(x, y, z
) ∈ q.

(26)

In view of the foregoing, (17) can now be written as

P̃
(
s, x, y, z

)

= c2
0

(
(
1−M2)Λ1

(
x, y, z

)
μρ0

(
1 +

(
ψ1/2

))

+Λ2
(
x, y, z

)
μρ0

(
1 +

(
ψ2/2

))
+Λ3

(
x, y, z

)
μρavΨ

+c

(

Λ4
(
x, y, z

)
(

6F01

EbH3
3 (s− iω)

− 6μρ0
(
1 +

(
ψ2/2

))

sEH2
z

)

×Λ5
(
x, y, z

)
μr−1bHzρ0

(
ψ1 + r−1ψ2

)
)

/ρ2(s2 + ω2
0

)
)

/(1 + 2M)
(
s2 +Ω2)

×
(

1 + 2(n/m)2r2 + (n/m)4r4
)
ω−2

0 ,

(27)

where the following have been defined, namely,

Λ1
(
x, y, z

) =
(
n

m

)(
1− υ3

)

a5Hz

√
ρ

E

(
32x − 84x2 + 10x3)yz;

Λ2
(
x, y, z

) = a3

√
E

ρ

(
n

m

)
3
2

(
x2 − x)yz;

Λ3
(
x, y, z

) = 1
c2

√
E

ρ

(
k

m

)2 9
4

(
x2 − x)yz;

Λ4
(
x, y, z

) = cπa3

ρ2bEHz
2

(

n−
(
n2

m

)
r3

υ2

)(

− 2x + 3x2

−2
3
x3

)

yz;

Λ5
(
x, y, z

) = a3Hz

ρ

(
n

m

)(
−2x + 3x2 − 2

3
x3
)
yz,

(28)

while

Ω2 =
(

c0
2

1 + 2M

)(
(
1−M2)m

2π2

a2
+
n2π2

b2
+
k2π2

c2

)

,

(29)

ω0
2 = D

ρHz

(
m4π4

a4
+
n4π4

b4
+
k4π4

c4

)

(30)

are the natural frequencies of the vibroacoustic enclosures.
For the limit case as Mach number, M → 0, the well known
result in Laudau and Liftsitz [16] viz Ω2 = c0

2(m2π2/a2 +
n2π2/b2 + k2π2/c2), is correctly recovered. By employing
the Laplace inversion, the closed form solution for the
vibroacoustic pressure wave can be computed as

P
(
x, y, z, τ

)

= Π(m,n, r,M)
(
F1(τ)

((
1−M2)Λ1

(
x, y, z

)
μpor

+Λ2
(
x, y, z

)
μpo

(
1 +

ψ2

2

)
+Λ3

(
x, y, z

)
μp0Ψ

)

+
(
Λ

4

(
x, y, z

)(
6F2(τ)− 6μp0F3(τ)

(
1 +

ψ2

2

))

+Λ5
(
x, y, z

)
F4(τ)r−1μp0

(
ψ1 + r−1ψ2

))
,

(31)

where r denotes (1 + (ψ1/2)),

∀F1(τ) = κ
sin 2πητ

η
; P

(
x, y, z, τ

) = P
(
x, y, z, τ

)

(F/bHz)
,

p0 =
p0

(F/bHz)
, t = 2πτ

ω0
,

F2(τ) = κ2

(
ei2πητ

(
1− η1

2
)(
η2 − η1

2
)

+

(
cos 2πτ + iη1 sin 2πτ
(
1− η2

)(
1− η1

2
)

)

− cos 2ηπτ
η
(
1− η2

)(
η − η1

)

)

,

F3(τ) = κ2

(
1
η2
− ei2πτ

2
(
1− η2

) − e−i2πτ

2
(
1− η2

)

− ei2πτ

2η2
(
1− η2

) − e−i2πτ

2η2
(
1− η2

)

)

,

F4(τ) = κ

(
sin 2πη + η sin 2πτ

2η3
(
1− η2

)

)

,

κ = cm
ω0

, η = Ω

ω0
, η1 = ω

ω0
,

Π(m,n, r,M) = (1 + 2M)

(

1 + 2
(
n

m

)2

r2

+
(
n

m

)4

r4

)

.

(32)

4. Mathematical Analysis of Sound
Intensity as Influenced by Interfacial
Pressure Distribution

In acoustics, sound intensity
−→
I , is a vector quantity and

can be defined as the time average of the net flow of sound
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Figure 6: Acoustic natural frequency profile for the casem = 7;n =
7; k = 7; b = 0.3; c = 0.8.
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Figure 7: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 10 Hz.
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Figure 8: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 kHz.
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Figure 9: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 2; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 MHz.
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Figure 10: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 GHz.

energy per unit area in a direction normal to the area.
By combining the fundamental equations governing sound
field, mass continuity, the relation between sound pressure
and density change in conjunction with Euler’s equation of
motion, leads to the equation relating sound intensity with
the net flow of energy, viz,

−→∇ · −→I (t) +
∂
(
Ek·e + Ep·e

)

∂t
= 0, (33)

where (Ek·e + Ep·e) is total acoustic energy.
In this paper, we shall limit analysis to intensity variation

along the spatial variable x and for this purpose; the forgoing
equation is modified to the following form, namely,

∥
∥
∥
−→
I (t)

∥
∥
∥ =

∫ x

0

(
∂P

∂t
Acζ + PAccm

)
dζ , (34)
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Figure 11: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 10 Hz.
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Figure 12: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 kHz.
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Figure 13: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 MHz.

where P is the vibroacoustic pressure;Ac is the cross sectional
area of the 3-D enclosure; cm is the velocity of sound through
the 3-D enclosure; ζ is a dummy variable of integration.
Equation (31) can be normalized into to the form

∥
∥
∥
−→
I (τ)

∥
∥
∥ =

∫ x

0

(
∂P

∂τ
ζ + PM

)

dζ ,

∀−→I (τ) =
−→
I (t)bHz

AcFLc0
,

L

t0c0
= 1, t = t0τ,

P = P
(
ζ , y, z, τ

)

(35)

in conjunction with the ongoing mathematical representa-
tions, viz,

γ1
(
x, y, z

) =
(
n

m

)(
1− υ3

)

a5Hz

√
ρ

E

(
16x2 − 28x3 +

5
2
x4
)
yz,

γ2
(
x, y, z

) = a3

√
E

ρ

(
n

m

)(
3x4

8
− x3

2

)

yz,

γ3
(
x, y, z

) = 1
c2

√
E

ρ

(
k

m

)2
(

9x3

16
− 3

4
x2

)

yz,

γ4
(
x, y, z

)

= cπa3

ρ2bEHz
2

(

n−
(
n2

m

)
r3

υ2

)(

−2x2

3
+

3x3

4
− 2x4

15

)

yz,

γ5
(
x, y, z

) = a3Hz

ρ

(
n

m

)(

−2x2

3
+

3x3

4
− 2x4

15

)

yz,

γ6
(
x, y, z

) =
(
n

m

)(
1− υ3

)

a5Hz

√
ρ

E

(
16x2 − 28x3 +

5
2
x4
)
yz,

γ7
(
x, y, z

) = a3

√
E

ρ

(
n

m

)(
x3

2
− 3x2

4

)

yz,

γ8
(
x, y, z

) = 1
c2

√
E

ρ

(
k

m

)2
(

3x3

4
− 9

8
x2

)

yz,

γ9
(
x, y, z

) = cπa3

ρ2bEHz
2

(

n−
(
n2

m

)
r3

υ2

)(
−x2 + x3 − 1

6
x4
)
yz,

γ10
(
x, y, z

) = a3Hz

ρ

(
n

m

)(
−x2 + x3 − 1

6
x4
)
yz,

H1(τ) = 2κπ cos 2πητ, t = 2πτ
ω0

,

H2(τ) = κ2

(
2πηiei2πητ

(
1− η1

2
)(
η2 − η1

2
)

+

(
−2π sin 2πτ + i2πη1 cos 2πτ

(
1− η2

)(
1− η1

2
)

)
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+
2ηπ sin 2ηπτ

η
(
1− η2

)(
η − η1

)

)

,

H3(τ) = κ2

(

− 2πiei2πτ

2
(
1− η2

) +
2πie−i2πτ

2
(
1− η2

)

− 2πiei2πτ

2η2
(
1− η2

) +
2πie−i2πτ

2η2
(
1− η2

)

)

,

H4(τ) = κ

(
−π cos 2πη + πη sin 2πτ

η2
(
1− η2

)

)

.

(36)

In view of the above relations, the magnitude of the sound
intensity can be evaluated from (35) as
∥
∥∥
−→
I (τ)

∥
∥∥

= Π(m,n, r,M)

×
(

H1(τ)
((

1−M2)γ1
(
x, y, z

)
μpo

(
1 +

ψ1

2

)

+ γ2
(
x, y, z

)
μpo

(
1 +

ψ2

2

)

+γ3
(
x, y, z

)
μp0Ψ

)

+
(
γ4
(
x, y, z

)(
6H2(τ)− 6μp0H3(τ)

(
1 +

ψ2

2

))

+γ5
(
x, y, z

)
H4(τ)r−1μp0

(
ψ1 + r−1ψ2

))

+M
(
F1(τ)

(
(
1−M2)γ6

(
x, y, z

)
μpo

(
1 +

ψ1

2

)

+ γ7
(
x, y, z

)
μpo

(
1 +

ψ2

2

)

+γ8
(
x, y, z

)
μp0Ψ

)

+
(
γ8
(
x, y, z

)(
6F2(τ)− 6μp0F3(τ)

(
1 +

ψ2

2

))

+γ10
(
x, y, z

)
F4(τ)r−1μp0

(
ψ1 + r−1ψ2

))))
.

(37)

5. Analysis of Results

In this paper, vibration and noise propagation control ema-
nating from complex engineering systems such as industrial
power plants, aircraft engines, space propulsive devices and
machine enclosures is investigated. The acoustic-structure
configuration of interest is the one in which an acoustic
disturbance is prompted by one of the vibrating boundaries
of the enclosure such as in aircraft cabin noise transmission
and systems for outer space exploration. The modeling
techniques employed for this study derives from recent
advances made in the mechanics of sandwich structures, with
non-uniform interfacial pressure distribution. The acoustic-
structure dynamic interaction problem is simplified by
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Figure 14: Vibroacoustic pressure profile for the case m = 2; n =
1; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112;ω = 1 GHz.

assuming zero initial conditions prior to the excitation of
the upper boundary surface. In the formulated problem,
the upper layer of the sandwich elastic plates is subjected
to harmonic excitation force as illustrated in Figure 1. To
demonstrate the practical significant of our model problem,
we have utilized some characteristic values listed in [10]
as shown in the Canadian Society for Mechanical Engineers
(CSME), Transaction of Applied Mechanics for simulation.
Figures 2, 3, 4, 5, and 6 illustrate the characteristic acoustic
natural frequencies as couched in (29). In fact, our expres-
sion allows for the incorporation of Mach number and
for the case where the Mach number is approaching zero,
Landau and Lifshitz [16] characteristic frequencies equation
is recovered as a special case. As can be seen, the ordering
of the family of curves clearly displayed the existence of
subsonic, sonic, supersonic and hypersonic zones.

In each zone, the general pattern of the frequency profiles
showed that the results are dependent on the geometry of the
3-D enclosure and ambient sound velocity. With respect to
the effect of modal parameters, Figure 2, showed the profiles
for the principal modes as the axial length increases from 0.4
to 1.2 m whilst b and c are restricted to the values listed in
Table 1.

In the subsonic zone, the natural frequency profiles are
inversely proportional to the axial length of the enclosure
and decrease monotonically to a constant value irrespective
of the axial length as we approach sonic flow. However,
in the supersonic zone, the natural frequencies are further
attenuated in reversed order to their respective critical values
before increasing monotonically in the hypersonic zone.

With respect to the effect of higher modal parameters on
the natural frequency profiles, as demonstrated in Figures 3–
6, we observed similar pattern but with higher magnitude.

With respect to the profiles of vibroacoustic pressure,
Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 displayed the
various pictures for low and very high frequency excitations.
In general the pressure wave profiles are strongly influenced
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Table 1: Parameters for simulation of results.

Definition Symbol Value

Applied force amplitude F01 1 MN

Poisson ratio υ 0.33

Coefficient of friction μ 0.14

Interfacial pressure P 1× 109 Nm−2

3-D: - Length a 0.4 m–1.2 m

-Width b 0.3 m

-Thickness c 0.8 m

Thickness of laminated boundary surface on z-axis Hz 0.005 m

Excitation frequency ω 1 HZ − 1 mHz

Modulus of rigidity of materials E 7.1× 1010 Nm−2

Velocity of Sound through the 3-D enclosure Co 343 ms−1

Density of material ρ 2810 kg m−3

Density of air ρair 1.13 kg m−3
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Figure 15: Vibroacoustic pressure profile for the case m = 1; n =
2; k = 1; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 GHz.

by the values of the pressure gradients and the frequency of
the vibrating boundary surface. Interestingly, several profiles
can be simulated by playing with the values of ψ1 and ψ2

irrespective of the frequency of excitation, whereas the choice
of any suitable combination can be arranged by progressively
varying the tightening torques along the laminated surfaces.
Such pressure gradients selection can have significant effect
on the vibroacoustic pressure levels.

The pictures in Figures 7–10 illustrate the acoustic
pressure profiles at the end of one cycle of vibration.

With respect to the effect of low excitation frequency
through the boundary surface, the interfacial pressure gra-
dients do not seem to have any strong effect on the acoustic
pressure profiles. In fact we note in the lower range of Mach
number, that the acoustic pressure waves rise initially before
dropping at Mach 2 and increased marginally. However,
as we move beyond Mach 16, the effects of the pressure
gradients are noticeable.
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Figure 16: Vibroacoustic pressure profile for the case m = 1; n =
1; k = 2; b = 0.3 m; c = 0.8 m; x = 0.1270; y = 0.1905; z =
−0.3112; ω = 1 GHz.

On the other hand, Figures 8–11 displayed the pattern
of the acoustic pressure waves from low to high excitation
frequency in the vibrating boundary surface. We observed
that the magnitudes of the pressure waves are significantly
reduced with higher excitation frequency. Nonetheless, Fig-
ures 11–16 illustrate the vibroacoustic pressure profile for the
principal modes at Mach 3, as a function of the normalized
cycles of vibration.

As can be observed, the pressure profiles are increasing
with time. In particular, we note that pressure profile
magnitude with lower boundary excitation frequency are sig-
nificantly higher compare with the effect of higher boundary
excitation frequency. On the other hand, Figure 13, showed
the acoustic pressure profiles for an excitation frequency of
1 MHz. In respective of the pressure gradients combination,
the profiles are monostatically stable. As the boundary
excitation frequency increases to 1 GHz, the pressure profiles
are significantly lower in the fundamental mode of vibration.
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However, this may not be the case as we vary the values
of the modal parameters by comparison of Figures 14–16.
This suggests that in practice, dynamic stability of hypersonic
aircrafts or jet airplanes can be further enhanced by replacing
their noise transmission systems with laminated enclosures.

6. Summary and Conclusion

In this paper, explicit closed form solutions for the vibroa-
coustic characteristic frequencies, pressure waves and sound
intensity or transmission quality through a 3-D enclosure
with a vibrating laminated boundary surface is investigated.
The vibroacoustic properties are shown to be dependent on,
interfacial pressure gradients and boundary surfaces excita-
tion frequencies. The results presented in this study can be
positively exploited for the design of modern airplanes, aero-
elastic structures and propulsive devices for the launching of
space systems.

Appendix

For Case Ω1,

D

(
∂4W1

∂x4
+ 2
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∂x2∂y2
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∂x

+
μHz

2
∂p
(
0, y

)

∂y

)

= 0.
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For Case Ω2,

∂4W2

∂x4
+ β2
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∂t2
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∂x

. (A.2)

For Case Ω3 (mirror reflection of Ω1),
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For Case Ω4 (mirror reflection of Ω2),

∂4W4

∂x4
+ β4

∂2W4

∂t2
= α4

∂P(x, 0)
∂x

,

∀α1 = α2 = α3 = α4 =
6μ
Eh2
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ρbh

EI
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(A.4)

Now for the 3-D cantilever enclosures under investigation,
the following boundary conditions hold for each of the
vibrating membranes, viz,

For Case Ω1,

(i) W1(0, 0, t) =W1(0, b, t) = 0, ∀z = 0, (A.5)

(ii)
∂W1(0, 0, t)

∂x
= ∂W1(0, b, t)

∂x
= 0, ∀z = 0, (A.6)

(iii)
∂W2

1 (a, 0, t)
∂x2

= ∂W2
1 (a, b, t)
∂x2

= 0, ∀z = 0,

(A.7)

(iv) W1(a, 0, t) =W1(a, b, t) = 0, ∀z = 0, (A.8)

(v)
∂W1(0, 0, t)

∂y
= ∂W1(0, b, t)

∂y
= 0, ∀z = 0, (A.9)

(vi)
∂W2

1 (a, 0, t)
∂y2

= ∂W2
1 (a, b, t)
∂y2

= 0, ∀z = 0.

(A.10)

For Case Ω2,

(i) W2(0, 0, t) = ∂W2(0, 0, t)
∂x

= ∂W2
2 (a, 0, t)
∂x2

= 0,

∀z = −h
(A.11)

For Case Ω3,

(i) W3(0, 0, t) =W3(0, b, t) = 0, ∀z = 0, (A.12)

(ii)
∂W3(0, 0, t)

∂x
= ∂W3(0, b, t)

∂x
= 0, ∀z = −h,

(A.13)

(iii)
∂W2

3 (a, 0, t)
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= ∂W2
3 (a, b, t)
∂x2

= 0, ∀z = −h
(A.14)

(iv) W3(a, 0, t) =W3(a, b, t) = 0, ∀z = −h (A.15)

(v)
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(A.16)

(vi)
∂W2
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∂y2
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(A.17)

For Case Ω4,

W4(0, b, t) = ∂W4(0, b, t)
∂x

= ∂W2
4 (a, b, t)
∂x2

= 0,

∀z = −h
(A.18)

On the other hand the effects of the excitation forces at the
free end of the 3-D cantilever enclosures can be captured via
the following end conditions [11].

For case Ω1,

(i)
∫ Hy

0
τ(xz)1(1)

(x, t) = F1(t)
2b

, at x = a, (A.19)
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(ii)
∫ Hy

0
τ(yz)1(1)

(x, t) = TR1F1(t)
2b

, at x = a, (A.21)

∀ TR < 1,
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For case Ω2,

∫ Hy

0
τ(xy)2(1)

(x, t) = −F2(t)
2h

, at x = a, (A.23)
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For case Ω3,

(i)
∫ 0

−Hy
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, at x = a, (A.25)
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(ii)
∫ 0
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, at x = a, ∀TR < 1,

(A.27)

∀τ(yz)
(
x, y −Hz

)

= E
(
z2 + zHz

)

2(1− v2)

(
σ3W3

σ y3
+ υ

σ3W3

σx2σ y

)

+

(
E
(
z2 + zHz

)
(1− υ)

2(1− υ2)

)
σ2W3

σ yσx2
+
μρ(x, 0)(z +Hz)

Hz
.

(A.28)

For case Ω4,
∫ 0

−Hy

τ(xy)4(1)
(x, t) = F4(t)

2h
, at x = 0, (A.29)

∀τ(xy)4(1)
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Nomenclature

a: Length of sandwich laminates

b: Width of sandwich laminates

c: Height of sandwich laminates

c0: Ambient speed of sound

c1: Speed of sound through the 3-D enclosure

h = c:

d

dx
: Differential operator

E: Modulus of rigidity of the laminate

F: Applied end force amplitude

x: Space coordinate along the length of the
laminate

y: Space coordinate along the width of the
laminate

z: Space coordinate along the height of the
laminate

−→
I : Sound Intensity

W : Dynamic response

W̃ : Dynamic response in Laplace transform
plane

WF : Dynamic response in Fourier transform
plane

W̃F : Dynamic response in Fourier-Laplace
transform plane

μ: Coefficient of friction at the interface of
sandwich composite elastic beam

ρ0: Ambient air density

ρ = ρ0
−1:

t: Time coordinate

p0: Clamping pressure at the interface

τ(xz)1
: Shear stress at the upper half of the laminates

interface

τ(xz)2
: Shear stress at the lower half of the laminates

interface
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