EFFECTS OF INFORMATION TECHNOLOGY-INTEGRATED TEACHING STRATEGIES ON SECONDARY SCHOOL CHEMISTRY STUDENTS' LEARNING OUTCOMES IN LAGOS STATE, NIGERIA

 \mathbf{BY}

OJO, OMOLABAKE TEMILADE (109037016) B.Sc.Ed (Unimaid), M.Ed (Ibadan)

A THESIS SUBMITTED TO THE DEPARTMENT OF SCIENCE AND TECHNOLOGY EDUCATION, SCHOOL OF POSTGRADUATE STUDIES, UNIVERSITY OF LAGOS, AKOKA-YABA, LAGOS NIGERIA

IN PARTIAL FULFILMENT OF THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN EDUCATION CHEMISTRY

AUGUST, 2017

DEDICATION

To God Almighty, the Giver of life, the All Sufficient, the Sovereign God.

To my mother- Mrs. Esther Adeyoola Omolabi who has always been there for me through thick and thin. You are a mother in a million

To my mother-in-law; Mrs. Abigail Fehintola Ojo. You are not just a mother-in-law but a mother in love.

ACKNOWLEDGEMENTS

My immeasurable gratitude goes to God Almighty in whom I live, move and have my being. To Him alone be all the glory. My profound gratitude to my Supervisors: Prof. Duro Ajeyalemi who in spite of his tight schedule painstakingly and meticulously read through the work in between lines, gave valuable suggestions and ensured that every suggestion was incorporated in the work. I appreciate your style of mentoring building confidence in me. Your labour shall not be in vain Sir and Dr. (Mrs.) C. O. Oke who gave constructive criticisms that have improved the quality of the work and for your prompt attention whenever the work required. God will attend to your needs and bless you mightily.

I am grateful to Prof. S.O. Adeosun of the Department of Metallurgy and Materials, Faculty of Engineering, who believed in me and launched me into the world of academics. God will lift you high and sustain you and all yours. I am indebted to Prof. S. A. Okunuga, Department of Mathematics, Faculty of Science, University of Lagos and his wife, Dr. (Mrs.) R.O. Okunuga (my Senior and Counsellor in the programme, my friend and big Sister) for their contributions (in analysis and interpreting the results, rehearsals before each seminar presentation and prayers) from the beginning of this programme till date. I am indeed grateful. God will bless you richly.

I appreciate the contributions of Prof. U. Udeani and Dr. T. E. Owoyemi (who had been the Principal readers of the work at the Department and had made valuable suggestions at improving the work at every stage. Dr. A. O. A. Awofala cannot but be appreciated for his contributions in the analysis of the data at every stage of the work. Though I troubled you a lot yet, you were never tired to answer my numerous questions. I also appreciate Dr. Adeleke of the Department of Actuarial Science, Faculty of Business Administration and Dr. Adewara of Distant Learning Institute, for their suggestions in the area of analysis that have enriched

the work. I am indebted to Dr. V. Odumuyiwa of the Department of Computer Science, Faculty of Science who worked hand in hand with the animator to develop the software used as teaching packages in this study. I appreciate the motherly role of Dr. (Mrs) B. O. Makinde of the Department of Educational Foundation who painstakingly read through this write up editing the language. Dr. R. C. Ojo, and Mrs Veronica Ilugbuezi, the proof readers at every stage are also appreciated.

The academic contributions of all my Lecturers at the Departmental seminar presentations are also appreciated: Prof. H. N. Odogwu, Prof. G. O. Esiobu, Dr. A. Ogunleye, Dr. S. A. Adeyemo, Dr. S. O. Adenle, Dr. N. Okafor, Dr. S. O. Olabiyi, Dr. S. O. A. Fakorede, Dr. A. T. Lano- Maduagu, Dr. V. F. T. Babajide, Dr. I. O. Shobowale, Dr. Akinoso, Dr. Kareem, Dr. Olafare and Dr. J. A. Jimoh (the departmental Post-graduate Co- cordinator who collated my results and presented me for each seminar presentation). Thank you all for your assistance, words of encouragement and prayers.

I appreciate members of the Faculty of Education who encouraged me all through in no small measure to complete this programme notably here are; Prof. Supo Jegede, Prof. K. A. Adegoke, Prof. Ngozi Osarenren, Prof. G. O. Otinwa, Prof. C.O. Oladapo, Prof. Obashoro-John, Dr. A. O. Adeosun, Dr. Omojuwa, Dr. Ojemogha, Dr. P. Akinsanya, Dr. B. Anyikwa and many others.

I cannot do without appreciating the Dean, the Sub-Dean, Secretary, Postgraduate seminar Co-ordinators and all members of Academic Progress Committee (APC), School of Postgraduate Studies, University of Lagos, for their constructive criticisms during the APC presentation which improved the quality of the work.

My gratitude goes to the non-academic members of the Department of Science and Technology Education: Mr. M. M. Onoka (who assisted me in preparing power points and regular rehearsal before each seminar presentation), Mr. P. M. Udeh (Departmental Post-graduate secretary), Mrs. Musa (Departmental secretary), Mr. Gbolahan Olusegun Moses, Mr. Olubode and all other members of staff too numerous to list. Thank you all for your assistance at one stage of the programme or the other.

I am indeed grateful to my siblings: Mr. Segun Omolabi (deceased) and Mrs. Folasade Omolabi who took over my secondary education when my dad passed on to glory, Mr. & Mrs. Tunji Omolabi who sponsored my first degree education without which I cannot pursue my doctoral degree, Pastor & Pastor (Mrs) Dele Omolabi, Mrs. Olubunmi Oladele, Mrs Ebunlomo Adeniran and Mr & Mrs. Akinleye Omolabi. Thank you and God bless you richly. I also want to appreciate my in-laws: Mr & Mrs. Jude Ojo, Mr. & Mrs. Kole Ojo and Mr & Mrs. Segun Ojo. Thank you for your prayers and words of encouragement.

I appreciate my colleagues in and outside the department who contributed to the successful completion of this programme in one way or the other: Mrs. Tolulope Aluko (thank you for accommodating me. The struggle will soon be over, just hold on), Dr (Mrs.) I. F. Adeoye (my senior colleague, thank you ma for all the encouragement and for setting the pace), Dr. A. R. Okudo (my senior colleague, thank you for encouragement), Mr. Amusa, Miss Akanji Bukola, Modupe, Mr. B. Abdul-raheem, Mr. B. Oruna, Miss Kolade Jumoke, and a host of others. Thank you all for your support. We shall all get to the top of the ladder.

I am indeed grateful to the Chemistry teachers and the IT officers in the sampled schools in Education Districts II and III.

I wish to acknowledge my darling husband, Joseph Oluwole Ojo for his love, understanding and support. Ayobami, Oluwatobi, Taiwo and Kehinde my children have been wonderful. Thank you all for giving me a warm and conducive environment for the programme, I appreciate your prayers and words of encouragement. This success is our success.

Abstract

Chemistry students encounter difficulties learning the subject is confirmed by many studies and these learning difficulties have labelled some topics difficult. These learning difficulties may be attributed to the methods of teaching often employed by the teachers. It is against this background this study investigated the effectiveness of integrating Information Technology (IT) into commonly employed teaching method (Teacher Demonstration) and recommended Guided Discovery (GD)) on four students' learning outcomes in some difficult topics (Mole Concept, Chemical Kinetics, Electrolysis and Oxidation and Reduction Reactions) in senior secondary (SS) chemistry. The study involved 446 (264 male, 182 female) SS 2 chemistry students from 12 schools purposively selected from two Education Districts (II and III) in Lagos State, Nigeria. Using a 4×2×2 pre-test post-test non-equivalent control group quasi experimental research design, the study examined the main effects of the treatments, school type and gender and the interaction effects of the variables on chemistry students' conceptual understanding, problem-solving skills, acquisition of science process skills and acquisition of 21st century skills. Four major instruments: Chemistry Conceptual Understanding Test (CCUT), Problem-solving Skills Test (PSST), Science Process Skills Test (SPST) and 21st Century Skills Test (21st CST) were used to collect data. Data were analysed using descriptive statistics and analysis of covariance (ANCOVA). Bonferoni posthoc analysis was used to verify the direction of significant difference where it existed. Results showed that IT-integrated Guided Discovery was the most effective for all the learning outcomes. There were significant main effects of ITD, IGD, on chemistry students' learning outcomes. There was significant main effect of school type on chemistry students' conceptual understanding and science process skills but no significant effect of school type was found on chemistry students' problem-solving skills and 21st century skills. There was no significant influence of gender on any of the learning outcome. Findings also revealed significant interaction effects of treatment (ITD and IGD) and school type on chemistry students' conceptual understanding, science process skills and 21st century skills. No significant interaction effect of treatment and gender; school type and gender; treatment, school type and gender on the four chemistry students' learning outcomes. From the findings, integration of IT into those teaching strategies is highly recommended for teaching of chemistry in secondary schools for better academic achievement in chemistry. Also, if government will adequately equip public schools with teaching learning resources, public school students would perform better than their counterparts in private schools.

Keywords: Difficult Topics, IT-integration, Guided Discovery, Teacher Demonstration, and Learning Outcomes.

TABLE OF CONTENTS

	Page
Title Page	i
Certification	iii
Dedication	v
Acknowledgement	vi
Abstract	viii
Table of Contents	ix
List of Tables	xii
List of Figures	XV
Abstract	xvi
CHAPTER ONE – INTRODUCTION	
1.1 Background to the study	1
1.2 Statement of the Problem	11
1.3 Purpose of the Study	12
1.4 Research Questions	13
1.5 Hypotheses	14
1.6 Significance of Study	15
1.7 Scope and Delimitation of the Study	16
1.8 Theoretical Framework	16
1.8.1 Constructivism	16
1.9 Operational Definition of Terms	21

CHAPTER TWO: LITERATURE REVIEW		23
2.1 Constructivism		26
2.2 Nature of Chemistry		25
2.3 Students' Performance in Chemistry	27	
2.4 Factors Influencing Students' Learning Outcomes		31
2.4.1 Teaching Strategies and Students' Learning Outcomes		31
2.4.1.1 Guided Discovery Approach and Students' Learning Outcomes		31
2.4.1.2 Demonstration Teaching Strategy and Students' Learning Outcomes	32	
2.4.2 Conceptual Understanding in Chemistry	33	
2.4.3 Studies on Problem-solving Skills in Chemistry	36	
2.4.4 Students' Gender and Learning Outcomes	42	
2.4.5 School Type, Facilities and Students' Learning Outcomes	44	Ļ
2.5 Skill acquisition	46	
2.5.1 Science Process Skills	47	
2.5.2 21 st Century Skills	50	
2.6 Integration of Information and Communication Technology into Teaching	55	
2.6.1 Chemistry Teaching and Information and Communication Technology	56	
2.6.2 Challenges of ICT Integration in the Classroom	58	
2.7 Software development and use in chemistry teaching	60	
2.8 Models of Instructional Package Development	65	
2.9 Appraisal of Literature Review	77	
CHAPTER THREE: METHODOLOGY		79
3.1 Research Design		79
3.2 Variables in the study	81	
3.3 Study Population		81
3.4 Sample and Sampling Techniques		82

3.5 Research Instruments	83
3.6 Treatment Packages	85
3.7 Validation of Instruments	92
3.8 Procedure for Administration of Instruments	95
3.9 Method of Data Analysis	97
CHAPTER FOUR:	
PRESENTATION OF DATA AND INTERPRETATION OF RESULTS	98
4.1 Answering the Research Questions and Testing the Hypotheses	98
4.1.1 Research Question 1 and Hypothesis 1	98
4.1.2 Research Question 2 and Hypothesis 2	108
4.1.3 Research Question 3 and Hypothesis 3	112
4.1.4 Research Question 4 and Hypothesis 4	115
4.1.5 Research Question 5 and Hypothesis 5	123
4.1.6 Research Question 6 and Hypothesis 6	126
4.1.7 Research Question 7 and Hypothesis 7	126
4.2 Summary of Findings	126
4.3 Discussion of Findings	128
CHAPTER FIVE: SUMMARY, RECOMMENDATIONS AND CONCLUSION	133
5.1 Summary	133
5.2 Conclusion	135
5.3 Contributions to Knowledge	135
5.4 Recommendations	136
5.5 Suggestion for Further Studies	137

REFERENCES	138
APPENDICES	
Appendix I Conceptual Understanding Test	146
Appendix II Problem Solving Skills Test	148
Appendix III Science Process Skills Test	149
Appendix IV 21 st Century Skills Test	154
Appendix V Chemistry Conceptual Understanding Marking Guide	158
Appendix VI Problem solving skills Test Marking Guide	161
Appendix VII Answers to Critical Thinking Test	164
Appendix VIII Operational Guide (OGTD)	164
Appendix IX Rating Scale for Teachers' Competence	170
Appendix X WAEC Chief Examiners' Reports	171
Appendix XI Selected Screen Shots	186
Appendix XII Sampled Schools and Teaching Strategies	196

LIST OF TABLES

TABLE 2.1 Performance in SSCE in Science	28
TABLE 3.1 Pretest-Posttest Quasi Experimental Research Design	80
TABLE 4.1 Descriptive Statistics of Pre and Post-treatment learning outcomes	99
TABLE 4.2 Summary of Analysis of Covariance of Treatment on Conceptual Understanding	101
TABLE 4.3 Bonferoni Post Hoc Pairwise Comparison of treatments on Conceptual Understanding	102
TABLE 4.4 Summary of Analysis of Covariance of Treatment on Problem Solving Skills	103
TABLE 4.5 Bonferoni Post Hoc Pairwise Comparison of treatments on Problem Solving Skills	104
TABLE 4.6 Summary of Analysis of Covariance of Treatment on acquisition of Science Process Skills	105
TABLE 4.7 Bonferoni Post Hoc Pairwise Comparison of treatments on acquisition of Science ProcessSkills	105
TABLE 4.8 Summary of Analysis of Covariance of Treatment on acquisition of 21st Century Skills	106
TABLE 4.9 Bonferoni Post Hoc Pairwise Comparison of treatments on acquisition of	
21 st Century Skills TABLE 4.10 Descriptive Statistics of Pre and Post-treatment Learning Outcomes Score	107 es
based on School Type	108
TABLE 4.11 Summary of Analysis of Covariance of School Type on Conceptual	
Understanding	109
TABLE 4.12 Summary of Analysis of Covariance of School Type on Problem solving skills acquisition	110
TABLE 4.13 Summary of Analysis of Covariance of School Type on Science Process skills acquisition	111
TABLE 4.14 Analysis of Covariance of School Type on 21st Century Skills	111
TABLE 4.15 Results of statistical analysis of pre and post-treatment learning outcomes scores based on gender	112
TABLE 4.16 Analysis of Covariance of influence of Gender on conceptual understanding among chemistry students	113
TABLE 4.17 Analysis of Covariance of Gender on problem solving skills	

among chemistry students	114
TABLE 4.18 Analysis of Covariance of Gender on Science Process Skills Acquisition among chemistry students	114
TABLE 4.19 Summary of Analysis of Covariance of Gender on 21 st Century Skil Acquisition among chemistry students	lls 115
TABLE 4.20 Results of statistical analysis of pre and post-treatment conceptual understanding scores based on treatment and school type	116
TABLE 4.2 I1nteraction Effect of Treatment and School Type on Problem-solvin	g Skills 117
TABLE 4.22 Interaction Effect of Treatment and School Type on Science process	s Skills 118
TABLE 4.23 Interaction Effect of Treatment and School Type on 21 st century Ski	ills 120
TABLE 4.24 Summary of Analysis of Covariance of treatment, gender and school types on conceptual understanding among chemistry studen	ats 121
TABLE 4.25 Summary of Analysis of Covariance of treatment, Gender and School Type on problem solving skills among chemistry students	122
TABLE 4.26 Summary of Analysis of Covariance of Treatment, Gender and Schoacquisition of science process among chemistry students	ool Type on 122
TABLE 4.27 Summary of Analysis of Covariance of Treatment, Gender and Sch	nool Type on
acquisition of on 21st century skills among chemistry students	123
TABLE 4.28 Interaction Effect of Treatment and Gender on Conceptual Understa	anding 124
TABLE 4.29 Interaction Effect of Treatment and Gender on Problem solving Ski	lls 125

LIST OF FIGURES

Figure 1.1: Levels of Knowledge Representation	8
Figure 2.1: The ADDIE Model of Instruction	71
Figure 2.2: The ASSURE Model	75
Figure 2.3: The Gerlach and Ely Model of Instructional Design	78
Figure 2.4: Kirkpatrick's Four Levels of Evaluation	79
Figure 3.1 : Schematic Diagram of the Variables in the Study	84
Figure 4.1: Interaction Effect of Treatment and School Type on	
Conceptual Understanding	117
Figure 4.2: Interaction Effect of Treatment and School Type on Science Process Skills	119