EXTRACTION OF WATER SOLUBLE ALKALOIDS FROM HUNTERIA UMBELLATA

BY

FELICIA OLATUBOKUN OGUNSULIRE M.Sc. Chem. (Lagos)

A DISSERTATION IN THE DEPARTMENT OF CHEMISTRY

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHY OF SCIENCE OF THE UNIVERSITY OF LAGOS

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

THIS IS TO CERTIFY THAT THE THESIS -

EXTRACTION OF WATER SOLUBLE	
ALKALOIDS FROM HUNTERIA	
UMBELLATA	<u>-</u>
SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES	,
UNIVERSITY OF LAGOS FOR THE AWARD OF THE DEGREE OF PHILOSOPHY OF SCIENCE	
IS A RECORD OF ORIGINAL RESEARCH CARRIED OUT BY MRS FELICIA OLATUBOKUN OGUNSULIPE	·
IN THE DEPARTMENT OF CHEMISTRY	
AUTHOR'S NAME SIGNATURE SIGNATURE	12 619U
Prof. EA. Adegove SIGNATURE SIGNATURE	12 6 90 DATE
Profes A. Adegodo SIGNATURE SIGNATURE	12 6 90 DATE
Prof. Oyin Somovin General Examiner's SIGNATURE SIGNATURE	2-06-9 DATE
EXTERNAL EXAMINER'S SIGNATURE	12/6/12 DATE

ABSTRACT

This thesis describes the extraction, isolation, purification of water soluble alkaloids from the seed, leaf and heart bark of the plant Hunteria Umbellata. Characterization of the alkaloids was achieved via spectroscopic methods. A total of ten carbazole alkaloids were isolated, two from the seeds and four each from the leaves and bark. Those from the seed and one from the leaves are inferred from the data available to be dimeric. Structures are proposed for most of them, but the lack of some essential facilities do not allow for an unambiquous structural assignment.

ACKNOWLEDGEMENTS

The first two people I am acknowledging in this report are Prof.E.A. Adegoke my supervisor and Dr. J. A. Joule, Chemistry Department, Manchester University, England, whose academic guidance and encouragement throughout the period of this research had made the programme workable. The support of the Head of Chemistry Department Prof. Oyin Somarin and of the former Head of Chemistry Department Prof. T. A. Emokpae is hereby acknowledged.

The following technical staff had made significant contribution of the progress of my work in the Chemistry Department. They are: Mr. E. A. Bamigboye (Chief Technologist), Mrs. I. O. Onifade (Assistant Chief Technologist), Mrs. J. O. Olafimihan, (Senior Supervisor (Stores)), and the other technical staff. My immense thanks also go to Alhaji I. O. Ibrahim (Asst. Technical Officer) and Mr. M. A. Ige (Chief Technologist) both of Biological Department for their contribution. The last but not the least are all the technologists of Chemistry Department, University of Manchester, Manchester, England for their contribution.

My sincere thanks go to my post-graduate colleagues

Mr. Wole Familoni, and Premji for their constant encouragement,
immense assistant and co-operation.

I thank, very sincerely, the Food and Drug Administration and Laboratory Services of the Federal Government of Nigeria, Ministry of Health for the training award offered me. My

gratitude goes to the Chemistry Department. Manchester University, Manchester, England for giving me an opportunity to acquire a short term experience in the area of research and for helping me to obtain all the spectra for the samples investigated.

My sincere and unalloyed gratitude goes to my husband, Mr. Sehinde Ogunsulire and my children Omotola, Olatimbo, Ogunbamike, and Ore-Oluwa for their support, financial help and tolerance during the period of the research.

Finally, I thank God Almighty for providing me with good health and courage throughout my stay in the Chemistry Department, University of Lagos.

CERTIFICATION

I certify that this work was carried out by Mrs. Felicia Olatubokun Ogun sulire in the Department of Chemistry, University of Lagos, Lagos, Nigeria.

SUPERVISOR

Prof. E. A. Adegoke B.Sc., Ph.D. Ibadan

DEDICATION

TO GOD WITH GRATEFUL

THANKS.

vii

TABLE OF CONTENTS

		Page
	ABSTRACT	ii
	ACKNOWLEDGEMENTS	iii
	CERTIFICATION	v
	DEDICATION	vi
CHAPTER 1		
1.1	History of Alkaloids	1
1.2	Natural Occurence of Alkaloids	2
1.3	Classification of Alkaloids	5
1.4	Nomenclature of Alkaloids	8
1.5	Physical Properties of Alkaloids	9
1.6	Detection of Alkaloids in Plant Material	11
CHAPTER 2		
2.1	Biosynthesis of Monoterpenoid Indole Alkaloids	14
2.2	Summary of Recent Work on Akuamiline group of Monoterpenoid Indole Alkalolds	22
CHAPTER 3		
3.0	Biological Activity	30
3.1	Biological Activities of Indole Alkaloids	32
3.2.1	Structure - Activity Relationship	33
3.2.2	Biochemical Actions	1 33
3.2.3	Metabolism	36
3.2.4	Clinical Antitumor Activity	37
3,2,5	Indole Alkaloids As Neuromuscular Block og Agents - Curare Alkaloids	38
3.2.6	Biological Activity of Indoles - <u>Vinca</u> Alkaloids	45

		Page
CHAPTER 4		
	Previous work on the Alkaloids of <u>Hunteria umbellata</u>	45
4.1	Alkaloids previously isolated from the bark of <u>Hunteria umbellata</u>	45
4.2	Alkaloids previously isolated from the leaves of <u>Funteria umbellata</u>	45
4.3	Absolute Configuration of Erinine, Erinicine, Eripine and Isocorymine	56
4.4	Unresolved Stereochemical Features in Isocorymine Erinine, Erinicine and Eripine	57
4.5	A Proton Magnetic Resonance Study of Isocorymine, Erinine, and Erinicine Determination of the Stereochemistry at	
	C-16 and the Geometry of the Ethylidene System	60
4.6	Determination of Confituration at C-17 for Isocorymine	62
4.7	Isolation of Picraline, Akuammidine, 17-methoxy Pseudoakuammigine and Hu-12	62
4.8	Picraline and Akuammidine, Aikaloids novel to Eunteria Umbellata	64
4.9	Hu12	64
4.10	Four Isomeric Water - Soluble Alkaloids from Hunteria Umbellata	68
CHAPTER 5		
	Results and Discussion	75
5.1	Extraction of water soluble alkaloids from seeds, leaves and bark of <u>Eunteria umbellata</u>	75
5,2	Isolation Procedure for the Seeds	77
5.3	Water Soluble alkaloids from the leaves	93
5.4	Water Soluble Alkaloids Obtained from the	116

•	Page
CHAPTER 6	
CONCLUSION	13'
CHAPTER 7	
EXPERIMENTAL	140
REFERENCES	

Spectras and Spectra data

CHAPTER 1

1.1 HISTORY OF ALKALOIDS:

The use of alkaloids is almost as old as civilization. Mankind has used drugs containing alkaloids in potions, medicines, teas, poultices and poisons for over four thousand years, yet no attempts have been made to isolate any of the therapeutically active ingredients from the crude drugs until the early nineteenth century.

The first crude drug to be investigated chemically was opium, the dried latex of the poppy Papaver somniferum. Opium had been used for centuries in popular medicine, and both its analgesic and narcotic properties were well known. In 1903, Derosane isolated a semi pure alkaloid from opium and named it narcotine¹. Serturner in 1805 isolated morphine from the same plant and he was the first to identify its basic character.

Between 1817 and 1820 Pelletier and Caventon isolated nine different alkaloids. These are strychmine, emetine, brucine, piperine, caffeine quinine, cinchonine and colechicine. These alkaloids with a wide spectrum of biological activities are the cornerstone of all that has transpired in alkaloid chemistry in the past one hundred and sixty years.

In 1826, Pelletier and Caventon also obtained coniine an alkaloid of considerable historical significance. Not only is the alkaloid responsible for the death of Socrates

from a draught of poison hemlock, it also has simple molecular structure. It was the first alkaloid to be fully characterized (1870) and the first to be synthesized (1886).

The molecular complexity of the majority of these alkaloids precluded an early structure elucidation. For example, strychnine was first obtained in 1819 by Pelletier and Caventon but it took nearly one hundred and forty years of extremely arduous, very frustrating chemical investigation before the structure was finally determined in 1946 by Robinson and co-workers.

By 1939 nearly three hundred alkaloids had been isolated of which two hundred had well defined structures. A review to the middle of 1973 counted 4959 alkaloids of which 3293 had known structures. By late 1978, the number stood nearly at 4000 . i.e. those having defined structures.

1.2 NATURAL OCCURRENCE OF ALKALOIDS

The major source of alkaloids in the past has been the flowering plants, the angiosperms. In recent years, there have been increasingly numerous examples of alkaloids occurring in animals, insects, marine organisms, microorganisms, and the lower plants. Some examples of these are muscopyridine (1) from the musk deer; castoramine (2) from the Canadian beaver; the pyrrole derivative (3), a sex pheromone of several insects, saxitoxin (4) the neurotoxic constituent of the red tide <u>Gonyaulax catenella</u>, pyocyanine (5) from the bacterium <u>Pseudomonas aeruginosa</u>; Chanoclavine -1 (6) from the ergot fungus, <u>Claviceps Purpurea</u>; and lycopodine (7) from the genus of club mosses, Lycopodium².

and the second of the second

Pyrrole derivative (3)

(4)

Lycopodine (7)

Chanoclavine - 1
(6)

Within a given alkaloid - containing plant, the alkaloids may be highly localized (concentrated) in a particular plant part. For example morphine, occurs in the latex of <u>Papaver sommiferum</u>. This does not necessarily mean that the alkaloids are formed in that part of the plant. For example alkaloids in Datura and <u>Nicotiana</u> species are produced in the roots but are translocated rapidly to the leaves. In addition plants in the same genius may even produce the same alkaloid in different plant parts.

1.3 CLASSIFICATION OF ALKALOIDS

Alkaloids are grouped into (a) true alkaloids, (b) protoalkaloids, and (c) pseudoalkaloids.

True Alkaloids are often basic and are organic compounds with a wide range of physiological activity. They normally contain nitrogen in a heterocyclic ring. They are derived from amino acids of limited taxonomic distribution, and they normally occur in the plant as the salt of an organic acid. Some exceptions to these are colchicine (8) and aristolochic acid (9). They are not basic and have no heterocyclic ring. Quarternary alkaloids are acidic rather than basic.

The Protoalkaloids: The protoalkaloids are simple amines in which the amino acid nitrogen is not in a heterocyclic ring. They are biosynthesized from amino acids and are basic. Often, the term "biological amines" is used for this group of compounds, e.g.mescaline (10), ephedrine (11), and N, N-dimethyl tryptamine (12),

осн3

Aristolochic acid (9)

Mescaline (10)

Ephedrine (11)

N,N-Dimethyltryptamine (12)

The Pseudoalkaloids: The pseudoalkaloids are not derived from an amino acid precursor. They are usually basic and only two series are important e.g. Conessine (13) and the purines e.g. Caffeine (14).

1.4 NOMENCLATURE OF ALKALOIDS

The only common characteristic of alkaloid nomenclatures is the suffix "ine". Like other natural products, they are also given "trivial" (i.e. nonsystematic) names.

They may derive from genus names (e.g. atropine from Atropa belladonna); from the species name (e.g.) cocaine from Eryth-roxylon coca; from a common name for the drug e.g. ergotamine from ergot; from the physiological action of the compound e.g. emetine, an emetic or from the name of a famous alkaloid chemist e.g. pelletierine.

1.5 PHYSICAL PROPERTIES OF ALKALOIDS

Most isolated alkaloids are crystalline solids with a defined melting point or decomposition range. A few are amorphorus gums, and some, such as nicotine (15) and coniine (16) are liquids.

Most alkaloids are colourless, but some of the complex, highly aromatic species are coloured e.g. berberine (17) is yellow and betanin (18) is red.

The solubility of the alkaloids and their units is of considerable significance in the pharmaceutical industry, both in the extraction of the alkaloid from the plant, or

Betanin (18) fungus, and in the formulation of the final pharmaceutical preparation. In general the free base of the alkaloid is soluble only in an organic solvent, although some of the pseudo and proto-alkaloids are substantially soluble in water. The salts of alkaloids and the quarternary alkaloids are normally highly water soluble.

1.6 Detection of Alkaloids in Plant Material

The most distinct chemical property of most alkaloids is that they are basic. Two methods are probably the most reliable for the screening of potential alkaloid, containing plants. The wall procedure involves the extraction of dried plant material with refluxing 80% ethanol. cooling and filtering the residue is washed with 80% ethanol and the combined filterates evaporated. This residue is taken up in water, filtered, acidified with 10% hydrochloric acid, and the alkaloid precipitated either with Mayer's reagent or with silicotungstic acid. If either test is positive, a confirmatory test is made in which the acid solution is basified. The alkaloids are extracted into organic solvent. Then the alkaloids are back extracted into aqueous acid. If this acid solution gives a precipitate with either reagent, the plant contains alkaloids. basified aqueous phase should also be examined for the presence of quarternary alkaloids.

The Kiang-Douglas procedure is somewhat different in that the alkaloidal salts present in the plant (normally citrates, tartarates, or lactates) are first converted to free bases by moistering the dried plant material with dilute aqueous ammonia. The alkaloids are then extracted with chloroform. The extract is concentrated, and the alkaloids are removed as their hydrochlorides by the addition of 2N hydrochloric acid. The filtered aqueous solution is then screened for alkaloids by the addition of Mayer's, Dragendorff's or Bouchardat's reagent.

The methods described above have their limitations. One disadvantage of the second procedure is that the quarternary ammonium compounds, which are not converted to their free bases by the addition of ammonia, remain in the plant material and are not detected. Similarly, in the standard Wall procedure, quarternary alkaloids appear as "false-positive" since they are not extracted into organic solvent in the acid-base partition.

The reagents used to precipite these alkaloids are based on the property of most alkaloids to combine with high atomic weight metal salts such as those of mercury, 'bismuth or tungsten, or with complex iodides. Mayer's reagent, contains potassium iodide and mercuric chloride. Dragendorff's reagent contains bismuth nitrate and potassium iodide in aqueous nitric acid. Bouchardat's reagent is similar to Wagner's reagent and contains potassium iodide and iodine and reacts by halogenation.

The silicotungstic acid reagent contains a complex of silicon dioxide and tungsten trioxide.

Chromatography on a suitable absorbent is the normal method for separation and the isolation of pure alkaloids from the crude mixtures. Like other natural products, the column fractions are conveniently monitored by thin - layer chromatography (TLC).

Detection Chromatographically:

One general reagents used for the detection of alkaloids chromatographically is Dragendorff's reagent, which in the form of a spray produces orange - coloured spots for alkaloidal materials. Other reagents used are phosphomolybdic acid, iodoplatinate, iodine, vapour and antimony (III) chloride.

Detection by U. V. Lamp:

Many chemicals may be excited to fluoresce when irradiated by light with a wavelength of between 250 and 360 nm. Once located a permanent record can be made photographically or by simply outlining the detected zones with a pencil line.

Alternatively, fluorescence quenching may be employed. The silica adsorbent used incorporates a fluorescent indicator which absorbs light at 254 nm and re-emits light in the green end of the spectrum. Any compound that absorbs in the 254 nm region will quench the fluorescence and show

up as a dark spot against a green background.

This alternative method is the method used in the present work. Each impure compound was spotted on a thin layer sheet which is 0.25mm silica gel containing fluorescent indicator UV₂₅₄. Two UV lamps of wave length 360 nm and 254 nm were used. The former excited the fluorescent indicator and the latter induced fluorescence in some of the alkaloids being isolated.

Ehrlich's reagent which is acidified p-dimethyl - amino-benzaldehyde gives a quite characteristic blue or gray-green colour with the ergot alkaloids. Acidified (surphuric or phosphoric acid) ceric ammonium sulfate (CAS) reagent yields different, quite distintive colours with many indole alkaloids. The colours are dependent on the ultraviolet chromophore of the alkaloid and are therefore of quite considerable structural significance.

CHAPTER 2

2.1 BIOSYNTHESIS OF MONOTERPENOID INDOLE ALKALOIDS

The plant <u>Humteria</u> <u>umbellata</u> (K. Schum) is a member of the Apocynaceae family. This family of plant contains an indole or related fragment and a rearranged monoterpene unit. Apocynaceae is also grouped with the <u>Loganiaceae</u> and <u>Rubiaceae</u> families on the basis of the isolation of structurally similar alkaloids.

Common to all the monoterpenoid indole bases is a tryptamine unit which has its genesis in tryptophan 3-5 (19) via tryptamine 6,7 (20). The enormous variation in terpenoid indole structure is associated not with the tryptamine unit but with the remaining monoterpene unit and its derivative.

The terpenoid units reveals broadly three major types, first that of the corynanthe-strychnos group, for example, adjalicine (21) and akuamicine (22) where the unit is simplified as in (28) second, that of the Aspidosperma group, e.g.

vindoline (23) with the C_9/C_{10} fragmenthas been established as being monoterpenoid unit represented by (20a) and (29b); and the third <u>Iboga</u> group, e.g. Catharanthine (24).

The relationship of these skeletal types to a common cyclopentane monoterpene skeleton is illustrated in scheme 1, in which the tenth atom (C-22), which is sometimes missing, is depicted as a carbomethoxy group.

(19)
$$R = CO_2 H$$

(20) $R = H$.

Ajmalicine (21)

Akuammicine (22)

(23)

Catharanthine

(24)

Essential proofs for the C_9/C_{10} units are terpenoid in origin and related in the way shown has come from extensive and rigorous experimentation. It was established that the C_9/C_{10} units of the three groups of alkaloids are each derived from two molecules of mevalonic acid $^{5,8-12}$ linked initially in the normal head to tail fashion, elaborated along a pathway which includes geraniol (26)/nerol (38) and the cyclopentane monoterpene, loganin (32a) 12,12.

Not only was loganin (30), in contrast to three other cyclopentanoid monoterpenes, a specific precursor, but also its biosynthesis from geraniol and its presence in <u>Catharanthus roseus</u> G. Don, the plant used for most of the experiments (Scheme 2; (31) has like (21), the skeleton of type (28). These results secure loganin as an intermediate in monoterpenoid indole alkaloid biosynthesis. It stands as a key compound along the biosynthetic pathway.

Similar to other systems, the biosynthesis of the alkaloid monoterpene unit is from (3R) - mevalonic acid not the (3S) isomer 12. The transformation of C-2 or C-3 of mevalonate through C-9 and C-10 of the intermediate (27) into alkaloids was observed to occur with loss of identity between these termini, as observed in the biosynthesis of cyclopentanoid monoterpenes.

It has also been established ¹⁶ experimentally that deoxyloganin (33) should be sited as an intermediate in the biosynthesis before loganin (30) and that the hydroxy derivatives (39a) and (39b) of geraniol (26) and nerol (34) be included in the path-way ¹⁴, 15 scheme 3.

Scheme 2

The failure of various other derivatives of geraniol and nerol to act as precursors restricted the range of possible intermediates beyond (32a) and (32b) and this led to plausible mechanism for cyclization via trialdelyde (Scheme 4) which accounted for the observation that label passing from the mevalonate through C-9 and C-10 of the a cyclic terpenes was equally distributed between the corresponding positions in 14,17

HO.

2.2 SUMMARY OF RECENT WORK ON AKUAMMILINE GROUP OF MONOTERPENOID INDOLE ALKALOIDS

The Akuammiline Group:

Alkaloids with a 7, 16 bond

Most of the alkaloids known to be present in <u>Hunteria</u> <u>umbellata</u> are of the structural type havig C7 - C16 bond; it is relevant therefore to review this group of indole alkaloids. There are between 40 and 50 indole bases having a common carbon skeleton formally derivable from the corynanthine type by the introduction of an extra carbon-carbon bond between C-7 and C-16. Akuammiline (38) represents the prototype in its skeletally most straight forward form.

Akuammiline (38)

The mechanism of the biosynthetic formation of the 7, 16 bond poses an intriguing question, for in a corynanthine type precursor, C-7 as an indole β position and C-16 as a

potential enol/enolate site are nucleophilic. 90% of the known bases in this group have a C-3 oxygen substituent. These alkaloids may be produced by a nucleophilic attack as shown in the equation below:

Besides the akuammiline type there are nine other variations in which, although the carbon skeleton remains unchanged (leaving aside the occasional absence of C-17 or C-22), additional ether links are present and/or bonds to N_a or N_b have been broken and/or made.

Pseudoakuammigine (41)¹⁹, picraline (42)²⁰ and quaternoline (43)²¹ (from <u>Alstonia guaternata</u> v. Henrcket Muell, Arg.) with structures established by x-ray crystallography differs from akuammiline only in having an extra oxygen - containing ring, between C-2 and C-17, C-2 and C-5, and C-20 and C-22 respectively.

22

In echitamine (44) a 2, N_b bond replaces the 3, N_b; the corymine (45a) type is derivable from this by the formal introduction of a cyclic hemiacetal, formed from a hydroxyl group at C-3 and a C-17 aldehyde group. The absence of a 21, N_b bond characterizes the 7th and 8th variations, exemplified in such a way as to emphasize their structural relationship to the other alkaloids in this group. Both alkaloids also have additional oxygen - containing rings, in which C-3 is attached via oxygen to C-22.

Pseudoakuammigine (41)

Picraline (42)

Corymine (45b)

Structural studies by linmr and mass spectrometric analysis showed that corymine and 0-acetyl corymine from Hunteria umbellata (K. Schum) Hall. f. contain Na.C. Nb. system. The former was shown by X-ray crystallographic analysis to have the structure (45a - 45b) closely related to that of echitamine, but one which also incorporates a cyclic hemiacetal, formed from the C-3 hydroxyl group and an aldehyde group attached to C-16.

Erinine (48) and erinicine (57) (19, 20-dihydro erinine) are two other alkaloids of <u>Hunteria umbellata</u> which also incorporate N_a. C. N_b units. Their structures were demonstrated mainly by mass spectra comparisons with echitanolide () and derivatives. Eripine (29) , another base from this plant, could be thermally cyclized to a mixture of erinine and an unnatural 19, 20 double bond isomer. Isocorymine (from <u>Hunteria umbellata</u>) has a related structure (47) .

While retaining the ubiquitous configuration at C-15, (as in structure on page 32) the complex ring system of erinine, erinicine, and isocorymine can be constructed in two ways, both stereoisomers differ in the configurations at the pair of centres, C3 and C16. A priori, all three alkaloids could have either of the stereo - chemistry, especially since in this sub group, alkaloids epimeric at C-16 have been isolated. The conformation depicted in (47), (48) and (49b) shows one of the two C-3/C-16 possibilities.

echitanolide (49b)

Conformations (47), (48), (50) show configuration at C-3 and C-16, whereas (47) emphasizes the configuration at C-17 and the geometry about the 18, 19 double bond in isocorymine (erinnine has the same configuration about the double bond); and (50) illustrates the configuration at C-20 in erinicine. This study shows that three - dimensional detail, approaching that available from x-ray crystallographic studies in the solid state, can be achieved in suitable cases by nmr measurements in solutions.

		<u>R</u> 1	R ²	R ³
Isocorymine	(47)	н, он	Н2	СНМе
Erinine	(48)	Н ₂	0	СНМе
Erinicine	(50)	$^{\mathrm{H}}2$	0	H, Et.

CHAPTER 3

3.0 BIOLOGICAL ACTIVITY

The most characteristic biological effect of these drugs is the arrest of cell division at the metaphase, in a manner resembling the effect of colchicine. There is an attack on the spindle itself which then undergoes attrition and finally disappearance. These changes may be reversible, chromosomes may adopt unusual metaphase configurations 26-29

Cytitoxicity was first recognized in the P1534

leukaemia system 30, but a wide range of experimental animal tumors respond to drugs of this class. 31 The most sensitive tumors are P388 and P1534 leukaemia Ehrlich,

Freund, Sarcoma 180 and Walker 256 ascites tumors, Ridgeway osteogenic sarcoma, and B82A leukaemia; vinblastine and vincristine are generally the most active alkaloids against these tumors.

The drugs block progression of cells through the cell cycle during mitosis, but appear to exert greatest cytotoxicity on cells in the DNA synthetic S phase 32.

Antiviral activity has been demonstrated for vinblastine, vincristine, leurosivine, leurosidine, and desacetyl vinblastine, but not for leurosine and lochnerinine, interestingly, the monomeric alkaloid apparicine, which is not cytotoxic, does have antiviral activity.

Neuromuscular activities are common among this group of alkaloids, and in the case of vincristine are the dose

limiting side effects. Vindesine is also markedly neurotoxic. Depression of deep tendon reflexes, paresthesias of the extremities, cranial and sensory nerve involvement constipation, paralytic ileus, muscle weakness ³⁴, and reduced nerve conduction velocities ³⁵ have all been reported.

In rat, skeletal muscle vincristine causes a fall in calcium uptake and alterations in the phospholipid composition of the microsomes ³⁶. The uptake of norepinephrine by brain synaptosomes is inhibited by vinblastine, and there is evidence for other autonomic effects that may alter cardiovascular function.

In terms of the effects on the behaviour of mice, vincristine, desacetyl vinblastine, and leurosidine are central nervous system depressants, whereas leurosine behaves as an adrenergic blocking agent.

Among other actions of these alkaloids, tetratogenesis has been well established in animals, although there is no evidence of mutagenicity in the Ames test or of direct damage to chromosomes 37 . Vincristine may produce inappropriate secretion of antidiuretic hormone, reduced secretion of thyroid hormone 38 , insulin, 39 renin 40 , and plasma lipoproteins 41 . Vinblastine is known to bind to, and cause aggregation of, ribosomes 42,43 Of these cytotoxic alkaloids, only leurosine causes a delay on depression of blood sugar levels, the activity for which the plant extracts were originally assayed, this alkaloid also produces transient hypotension probably by α - adrenergic blockade 44 .

3.1 Biological Activities of Indole Alkaloids

Like any other alkaloid, the indole alkaloids process biological activities. It is relevant to this thesis to review the biological activities of some of the more important known alkaloid salts. Also since some of the <u>Hunteria</u> alkaloids under study were probably dimeric, this chapter also briefly reviews the most important biologically active known dimeric indole alkaloids. In most cases the activity depends on the structure of the alkaloid. Interesting biochemical reactions are shown by these group of alkaloids resulting from usually complicated metabolism.

3.2.1 STRUCTURE - ACTIVITY RELATIONSHIP

Bisindole skeletons appear essential for cytotoxic potency in alkaloids 'Only two of the known monomeric alkaloids, lochnericine and lochnerinine are the ones found to have even a very modest activity 45. Appropriate stereochemical configuration about the Catharanthine - vindoline linkage is very critical, and failure to achieve this has been the major obstacle to the synthesis of active bisindoles. This has been over come 46,47. Among other features that have been identified as being important for cytotoxic potentiality are the need for a basic nitrogen in the catharanthine nucleus, the requirement for at least one free hydroxyl group, and partial loss of activity after reduction of the 14, 15 double hond or dehydration at the 16, 17 position. Changes of 16 and 17 substituents only modify the spectrum of activity.

3.2.2 Biochemical Actions

The many biological effects produced by these alkaloids suggest the existence of a number of different biochemical interactions. Two of the latter, interaction with microtubule system and inhibition of Liosynthetic pathways, are particularly important, and may explain most of the biological effects.

The microtubule system consists of tubular elements of diameter about 250°A in eukaryote cells, often singly, but usually in groups near cell membranes or intracellular orga-

nelles, or as components of structures such as flagella or \$48--50\$ the mitotic spindle

Tubules apparently containing tubulin, the basic component of eukaryote microtubules, have also been found in certain spirochetes which are prokaryotes ⁵¹. It would appear that the microtubule system is primarily involved in maintaining rigidity and some forms of motion.

Microtubules in neurons, termed neurotubules, are associated with the movement of mitochondria and vesicles 52 whereas in the mitotic spindle a combination of poleward sling and opposite end assembly and disassembly may be responsible for mitotic movements 53 .

Drugs sc such as the <u>Vinca</u> alkaloids resemble colchicine in being able to bind tightly to tubulin, although at different sites, and interfere with the functioning of the microtubule system. For the <u>Vinca</u> alkaloids, it appears that the configuration at C-14' and C-16' as well as the presence of methoxy-carbonyl at C-16' play essential roles in the microtubular interaction . Since the polymerized tubulin in the form of microtubules and formed tubular structures is in equilibrium with the tubulin pool diminution of the latter by complex formation with drugs soon depletes the whole system at rates dependent on the kinetics of the various equilibria, this interaction, which involves both high affinity and low affinity sites, has been reviewed ^{55,56}.

The low affinity sites relate to microtubule crystal formation. Recent findings indicate that the alkaloids actually inhibit the polymerization of tubulin⁵⁷. In addition, the site for binding of vinblastine has cysteine residues in its immediate vicinity⁵⁸. Most striking has been the identification of an endogenous tubulin-binding protein in rat brain that inhibits polymerization of the protein to microtubules, and completes with colchicine for binding⁵⁹. This may be a natural regulator for the microtubule system much like the endorphanoplate receptor complex. It is quite logical to ascribe many of the common biological effects of the <u>Vinca</u> alkaloids - mitotic arrest, interference with phagocytosis and secretion, and the neurologic toxicity to interaction with microtubules that are major elements in these processes.

Interference with biosynthetic pathways may be a contributing factor to the cytotoxicity of the Vinca alkaloids. Published reports show that DNA, RNA, and protein, synthesis may all be inhibited to various degrees in different systems . In general, much higher levels of drugs are needed than those that block mitosis or lead to significant binding to tubulin when in vitro systems are studied, but these biochemical effects have been observed doses . The underin animals treated with therapeutic lying mechanisms are not clear, but reduced amino acid transport, inhibition of respiration 61, and inhibition of to be among the processes that RNA polymerase seem could be involved.

Miscellaneous biochemical effects of the Vinca alkaloids include a fall in liver coenzyme A level $^{5.4}$, inhibition of histamine release from most cells 65 , and an increase in cyclic AMP concentrations in lymphoma cells 66 .

3.2.3 Metabolism:

Of the three major Vinca alkaloids (vinblastine, vincristine, and vindesine), vincrstine has the largest plasma half-life especially in the tertiary phase of the triphasic clearance curve. About 75% of the alkaloid content of the plasma is bound to protein, especially α - and β -globulin ⁶⁷. In addition to this bound component, very high levels of these alkaloids enter the platelets which may carry more total drug than is present in the plasma, thereby acting as a reservoir 68. It appears that the platelets retain vincristine more tenaciously than vinblastine, although the latter drug enters these structures faster than vincristine 6.9. There is also some concentration of drug by leukocytes, and the evidence obtained with cells in vitro, as well as the extremely rapid initial distributive phase in the plasma, suggest that the Vinca alkaloids are avidly endowed with many tissues.

The major route for excretion of these drugs is biliary, with urinary excretion in any species examined reaching no more than 23%. Most of the urinary excretion products consists of unchanged alkaloids, and this true of the bile also, but degradation by intestinal flora is virtually complete so that little or none appears in the

feaces. Vincristine appears to undergo less metabolism than vinblastine 70. The combination of more prolonged retention by platelets, slower elimination, and less breakdown underlies the greater potency of vincristine.

3.2.4. Clinical Antitumor Activity

Vinblastine and Vincristine have been employed successfully as important components of complex regiments of combination chemotherapy, rather than alone. Vincristine is most effective in the therapy of acute lymphoblastic leukemia, Hodgkin's disease, lymphosarcoma, reticulum cell sarcoma, and Burkitt's lymphoma and is valuable in the treatment of Wilm's tumor, rhabdomyosarcoma, testicular tumors, carcinomas of the breast and bronchus, Ewing's sarcoma, and the nonmalignant letter Siwe disease.

Vinblastine is of somewhat more limited use, particularly because it is not effective against - acute lymphoblastic leukemia. Its major clinical applications have been for Hodgkin's disease, other lymphomas, choriocarcinoma, testicular cancers, and carcinoma of the ovary. The fact that its limiting toxicity is marrow depression, the most frequently encountered toxicity among cancer chemotherapy agents, rather than the unusual neurological toxicity of vincristine, makes it a less versatile component of combination regimens. Leurosine resembles viblastine in its spectrum of activity and toxicity, but may produce in addition a shock like syndrome when injected

rapidly; this may result from the transient hypotensive and marked hypoglycemic activities of this alkaloids.

Vindesine resembles vincristine in its antitumor activity; but exhibits the toxicities of both vinblastine and vincristine. Although platelets accumulate high levels of the Vinca alkaloids, thrombocytopenia has not been a prominent side effect of these agents, infact, thrombocytosis elevation of platelet levels has been more commonly observed 71,72 However, in the treatment of idiopathic thrombocytopenia purpura, where platelets levels are high, Vinca alkaloids may be useful in those patient refractory to the usual therapy such as prednisone and azathioprine 74.

Vinblastine has been found to relieve the pain of acute gouty episodes in the same manner as does colchicine probably through reduction of metabolic activity and phagocytosis in the leukocytes in the joints, but no further clinical use has been made of this observation.

3.2.5 Indole Alkaloids As Neuromuscular Blocking Agents - Curare Alkaloids

Neuromuscular blocking agents are found in <u>Calabash</u> <u>curare</u> used for preparing poisoned arrowheads. These agents are derived from many different plants, including <u>Strychnos</u> <u>toxifera</u>, <u>Chondrodendron tomentosum</u>, and other species of the Loganiaceae ⁷⁵. Although d-tubocurarine is the component that has been studied most extensively and is in widespread clinical use as neuromuscular blocking agent during surgery; there are at least forty other alkaloids that contribute to

the overall toxicity of curare; most of these are indole derivatives 76

The most active compounds in curare are the toxiferines dihydrotoxiferine I (51) and toxiferine (52). Although these are not presently used, the diallybis derivative of nortoxiferine known as alcuronium (53) is used clinically in Europe. Among other weak muscle relaxing alkaloids are caracurine V(54) and its N - oxides.

51 Dihydrotoxiferine I $R^1 = H$, $R^2 = Me$

52 Toxiferine $R^1 = OH$, $R^2 = Me$

53 Alcuronium $R^1 = OH$, $R^2 = CH_2$ $CH = CH_2$.

Caracurine V (54)

There is no central action or direct effect of curare on the muscles by itself, but high doses block autonomic ganglia $^{7.7}$. The end plate receptor, a lipoprotein subunit with a molecular weight of 50,000, seems to be associated with, or actually to be, the ionophore for sodium transport $^{7.8}$. Although several neuromuscular blocking agents are extensively used for muscle relaxation during surgery, thus permitting the use of lighter and safer planes of anesthesia, most of the indole derivatives mentioned above have only limited clinical use, e.g. toxiferine where long-term paralysis is needed, and alcuronium for short operations $^{7.8}$.

Tubocurarine has a half-life of between 0.25 and 3 hours, it undergoes 40 per cent binding to plasma protein, and is excreted to an extent of about 43 per cent of administrated dose in humans 78

3.2.6 Biological Activity of Indoles - Vinca Alkaloids

These bisindole derivatives are isolated in yields of only a few milligrams per kilogram from the leaves of the Madagascan periwinkle, Vinca rosea L., correctly referred to as Catharanthus roseus G. Don (Apocynacea), a plant with a long- standing reputation for its medicinal value 79. It was an investigation of the reputed usefulness of the plant for treating diabetes that led to the isolation of the cytotoxic alkaloids. Of more than 70 alkaloids that have been identified in this plant, eight are cytotoxic bisindoles composed of a vindoline and a Catharanthine moiety.

The active alkaloids are vinblastine (vincaleukoblastine; velban or velbe) (55), Vincristine (leurocristine, Oncovin) (56), vinleurosine (leurosine) (59) vinrosidine (leurosidine) (60), leurosivine 4 - desacetyl vinblastine, rovidine, and leurocolombine.

There are, in addition, several semisynthetic derivatives including 14, 15-dihydrovinblastine, vinglycinate (17-N, N-dimethyl aminoacetyl - 17-desacetylvinblastine) (57), vindesine (17-desacetylvinblastine amide) (58), and several 15', 20'-dehydro compounds 31.

Vinblastine (55): $R^1 = Me_1R^2 = C0 Me_1R^3 = C0_2Me_2$ Vincristine (56): $R^1 = CHO_1R^2 = C0 Me_1R^3 = C0_2Me_2$ Vinglycinate (57): $R^1 = Me_1R^2 = COCH_2NMe_2$, $R^3 = C0_2Me_2$ Vindesine (58): $R^1 = Me_1R^2 = H_1$, $R^3 = CONH_2$

والموالة بمؤولين

Leurosine (59)

Leurosidine (60)

CHAPTER 4 PREVIOUS WORK ON THE ALKALOIDS OF HUNTERIA UMBELLATA

4.1 Table of Alkaloids* Isolated from Hunteria Umbellata

Seeds	Leaves	Root Bark
Water Insoluble Alkaloids	Water_Insol.	Water Insol.
	<u>Alkaloids</u>	<u>Alkaloids</u>
Corymine		
Corymine acetate	Erinine	Umbellamine
Isocorymine	Corymine	, *
HU5, HU6, HU8, HU9 and	PU.6-Picra-	
HUll, HU 12, lanceomigine	line	
	Umbellata,	
N-oxide, Picraline,	Eripine	
Akuamimidine,	1 1 1	
17-methoxy pseudoakuammigine		
Water_Soluble_Alkaloids		
Four Isomeric	1 1 1)
14-Isopropyldihydroxy-	, 	
deoxisocorymines	! !	

^{*} References to the above compounds are given later on in the text.

4.2 <u>Hunteria Umbellata</u> (K. Schum) a member of the Apocyanaceae family was previously classified as <u>Picralima</u> <u>umbellata</u>. It is a smooth skinned tree about 16 metres in height, found growing abundantly in Lagos, Oyo, and Ogun and

Bendel States of Nigeria . All parts of the plant are used in local medicine as a bitter tonic. Its wood is yellow, very hard and is used for making native combs and tool handles as it is considered very durable and immune to termites.

The plant has been extensively investigated, and all its parts have been shown to contain alkaloids 82. As already shown in the Table (4.1) above, the one reported so far from the root bark is Umbellamine

The alkaloid, of molecular formula C $_{41}$ $^{\rm H}{}_{48}$ N $_4$ $^0{}_4$ was isolated by Morita, et al in 1969 $^{\rm 23}$. It is a dimeric

indole-indoline alkaloid, probably identical with the alkaloid from <u>Hunteria unbellata</u>. The two monomeric units have been identified as (+) -eburnamenine and a phenolic hydroxy pseudoakuammigine moiety. The proposed structure (61) was based on spectroscopic data obtained from umbellamine and its derivatives.

The alkaloids reported from 25,84 the leaves are erinine (62a), corymine (63a) eripine (64) and 'pu6'. 'pu6' has not yet been assigned a structure. These water insoluble alkaloids were isolated by Bycroft in 1965. Since then, no other alkaloid has been reported from the leaves.

62(a) $R = CH - CH_3$ ERININE

(b) R = H, CH_2-CH_3 Erinicine erinicine

Corymine Acetate

Bevan and his group in 1967 isolated corymine (63a) corymine acetate (63b) and isocorymine 27b (66), which was originally thought to have structure (65) but later assigned structure (66) mainly on mass spectral evidence 23 .

(65) Old structure of Isocorymine.

(66) True Structure of Isocorymine.

Jackson had isolated five other new alkaloids from the seeds denoted HU5, HU6, HU8, HU9, and HU11 and these have been assigned the structures (67), (68), (69), (70) and (71) respectively on spectral data and chemical transformation evidence

HU6 (68)

HU 11 (71)

Corymine was first isolated from <u>Hunteria corymbosa</u> and was shown to be closely related to echitamine (72). The presence of a hemiacetal linkage was demonstrated by both the nmr data and treatment with sodium borohydride to give the dihydro-compound (73a). On treatment with hot 1% aqueous potassium hydroxide, corymine methiodide gave methylalloe-chitamine (73b) and the structure was therefore formulated as (63a).

Echitamine (72)

(a) R = H Dihydrocorymine

(b)
$$R = CH_3$$

(73)

 N_{a} -methylalloechi-tatime

(81)

R = H Corymine (70a)

Later when corymine was isolated from <u>Hunteria</u>

<u>umbellata</u> its structure was obtained using X-ray crystallography. The corymine structure was further confirmed by Acetylation.

Four alkaloids from <u>Hunteria Umbellata</u> isocorymine ^{23a}, erinine, erinicine and eripine have been assigned related structures (66), (62a), (62b) and (64) respectively. These are placed in that sub-group of indole alkaloids derived from tryptamine and an unrearranged secologanin unit but lacking the usual 21, N_b - bond and having additionally a 7, 16-bond.

Erinine, erinicine and eripine were chemically interrelated in that eripine (64) was lactionised by heating to give erinine (62a) together with the 18, 19-double bond isomer of erinine; the same mixture of double bond isomers was obtained by similarly heating either erinine or its double bond isomer and erinine was clearly catalytically reduced to give erinicine (62b).

4.3 Absolute Configuration of Erinine, Erinicine, Eripine and Isocorymine

The absolute configurations at C-2 and C-7 in eripine and therefore by correlation in erinine and erinicine were established by optical rotary dispersion comparisons technique. The linkage of C-16 at C-7 is the irrevocable consequence of the ubiquitous $15-\alpha$ - H configuration typical of most indole alkaloids. An assumption of this absolute configuration for isocorymine would therefore imply a C-2/C-7 cis or trans stereo-chemistry.

Unresolved Stereochemical Features in Isocorymine Erinine,

Erinicine and Eripine: Several factors of stereochemical

uncertainty remained to be established for these bases. Firstly,

the geometry of the 18, 19-double bond in isocorymine (66),

erinine (62a) and thus in eripine (64) has not been elucidated;

the E configuration would be expected by comparison with nearly

all established instances, which possess unsaturation at the

19, 20-position.

secondly, the stereochemistry of the fusion of the eserine unit to the lactone or lactol ring, i.e. the stereochemistry of C-3 and C-16 relative to C-15 was not considered for isocorymine and only tentatively assigned for erinine and by deduction for erinicine and eripine by noting the similarity in the infrared spectra of an eripine degradation product and that of a compound derived from the alkaloid echitamine, the stereochemistry of which had been established by X-ray crystallography. The stereochemistry of C-16 and implicitly that of C-3 has acquired more significance in the wake of he more recent isolation of Aspidoasycarpine (75) and ionicerine (33), both indole alkaloids of possible C-16 epimeric types.

Aspidoasycarpine

(82)

Ionicerine (83)

Thus a priori considering the pentacyclic bases (66) (62a) and (62b) they could have stereochemical structures represented by either (77) or (78), whilst in each case retaining the same configuration at C-15, shown in these diagrams on the assumption of the ubiquitous α -H-15 configuration.

Finally, neither the configuration at C-17, the hemi-acetal carbon in isocorymine (69) nor the stereochemistry of reduction of erinine, i.e. the configuration at C-20 in erinicine 69b had been elucidated.

A Proton Magnetic Resonance Study of Isocorymine, Erinine, and Erinicine Determination of the Stereochemistry at C-16 and the Geometry of the Ethylidene System

It was considered that p.m.r spectroscopy would likely be the most convenient method of determining some of the unknown stereochemical features. In particular the application of transient nuclear Overhauser enhancement (NOE) of a signal following selective inversion of another signal seemed appropriate. This inversion was achieved by the application of a frequency selective pulse ⁸⁸, followed, after a variable relaxation interval, by a non-selective high power pulse which monitored the partially relaxed intensity of all peaks. This technique had been particularly useful in the recently reported determination of the conformation of apparicine. Similar experiments were carried out on isocorymine, erinine, and erinicine.

A study of models seemed to indicate that the C-14 protons would be in close priximity to the $\rm N_a$ -methyl group if the structure (78) was correct and that these same protons would be in the vicinity of the $\rm N_b$ -methyl if the alternative (97) configuration for C-16 was correct. Therefore having fully assigned the spectrum of isocorymine, which confirmed the structure, the selective inversion of the $\rm N_a$ -methyl signal was carried out by Frank Healthey and John A. Joule on this compound .

A transient NOE. for proton C-14(${\rm H}_{\odot}$) was observed, indicating that the configuration at C-16 was present in structure (78). A similar result was also obtained for erinine by this group of co-workers. Thus the configuration at C-16 for erinine and by implication erinicine was established.

The geometry of the ethylidene system was also ascertained for the two bases, erinine and isocorymine to be of the E type system. A small but significant n.o.e. was observed for the C-14 - proton signal on selective inversion of the C-18 methyl signal. The configuration at C-20 in erinicine was determined by the observation of a coupling constant with a value of 12Hz, between H-15 and H-20 such a value indicated that the protons were trans to one another, thus fixing the configuration at C-20 in structure (79).

4.6 Determination of Configuration at C-17 for Isocorymine

A large transient nuclear Overhauser enhancement n.o.e. was observed for C-9-H on inversion of C-17-H indicating that they are neighbours in space, as depicted in (78). Thus the hydroxyl group as shown is α-to the lactol ring. Confirmation was derived from analysis of the p.m.r. spectrum. The chemical shift position of the exchangeable proton, i.e. C-17-OH appeared towards the low field limit of the range for aliphatic hydroxyl groups and was insensitive to temperature, indicating a fair degree of intramolecular hydrogen bonding.

In addition the coupling constant $J_{\rm H,COH}$ is large, about 12Hz, thus the protons are in a <u>trans</u> arrangement. These ctriteria are only accommodated by the configuration at C-16 as in (78) and an α -OH group with intramolecular hydrogen bonding to the carbonyl oxygen.

4.7 <u>Isolation of Picraline, Akuammidine, 17-methoxy</u> Pseudoakuammigine and Hu12.

David I. Bishop isolated Piccaline, Akuam midine, 17-methoxy Pseudoakuammigine and Hu12 from the seed of <u>Hunteria umbellata</u>. Akuammidine (80) and 17-methoxy pseudoakuammigine were obtained by chromatographic separation on silica of the mother liquors of the fractions from which erinine, and isocorymine had been co-crystallized.

Crude chromatographic separation on deactivated alumina of the more polar material gave many fractions, two of which by t.l.c. were shown to contain alkaloids, some novel to this species. The less polar fraction was re-chromatographied on

silica to give picraline (81) along with the ubiquitous corymine. The more polar fraction was flash chromatographed on silica to give an amorphous alkaloid Hu12.

Akuammidine (80)

Picraline (81)

4.8 <u>Picraline and Akuammidine, Alkaloids novel to Hunteria</u> Umbellata.

Both akuammidine and Pickeline 20a, although known alkaloids are unreported for <u>Hunteria umbellata</u>. The identity of picraline was proved by observation of an indoline type chromophore in the UV spectrum, a molecular ion at m/z 410 with ion fragments represented by m/z 337 (M-CH₂0AC) and m/z 239 which correlated with data reported and finally by t.l.c. analysis involving a comparison on silica plate with an authentic sample.

Akuammidine was similarly characterized. Again the UV spectrum obtained showed the molecule to prossess a known chromophere, in this case that of indole. The mass spectrum gave a molecular ion at 352 with ions at m/z 321, 249 and 169 in accord with published data 90 . Confirmation was obtained by a similarity in melting point 238 - 242°C (249°C) and by a p.m.r. spectrum indicating an ethylidene group, a quartet at δ 5.47 coup ed to a doublet at δ 1.74 and a methoxy group with a three proton singlet at δ 3.8.

4.9 Hu12

The alkaloid originally designated as Hu12, has been isolated from the seed and the structure shown to be identical with lanceomigine - N-oxide from Alstonia lanceolata,

H. Congolana and H. zeglancia. This is an amorphous base, the structure of which proved difficult to elucidate by conventional chemical degradative methods.

The polarity of the new alkaloid and presence of a substantial N-16 peak in its mass spectrum strongly suggested the presence of an N-oxide grouping though the compound was unaffected by treatment with triphenyl phosphine.

Lanceomigine (89) from Alstonia lanceolata Hunteria congolana and Hunteria cylancia also an amorphous base, was reduced with a combination of triethylsilane and trifluoroacetic acid to the crystalline deoxy-derivative (83) the structure of which was established by X-ray crystallography.

(83)

The location of the hydroxy-group at C-17 in the alkaloid itself was deduced from the presence of a sharp singlet signal for H-17. That lanceomigine exists in a pentacyclic from with a C-17-0-C-2 hemiacetal link followed from the absence of a 13_C signal for C-2 in the carbonyl carbon region.

Lanceomigine is one of the only two indole alkaloids so far reported , the other being lanceomigine N-oxide (87) which have an N-1'-C-17bord instead of the usual N-1-C-2 bond present originally in biogenetic precursor tryptophan - tryptamine It was demonstrated that although 17-hydroxy-Y-akuammigine (85) which occurs with lanceomigine in <u>Hunteria-congolana</u> could be transformed smoothly into lanceomigine with mineral acid at room temperature, nevertheless the latter is not an artefact of the isolation procedure.

Lanceomigine N-oxide, isolated as an amorphous compound from Alstonia lanceolata, was reduced 91 to the same ketone (83) obtained from lanceomigine and could be formed 91 from the latter by N-oxidation using P-nitroperbenzoic acid. A comparison of the published data 91 for lanceomigine N-oxide with those for the amorphous Hunteria umbellata alkaloid, suggested their identity and this was confirmed by direct comparison with spectrum of sample provided.

4.10 Four Isomeric Water - Soluble Alkaloids from Hunteria umbellata.

Four isomeric 14-isopropyl-dihydroxydeoxyisocorymines with the lactone bridge opened were extracted from the seed of <u>Hunteria umbellata</u>.

Spectral data showed that compounds (87-90) were isomeric, having a relative molar mass of 458 and a molecular formula of $C_{25}H_{34}N_2O_6$.

87
$$R^1 = R^2 = OH$$
; $R^3 = R^4 = H_2$
88 $R^1 = H$; $R^2 = R^4 = OH$, $R^3 = H_2$
89 $R^1 = R^2 = H$; $R^3 = R^4 = OH$
90 $R^1 = H$, $R^2 = R^3 = OH$; $R^4 = H_2$

The four indole alkaloids were precipitated from aqueous acid solution by means of Mayer's reagent and the dry complex decomposed by prolonged standing in 95% ethanol. Removal of solvent gave a mixture which was initially separated by flash chromatography on deactivated alumina followed finally by purification on silica gel preparative TLC. The four isomers were distinguished by their R_f values of 0.1, 0.3, 0.6 and 0.9 respectively.

The mass spectrometric fragmentation pattern of each of the isomers 1-4 was paralleled by that proposed for isocorymine. The following ions present in the four isomers are also characteristic of isocorymine.

Compounds (
$$\xi 7$$
) - (93)
 $-2ii$

Fragment m/z 456

 R^1
 $0 = C$
 R^2

Me

Me

(91):

$$R^1 = R^2 = OH, m \mid_{Z} 325$$

$$R^1 = R^2 = OH, m \frac{1}{2} 327$$

$$\frac{\log s}{\log s}$$

$$m | z | 267 C_{17}^{H}_{19}^{N}_{2}$$

(95)

(97)

m| 227

The prominence of fragment m/g. 327 in the four probe spectra was significant. This was 16mu greater than the corresponding iso-corymine ion and indicated the presence of an additional hydroxyl group in 1,2,3 and 4, consistent with the existence of rings A,B (ruptured) C and the tetrahydropyran ring E.

(a)
$$R^1 = R^2 = OH$$
; $R^3 = R^4 = H_2$; m/z 327.

(b)
$$R^1 = H$$
; $R^2 = R^4 = OH$; $R^3 = H_2$; m/z 327

(c)
$$R^1 = R^2 = H$$
; $R^3 = R^4 = OH$; m/z 327

(d)
$$R^1 = H$$
; $R^2 = R^3 = OH$; $R^4 = H_2$; $m/z = 327$.

The presence of fragment m/z 155, in all the spectra could possibly arise as a result of bond ruptures between C-2 and C-13, C-15 and C-20, C-6 and C-16 and C-16 and C-22. The fragment contained an isopropyl substituent as reflected by the presence of the ion m/z 155 in all the spectra examined.

(99)

m/z 155

The present work is aimed at isolating more water soluble alkaloids from the same source as encouraged by recent findings of Adegoke et al that the water soluble alkaloid mixture possesses hypoglycemic properties and also serves as antiharmoroid agents. Other ethnomedical beliefs of the natives that the plant is a potential breast anticancer agent also prompted the intensive search for the active alkaloid reported here. In all ten new water soluble alkaloids were isolated and using spectra analysis acceptable structures were proposed. All these are reported.

CHAPTER 5

RESULTS_AND DISCUSSION

5.1 Extracting

The seeds, leaves and bark <u>Hunteria umbellata</u> were collected and subjected to continuous extraction. Before extraction, the plant was identified by a botanist and confirmed by comparison with authentic samples in the Forest Research Institute, Reference No. FH122857, Photographs on pages 266 - 271.

The plant material, particularly the seeds and leaves often contain quite substantial quantities of non-polar fats and waxes. These were removed by percolation of the dried pulverised material (leaves, seeds, or bark) with petroleum ether. Further extraction was achieved by refluxing with ethanol for forty eight hours.

The extract was treated with aqueous mineral acid and the solution filtered basified, and extracted with chloroform to yield a mixture of crude alkaloids. The basic aqueous layer contained the water soluble alkaloids. This solution was acidified and the alkaloid was obtained as a complex of Mayer's reagent. The Mayer's reagent was prepared from potassium iodide and mercuric chloride. Mercury has a vacant f orbital and is therefore capable of forming stable organic complexes by dative bonding. The lone pairs of electron present in the nitrogen atoms of the alkaloids are possible donated to the 5f orbitals to give the insoluble complexes.

A possible chemical reaction for the formation of these complexes is shown below:

$$HgCl_{2} + Kl \xrightarrow{\longrightarrow} K^{+} [Cl-Hg-Cl)^{-}$$

$$K^{+} [Cl - Hg - Cl]^{-} + N \xrightarrow{R^{2}} R^{2}$$

$$R^{3}$$

Mayer's reagent

$$R^{+}$$
 (C1 - Hg - C1) + I + .

Complex

The complex, precipitate, after drying was suspended in ethanol, for six weeks and was allowed to decompose, at room temperature. The ethanol layer was decanted from the remaining undecomposed complex. Excess mercury was removed from the decantant by passing hydrogen sulphide into the filtrate and then through amberlite resin. Removal of the ethanol gave a crude mixture of the water soluble alkaloids in each of the seeds, leaves nd and back reported.

From 2,400 gms of seed, 14.6gm of mixture of crude water soluble alkaloid were obtained (0.61%). From 784 gms of the bark, 6.17gm were obtained (0.79%) and from 400 gms of the leaves 5.6gms were obtained (1.4%)

5.2 Isolation Procedure for the Seeds

The mixture of water soluble alkaloids of the seed in ethanol was initially separated by flash chromatography on deactivated alumina followed finally by the use of silica gel preparative plates. Three different alkaloids named SSHU1, SSHU2 and SSHU4 were isolated from the seeds. Here, only two were obtained in workable quantities.

SSHU_1 (100)

The compound SSHUl is a light brown, amorphous glass, $R_{\rm f}$ 0.56 (silica gel, n-butanol: NH $_3$: H $_2$ 0, 15:1:05). The UV spectrum in ethanol absorbed at $\lambda_{\rm max}$ of 220nm, 264nm, 271nm and 284nm. In dilute ethanolic hydrochloric acid the maxima absorbed at 264nm, 271 m, and 289nm, showing a

small bathochromic shift. The UV data are identical with those obtained for a carbazole.

The I R. spectrum in chloroform showed band at 3064 cm $^{-1}$, 1728 cm $^{-1}$ aryl and $\alpha\beta$ unsaturated carbonyl (CCO), 1677 cm $^{-1}$ (-COOH) and 1596cm $^{-1}$ (benzene).

The 'H-nmr spectrum showed six aromatic protons, two protons as a doublet at $\delta 7.8$, three protons as a quartest at $\delta 7.6$, and one proton each as a single at $\delta 7.35$, and $\delta 7.1$ respectively. The methylene protons each absorbing at $\delta 3.9$, $\delta 3.6$, and $\delta 3.1$, and methine protons at $\delta 1.6$ and $\delta 1.4$ as a triplet.

The mass spectrum showed a molecular ion of 418. This plus other spectral data, inclusive of rules such as the Nitrogen Rule gave a molecular formular $^{\rm C}_{27}^{\rm H}_{18}^{\rm N}_{2}^{\rm O}_{3}$. The double bond equivalent is therefore 2 0. From the spectra data available structure 100 was proposed for SSHUl.

The aromatic protons were distributed in the following manner: the protons H-8 and H-8 absorbed at δ 7.8. The mitrogen deshields proton H-8 and H-8 because N is orthoto to them. They however appear as doublet. Protons H-5,

H-6 and H-7 absorbed at δ 7.6 each and H-7 absorbed at δ 7.35. The carbazole N-9 hydrogen absorbed at δ 7.1. The methylene protons however absorbed at δ 3.9 for H-11 at δ 3.6 were for H-10 and at δ 3.3 for H-3 . The methine protons at δ 1.6 was H-1 , δ 1.4 was H-4 and H-3 at δ 1.7.

The compound is essentially a carbazole derivative linked via C-10 and C-11 methylenes to another carbazole derivative. Fragmentation pattern of the molecule confirmed the proposed structure.

rearranges as follows:

m|_z 210, (88.6%)

(103)

(103)

$$m|_{z}$$
 210, (88.6%)
 $C_{14}^{H}_{12}^{N0}$
 $- CH = C = CH_{2}$

$$\begin{array}{c} C \\ C \equiv 0 \\ C = 0 \\ C =$$

 $m |_{z}$ 157 (8.4) $C_{10}^{H} V_{7}^{NO}$

The presence of the minor ion $m \mid_{\mathbf{Z}}$ 157, 105 confirmed the position of the oxo group in ring c.

$$\begin{array}{c} C \equiv 0^{+} \\ CH_{2} \\ CH$$

An alternative route showed that 101 fragmented to 127, $m|_{Z}$ 170, which by loss of carbon monoxide followed by loss of two protons gave the acetylenium ion 128 $m|_{Z}$ 140, thus providing concrete proof for the siting of the oxo group in ring C.

The monomer 102 gave the following ions:

Ion 165 108 was produced from the monomer B 102 by loss of carbon dioxide. This established the position of the side chain carboxylic acid.

Fragmentation of 102, produced the acetylenic - vinylic ion (112), m_z^2 109, which lost carbon dioxide to give 114 m_z^2 65. The ion 112 can also fragment to give the acetylenic acid (114). The production of the three entities established the positions of the ${\rm Cl}^1$ - ${\rm C2}^1$, ${\rm C4}^1$ - ${\rm C4a}^1$, and ${\rm C9}^1$ - ${\rm C9a}^1$ double bonds and the ${\rm C2}^1$ - position of the carboxyl group.

The mass spectral evidence thus made possible the structure proposed for SSHUl.

Compound SSHU4 is a light yellow glassy solid. It has a UV maximum absorption at λ_{\max} 386nm and a shoulder at 260nm. In aciditexhibited λ_{\max} 261nm and 436nm. For the

was therefore different from SSHU1. The chromophore responsible for this absorption appeared to be different from any one previously known in indole alkaloids. From the UV absorptions, the systems Ar-N-C-and Ar-N-C-N) were present. The compound is therefore a dimer of two different units. UV absorptions also indicated an extensive conjugation.

The IR spectrum showed absorptions at 3377 (N-H), 1744 (- CO of an ester), 1660 (= C - C = 0) and at 1548 benzene)cm $^{-1}$.

The NMR spectrum ran in CD₃OD showed six aromatic protons, one proton each as singlet at 67.96 and 67.4, $J = 2H_Z$ as doublet two protons as a doublet at 67.38, $J = 2H_Z$ one proton as a triplet at 67.1 $J = 2H_Z$ and a proton as a doublet at 66.8. There were other absorptions at 65.6 (1H,br, N-H), 64.0 (1H, br, N-H), 63.7 (2H, S, 2-N-H), 63.62 (1H, S, CH) 62.85 (2H, d, -CH₂), 62.5 (2H, br, CH₂), and 61.6 (1H, d, CH). These absorptions are summarized in table 2.

The mass spectrum gave a molecular ion of 426 and this, in addition other spectra data, the corresponding molecular formular, C_{25} H_{22} N_4 O_3 . The double bond equivalent for this molecule is therefore 17.

From the above spectra data structure (115) was proposed for SSHU4.

The aromatic protons were assigned as follows: the proton H-8 absorbed at $\delta 7.9$, H-8¹ at $\delta 7.4$, H-7 and H-5 each at $\delta 7.3$, H-6 at $\delta 7.1$, H-7 at $\delta 6.9$, H-9 at $\delta 5.6$, H-9¹ at $\delta 4.0$, H-11 at $\delta 3.7$, H-1¹ at $\delta 3.7$, H-3¹ at $\delta 3.62$ H-10 at $\delta 2.90$, H-3 at $\delta 2.5$, and H-4¹ at $\delta 1.6$.

The presence of the oxo group and the ester carbonyl group was confirmed by the 1R absorptions at 1660 cm⁻¹ and 1744cm⁻¹ respectively. The proposed structure was confirmed by fragmentation pattern as indicated by the mass spectrum.

Scheme 2a

There were three possible cleavages of the compound 136 into different ions which were prominent in the mass spectrum. The first involved a cleavage between bonds C2-N and C10-C6) to give ions A and B where A and B have the structure given below.

Ion B, structure 117 is not stable but fragmented immediately to minor ions. lon A, 116 is quite stable as indicated by a moderately high intensity.

lon 118 was formed by the loss of C0 m $\Big|_{Z}$ 28, (32.5%) from ion 116.

The second route of fragmentation of 115 is shown in

The cleavage of ion m $|_z$ ⁵⁹, $C_2H_3O_2$ from ion 120 gave ion 123 Protonation of the latter gave ion 123 which on dehydrogenation produced ion m $|_z$ 154. The above fragmentation indicated the position of the methyl carboxylate group.

The other possible fragmentation of ion 120is shown below:

The production of ion 125 m/ $_{\rm Z}$ 203 from ion 120 further confirmed the position of the ester.

The third possible cleavage of the C-C single bond between the two dimers of SSHU4 136, involved the bonds $C10-C6^{1}$ and $N-C5^{1}$.

In scheme 2c, ion 127 m $_{Z}$ 211 was produced by the cleavage of the bonds N-C5 1 and C10-C6 1 . By loss of CO gas gave ion (129) m $_{Z}$ 183 C $_{12}$ H $_{11}$ N $_{2}$.

Rearrangement took place in the .ion 129. and by loss of a proton, ion 130 m $_{2}$ 182 $C_{12}H_{10}N_{2}$ was produced having an appreciable intensity of 35.4%. Cleavage of bonds and protonation of ion m $_{2}$ 182 gave ion 131 m $_{2}$ 143. Further loss $C_{2}H_{4}$ m $_{2}$ 28 from ion 131 m $_{2}$ 143 produced ion 132 m $_{2}$ 115, $C_{8}H_{5}N$ with relative intensity of 22.9%.

5.3 Water Soluble alkaloids from the leaves

The water soluble alkaloids from the leaves are more polar than those from the seeds. Attempts to separate them using the same procedure similar to those of the seeds failed. More polar solvent mixtures were used to elute from column and then thin layer from runing TLC. Four new compounds SLHU1, SLHU3, SLHU4, and SLHU5 were isolated.

(133) SLHU 1

SLHUl is a light brown solid and has R_f value of 0.18 (silica methanol; ammonia, 15;1). The UV absorption showed maxima at $\lambda_{\rm max}$ 25lnm, 308nm and 319nm. In acid $\lambda_{\rm max}$ was at 25lnm, 307nm, and 369nm. Thus there was a bathochromic shift of 50nm in the absorptions. This type of spectrum is also reminiscent of a carbazole nucleus.

The IR showed characteristic absorption at v_{max} cm⁻¹ 3584 (OH), 1706 ($\alpha\beta$ -unsaturated Carbonyl). 1631 (benzene ring) and at 1213 (ArOH).

The 1 Hnmr data in CD $_3$ OD are summarised in Table 4. P.154 The spectrum showed five aromatic protons. There were absorptions for one proton each as a triplet at 6 8.5 J = 2 H $_2$ and doublet J = 2 H $_2$ 6 8.4 respectively, for two protons as a doublet at 6 7.8 J = 2 H $_2$. The less acidic H-3 absorbed as a singlet at 6 7.5 and the expected low field signals for H-1 and H-4 were conspicuously absent. The UV spectrum confirmed the carbozole nucleus.

There were other absorptions at $\delta 3.85$ (lH, S), $\delta 3.3$ (3H, S), $\delta 1.30$ (3H, S), $\delta 0.9$ (3H, S), $\delta 5.5$ (lH, br), $\delta 5.11$ (lH, d), $\delta 5.18$ (lH, d), $\delta 3.95$ (lH, d), $\delta 4.64$ (lH, d), and $\delta 2.0$ (3H, broad).

The mass spectrum gave a molecular ion at m_{Z} 348 with El spectrum and an ion m_{Z} 349 in the corresponding Cl system. The molecular formular from spectra data was therefore $C_{21}^{H}_{20}^{N}_{20}^{0}_{3}$. The double bond equivalent is 13. From the above spectra data, structure 133 given below was proposed for

The aromatic protons were distributed in the following manner: the absorptions at $\delta 8.5$ was assigned to proton H-7, because of its high acidic nature due to its relative position to nitrogen, $\delta 8.4$ to H-5; $\delta 7.8$ to H-6, and $\delta 7.8$ H-8, and the

less acidic proton absorpting as a doublet at δ 7.5 J = 2H_z to H-3.

Absorptions at 63.9 and 63.85 were due to the hydroxyl proton at C-1 and C-4. The expected low field signals for these two protons were conspicuously absent. The presence of two -OH groups was also confirmed by the IR spectrum.

C-2 was therefore assigned to the oxocyclohexadienyl residue since NH-9 and the C-1 hydroxyl group would have additively induced a more downfield signal to H-2 than to H-7. The UV $\lambda_{\rm max}$ at 369nm and IR $\lambda_{\rm max}$ 1706 cm⁻¹ confirmed a dienone in the C-2 substituent.

The H-2¹ signal appeared as an olefinic doublet at $\delta 5.26$, H-5¹ as a doublet at $\delta 5.26$, H-5¹ as a doublet at $\delta 5.11$ J = $2H_Z$ as a doublet at $\delta 3.95$. The C-6¹ methylamino hydrogen absorbed as a broad band at $\delta 2.0$. The presence of the N-9 methyl, δ^1 -aminomethyl and δ^1 - methyl groups were established readily by I.R. and ¹Hnmr data. These absorbed for three protons each as a singlet at $\delta 3.30$, $\delta 1.30$, and 0.9 respectively. As usual, mass spectral fragmentation pattern outlined below corroborated the C-1 and C-4 siting of the hydroxyl groups, and the structure assigned to the C-2 substituent.

(133)
$$\longrightarrow$$
 (135) ml_{2} (136) Cl_{3} OH Cl_{3} Cl_{3} OH Cl_{3} Cl_{3} Cl_{3} OH Cl_{3} $\text{$

The ions 134 m $_{\rm Z}$ 212 C $_{13}$ H $_{10}$ NO $_{2}$ and ion 135 m $_{\rm Z}$ 136 C $_{8}$ H $_{10}$ NO were produced by the cleavage of bond C-2 and C-1 $^{\rm L}$. The presence of these ions in the mass spectrum with high relative intensity confirmed the structure assigned to C-2. These ions further broke down as shown in the scheme below.

The ions m $|_{z}$ 129 (136) and m $|_{z}$ 83 (137) were produced by the cleavage of the bonds C-la and C-4a. The production of ion 137 m $|_{z}$ 83 which is 1, 2-dihydroxy cyclobutadiene further confirmed the C-1 and C-4 siting of the hydroxyl groups ion m $|_{z}$ 101 (139) is a phenyl acetylenium ion.

Scheme 8 shown below, gave other featural details of the C-2 substituent.

Scheme 8

Essentially ion m_z^2 136 (140) $C_8H_{10}^{NO}$ ring expanded and extruded an amino group to give ion m_z^2 120 (142) $C_8H_8^0$ (25%). Decarboxylation of the latter gave ion m_z^2 94 (144) $C_7H_{10}^{H_10}$ with relative intensity of 36.0%. The foregoing spectral evidence and fragmentations confirmed the structure assigned to SLHUL.

(145)

Structure of SLHU3

This glassy material had an R $_{
m f}$ value of 0.4. The UV spectrum was very similar to that of SLHUl viz max at 25lnm, 308nm, 368nm, and 429nm. Unchanged in acid.

The IR spectrum showed absorptions at 1703 cm⁻¹ ($\alpha\beta$ -unsaturated carbonyl) and at 1633 cm⁻¹ (benzene ring). These absorptions are typical and similar to that of SLHUl. There were absorptions at 754 cm⁻¹ for an ortho disubstituted benzene. The 1, 2, 3-trisubstituted benzene might as well absorb in the same region.

The absorption pattern of the aromatic protons in the NMR was the same as that of SLHUl but the numners of protons were different SLHU3 has seven aromatic protons. These protons showed signals assigned in conformity with electron density distribution over carbazole. The cyclohexadienyl residue was therefore linked to carbazole at C-4. An equally downfield signal obtained for H-1, H-5, and H-8 was conspicuously absent for H-4. The absorptions were $\delta 8.5$ (2H, 2d), $\delta 8.4$ (1H, d), $\delta 7.8$ (3H, m), $\delta 7.5$ (1H, d). Both SLHUl and SLHU3 have five protons resonating at lower field. As in SLU1 there was a sharp methoxy resonance at $\delta 3.8$ (OCH- 4^1). At high field, a distinct methyl doublet at $\delta 1.45$ J = 1H_2 (CH₃- 6^1) was present. There were also absorptions at $\delta 2.5$ (NH₂- 2^1), $\delta 4.70$ (OH- 5^1), $\delta 1.09$ (1H, S H - 6^1) and $\delta 2.4$ (3H, S N-9).

The mass spectrum gave a molecular ion at m $_{\rm Z}$ 348, ${\rm C}_{21}{\rm H}_{20}{\rm N}_{20}{\rm S}$ with E.I. spectrum and an ion m $_{\rm Z}$ 349 in the corresponding Cl spectrum. From the mass spectrum, SLHU1 and SLHU3 both have the same molecular weight but the breakdown of the molecules into ions are not the same. The double bond equivalent is also $\sqrt{13}$. From the above spectral data/ structure (145) was proposed for SLHU3.

The corresponding aromatic protons were assigned as follows: $\delta 8.5$ absorption due to H-8 and H-1, $\delta 8.4$ H-5, $\delta 7.8$ H-6, H-2, and H-7, and $\delta 7.5$ H-3. The cyclohexadienyl residue was linked to the carbazole at C-4.

The pathway suggested for the production of the fragment ions observed in the mass spectrum is shown in the scheme below:

OCH₃
OCH₃
OCH₃
OCH₃

$$H_0$$
 H_0
 H_0
 H_1
 H_2
 H_3
 H_4
 H_4
 H_5
 H_6
 H_6
 H_7
 H_7

The cleavage of bond C-4 and C-1 to give the oxocyclohe-xadienyl residue ion m|z 168 (147) $C_8H_{10}N_{03}$ and ion m|z 166 (146) $C_{12}H_8N$ confirmed the substituent at C-4. By loss of carbon monoxide, ion m|z 168 (147) gave ion m|z 140 (148) $C_7H_{10}N_{02}$. Formation of the latter confirmed the position of the oxogroup in the C-4 substituent. The siting of other functionalities were evident from a further fragmentation of ion m|z 140 (148) to ion m|z 124 (149) to ion m|z 40 (150) C_2H_2N by bond ruptures and ion m|z 85 (151) C_5H_90 to ion m|z 69 (152) C_4H_50 by loss of a methyl group.

lon m|_z 166 (146) further broke down as shown above to give $\frac{|53|}{|53|}$ and m|_z 51 (154) by cleavage of bond C-4a and C-1a. lon (153) further fragmented to give ions m|_z 115 (155) which gave ion m|_z 100 (156).

Acetylation of SLHU ESLHU3

SLHU3 was acetylated using acetic anhydride and pyridine. The UV of the product showed quite a different UV absorption with a shoulder at 340nm. In acid there were maxima at $\lambda_{\rm max}$ 306nm and 298nm. There was a significant hypsochromic shift of $34\lambda_{\rm max}$.

IR of ELSLHU3 gave absorption at 1741 cm $^{-1}$ due to the formation of the acetate and 1679 cm $^{-1}$. The NMR was not well resolved. The mass spectrum and other spectra data confirmed the molecular formular as $C_{23}^{H} + 23^{N} + 20^{4}$. The base peak is at m $_{Z}$ 43 in the El $_{Z}$ This confirms the presence of the acetate group. Other ions present in the fragmentation of the unacetylated molecule were also present e.g. m $_{Z}$ 166 (25.0%), m $_{Z}$ 168 (69.3%), m $_{Z}$ 140 (33.5%), m $_{Z}$ 168 (69.3%), m $_{Z}$ 140 (57.1%) and m $_{Z}$ 69 (53.5%).

The acetylated SLHU3 has the structure (157) shown below.

SLHU4

Structure of SLHU4

The glassy pale brown solid had R_f value of 0.52 on silica (methanol: ammoria, 15:1). The UV spectrum showed absorptions $\lambda_{\rm max}$ at 227nm, 265nm, 320nm, and 385nm. Appreciable hypsochromic shift was observed on acidification, $\lambda_{\rm max}$ being observed at 225nm, 264nm, 319nm, and 380nm. From the UV absorptions, the molecule is a dimeric indole alkaloid.

The IR spectrum showed an absorption at 1706 $\,\mathrm{cm}^{-1}$ for a ketone or an ester and at 1633 $\,\mathrm{cm}^{-1}$ for a benzene ring.

The NMR showed absorptions of six aromatic protons at $\delta 8.5$ (1H, d), $\delta 8.4$ (1H, d), $\delta 7.75$ (1H, s), $\delta 7.55$ (1H, m); $\delta 7.1$ (1H, d), and $\delta 6.7$ (1H, d). This confirmed the carbazole nucleus as indicated by the UV spectrum. There were NMR absorptions at $\delta 4.0$ (1H, d) and $\delta 3.8$ (3H, S). Other NMR absorptions included $\delta 2.5$ (1H, broad), $\delta 1.45$ (5H, d), $\delta 1.9$ (3H, S) and $\delta 0.39$ 1H, broad).

The mass spectrum showed a relative molar mass of 411, $C_{26}^{\rm H}{}_{25}^{\rm N}{}_{3}.{}^{0}{}_{2}$. From this the double bond equivalent was 16. The protons corresponding to the absorption above were assigned in the following manner. The structure proposed is (158).

Proton H-8 absorbed at $\delta 8.5$, H-5 at $\delta 8.4$, H-3 at $\delta 7.75$; H-7 at $\delta 7.6$, H-4 at $\delta 6.7$, H-9 at $\delta 4.0$, H-11 at $\delta 3.8$, H-11 at $\delta 4.6$, H-9 at $\delta 2.5$, H-2 at $\delta 2.3$, H-1 $\delta 1.4$ H-5 $\delta 1.4$ and H-8 at $\delta 1.45$ each, H-12 at $\delta 1.9$ and H-10 at $\delta 0.89$.

The breakdown of the molecule as shown by the mass spectrum is in support of the structure.

Scheme 11 outlined the fragmentation pattern.

Scheme 11

The lons $m|_Z$ 224 (159) $C_{14}^H{}_{10}^{N0}{}_2$ and $m|_Z$ 187 (160) $C_{12}^H{}_{15}^N{}_2$ were produced by the cleavage of bond C-1 and C-5 . The presence of these ions in the spectrum confimed the linkage of the carbazole moeity to the other unit of the molecule. lon (159), $m|_Z$ 224, as usual, accounted neatly for the acetylated carbazole ring system.

Loss of the acetate from ion (159) then afforded the Carbazolyne (161) of relatively low molar mass. The presence of this carbazolyne ion in the mass spectrum confirmed the siting of the acetate ion at C-2.

lons m|_Z 121 (162) and 67 (163) were produced by the cleavage of bonds $C10^{1}$ b and $C3^{1}$ b. Further cleavage of single carbon-carbon bond in ion m|_Z 121 (162) C_{8} II₁N produced ions m|_Z 28 (164) C_{2} II₄ and ion m|_Z 97 (165) C_{6} II₇N at high relative intensity. The foregoing cracking of the ion m|_Z 187 (160) C_{12} II₁₅N₂ confirmed the position of the ethylene side chain.

The C1-C5¹ link between the monomers of SLHU4 was expected since a much down field absorption expected for H-l as for H-5 or H-8 was conspicously missing. The low radical (168), derived from (167) by loss of two hydrogen radicals gave credence to the structure assigned to the monomer (167) The prominence of buta-3-dien-imino radical (170), confirmed the presence and position of the C-3¹ substituent. The alternative position of the double bond between rings C and D was excluded by the identification of ion (171), m | z 121m formed via bond cleavage and protonation of (168).

The above evidence further confirmed the structure assigned to SLHU4.

SLHU5

(172)

The R $_{\rm f}$ value of the brown glassy solid was 0.39. The UV spectrum showed $^{\lambda}_{\rm max}$ at 220nm, 266nm, 321nm, and 384nm. In acid $^{\lambda}_{\rm max}$ were 228nm, 265nm, 319nm, and 380nm. There was thus a slight hypsochromic shift of 4nm in the acid medium. Possibly there must be a considerable conjugation in the molecule as reflected in the UV $^{\lambda}_{\rm max}$ 384nm compared to 369nm value of SLHU1.

The 1R showed absorptions at 3600 cm $^{-1}$ (OH), 1704 ($\alpha\beta$ - unsaturated carbony1), 1633 cm $^{-1}$ (aromatic ring), 1339 cm $^{-1}$ (= C-NH $_2$) 888 cm $^{-1}$ (1, 2, 4, 5 - terrasubstituted benzene) and 780 cm $^{-1}$ (ortho disubstituted benzene).

The 1 H nmr spectrum showed six aromatic protons at $\delta 8.4$ (2H, q) $\delta 7.75$ (1H, S), $\delta 7.6$ (1H, t), $\delta 7.1$ (1H, d) and $\delta 6.7$ (1H, d). There were other absorptions at $\delta 4.6$ (1H, d), $\delta 4.0$ (1H, broad 0H), $\delta 3.8$ (3H, 0CH₃), $\delta 2.5$ (broad), $\delta 2.21$ (4H, broad), $\delta 1.09$ (2H, d, NH₂)

The molar mass of 320gm and other spectral data led to the formular $C_{19}^{H}_{16}^{N}_{20}^{0}_{3}$. The double bond equivalent was $\sqrt{13}$. From the above data structure 172 was proposed for SLHU5 and the NMR protons distribution was in support of this.

Thus $\delta 8.4$ was assigned to proton H-1, and H-8 $\delta 7.8$ to H-4, $\delta 7.6$ to H-5, $\delta 7.1$ to H-7, and $\delta 6.7$ H-6. The assignment was consistent with the expected splitting pattern of the signals and with an acceptable Λ - electron density measurement of carbazole. The siting of OH-2 which appeared as a broad signal or $\delta 4.0$ was therefore unambigous.

The $\alpha-\beta$ unsaturated carbonyl system was located in the C-3 cyclic side chain. The carbonyl extended the conjugation in the moeity since a higher UV λ_{max} absorption was observed for this compound as earlier mentioned above.

The 1 H NMR signal at 6 1.09 was assigned to NH₂-3 1 63.8 OCH₃ - 2 1 , 64.6; H-4 1 , 62.5 H-5 1 and 62.1 NH-9.

The pathway suggested for the molecular ions observed in the mass spectrum is shown in scheme 14.

Scheme 14

lon $m \Big|_{Z}$ 272 (35.3%) $C_{18}^{H}_{10}^{NO}_{2}$

Fragmentation of 172 to the ion 174 confirmed the juxta positions of the OH-2 and OCH -2^{1} relative to each other.

lon m|z 182 (9.1%) C₁₂H₈NO.

The cleavage of the bond C-3 and C-1 gave ions m_{Z} 182 (176). $C_{12}^{H_8NO}$, and ions m_{Z} 138 (177) $C_{7}^{H_8NO}_{2}$. Presence of these ions in the mass spectrum gave a complete identity of the C-3 cyclic side chain.

The breakdown of (178) to (181) via (179) to (180) established the Ortho positions of the OCH₃-2¹ and NH₂-3¹.

The ion peak for the cyclic ether (184) above was conspicuously absent in the M.S. and ruled out the alternative structure (182) that could be proposed for the C-3 cyclic side-chain. The above observations confirmed the structure assigned to SLHU5 as (172)

5.4 Water soluble alkaloids obtained from the bark

The water soluble alkaloids obtained from the bark of $\underline{\text{Hunteria}}$ umbellata were very difficult to separate due to the proximity of their R_f values. Four different alkaloids were isolated pure and were designated SBHU1, SBHU2, SBHU3, and SBHU4.

This is a brown glassy solid, R $_{\rm f}$ 0.22. The UV spectrum showed $\lambda_{\rm max}$ at 253nm, 307nm, and 367nm. In acid $\lambda_{\rm max}$ 253, 307, and 368nm were observed. No shift of absorption observed was therefore significant.

The IR showed characteristic absorption $v_{\rm max}$ cm⁻¹ at 3654 (OH), 1723 and at 1638 cm⁻¹ (benzene ring).

The ¹Hnmr data showed ten aromatic protons. Apart from the carbazole nucleus predicted by the UV pattern, there must be another aromatic ring in the molecule. The absorptions

occurred at $\delta 8.55$ (2H, q) $\delta 8.45$ (3H, d), $\delta 7.85$ (5H, q), and $\delta 7.5$ (2H, m). Other absorptions were at δ 6.0 (1H, q, OH), $\delta 5.45$ (2H, dC-CH₂-C) $\delta 5.4$ (1H, d NH), $\delta 5.2$ (2H, d C = CH₂), $\delta 3.8$ (3H, OCH₃), $\delta 3.6$ (2H, m NHCH₂-), $\delta 2.3$ (1H - CH -), $\delta 1.9$ (1H, m) $\delta 1.8$ (1H, d NH), $\delta 1.7$ (1H q NH), and $\delta 1.3$ (3H, m - CH₃).

The mass spectrum showed a molecular ion 427 consistent with molecular formular $C_{27}H_{29}N_3O_2$ obtained from all the spectra data. The double bond equivalent is 16. The proposed structure for SBHU1 is 185.

The protons were assigned as follows: $\delta 8.55 \text{ H-8}$ and $H-8^1$, $\delta 8.45 \text{ H}-4$, H-5 and H-2, $\delta 7.85 \text{ H}-6$, H-7 and $H-7^1$, $\delta 7.5 \text{ H}-3$ and $H-6^1$, $\delta 6.0 \text{ OH}-13^1$, $\delta 5.45 \text{ H}-12^1$, $\delta 5.4 \text{ H}-1^1$ $\delta 5.2 \text{ H}-14^1$, $\delta 3.8 \left(-3^1-0\text{CH}_3\cdot\delta 3.6 \text{ H}-11^1\right)$ $\delta 2.3 \text{ H}-4^1$. $\delta 1.9 \text{ H}-2^1$, $\delta 1.8 \text{ NH}-2^1$ $\delta 1.7 \text{ H}-9^1$ and $\delta 1.3 \text{ H}-10^1$. The fragmentation pattern of the molecule confirmed the proposed structure as illustrated in the scheme below.

The production of ion $186 \text{ m}_Z 166 \text{ C}_{12}\text{H}_8\text{N}$ and ion $187 \text{ m}_Z (261) \text{ C}_{15}\text{H}_{21} \text{ N}_2\text{O}_2$ from SBHU1 showed that the molecule contained the carbazole nucleus linked up as shown above to another unit. The second monomer fragmented via the following route:

The quinolinium monomer (187), m_z^2 261 $C_{15}^H_{21}^{N}_{20}^{20}_{2}$ after charge transfer followed by proton loss gave (189) m_z^2 260. Molecule (189) lost a C-2¹ methylene to give (190) m_z^2 246. Loss of C-4¹ hydroxyethylene afforded (191) m_z^2 220.

(194)

C7H70

ion $m|_{z}$ 107 (23%)

(193)

ion $m|_{z}$ 151 (32.5%)

CaH9N2O

The loss of methylenes from C-2¹ ethyl amino, C-3¹ methoxy and C-4¹ pro-1-eno-2-ol residues gave ion (192) m_z 179 ${\rm C_9H_9N_2O}$ after C-4¹ hydroxylation by hydroxyl group from the propl-en-2-ol residue. The presence of ion (191) m_z 207 confirmed the structure assigned to 261.

 γ lon (192) lost one carbon monoxide molecule to produce (193), 2-amino-3-2, 3-dihydro-quinoline.

was significant since its structure established the citing of the $C-2^1$, $C-3^1$ and $C-4^1$ substituents in SBHUL! The $C-3^1$ citing of the methoxy group had an additional support in the formation of benzyl alcoholic ion (194) m₂ 107. The above observations confirmed the structure assigned to SBHUL as (185).

This compound has an R_f value of 0.82. It showed λ_{max} at 216nm and shoulder at 255, and 300nm in its UV spectrum. In acid medium λ_{max} is 304nm with shoulder at 255 and 215nm. There was a change of 7nm.

The IR showed absorptions at 3693 (NH), 3679 (NH), 3652 (NH), 3632 (OH), 1726 (C = 0 acetate) and 1563 (benzene) $\,\mathrm{cm}^{-1}$.

The NMR, though not well resolved showed six aromatic protons absorbing at $\delta 8.6$ (1H, S), $\delta 7.8$ (2H, S+t), $\delta 7.7$ (1H, t), $\delta 7.4$ (2H, m). Other absorptions were $\delta 4.35$ (1H, d), $\delta 4.25$ (1H, d), $\delta 4.1$ (1H, S, N-H), $\delta 4.0$ (1H, broad), $\delta 3.75$ (1H, S), $\delta 3.55$ (3H, S, OCH₃), $\delta 2.27$ (2H, S), $\delta 2.37$ (2H, t) and $\delta 2.2$ (1H, broad).

The protons corresponding to the absorptions above were assigned as shown in structure (195). Absorptions at $\delta 8.6$ were due to H-8, $\delta 7.8$ to H-4 and H-5, $\delta 7.4$ to H-3 and H-6, $\delta 7.7$ to H-7, $\delta 4.35$ H-2¹, $\delta 4.25$ H-3¹ the last two signals, imposed a double bond between C-2¹ and C-3¹ and precluded the possible location of the two hydroxyl groups at both sites but as only OH-7¹ and OH-8¹ absorbing at $\delta 2.37$ each.

The acetate methyl absorbed as a singlet at $\delta 3.55$ (3H) and H-12, at $\delta 3.75$ (CH-CO-OMe). Absorptions at $\delta 4.1$ was due to H-9, $\delta 4.0$ to H-1¹, H-9¹, and at $\delta 2.27$ to H-4¹ and H-10¹

Scheme 16 shows the fragmentation pattern of the proposed structure.

Scheme 16

lons 196 and 197 were produced by the cleavage of bond C-11 and C-10.

lon (200) $m_{z_c}^2$ 266 $C_{16}^H_{12}^{NO}_3$ was produced by rearrangement of ion (196) $m_{z_c}^2$ 267 $C_{16}^H_{13}^{NO}_3$ followed by deprotonation. lon (201) $m_{z_c}^2$ 151 $C_{12}^H_7$ and ion (202) $m_{z_c}^2$ 104 $C_4^H_8^O_3$ were produced by the cleavage of C-C single bond as shown above. The production of these ions confirmed the position of the side chain and the presence of the ester group.

The production of ions (203) m $|_{\rm Z}$ 265 and (204) m $|_{\rm Z}$ 205 further confirmed the structure of SBHU2 to be as proposed.

HO

N

N

N

N

N

H

(196)

OH

$$(205)$$

H

 (205)

H

 (205)
 (205)

H

 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 (205)
 $(205$

Deprotonation of ion (196) m $|_{Z}$ 188 C $_{10}$ H $_{8}$ N $_{2}$ O $_{2}$ gave ion (205) m $|_{Z}$ 186 C $_{10}$ H $_{6}$ N $_{2}$ O $_{2}$ followed by protonation, C-C single bond cleavage and removal of ammonia yielded ion (209) m $|_{Z}$ 149 C $_{8}$ H $_{7}$ NO $_{2}$ at 100% relative intensity. The production of these ions with relative high intensity further confirmed the presence of the side chains and their position in the molecule. Ions (207) m $|_{Z}$ 166 and (209) m $|_{Z}$ 149 clearly established the Siamese fusion of the two pyrroline rings present in the monomer. The foregoing evidence confirmed the proposed structure.

This was obtained as a brown amorphous solid with R_f value of 0.09 and a yield of 18.6mg. UV gave λ_{max} 218nm, 252nm, 307 and 366 nm-in ethanol and in acid λ_{max} 218nm, 253, and 369nm. It has only changed slightly. This is a bathochromic shift of 3nm. The UV showed the presence of a carbazole nucleus.

The 1R data showed no hydroxyl or acetate carbonyl absorptions. There were absorptions at 1766cm⁻¹, indicative of presence of a lactone carbonyl, at 1629cm⁻¹ and at 2250 cm⁻¹ (CECH).

HNMR spectrum gave eight downfield signals, seven as aromatic and the eighth as a diarylimino hydrogen. They were 68.5 (lH, d), 68.3 (3H, q), 67.79 (lH, d), 67.6 (lH, m), 67.3 (2H, m). There were six methine protons absorbing at 61.4, other absorptions were 61.3 (2H, m), 61.7 (lH, s), 61.1 (2H, S) and 60.9 (2H, q).

Acetylation of SBHU3

About 6mg of SBHU3 was acetylated using pyridine and acetic anhydride. The UV of the acetylated compound gave absorptions quite different from those of SBHU3. $^{\lambda}_{\rm max}$ was at 289nm, and in acid $^{\lambda}_{\rm max}$ was 299nm. There was a shift similar to that observed earlier.

The 1R spectrum showed absorptions at 763 cm⁻¹ and 736 cm⁻¹. These were indicative of 1, 2 - and 1, 2, 3 -trisubstitution patterns of carbazole benzene rings. In the acetate, there was a displacement of the acetylenic bond absorption to a higher value of 2262 cm⁻¹. This was a reflection of steric hinderance imposed on the ethylinic bond by the newly-formed carboxyl group in the acetate.

It also showed strong absorption peaks at 1709 cm⁻¹ (ester), 1634 cm⁻¹ and at 1621 cm⁻¹. There was a great difference in the 1R spectrum here compared to that of SBHU3. The acetylated product contained no peak at 1766 cm⁻¹

The NMR was not well resolved. When spotted along side the original sample, i.e. SBHU3, the $\rm R_{f}^{0.35}$ of the acetylated product was higher and showed a completely different colour under the UV lamps.

The MS of SBHU3 gave non-detectable molecular ion peak but that of a fragment of the dimer. Its acetate however, gave the accurate molecular mass of 498. A comparison of the 1R spectrum of SBHU3 with that of its acetate, coupled with the data obtained from their 1 HNMR spectra led to a molecular formular of $C_{2.8}^H C_{2.7}^N C_{3.0}^0$ for SBHU3.

The acetate of SBHU3 originated from the acetylation of the hydroxyl group resulting from ring opening of the lactone bridge in the ring during reaction.

The molecular weight of SBHU3 was 437. From the above spectra data structure (210) was proposed for SBHU3 and the protons assigned as follows:

Three aromatic protons absorbing at \$8.3 were assigned as H-4, H-5, and H-8 respectively. The relatively downfield NH-9 was assigned the value \$8.5, \$7.79 to H-2, \$7.6 to H-7, \$7.3 to H-6, and H-3. There was a missing downfield absorption value expected for H-1. This fixed the link for a second molecule to the carbazole nucleus at C-1.

The signals for the five methine protons were $H-7^{1}$, $H-8^{1}$, $H-13^{1}$, $H-14^{1}$, and $H-15^{1}$. On the other hand absorptions for the five methylene protons characteristic of $H-4^{1}$, $H-5^{1}$, $H-9^{1}$, $H-10^{1}$ and $H-11^{1}$ were observed. The NH-1 and NH-3

signals overlaped at $\,\delta 5.2$ while the terminal acetylene H-17 appeared as a singlet at $\,\delta 1.7.$

Based on the above spectral data, an N-dimethylated hexahydroiso corymine nucleus consisting of only rings A,B,C and a five-membered ring D with the lactone bridge retained was proposed for the monomer attached to C-1. The monomer, obviously carried the terminal acetylenic linkage at C-14¹.

In the mass spectra of the acetate there was peak m_2^{-1} 43 CH_3^{-1} of relative intensity 100%. This confirmed the presence of the acetate in the molecule. Scheme 17 (below) shows the fragmentation pattern of the monomer joined to the carbazole nucleus at C-1.

Scheme 17

The fragmentation of ion (214) to minor ion (217), all present in the MS of SBHU3 confirmed the identity and the C-14 position of the terminal acetylenic linkage.

Structure of SBHU4

This amorphous glassy compound has an R_f 0.44. The UV spectrum showed absorptions at λ_{max} 250nm, 307nm, and 360nm. In acid λ_{max} absorptions occured at 250nm, 307nm, and 361nm. There was a slight bathochromic shift of 1nm. The absorptions are typical of that of carbazole.

The 1R showed absorptions at 3300 alongside $621\,\mathrm{cm}^{-1}$ indicating presence of aromatic primary amine i.e. the C-3 substituent. Absorption at $3692\,\mathrm{cm}^{-1}$ was due to the OH-8 while that at 3450 cm⁻¹ originated from the presence of N-9-hydrogen bond. There was no ester or lactone carbonyl absorption.

¹H NMR showed ten aromatic protons viz at δ8.6 (1H, d), δ8.45 (2H, dm), δ8.3 (1H, d), δ8.1 (1H, m), δ7.75 (4H, d), and δ7.6 (1H, d). There were other absorptions at δ7.5 (1H, S NH), δ7.4 (2H, d NH₂), δ3.5 (1H), δ3.0 (1H, S-NH), δ2.95 (2H, S), δ2.7 δ2.55, δ2.2 (1H, S, broad), δ1.5, and δ0.9 (S).

The mass spectrum showed molecular weight of 421 $C_{28}H_{27}N_3^{0}$. The double bond equivalent was $\sqrt{17}$. From the above spectra data structure (212) was proposed for SBHU4. The proton absorptions were assigned as follows

(217)

 $\delta 8.6$ was due to H-8, $\delta 8.45$ H-4, H-5, $\delta 8.3$ H-7, $\delta 7.75$ H-1¹, H-2¹, H-10¹ and H-4¹, $\delta 7.6$ H-9¹, $\delta 7.5$ H-9, $\delta 7.40$ NH-3, $\delta 3.5$ H-8¹, $\delta 3.0$ NH-13¹, $\delta 2.95$ H-7¹, $\delta 2.70$ H-11¹, $\delta 2.55$ H-13¹, $\delta 2.2$ OH-8¹, $\delta 1.5$ H-12¹, and $\delta 0.9$ H-14¹. The fragmentation pattern of the molecule is shown below:

lon m | z 220 (84.2%)
C₁₄H₈N.

(221)

C14H10N2.

SBHU4 contained ion 218, which by loss of hydroxyl group afforded 220 m $_{\rm Z}$ 207. The ready conversion of 218 to 222 an isoxazole by loss of protons confirmed the C-3 amino substituent, the C-8 $^{\rm 1}$ position of the hydroxyl group and the position of linkage of the anthracene to the carbazole moeity.

>

By another route, 223 m $_2$ 225 originated from (217). By loss of methylene radical, (217) dehomologated to ion (224) m $_2$ 211 and this by a total loss of both the methylamino-n-propyl and methylene residues left charges on sites C-2 and C-6 of the naphthalene residue leading to the tricyclic hydrocarbon (225) m $_2$ 126. The presence of (225) confirmed the C-2 and C-6 as sites for substituents in rings E and F. Here again, NMR data were supportive. All the expected aromatic signals were prominent. The C-3 1 N-methyl, unexpectedly absorbed at 60.9, a little up-field. The Olefinic cl^1-c2^1 bond protons as expected adsorbed at, 67.5 for two hydrogens as doublet. The above evidence thus confirmed the structure assigned to SBHU4.

CHAPTER 6

CONCLUSION

The method previously described by Adegoke et al⁹⁹ applied and improved in this report had revealed that the different parts of the plant <u>Hunterla umbellata</u> has a very brilliant future in Nigerian folk medicine.

From the seeds, up to date not less than seventeen alkaloids have been isolated; in the present work however only two new ones are reported. From the back, literature appears to be scanty on the number of alkaloids from this source.

The present work had also uncovered four new dimers, and the acetate of one of them, which helped to successfully revive the actual molecular mass of the alkaloid. Work on the leaves appears to have come from this work only except the non-water soluble ericine. In particular the mass fragmentation pattern had helped to reveal the structures proposed for the alkaloids. They are all carbazole alkaloids existing either as monomers or dimers.

The possible uses of these alkaloids for the cure of most tropical diseases become evident from its importance in traditional medicine for the cure of diabetics, stomach ulcer etc. Unfortunately, as useful as these alkaloids are, they are found present in the plant in trace amounts. Therefore further work e.g. absolute configuration inclusive of

stereo-chemistry for each of the ten compounds isolated may take a long time to accomplish before natural seal on the structure via synthesis could be achieved. Money spent in the direction of a thorough examination of this plant will in future certainly pay a great dividend in both orthodox and traditional medicine.

6.2 Why are they water soluble?

Many of the samples isolated were as one would expect from the method of their isolation, soluble in water. This suggests that there are many hydroxyl groups and or NH groups present in the compounds. This prompted an acetylation of two of the samples. The acetylated products were much less polar and therefore very readily soluble in chloroform, which further confirmed that the polarity of the original compound must have diminished.

An alternative explanation for the solubility of some of these compounds in water might arise from the existence in some of them of hydrogen-bonding groups. There are two types of quaternary ammonium indole alkaloids— one containing the unit such as:

in C-calebassine (226) from curare (South American arrow poison), and the other type is of the form $-\sqrt[4]{} = \langle \text{usually within a ring system such as in flavopereivive (yellow) (227)} from <u>Geissospermum</u> leave.$

CHAPTER 7

EXPERIMENTAL

Introduction

Infra-red absorption spectra of samples were ran in spectrometer model 1710 FT- neat and potassium bromide discs. The Proton Magnetic resonance spectra were recorded in ${\rm CD_3OD}$ solution (otherwise stated) with a varian ${\rm 300MH_2}$

instrument (Dimethylsilicon oxide DMSO) as internal reference. The spectra were obtained on DS-55 Mass spectrometry data system at the department of chemistry, University of Manchester, England.

Extraction

Fat components of the seeds, leaves and the bank were first extracted with hot petroleum ether $(40-60^{\circ})$.

The materials were collected by the author directly from the tree (pictures attached at the back of thesis) and were identified in the Botany Department. These materials were thoroughly air-dried for three weeks. The dried pulverized material (leaves, seeds, or bark) was refluxed with petroleum ether for 48 hours. During grinding, care was taken not to inhail the dust to prevent burning sensation in the throat and general weakness.

The petroleum ether extract gave no alkaloid for each of the different plant parts. The crude material (not less than 400 gms in each case) in the soxhlet thimble was then

filtered. The filterate contained both the water-soluble and water-insoluble alkaloids. The filterate gave a positive test for alkaloids, using either Mayer's reagent or Dragendoff reagent.

Aqueous sodium bicarbonate solution (2%) was added to the filtrate until it was basic. The turbid solution was extracted with chloroform to remove the water insoluble alkaloid. The basic aqueous solution which contained the water-soluble alkaloids was tested with Mayer's reagent. It gave a yellow precipitate.

The basic aqueous solution was made acidic using 2% HCL and this was followed by the addition of excess Mayer's reagent. A light yellow precipitate was formed. The precipitate was filtered and the aqueous layer discarded. The precipitate, which contained the water soluble alkaloids as complexes, was left to dry at room temperature for two days.

The water soluble alkaloids formed complexes with the mercuric iodide in Mayer's reagent. The precipitate in ethanol gave a negative result when tested with either Mayer's reagent or Dragendoff reagent.

To release the water soluble alkaloid from the complex, the precipitate was allowed to stand for not less than six weeks on the bench in ethanol at room temperature. Decomposition of the complex really started after five weeks. This was confirmed by testing for presence of alkaloids in the ethanol layer. Occasional agitation of the mixture by shaking also aided the rate of decomposition of the complex.

The ethanol layer was removed by filtering off the remaining undecomposed complex. Hydrogen sulfide gas was passed into the ethanol solution to precipitate out the remaining mercury as mercuric sulfide. The black precipitate obtained was filtered off, and the ethanol solution allowed to stand and then concentrated. This was then passed through an amberlite resin in 10% Kl (50 gms for each gm of extract) several times to remove any traces of mercury 'Evaporation of the ethanol gave the crude mixture of water soluble alkaloids from the seeds, leaves or bark extract.

After separation of the crule mix ures, pure samples obtained were all glassy but gummy materials and so no melting point was recorded.

H NMR spectra were determined in CD30D or DMS0 at 300mHz. In each case tetramethylsilane was used as the internal reference. IR spectra were taken in NaCl or KBr pellets and ELMS at 70eV. All the UV spectra were run in ethanol and each run repeated after an addition of one drop of concentrated HCL. All the UV and IR spectra were carried at the department of Chemistry of Chemistry, University of Manchester, England. The NMR and mass spectra were run by the technicians in the same University.

The Seeds

From 2,400gm of seed, only 14.6gm of water soluble alkaloids were obtained. This value is about 0.61% of the dried plant material. The water insoluble alkaloid obtained

from this extract was 10gm, about 0.42% of the dried plant material. The water insoluble alkaloid crystallized out as a brown powder using petroleum ether $40 - 60^{\circ}$ while the watersoluble alkaloid gave a black solid after evaporating off the ethanol.

The black solid, water soluble alkaloid was tested with water: it dissolved. A small portion of it was added to 2% Hcl this solution with drops of Dragendoff reagent, gave an orange precipitate. A little of the solid was added to a mixture of methanol and concentrated nitric acid: a red colour was obtained, which faded away on standing. A solution of the solid alkaloid was tested with ferric chloride reagent and it gave a yellow precipitate. The foregoing tests confirmed that the black solid was an alkaloid soluble in water.

A little of the black solid was dissolved in methanol spotted on a thin layer chromatography plate and then developed in a tank containing mixture of n-butanol, ammonia and water in the ratio (15:1:0.5). This was the only polar solvent mixture that gave good separation of the components of the water soluble alkaloids of the seed. Four spots having various $R_{\rm f}$ values were obtained.

A narrow colum (for chromatography was prepared using neutral alumina (60-70) mesh). This alumina was first deactivated using 5% glacial acetic acid. To every 90gms of alumina, slurry 10ml of 5% glacial acetic acid was added in a dry bottle and shaken for sometime. Deactivation reduced the basicity of the alumina used.

At the bottom of the column was placed glass wool, followed by sand. The deactivated alumina was poured inside the thin column as a slurry in petroleum ether. As the mixture of alumina and petroleum ether was poured inside the column slowly the tap was also opened to allow the petroleum ether to drop. Occasionally the column was tapped for smooth package. The column was 2/3 filled with alumina. Then it was covered with thin layer of sand. The level of solvent was always maintained above that of the sand.

The black solid 14.6gm from the seed was only soluble in methanol giving greenish yellow solution. After dissolving in the minimum amount of solvent (10ml of methanol), it was poured on the column. The mixture was absorbed in the column then eluted with diethylether nothing was obtained, with ethyl acetate nothing was eluted, with methanol many fractions were collected but these were found to be mixtures when spotted on thin layer plates.

Similar fractions, after spotting were merged and put on preparative thin layer plates for separation using a mixture of n-butanol concentrated ammonia and water in ratio (15:1:0.5). Commercial thin layer plates were used and others prepared. The latter were obtained by mixing silica gel with water and spreading this quickly and uniformly over a rectangular thin plate.

Three different compounds were detected using UV lamps and plate isolated from the TLC by scrapping bands off and extracting the alkaloid off the silica using methanol. The methanol extract after evaporation gave the alkaloids together with some silica. The latter was removed by redissolving in chloroform and adding a drop of methanol.

SSHU1 is a Light brown R_f 056

I.R. in Chloroform

Absorption at 1728 cm $^{-1}$ (COOH); 1677 cm $^{-1}$ (C = 0) and 1596 cm $^{-1}$ benzene.

Yield of the guming product was 3.5mg.

MS m|_z (rel. lnt.) 418 (M⁺) $C_{27}^{H}{}_{18}^{N}{}_{20}^{0}{}_{3}$, 211 (56.6) $C_{14}^{H}{}_{13}^{N0}$, 210 (88.6) $C_{14}^{H}{}_{12}^{N0}$, 157 (8.4) $C_{10}^{H}{}_{7}^{N0}$, 209 (88.5) $C_{13}^{H}{}_{7}^{N0}{}_{2}$, 165 (4.6) $C_{12}^{H}{}_{7}^{N}$, 166 (3.6) $C_{12}^{H}{}_{8}^{N}$, 140 (44.1) $C_{11}^{H}{}_{8}^{N}$, 109 (11.5) $C_{6}^{H}{}_{5}^{0}{}_{2}$, 65 (20.7) $C_{5}^{H}{}_{5}$ and 70 (62.1) $C_{3}^{H}{}_{2}^{0}{}_{2}$.

SSHU3

This was found to be mercuric lodide from the mass spectrum. Pure mercuric lodide was spotted along side with the compound. They both gave the same R_f value of 0.8 and the same colour under UV lamps. The UV spectrum of mercuric iodide was run in ethanol, and was found almost identical to that of SSHU3. There is protonation when a drop of concentrated hydrochloric acid was added to the ethanolic solution of SSHU3 and the UV run. But in the case of mercuric lodide there was no protonation. This shows that there was a trace of organic compound in SSHU3 but the majority was mercuric lodide.

The mercuric iodide must have come in from the reagent used in precipitating the complex. Removal of mercuric iodide from the other subsequent extract from the leaves and back were overcome by scraping off all those bands having $R_{\hat{f}}$ value of 0.8 and the colour of mercuric iodide under the UV lamps.

SSHU4 is a Light Yellow glassy solid, the yield was 1.5mg.

1R in Chloroform

Absorptions at $1635 \text{ cm}^{-1} (-0\text{CH}_3 \text{ ester})$, 1660 cm^{-1}

NMR in CD_3^{0D} See Table 2.

115 (22.9) $C_8^H_6^N$ and 29 (48) $C_2^H_5$.

Table 1
UV. data for SSHU1 & SSHU4 IN ETHANOL

			<u> </u>
SSHUl ^λ max	SSHU l with one drop of HC% max	SSHU 4	sshu 4 with one drop of HCL
220			
264	264	260	261
271	271	·	
284	289	÷	
·		386	436

lHNMR data for SSHUl and SSHU4 Table 2

		:
<u> </u>	SSHUl (DMSO) &	SSHU4 (CD ₃ CD) δ
H-2		
H-3	$1.7d J = 2H_z$	2.5 br.
H-4	 	'',
H-5	7.6q.	
H-6	7.6q	$7.1t J = 2H_2$
н-7	7.5m. $J = 2H_z$ and $2H_z$	$7.36d J = 2H_z$
H-8	7.8d J = 2H _z	7.96s
H-9	7.ls	5.6br.
H-10	3.6s	2.90s
H-11	3.9d $J = 2H_z$	3.7s
$H-1^1$	1.1s	3.7
H-2 ¹		
H-3 ¹	3.1t $J = 2H_z$ and $6H_z$	3.62
$H-4^{1}$	1.4t $J = 2H_z$ and $2H_z$	1.50d
H-6 ¹		
H-7 ¹	7.35s	$6.8d J = 2H_Z$
H-8 ¹	$7.8d J = 2H_z$	$7.42d J = 2H_z$
H-9 ¹		4.0 br
H-10 ¹		$2.85d J = 4H_{Z}$
H-11 ¹		

The Leaves

From 400grams of the pulverized leaves 5.6 grams of water soluble alkaloids were obtained as green powder. This amount is about 1.4% of the starting material. The extract from the leaves was the last examined. As experienced from the separation of the seed and bark water soluble alkaloids, the compounds in the leave extract were polar. The only solvent mixture that gave good separation was methanol and amonia in the ratio 15:1.

All preliminary tests for solubility in water and all tests for alkaloid mentioned above for the seed extract were carried out. They all gave positive results. TLC in methanol: concentrated ammonia (ratio 15:1) indicated six, well separated spots. Like the seed, the sixth spot was identical to mercuric iodide. A pure sample of which was spotted along the original alkaloid mixture. Good separation could not be achieved by column chromatography so the leave extracts were dissolved in methanol (5 mg in 2ml of methanol) and put on TLC plates. Each plate was spotted with 500mg of the extract. The plates were eluted in a tank of methanol and concentrated ammonia (15:1). Six different bands were obtained.

After scraping each silica band was extracted with chloroform, and then filtered. Five different but similar compounds from each plate viewed under the UV lamps (360nm, and 254nm) were obtained. Similar components were recombined and each spotted. They all gave single spots of different $R_{\rm f}$ values with little impurities. Each fraction was put on

a small column, the size of a small test-table.

In the column was cotton wool, sand and kiese ghur 60, 230-400 mesh. For every 1mg of compound, five times the value of kieselghur was used. The eluting solvent was a mixture of methanol and concentrated ammonia (15:1). The compound was also dissolved in this mixture. To every 20mg, 0.5ml of solvent was used. This method of separation gave very pure compounds. The physical data of the five different compounds obtained are as given below.

SLHU1

This is water soluble leave <u>Hunteria</u> <u>umbellara</u> 1. Yield was 9.1mg, $R_f = 0.18$. It is a brown solid.

1R ln Chroloform

Absorption at 3705 cm $^{-1}$ (0H), 3584 cm $^{-1}$ (0H), 1706 cm $^{-1}$ ($\alpha\beta$ -unsaturated carbonyl), 1631 (benzene ring) and at 1213 cm $^{-1}$ (Ar0H).

MS m_{|z} (rel. Int) 348 (M⁺) $C_{21}^{H}_{20}^{N}_{23}^{0}$, 212 (45) $C_{13}^{H}_{10}^{N0}_{2}$, 129 (18.5) $C_{9}^{H}_{7}^{N}$, 83 (43.4) $C_{4}^{H}_{3}^{0}_{2}$, 115 (18.6) $C_{8}^{H}_{5}^{N}$, 101 (17.1) $C_{8}^{H}_{5}$, 122 (33.9) $C_{8}^{H}_{10}^{0}$, 94 (36) $C_{7}^{H}_{10}$

SLHU3

This is water soluble leave alkaloid Hunteria umbellata 3. Yield was 18.1mg $R_f=0.4$. It is brown in colour.

The quantity obtained was relatively high. The compound was acetylated using 6.8mg of the alkaloid. The whole SLHU3 was dissolved in methanol and few drops were transferred by means of a dropping pipette into a weighed dry round bottom flask. The methanol was evaporated off using rotary evaporator. The flask was reweighed with the sample in it. The weight of SLHU3 in the flask was 6.8mg. 1ml of a mixture of acetic anhydride and pyridine (1:1) was added, and the solution shaken and allowed to stand at room temperature for 12 hours. All the compound dissolved giving a brown solution.

The acetic anhydride and pyridine were evaporated off without heating using a high vacuum pump at Cg. 0.5mm Hg. The resulting brown solid was worked up by adding 5ml of distilled water and a small quantity of potassium bicarbonate (solid). The potassium bicarbonate was added to neutralise the acetic acid formed in the reaction. The acetylated alkaloid was extracted with chloroform. The chloroform layer was washed twice with distilled water, and dried over anhydrous magnesium sulfate. The chloroform was evaporated off. The ester was spotted along side with the starting material. It gave the same R value but different colour under the UV lamps. starting material was light blue but the ester gave a deep blue colour. The UV spectrum was run in ethanol and in dilute hydrochloric acid, and the spectrum compared with that of the starting material. There was a big difference.

of the ester showed absorption corresponding to the new ester. The foregoing data showed that SLHU3 was acetylated.

1R ln Chloroform

Absorptions at 1703 cm $^{-1}$, 1633 cm $^{-1}$ typical and similar to that of SLHU1, at 754 cm $^{-1}$ (an ortho-disubstituted benzene).

MS m|_z (rel. lnt) 348 M⁺ ($^{\rm C}_{21}^{\rm H}_{20}^{\rm N}_{20}^{\rm O}_{3}$. 168 (50.5) $^{\rm C}_{8}^{\rm H}_{10}^{\rm NO}_{3}$, 140 (13.3) $^{\rm C}_{7}^{\rm H}_{10}^{\rm NO}_{2}$, 124 (32.9) $^{\rm C}_{7}^{\rm H}_{10}^{\rm NO}$, 40 (61) $^{\rm C}_{2}^{\rm H}_{2}^{\rm N}$, and 69 (43) $^{\rm C}_{4}^{\rm H}_{5}^{\rm O}$.

ESLHU3

This is ester of water soluble leave <u>Hunteria umbellata</u> 3. Yield was 12.3mg, $R_f = 0.4$

lR in Chloroform

Absorption at 1.055 cm⁻¹ (-C-0-C), 1674 cm⁻¹.

NMR was not well resolved. MS m_z (ref. lnt) 391 (M⁺) $C_{23}^{H}_{23}^{N}_{23}^{0}_{4}^{0}$ (100) $C_{2}^{H}_{3}^{0}$, 166 (25), 168 (69.3), 140 (33.5), 124 (57.1) and 69 (53.5).

SLHU4

This is water soluble leave <u>Hunteria</u> <u>umbellata</u> 4. Yield was 6.2 mg, $R_f = 0.52$. It is glassy pale brown solid.

lR ln Chloroform

Absorption at 1706 cm⁻¹ (c = 0), and 1633 cm⁻¹ (benzene)

MS m|_z (rel. lnt) 411 (M⁺) $C_{26}^{H}_{25}^{N}_{30}^{0}_{2}$, 224 (20.4) $C_{14}^{H}_{10}^{N0}_{2}$, 59 (31.9) $C_{2}^{H}_{30}^{0}_{2}$, 165 (6.7) $C_{12}^{H}_{7}^{N}$, 121 (20.7) $C_{8}^{H}_{11}^{N}$, 185 (7.0) $C_{12}^{H}_{13}^{N}_{2}$, 68 (45) $C_{4}^{H}_{6}^{N}$.

SLHU5

This is water soluble leave <u>Hunteria umbellata</u> 5. Yield 3.1mg, $R_f = 0.39$ it is brown glassy solid.

1R ln Chloroform.

Absorption at 3788 cm $^{-1}$ (OH), 2851 cm $^{-1}$ (OCH $_3$), 1704 cm $^{-1}$ ($\alpha\beta$ -unsaturated carbonyl), 1633 cm $^{-1}$ (aromatic ring), 1339 cm $^{-1}$ (= C - C - NH $_2$), 1064 cm $^{-1}$ (OCH $_3$) 88cm $^{-1}$ (1,2,4,5, tetra substituted benzene), and 780cm $^{-1}$ (ortho disubstituted benzene).

MS M|_z (rel. lnt.) 320 (M⁺) $C_{19}^{H}_{16}^{N}_{20}^{0}_{3}$. 272 (35.3) $C_{18}^{H}_{10}^{N0}_{2}$, 124 (11.9) $C_{6}^{H}_{6}^{N0}_{2}$, 107 (18.6) $C_{6}^{H}_{30}^{0}_{2}$, and 91 (32.5) $C_{6}^{H}_{30}^{0}$,

Table 4: UV data for SLHU1, SLHU3, SLHU4, SLHU5 IN EETHANOL

(E	SLHUl thanol) ^{\lambda'} max	SLHU 1 with one drop of HC 2	SLHU3 ^{\lambda} max	SLHU3 with one drop of HC% ^\ max	SLHU4 ^{\lambda} max	SLHU4 with one drop of HC1 \(\lambda\) max	SLHU 5	SLHU 5 with one drop of HC1 ^{\(\lambda\)} max	SLHU 3 Acetate ^{\(\lambda\)} max	SLHU3 Acetate with one drop of HC% hmax
	251	251	251	251	227	225	220	228		
4					265	264	266	265		298
154	308	307	308	308	320	319	321	319		306
	319	369	368	368	385	380	384	380	340	
			429	430						

.

7

. 🎓

155
Table 4: HNMR data for SLHU1, SLHU3, SLHU4 and SLHU5

				
	SLHU 1 (CD ₃ OD)δ	SLHU3	SLHU4 (CD ₃ OD)8	SLHU5 8
H-1		8.50d J=2H ₂		8.4q J=1H _z ,6H and 1H _z
OH - 1	3.8			2
H-2		7.8d J=1H ₂	ļ	-
OH-2				4.0 br
H-3	7.5d J=2H _z	7.5t $J=1H_z$, and $1H_z$	7.75s	·
H-4			$6.7d J=2H_Z$	7.75s
OH - 4	3.85		2	
H-5	8.4d J=2H	8.4d J=2H	$8.4d$ J= $2H_z$	7.6t $J=2H_z$ and $2H_z$
H-6	7.8d $J=2H_{Z}^{2}$	7.8d J=1H _z	. –	$6.7d J = 2H_z$
H-7	8.5t J=2H _z and 2H _z	$7.8d J=1H_z$	-	$7.1d J = 2H_Z^2$
H-8	7.8d J=2H _Z	8.50d J=2H _z	$8.5d J=2H_{2}$	$8.4q$ J=1 _z , $6H_z$ and $1H_z$
H-9		2.4s	4.0 br	2.21 br
NCH ₃ -9	3.8s			
CH ₃ -9		2.40s	,	
H-11		-	3.8s	
$H-2^{\perp}$	5.35		2.3 br	
NH ₂ -2 ¹		2.5 br		1.09d
OCH ₃ -3 ¹ H-4 ¹				3.8
	5.5 br		1.45d $J=2H_Z$	$4.6 \text{m J} = 4 \text{H}_{Z}$
OCH ₃ -4 ¹		3.8		.
H-5 ¹	3.95		1.45d J=2H _Z	2.5 br
OH-5 ¹	•	4.70 br	~	
H-6 ¹ CH ₃ -6 ¹		1.3	1.45d $J=2H_{z}$	
CH ₃ -6 ¹	3.8s	$1.45d J = 1H_z$		
CH-61	٠	1.09s		
NH-6 ¹	2.0 br			
NCH ₃ -6 ¹	1.30s			
H-71				1.45m
H-8 ¹				1.45m
H-9 ¹		ţ		2.5s
H-10 ¹		į		0.89d J=2H ₂
H-11 ¹		į		4.6d J=2H ₂
$H-12^1$,	1.9s

The Bark

From 784 grams of the pulverized bark, 6.17 grams of water soluble alkaloids were obtained. 1.75 grams of water insoluble alkaloids were also obtained. The water soluble alkaloid was 0.79% of the starting material while the insoluble one was 0.22%. On the whole the water soluble alkaloids present were in greater quantity in all the three different parts (seeds, leaves and bark) of the plant than the water insoluble alkaloids.

The water soluble alkaloids from the bark was a light yellow powder, obtained after evaporating off the ethanol. Preliminary tests for alkaloid and solubility test were carried out as earlier described. The light yellow powder gave positive tests for alkaloid and it was readily soluble in water.

Cood separation of the components was achieved on a TLC plate by eluting with a mixture of 1% triethyl amine in methanol and ethnol (i.e. methanol: Ethanol: triethylamine (49.5: 49.5:1). On TLC, it gave five different spots. The one with the highest R_f value was also found to be mercuric iodide. The extract from the bark was also passed through a column of deactivated Alumina. It is quite interesting to note that a lot of compound was eluted with diethylether unlike that of the seed and no compound was eluted from column with ehyl acetate.

Fractions from column came out to be mixtures which were separated on TLC using the solvent mixture of 1% triethylamine, methanol and ethanol. After extraction from

silica, similar fractions from different plates were spotted together before marging. Four different compounds were isolated.

SBHU1

This is water soluble, extract from the bark <u>Hunteria</u> umbellata 1. Yield 5.6mg, $R_f = 0.22$.

1R ln Chloroform

Absorptions at 3756 cm^{-1} (OH), 1723 cm^{-1} , 1638 cm^{-1} (aromatic ring).

MS m|_z (rel. lnt). 427 (M⁺) $C_{27}^{H}_{29}^{N}_{30}^{0}_{2}$, 166 (6.0) $C_{12}^{H}_{18}^{N}$, 167 (44.8) $C_{12}^{H}_{9}^{N}$, 261 (20.9) $C_{15}^{H}_{21}^{N}_{20}^{0}_{2}$, 260 (70.1) $C_{15}^{H}_{20}^{N}_{20}^{0}_{2}$, 246 (41.5) $C_{14}^{H}_{18}^{N}_{20}^{0}_{2}$, 220 (20.2) $C_{12}^{C}_{16}^{N}_{20}^{0}_{2}$, 177 (23.3) $C_{9}^{H}_{0}^{N}_{20}^{0}_{2}$, 149 (32.5) $C_{8}^{H}_{10}^{N}_{20}^{0}_{2}$ and 107 (23) $C_{7}^{H}_{7}^{0}$.

SHBU2

This is water soluble bark extract from the bark of Hunteria umbellata 2.

1R ln Chloroform

Absorption at 3446 cm⁻¹ (OH), 2924 cm⁻¹ (CH₃)

MS m $|_{z}$ (rel. lnt) 455 (M⁺) $C_{26}H_{21}N_{3}O_{5}$.

205 (17.5) $C_{14}^{H_{7}N0}$, 188 (5.1) $C_{10}^{H_{8}N_{2}0_{2}}$, 266 (18.5) $C_{15}^{H_{12}N0_{3}}$

186 (6.7) $C_{10}^{H_6}N_2^{0}_2$, 189 (13.4) $C_{10}^{H_9}N_2^{0}_2$, 166 (8.1) $C_8^{H_1}0^{N_2}_2^{0}_2$, and 149 (5.4) $C_8^{H_7}N_2^{0}_2$.

SBHU3

This was the water soluble extract from the bark of Hunteria umbellata and is hereby named SBHU3. Yield 18,6mg $R_{\rm f}$ = 0.09.

1R 1n Chloroform

Absorptions at 1766 cm⁻¹ (lactone bridge carbonyl 1629 cm⁻¹ (benzene), 2250 cm⁻¹ (C \equiv CH).

MS m|_Z (rel. lnt.) $168 (17.0) C_{11} E_{8} N_{2}$, 44 (83.0) $C_{0_{2}}$, 53 (12.7) $C_{4} H_{5}$, 55 (46.3) $C_{4} H_{7}$, 57 (43) $C_{4} H_{9}$

The quantity obtained was relatively large so acetylation was attempted as described for SLHU3, 5.8mg was used for the acetylation. The acetylated product when spotted along side the starting material gave one spot, different in colour from the starting material. The starting material was light blue under the two UV lamps while the acetylated product was brown. The R_f value of the acetylated product was different from that of the starting material.

ESBHU3

This was the ester of water soluble extract from the bark of <u>Hunteria umbellata</u> and is hereby named <u>ESBHU3</u>. Yield was 12.3mg $R_f = 0.35$ that of starting material was 0.09.

1R ln Chloroform

Absorption at 1709 cm $^{-1}$ (acetate) and 1621 cm $^{-1}$ (benzene).

SBHU4

This is water soluble bark <u>Hunteria umbellata 4.</u> Yield was 6.8m , $R_f=0.44$. It is amorphus glassy compound.

1R ln Chloroform

Absorptions at 3406 cm $^{-1}$ (OH), 1585 cm $^{-1}$ (benzene when further conjugated).

MS m|_z (rel. lnt). 421 M[†] C 28 H₂₇N₃0. 223 (18.3) C 14 H₁₁N₂0, 207 (13.6) C 14 H₁₂N₂, 220 (84.2) C 18 H₈N₂0, 211 (53.3) C 14 H₁₇N, and 126 (16) C 10 H₆.

Table 5: UV data for SBHU1, SHBU2, SBHU3, SBHU3, SBHU3 Acetate SBHU4

IN ETHANOL

SBHU 1 max (ethanol)	SBHUl with one drop of HCl max	SBHU 2 ^λ max	SBHU 2 with one drop of HCL hmax	SBHU 3	SBHU3 with one drop of HC2 ^{\lambda} max	SBHU 3 Acetate ^A max	SBHU 3 Acetate with one drop of HC1	SBHU 4 ^À max	SBHU 4 with one drop of HCL hmax
		216	215	218	218				
253	253	255	255	252	253			250	250
307	307		304	307	369	289	299	307	307
367	368			366				360	361

Table 6: 1 HNMR data for SBHU1, SBHU2, SBHU3, SBHU3 Acetate and SBHU4

•			·,		
	SBHU 1 (CD,OD)&	SBHU 2 (CD,OD)8	ѕвни з	SBHU 3 Acetate	SBHU4 (DMSO)8
H-2	8.45d J=2H _Z		7.75d J=8H	7.74d	
H-3	7-5d J=2H and	7.4m	7.30m J=8H _Z	7.30m	
	6H _z		Z		
$^{ m NH}_{2}^{-3}$				7.40q	_
H-4	$8.45d$ $J=2H_Z$	7.8t	8.30q	8.3q	8.45m
H-5	8.45d J=2H _z	7.8t	8.3q	8.3q	8.45d
H-6	7.8q	7.4m	7.3m	7.3m	8.10m
H-7	7.8q	7.7t	7.6m	7.6m	8.3d
H-8	8.55q J=8H _Z	8.6s	8.3q	8.3q	8.6d
H-9	5.40q	4.1br	8.5d J=6H ₂	8,55	7.5d
)H-10		2,2br	. ~		
H-11		3.75s			
H-12		3. 55s			
H-1 ¹	$5.4d$ J=2H $_2$	4.0 br	5.15d		7.75q
H-2 ¹	1.9m	4,35q			7.75q
NH-2 ¹	1.8d				
H-3 ¹	3.8m	4.25d	5.15m J=12H _Z		
H-4 ¹	2.3	2.27s	2.4		7.75q
H-5 ¹			1.4d J=6H ₂	1,6d .	
H-6 ¹	7.5m			-	
H-7 ¹	7.8q		1.4d J=6H _z	1,6a	2.95s
OH-7 ¹		2.37t			2.25 br
· н-8 ¹	8.55q		$1.4d J=6H_z$	1,6d	3.5
OH-8 ¹		2.37t			2.25br
H-9 ¹	1.7d J=6H _z	4.0d	1.1s	1.1s	7.60s
H-10 ¹	1.3q	2,27	0.9q	0.9q	7.75q
H-11 ¹	3.6t		1.3m	1.3m	2.70
H-12 ¹ H-13 ¹	5.4d J=2Hz	ł			1.5
н-13 Он-13 ¹	6.0-	1			2.55
NH-13 ¹	6.0q		.		
H-14 ¹	5 0 4 T C"	1			3.0m
H-14 H-15 ¹	5.2d J=6H ₂		1.4d J=6H _z	1.6q	0.9s
H-17 ¹		1			
11-1/			1.7s	1.7s	ļ

SUMMARY

Yields

SSHU 1	3.1mg	}			
SSHU 2	0.7	} }	5.3mg	from	original
SSHU 4	1.5	;			

14.6gm crude water-soluble alkaloid.

SLHU	1	- 9.1 mg	}	
SLHU	2	4.5 mg	} } }	41 mg from an original 5.6 gm
SLHU	3	18.1	}	crude water-soluble alkaloid.
SLHU	4	6.2	}	•
SLHU	5	3.1	}	
				•
SBHU	1	5.8 mg	}	
SBHU	2	4.1	}	35.3 mg from an original 6.17 gm.
SBHU	3	18.6	} }	crude water soluble alkaloid.
SBHU	4	6.8	}	

The highest yield (1.4% of dry weight) was obtained from the leaves compared with 0.42% from the seed and 0.22% from the bark. It seems likely that with improved techniques, considerably larger quantities of pure alkaloids could now be obtained from the crude mixture. Fowever it has now been shown clearly that several, separable alkaloids can be obtained by the methods described in this work.

REFERENCES

- 1. G. A. Cordell. Introduction to Alkaloids, 1 (1981).
- 2. G. A. Cordell. Introduction to Alkaloids 2 (1981).
- 3. G. A. Swan, An Introduction to the Alkaloids, Wiley, New York, (1967).
- 4. W. I. Taylor and N. R. Farnsworth, The Catharanthus.
 Alkaloids, Marcel Dekker, New York, 5 (1975).
- 5. M. Harada and Y. Ozaki, <u>Yakugakuzasshi</u> 92 1540 (1972) [Chem. Abstr. 76 42002b (1972)]
- 6. S. Murayama, M. Harada, Y. Ozaki and T. Suzuku, Jap. J. Pharmacol. 23, Suppl. 21 (1973).
- 7. M. Harada and Y. Ozaki Chem. Pharm. Bull. 24, 211 (1976).
- 8. H. F. Benth, Arch. Expo. Pathol. Pharmakol, 82, 229 (1956).
- 9. V. S. Gasilin, A. I. Romanov, I. I. Bykov and V.I. Palli, Kardiologiya 17, 5, (1977).
- 10. T. Ban., Jap. J. Pharmacol, 27, 865 (1977).
- 11. H. Schmitt and H. Schimitt, Arch. Intern. Pharmacodyn, 127, 163 (1960).
- 12. O. Visioli, G. Botti, A. Chizzodi, and F. Barbaresi,
 Ateneo Parmense, Sez, 1, 37, 21, (1966), [Chem. Abstr. 65,
 7836 e (1966)].
- 13. K. Kleinsorge and P. Gaida, Klin. Wochenchr, 40, 149, (1962).
- 14. W. Erdmann, W. Braun, J. H. Halsey, S. Kunke and W. Nix, Adv. Exp. Med. Biol. 75, 391 (1976).

- 15. H. P. Kuermerle, E. R. Garrett, and K. H. Spitzy,
 Klinische, Pharmakologic and Pharmakotherapie, Urban and
 Schwarzenberg, Munchen-Berlin-Wien, (1973).
- 16. J. Boudouresques, Mediterranee Med. 1, 65, (1973).
- 17. P. Oury and G. Duche, Gaz. Med. Fr. 77 5322 (1970).
- 18.(a)L. Over J. Livy, J. LeMen, M-M Janwt, H. Budzikiewicz, and Djerassi.
 - (b) J. L. Ponsset, J. Poisson, L. Oliver, J. Le Menand, M-M. Janot, C. R. Hebd. Seances Acad. Sci. 261 5538, (1965).
 - (c) L.Oliver, J. Levy, J. DeMen, M-M, Janot, H. Budzikiewicz and C. Dyerassi, Bull. Soc. Chim, Fr. 868 (1965)
 - (d) M. D. Maindreville, L. Ie Men-Oliver, J. Levy, and J. Le Men, C. R. Kebd., Seances Acad. Sci. Ser. C. 280 131, (1975).
- 19(a) J. Levy and M. M. Janot, Bull. Soc. Chim. Fr. 1658 (1961).
 - (b) J. A. Joule and Smith, J. Chem. Soc. 312 (1962).
 - (c) T. A. Henry and T. M. Sharp, J. Chem. Soc. 1927, (1950).
- 20(a) L. Oliver, J. Levy, J. LeMen, M.-M Janot, C. Djerassi,
 H. Budzikiewicz, J. M. Wilson, and L. J. Durham, <u>Bull Soc.</u>
 Chim. Fr. 646 (1963).
 - (b) A. Z. Briteen, J. A. Joule and G. F. Smith, <u>Tetrahedron</u>
 23, 1967 (1971).
- 21(a) S. Mamatas Kalamaras, T. Sovenet, C. Thai and P. Potlier

 Photo Chemistry 14, 1849 (1975).
 - (b) J. P. Kutney, J. Trotter, R. A. Pauptit, B. R. Worth and P. Sierra., Heterocycles 14, 1309 (1980).
 - (c) R. A. Pauptit and J. Trotter, Can. J. Chem. 59 1007 (1981).

- M. Manohar and S. Rameseshan, <u>Tetrahedron Lett</u>. 814 (1961).
- 23(a) C. W. L. Bewan, N. B. Patel, J. M. Rowson, A.H. Rus,
 D. R. Harris, M. L. Marshak and H. H. Mills, Chem. Ind.
 (London) 603 (1965).
 - (b) C. W. L. Bevan, M. B. Patel, A. H. Rees and A. G. London, Tetrahedron, 23, 3809, (1967).
- 24(a) B. W. Bycroft, M. Hesse and H. Schmid., [Chim Acta 48 1598 (1965)]
 - (b) F. Heatley, D. I. Bishop, and J. A. Joule, J. Chem Soc.

 Perkin Trans. 2, 725, (1981).
- 25. Y. Morita, M. Herse and H. Schmid, Helv. Chim. Acta 51 1438 (1968).
- 26. C. G. Palmer, A. K. Warren, and P. J. Simpson., <u>Cancer</u> Chemother <u>Rep.</u> 1 31 (1963)
- 27. L. J. Journey J. Burdman, and P. George, <u>Cancer</u>
 <u>Chemother</u>. Rep. 52 509 (1968).
- 28. A. Krishan, <u>J. Natl. Cancer Inst.</u> 41 581 (1968).
- 29. S. E. Malawista, H. Sato, and K. G. Bensch <u>Science</u>, 160, 770, (1968)
- 30. I. S. Johnson, J. G. Armstrong, M. Gorman, and J. P. Burnett., Jr. Cancer Res. 23, 1390 (1963).
- 31. W. A. Creasey in F. Han, Ed., Antibiotics V. Springer-Verlag, New York, Heidelberg Berlin 144, (1979).
- 32. H. Madoe-Jones and F. Mauro J. Cell Physiol. 72
 185, (1968).
- 33. S. G. Sandler, W. Tobin, and E. S. Henderson, <u>Neurology</u>

 19, 367, (1969).

- 34. E. B. Casey, P. M. Fullerton, and A. W. Jellife, Clin. Sci. 38 23P (1970).
- 35. J. G. Mcleod and R. Penny, J. Neurol, <u>Neurosurg</u>,

 Psychiatr 32 297 (1969).
- R. Yasin, B. P. Hugheo, and J. A. Parker, Lab. Invest.
 29, 207, (1973).
- 37. N. Degraeve, Mutation Res. <u>55</u> 31, (1978).
- 38. J. Wolff and B. Bhattacharyya, Ann. N. Y. Acad Sci. 253, 763 (1975).
- 39. P. E. Lac y, S, L, Howell, D. A. Young, and C, J. Fink Nature 219, 1177 (1968).
- 40. A. M. Capponi and M. B. Vallotton, <u>Circulation Res.</u>
 39, 200 (1976).
- 41. L. Orci, Y. Lemarchand, A. Singh, F. Assimacopoulos-Jennet, C. H. Rouiller, and B. Jeanrenand., Nature 244, 30, (1973).
- 42. E. W. Kingsbury and H. Voelz, Science 166, 768 (1969).
- 43. B. Swedlow and W. A. Creasey, Blochem. Pharmacol, 24, 1243 (1975).
- 44. L. Angenot, M. Dubois, Ch. Ginion, W. Van Dorseer, and A Dresse, Arch. Intern. Pharma Codyn 215, 246, (1975).
- 45. N. R. Farnsworth, R. N. Blomster, and J.P. Buckley, J. Pharm. Sci. 56, 23 (1967)
- 46. J. P. Kutney, D. E. Gregonis, R. Imhef, I. Hoh, and E. Jahngen, J. Am. Chem. Soc. 97 5013, (1975).
- 47. N. Laglois, F. Gueritte, Y. Langlois, and P. Potier J. Am. Chem. Soc. 98 7011 (1976).

- 48. M. R. Adelman, G. G. Borisy, M. L. Shelanski, R. C. Weisenberg and E. W. Taylor, Fed. Proc. 27 1186, (1968)
- 49. J. B. Olmsted and G. G. Borisy, <u>Ann. Rev. Biochem.</u> 42, 507 (1973).
- 50. B. Burnside, Ann. N. Y. Acad. Sci. 253, 14, (19/5).
- 51. L. Margulius, L. To, and D. Chases, Science 200, 1118, (1978).
- 52. D. S. Smith, V. Jarlfors, and B. Cameron, <u>Ann. N. Y.</u>
 Acad. Sci., 253, 472, (1975)
- 53. R. L. Margolis, L. Wilson, and B. I. Kiefer., Nature 272, 450, (1978).
- 54. F. Zavala, D. Guenard, and P. Potier., Experimentatia 34, 1487 (19/8).
- 55. L. Wilson, <u>Life Sci</u>. <u>17</u>, 303 (1975).
- 56. B. Bryan, Biochemistry 11, 2611 (1972).
- 57. R. J. Owellen, C. A. Hartke, R. M. Dickerson, and F. O. Hains., Cancer Res. 36, 1499, (1976)
- 58. H. Schmitt and R. Kram, Exp. Cell Res. 115, 408, (1978)
- 59. P. Sherline, K. Shiavone, and S. Brocato, Science 205, 593, (1979).
- 60. W. A. Cresey, in F. Hagn, Ed., Antibiotics V., Springer-Verlag, New York, Heidelberg, Berling 414, (1979).
- 61. P. Obrecht and N. E. Fuseniy, Eur, J. Cancer 2, 109, (1966).
- 62. M. J. Cline, Brit. J. Haematol, 14, 21, (1968).,
- 63. G. D. Roodman, J. J. Hutton, and F. J. Bollum Exp. Cell Res. 91, 269 (1975).

- 64. E. Masciteili Coriandoli and P. Lanzani Arzneimittelforsch, 13, 4011 (1963.
- 65. E. Gillespie, R. J. Levine, and S. E. Malawiston, J. Pharmacol. Exp. Ther. 164, 158, (1968).
- 66. M. Kotani <u>Cancer</u> Res. <u>38</u>, 3094, (1978).
- 67. D. W. Donigian and R. J. Owellen, Biochem. Pharmacol 22, 2113, (1973).
- 68. H. F. Hebden, J. R. Hadfield, and C. T. Beer, Cancer Res. 30, 1417, (1970):
- 70. M. C. Castle and J. A. R. Mead, <u>Biochem. Pharmacol</u>, 27, 37 (1978).
- 71. Y. F. Hwand, H. E. Hamilton, and R. F. Sheets,

 Lancet 2, 1075 (1969).
- 72. R. Retsas, and K. A. Newton, and G. Westbury,

 New Engl. J. Med. 299, 310, (1978).
- 73. W. F. Rosse, <u>New Engl. J. Med</u>. 298, 1139 (1978)
- 74. I. H. Krakott Antihnitis Rheum 8, 760, (1965)
- 75. G. A. Swan "An Introduction to the Alkaloids" Wiley New York (1967).
- 76. A. R. Battersby, Pure Appl. Chem. 6, 431, (1963).
- 77. P. G. Waser, in Neuromuscular Blocking and Stimulating Agents, Section 14, Vol. 1.
- 78. D. M. Michaelson and M. A. Raftery, <u>Proc. Natl. Acad.</u>
 Sci. USA, <u>71</u>, 4768, (1974).
- 79. C. T. Beer, Brit. Emp. Cancer Capaign 33, 487, (1955)
- 80. I. S. Johnson, H. F. Wright, and G. H. Svoboda, Lab.
 Clin. Med. 54, 830, (1959)
- 81. Hutchinson and Dalziel, "The Useful Plants of West Tropical Africa".

- 82. M. B. Patel and J. M. Rowson, <u>Planta Medica</u>, 12, 33 (1904).
- 83. Y. morita, M. Hesse and H. Schmid., Helv. Chim. [Acta 52, 89, (1969)].
- 84. A. Jackson, Ph.D. Thesis, University of Manchester (1967).
- 85. A. K. Kiang and G. F. Smith, <u>Proc. Chem. Soc.</u> 298 (1962)
- 86. J. A. Joule, M. Ohashi, B. Gilbert and C. Dherassi,

 Tetrahedron 21, 1/17, (1965)
- 87. J. Narango, H. Hesse, and H. Schmid., <u>Helv. Chim. Acta</u>
 53, /49 (1970).
- 88. G. A. Morris and R. Freeman, J. Magnetic Resonance, 29, 433, (1978).
- 89. G. Lhoest, R. de Neys, N. Defay, J. Seibl, J. Pecher and R. R. Martin., Bull, Soc. Cnim. Belges, 74, 534 (1965).
- 90. B. Gabetta and G. Mustich, 'Spectra Data of Indole Alkaloids', Inverna Della Beffa, Milland, (19/5).
- 91. J. Vercauteren, G. Massiot, T. Sevenet, B. Richard, V. Lobjois, L. LeMen. Olivier and J. Levy., Pnyto Chemistry, 20, 1411 (1981).
- 92. J. Vercauteren, G. Massiot, C. Delande, L. LeMen-Olivier, and J. Levy., Bull. Soc. Chim. Fr., in the Press.
- 93. C. Lavaud, G. Massiot, J. Vercauteren, and L. Le Men-Olivier Phytochemistry 445, (1982).
- 94. J. Vercauteren, G. Massiot, L. Le men-Olivier, and J. Levy., Tetrahedron Lett. 2871 (1981).
- 95. E. A. Adegoke and B. Alo <u>Phytochemistry</u>, 25, **6**, 1461-1468 (1986).

CHART 200-91522 SMD. CR.

P.E. Chart no. L 106-1435

>> 121 mmq □ ESI SSHU). MANAGE_ savor Ch. 1410 LOCK W 🗆 DESERVE ew 🖸 ~ []~ υO 247 433 10 4 1 NO. SCHASTRANSIENTS. DECOUPLE RF FREGOENCY HOME D HOME D LEVEL HETEVO 🔲 LEYEL oreno Heather holour 17/6/1 CHART SC300 (;;;) varism

472

17LR11.50 [TIC=22452224. 100%=796272] EI

SSHULEI

SSHUI EI

CHUI	••	
reak No.	MEASURED MASS	% INT NRFF
215 216 217 219 221 222 224 230 231 232 234 233 234 237 240 244 247 247 251 256 257 258 258 258 258 258 258 258 258 258 258	112 111 110 109 108 107 108 105 105 104 29 97 26 27 26 27 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 28 97 87 87 87 87 87 87 87 87 87 87 87 87 87	5.4.555644160.197798713.38.36 10.8.6.679001977798713.783042.14.27 14.6.6777798713.38.36 10.1.2783042.36
259 260 261 262 264 265 266 270 271 274 276 277 278 279 200 201 201 203	74 73 72 71 70 68 67 68 67 68 68 69 87 58 57 58 57 59	64,22,12,18,87,72,53,87,37,88,61,33,80,14,45,145,145,145,145,145,145,145,145,1

: PART

! FAK	MEASURED	Z INT
NO	MAGS	NRFF
268	46	5.8
220 .	45	39. T
271	24	ភភ ភ
222	43	57 F #
223.	43	34 2 8
297	4 .	A7. 8
299	41	79. 4
200	AC	78.5
301	3.5	57. O
202	· 08	មេ ១
204	37	5 7
005	SA	14 %
207	.34	5.4
311	.31	53 1
012	30	18 7
213	? •?	71 5 -
016	クフ	43 3

SS Hul-

17LR11.32 [TIC-24282112, 100%-843776] +VE CI, REAGENT: AMMONIA

17LR11.63 [TIC=27968512, 100x=909040] +VE CI. REAGENTIANTONIA

其.

PAGE	ι .	1	W O	. '
PEAK	MFASHRED	X INT.		
NO.	REAM	NRFF	· · · · · · · · · · · · · · · · · · ·	
-	427	1 1	· · · · · · · · · · · · · · · · · · ·	
2 5	419	3 2		
70	377	11		
71	371	3.9	•	
26	393	2 9		
20	381	1 2		_
20	371 367	1 4		
92 33	068	2 7	CCIMAI.	(
34	267	2. 1	SSHMI	
06	365	1.3	•	
27	೧೯ಫ	20		
40	054	3 7		
41	253	16 8	•	•
42	357	2 1 3 0 1 2		
43 48	051 341	1 2	• • • • • • • • • • • • • • • • • • • •	
50	337	2.2		
51	338	1. 2		• '
52	237	2 7 1. 2 4. 0	Constitution of the second	_
57	331		, SSHUTCT	
r. 60	227	1. 5	·SSHUICI.	:
. 62	325	1.3 2.5 2.2 2.3		:
63	024	22.	•	•
64	323	2.3		
65	222	i. i 7. 3		
66	221	3 3		
03 79	001 280	5 B		
100	784	5, R 28 3		
104	280	3.2		
105	7 77	14, 4	· .	
107	277	6. 2		
108	276 .	3.4		
107	275 274	13.0	•	
110	274	27.0		
512	272	77 4 1	•	
113	271	3.6	•	
114	770	6.7		
123	261	3.4		
176	258	3 8		
127	257	55 3		
179	256	ራዮ, R ፣ ዮፀ 7 ፣		
127 130	255 254	21 5		
131	253			
133	251			
135	747	3.7	*	
138	247	3 2	• • • • • • • • • • • • • • • • • • •	
142	244	3 5		
144	247	3 2 4		
145	241			
146	740	11.3		
147	237	11.3	"	
PAOF.	2	43.	- W. J. J. Press, 400	

e....

		·	1/9
PAGE.	3		
	•	% INT.	: <u>:</u> .
I'FAK NO.	MEASLIHED .	NREF	
250	139	3.5	
251	.138	4 7	:
252	137	4. 7	
253	136	4, 6 4, 7	
254	135	4. 7 4. 7	
255 257	130	3 0	
261	128	3. 9	SSHUICI
767	127	4 6	SSHUICI
263	126	20. 1	₹ ° .
264	125	20. 6 40. 1	
265	124 123	40, 1 5, 0	
265 267	122	6.5	• •
268	121	D. 4	
269	170	3. 7	: ;
270	117	3 3	
271	118 117	3. 4 11. 3	
272 273	116	51. P	
275	115	100.0	*
277	114	10.8	
278	113	65. 3	
ንን ጉ	112	5 B 7. O	•
280 281	111	11.8	
282	107	13. 8	
703	108	47. 1	
284	107	8.0	
265	106	30	
286	105 100	0.6 3.5	· ·
291 292	77	4. 1	
293	ନ୍ତ	5 4	
274	\$7	10. 4	***
222	26	7 7 33 3	,
224	ንፓ 24	46 3	
297 298	73	78 4	
799	72	3 4	• •
000	ያ ነ '	5 1	
302	9 የ	3 4	:.`
204	87	4 3	• • • • •
ตกร	96	53 54	·
006 007	នភ +ន្ទ4	7. 5	
209	83	4.5	
308	32	5 4	• •
010	B1	4 🥫	••
311	80	5.8	
012	7÷	11 4	• .
013	78 77	45.7 27.0	· · <u> </u>
, ລ14 •015	77 76	3. 9	
, ord	74	7.3	
	<u> </u>		
) PAGE	4		
PIPAK			
/ → N/O _c	MASS	NRFF	•

`		_
_,	PAGE	

PEAK	MEASURED	% INT.
ν • μαυ ⁶ -	MASS	NRFF
317	72	10.0
020	71	28.6
021	70	23. 7
022	ሉ ም	21. 8
023	6 8	32. 7
324	67	7. 5
525	66	3. 2
7 026	65	ទី គ
328	63	5.1
001	60	3. ?
032	57	3. 7
ຸກອອ	59	16. 5
່ວວຽ	56	7. 5
, 006	55	48
ົລລາ	54	5.3
ପର୍ଶ ୍	59	3.2
007	52	4. 8
340	51	4. 2
241	50	4, 4
346	45	112
, 047	1 44	25. 7
1048	4.1	7.6
049	42	5.4
.050	41	14.7
052	3?	28. ም
055 057	36	5.8
.028	33	31.5
1005	., 02 31	68. B 25. 7
360	30	62.7
Tosi !!	72.	24.6
1062	28	24. 6 8. 2
.107	40	D. 2

.

5LR24.32 [TIC=38511616, 100%=1033584] EI

51824.23 CTIC=46940160, 100%=1515584] EI

Sis Huy

	30 30	l N	្ <u>ទ</u>	10	DFV M	FAS N	1499	£FT	s %	INT
	23 25	18 20	3	O, 1	-3. 1	33	6. 14	70 <u>.</u> .	Ó	0. 00
	18 20	18 20	55.7	3	-4. 4 1. 0			:	-	
-	15 17	20 -22		5	0, 4 3. 6			• :	•	
•	; 1 ; 14	27.	5 0	6 7	23 -4.9			, .		
	Ţ	. H	N	ទ ស	5. O DEV	MCA	s Màs	*•• * •	·Fire	80 90 6 1 90
	30		5	10	THE A	rir H	5 MAS	nen k	PTS	%INT
	23 25	20 20	3 0	1 2	-1.7 -3.1	354	4. 158	89	0	0. 00
	18 20	20 22	5 2,	3 4	2.3 1.0		•			
-	15 17	変す 24	4	7	5. 0 3. 6	- -		,		
	11 13	24 26	. 5 2	8 ?	-3. 6 -4. 9					

1	PAGE	1.	
	PFAK	MEASURED	% INT.
•		MASS	NRFF
	31	354	- ,
(354 338	5. 6 7. 2
	48	337	24.4 #
•	49 50	336	74, 1 *
•	50 64	335 320	12 6 #£ 4. 7
_	65	319	16 7
·	107	277	5 6
	109 121	275	5. 2
1	122	763 762	6.8 8.7
	123	261	17.8
(151	236	16. 7
•	196 199	185	44. 7
	215	194 T 182	15. 7 35. 4
•	- 216	181	26. 4
	219	180	16. 2
ď	230 231	169	25. 5
	232	168 167	63, 5 34, 3
	251	154	16. 5
Ç	269	142	25. 4
	272 277	140	18.3
1	287	136 130	17, 4 17, 5
	292	128	17. S 18. S
4	294	127	16.1 *
•	017 029	115	22. 9
	331	108 107	22. 6 171
•	047	97	19. 2
	352	75	21.8
4	061 077	\$1	18. 4
•	201	83 81	22 5 25, 4
	286	79	18. 9
•	321	77	28. 9
	401 406	71 ራዎ	27. 2
•	409	47 47	41, 3 25, 2
	412	65	16.6
4	418	<u> 63</u>	19.0
•	427 429	57 56	66. 8 24. 6
	401	55	77. 6
	430	54	16 4
	434 437	53	27. 2
ſ	439	51 50	24, 9 16, 8
•	444	45	22.0
,	445	44	100, 0
?	447 ×	43 × 43	55. 2 ×
	451	42	41. 1 # 35. 0
•			55. 6

PAGE	2	
	-	
PEAK	MEASURED	Z INT.
NO.	MASS	NRFF
453	41	78. 7
456	40	22 1 %
457	39	55. 4
459	38	25. 6
461	3/5	51.8
469	31	20. 1
472	28	47.6 #
473	29	32 5 ×
478	27	43.0

SSHU4E).

5LR24.21 [TIC=45664256, 100%=1495872] +VE CI, REAGENT: AMIONIA

	PEAK	MEASURED	% INT.
;	NO.	MASS	NRFF
_	41	452	3. 1
C	46	447	4.8 *
	48	445	4. 0
44	49 51	444 440	148
_	51 51	470 429	5. 3 2. 8
	62	47g	2, 8 10, 2 *
40	63	427	28 1 *
	45	475	23*
	66	423	6.9 *
4.	69	419	2 4
	73	415	2.5 *
	74	414	5, 3 *
¢	75	413	4. 1
	76	417	3.7 *
	77	411	5. A #£
•	78	410	28 *
	79 03	409 409	3.5 *
•	37	405 401	2 2 2. 2
•	21	397	2. 2 17. 2 *
	27	391	13. 2
4	121	367	16 9
	143	345	14.1 #
	147	341	12.2 *
•	149	335	10.7 *
	150	338	11.5 *
	151	337	33.4 ⊭
•	161	327	21.5 *
	180	303	21.9 👂
4.	205	284	16. 0
•	207 209	282 286	14. 1
	210	280 279	18. 6 15. 1
44	212	277	11. 8
•.	213	276	22. 3
	234	255	15, 3
	248	244	10. 6
	288	213	10.8
_	269	212	35, 2
•	297	204	11.8
	ን ଚଚ	202	10. 9
_	300	201	13. 2
•	313	188	26. 5
	014 017	187 184	10. 4 11. 4
•	017	182	11.0
•	321	180	15. 6
	327	174	12,9
	028	173	11 8
_	029	1.72	11 4
	330	171	18 5
•	333	169	25 4
	345	1.60	10.8
ند	562	152	111

L BACE 3

	•		
	PEAK	MEAGURED	% INT.
4	NO.	MASS	NREE
	365	150	28 1
5.	072	146	22. 2
- •	276	144	12.2
	085	138	10. 1
4	413	124	17. 7
	434	110	128
	435	107	13 5
• •	436	108	40 l
	438	1.06	10. 5
	441	103	57 4
4.5	443	1.02	100 0
	445	101	58, 9
	444	100	18 1
	451	95	10.7
	460	86	60. B
	475	74	22 7
, .	495	58	20, 9

55 H 4 4 C)

							and the second second
	·) ~ · · ·						
		\ · \ ·					
/*·· · ·							
≻	\. \						
. \		المعا مستنجا الصادات الأعبوات				11.6	
1 1						. ــ . ـ ــ ق	
1 1							
							, ,
			}				
			. -				
				=			
					1		
-			- - -				
			- 🗕 🖟 🖟		1		
			·· ∯∤				
			· —- · -				
					+		
							
	- [.		t	·	
)	(H 1	:				. 	,
	£1-1				~		
	<u> </u>		[] =		-	UN DESCRIPTION OF THE PROPERTY	
-					1	•	
·	. <u></u>				1		a war tare to be a second
-					1		
	- .				1		
					.		فعال فعاليك المسال
					-		المساعد المعال المعاورة إسلام وسيا
							· · · · · · · · · · · · · · · · · · ·
				السائميات والاستهار والسالية		·	
			····		-}		a calculation of the second control of
				H775			
 	!						
			-''		. 1		
			- 				
				H75			and the complete to the comple

				"	1	; •	
· ·		7702	==	······································	45-15-35-45-15-		7 364
96.70			== 14 == =- == : : : : : : : : : : : : :			PEAK THRESIED - 187	7
						37050 93.9 35340 98.8	92
96.03						2934-0 91-1 - 2861-0 91-1	78
9536 4			<u> </u>	ceepatpe (7706:0=191.8	.85 =
				L Sprissores 2		442.0 92.0	02
			<u>14 1 15-4 15- 5 </u>	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	— (: : : : : : : : : : :	= 374.0 91.7 	18
94.66			1 1 1 1 1			10000	38
14:03			94-02				
93.35			13.35	71. H. M. H. H. L. H. H. M.			1 31 1 1
			M./				
9266	399914		1-11-19266				:
	140 (14)						
4x01		#1 = V - = #4 =	= = 92.0				<u> </u>
91734					— — — — — — — — — — — — — — — — — — —		<u> </u>
90.61-1							· -: · · ·
) 0			
- 64.00	3200 2400 2000	1600 12	200 800 53	4.1.		•	•
		1 (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		chart no L106-1435		in the second se	المعلمين المعلمين

IGLR16.27 [TIC=41212928. 100x+1089744] EI

16LR16.22 [TIC=11034112, 100%=397249] +VE CI, REAGENT:AMMONIA

PAGE	J	
PEAK NO.	MEASURETI MASS	% INT. NREF
333	34 5	44. 1
126	261	学题 字
174	213	47. 4
202	185	67.4
204	183	25 0
218	167	1,00, 0
	44	27. 4
038	22	82.5
346		37. 8
$\neg : A : \Box$. 30	

9

16LR17.21 [TIC=38838272, 100x=966240] E1

P	-	
LUC A Id	MEASURED	Z INT.
JUTAK.	MASS	NREE
NO.	MHOST	NEEL
7	362	1. 5
學	360	1.6
15	349	2.7
1.6	348	9. 1
17	347	2 9
20	344	2.5
27	334	1. 6
28	333	4.8
29	332	1. 5
31	330	2.1
33	028	1. 7
42	319	23
		2.5
43	318	
44	317	2.2
56	305	2. 7
57	304	2. 9
58	303	4.1.
59	002	8.1
5.60	301	2. 4
	250 250	5. 1
71		
72	289	4. 5
73	788	4. 6
74	287	5. 6
35	2 7 6	7. 5
36	275	9.8
√ 87	274	10. ዎ
88	273	14. 2
99	767	5. 3 ;
3.00	761	9. 5
101	260	20. B
103	258 💉	6. 4
104	258	4. 3
105	257	4. 9
106	256	4. 5
114	249	4.8
115	248	4. 9
	747 .747	マ. ク 京. フ
116		
117	246	17. 9
118	245	11.1
119	744	5. 1
120	243	2. 0
130	234	5. 0
131	233	6.0
132	232	6. 6
133	231	8.8
134	230	. 点. 罗
135	229	5. 3
143	221	7.7
;	220	5. 9
145	219	12. 5
5.46	718	7. 3
147	217	4. 5
152	717	4. 4
	207	10. 2
157	208	10. 1
158	200	1. W. L

SLHU3 El

CEAK NO.	MEASURED MASS	% INT. NRFF
159	205	10. 3
170	194	5. 1
171	193	6. 8
172	192	5.0
179	185	5.5 5.5
180	184	21.4
181	183	6. 4
182	182	23. 1
183	181	13. 8
186	179	4, 4
196	169	14, 4
178	168	50, 5
200	167	22. 1
202	1.66	23. 1
203	165	6 3
221	150	13.5
222	149	27 P
233	141	14. 1
235	140	01. 3
236	139	14. 1
252	179	15. 4
254	128	12.8
257	127	12 6
261	124	17. 5
263	123	13. 6
265	122	21. 9
270	119	12.5
278	115	19. 4
280	114	17. 2
282	113	17. S
288	107	13. F
301	101	12 6
20%	ን 7	21. 🕏
312	24	21. 6
022	87	21.5
324	35	24.5
028	83	30, 4
330	82	44 5
032	81	28, 5
043 044	74	76.7
346 346	73	26. 2
350 350	71	31, 4
251	6ዎ 6ዎ	43, 0 K
 	57 57	29.3 %
361	60	24, 4
362	59	33. 0
065 065	ਹਮ 57	24. 2
367	56	55 3 31, 7
368	55	31. 7 39. 6
370	53	27.8
371	57	58. 6
3 7 2	51	38.3
173	50	56 5 58, 9
375	49	28, 2
		manager of the

PAGE 3

.*	· 	
PEAK NO.	MFAGUREN MASS	% INT NRFF
377	47	23. 4
378	46	29.5
379	45	75. 9
081	44	24.5
382	43	93.0
033	47	41. Z
384	4:	56.8
086	40	61 O *
087	39	44 2
ാദഭ	33	51. 7
080	36	56. 1
391	35	25 4
395	31	61.0
ସହଧ	30	25 1
397	29	100.0
403	27	67 O

SLHM3E1.

\$

16LR17.11 [TIC=39203840, 100%=860480] +VE CI, REAGENT: AMMONIA

UNIVERSITY OF MANCHESTER DEPARTMENT OF CHEMISTRY

DS-55 MASS SPECTROMETRY DATA SYSTEM RFI FASE 3, 20

F 0 OGUNSULTRF 782

SLZ

DP0: 16FR17, MS

SCAN: 11, 3/16/86 14:41

IONISATION: +VE CI REAGENT: AMMONIA

NO. PEAKS; 426

PASE/NRFF INT: 2908274. / 860480

TIC: 09203840.

MASS RANGE: 27 - 461 ...

RETN TIME/MISC: 0:28/ 823/ 0/ 3

PEAK	MEASURED	% INT.	
NO.	MASS	NRFF	-
			v
82	050	29. 9	*
83	349	63. 5	*
135	297	47. 6	¥
203	সূৰ্বে	<i>6</i> 5. 4	۴
205	227	59. 6	
218	214	√32 6	
217	213	80. A	¥
220	217	58. 4	×
221	211	100. 0	Ķ
235	197	42 0	
247	186	40, 5	
248	195	84. 3	Ķ .
249	184	52 5	ξ.
250	183	50. Q	
251	182	38. 6	
263	170	48.1	
264	169	88 2	
765	168	59. 9	
294	440	30, 2	
307	127	51. b	
309 %	V. 125	31. 6	
310	124	48. 1	
1838	96	32, 8	
352	87	50. 4	
- 390	44	34. 4	
	32	68.4	
401	30	53. 6	
403	. درد	3	

SLHW

SLHU3 CI.

						11 11			1+		20.				- :	/				
		┫			<u> </u>					HE:	— —					-			Ċ	
		5E	58				-			- F	-					- -	1		=[1
		22	62	1.			12			5 EZ		চ ভূহ		3 62						.وا
•				1	+	-					+			_	2			10.7	-+-	*
	٠.,	+ 1 + 1 + 1 + 1														+		_		
· ·		† † † † † † † † † † † † † † † † † † †			-:::		3,11									1	† 		<u>~</u>	
P.I		1		+ · - 	11	114-			1-,			11	++						<u> </u>	
E.				<u> </u>] : :				-			/	1	-1.0		<u> </u>			-	
cha	500					-			1 1	: -					1	- 1			.+	
rt r													<u>.</u> H:				!- - =- -			•
no.	<u> </u>	<u> </u>				-		;-[:		-	-	4				-				
L 106		=			<u></u>		1				: :	: '1		/	_ .			- · ·		
6-14	12	1												1 1 1						
135														1-			1:-	1~-		•
						A	++-	-	3	177	# : ; ; ; ;		==		Ţ		-	1:4:	I	,
· -	<u> </u>			 		-					 	-				!!		+I		
· - T_	1			-	 -		-	1 :						1111		- -			1	
	800				1 -					-	: _ <u>-</u> - .	V				1		1.	·	
							: !!		14 1:11 1:12		-	=======================================						1		
		127			 5.	-		-	-	- 7:	<u> </u>	' ' 7	- -		i- -:	 	j 74.	г.	,	•
<u> </u>	. Z.E	HH	52		 . t. Z-			1 i f :		22		82	0.1		2.		-:- #1		1 -	
·]	<u>t</u>	1				 - -	1:23		1	- : ,					7 -		1 -	1 -		
	1= -									i			-			+		:: E		
-	1	-							1 :::	1 1			RESO	ر جاري 1 جاري	۲.	_ =	SHOP	֖֖֓֞֞֞֞֞֓֓֓֓֓֞֟֝֓֓֓֓֟֝֓֓֓֓֓֓֓֟֝֓֓֓֓֟֝֓֓֓֟֝	- 	
• —.	1==		: ===			,	-			-		OF T	. <u> </u>	NUTE TEV	:15:3		TE			-
· - '1	- 1		= =.				<u> </u>	.,		_ -	.219	- 1	·	- F.C.	1:4	-	esir Esir		<u>-</u>	
_]			 						-		i	4.5	GEE SICK			io e evi)	77) 101		
		7	=							::	1 a ba	: : :	i-1	F.,	200 300		o Kiād		;	
						!					_		Ť	1 <u>21</u> - 12	0 0 0 0		:	- 		
· ·		<u> </u>	+4-							-					_	F	1 1		1.	
·													- :		100 C	-	3	<u> </u>		
		* :	: _	-			. 		· :		· • I		<u> </u>	7		- -				
					-				-	-						<u> </u>	- -			
										1		- -							723	
								-	- -	<u> </u>		+-		; <u> </u>		+				
	- 1			-∔			-	_	-	+		-	-			-			·	
			1	-						. 										
]	- - i_	-	-	-								<u>-</u>] { [<u>.</u>	,	į 	}	·	
•				·			-		-	ļ	 - 	+	1		-	·	, , 			
		: .				 			-				1		; ; ;		i :			
P.E				-			1 : : :						1-1	1 3	1章 1覧	151 187 167	1.35	1 C., ,74 E E		
	1 4 1	1111				•	1::-		 	:	, 1.,		·	: [c-	기년 기년	1:0 3:0 3:5	ქ— ვენ	વેલું[<u>ˈ</u>		
char	==											7 =		+-	1	_ -	- -	-		
t no		1			1-	1	-	<u>: : </u>	·		1 1 5	e (2) 1 (65) 2 (7)		৪, ২; লুকু:	- 63	3 TI 1 Pa 2 Pa 5 P4	a e÷ j			
. L 1							-	<u> </u>	- -		-	-·;	_	-:		•		<u> </u>		
ic		-	· ·	-		:													I	

%.

4

27LR2.19 [TIC=26910720, 100%=1421120] EI

 ACE	3

PLAK NO.	MEASURED MASS	% INT. NREF
NO. 99 110 119 120 121 122 123 136 140 175 207 209 211 217 219 220 222 223 224 226 227 228 232	MASS 205 194 185 184 183 182 181 168 164 129 93 87 93 87 77 74	NRFF 1.6517358487140+18847655
733 235 237	73 71 70	ን ድ 11 8 ን 8
238 239 240	67 4 7 68	18 4 # 14.3 # 8 2
241 245	67 63	14.2
748 249	60 57	√ 22 1 7:1
252 253	57 56	26.72
254	55	16 5 년 38 호
255 256	54	12.5
2 5 7	53 52	13. 0 10. 9
258	57.1	14. 5
259 263	50 4ሪ	13, 3 7, 5
264	45	7. ° 50, t
265	44	78, 0
266 267	43 42	100 0 42 3
248	41	59.7
269 270	40 40	11.5 ×
271	37 37	48 1 * 36 0
272	38	7. 1. ×
273 275	33	7.0 *
280	36 31	17. 4 77. 1
281	30	25. ?

PAGE 2

PEAK NÚ.	MEASURED MASS	N INT NEFF
282	25	29. 8 ¥
283	29	83.4 ×
289	27	67 G

ESLH43.

27:02 13 CT:C=102424576, 100%=1479808] +VE CI, REAGENT:AMMONIA

(, PAGE 1

PLAK NO.	MFASURFD MASS	% INT. NREF	
185	391	20. 6 *	
232	344	19. 3	
249	327	14:3 *	
	313	14.9 *	
263	313	14. 9	
265	307	17. 3	
267		13. 4	•
274	302	14.7	
275	301	25 5	
278	-298 207	58. 3	
279	297 279	37. 4	ESLHU3 Cl.
298	27.7 258	75 S	LJE
321	7.45	37 6 .	
333		25.8 .	
336	743 747	34.0 ×	
337		70.0 %	
338	741 220	76. 7	•
340	239 230	25, 9 ×	
351	230	72 5 ×	
352	229 220	28.7 *	
353	728 227	40.7 A	
355	227	39. 4	
356	226 225	41. 2	
057 040	225 214	25. 2	
368	213	67 7 *	
370	212	71.3 *	
371	211	100.0 *	
372	21A 210	25. 8 ×	
373	202	25. 7	
382 385	200	26. 2	
388	178	39. 1	
390 390	197	70. 7	•
377	196	33. 3	
922 923	195	25. 8	
39 5	194	28. 2	
404	186	35. 7	
405	185	74. 🕏	
406	184	50, 0	
407	183	50. 3	
409	182	34. 3	
423	170	65. 3 ¥	
424	169	94, 5 ×	
425	168	69. 3 ×	
426	167	34 2 ×	
428	166.	25. 0	•
479	165	47. 6	
435	159	28. 6	
437	158	57 . 5	
441	154	28. 2	
447	153	47. 5	
443	152	27. 0	
444	151	26. 4	
452	144	59. 7	
454	147	31. 1	•
455	1.41	03. 5	

ESLHU

i

4

17LR8.49 [TIC=43208704, 100x=1101760] E1

PAGE	1	
FFAK NO.	MFASURFTI MASS	% INT. NRFF
779012756790596825680268017270707070707905968256802680172707070707070707070707070707070707070	22222222222222222222222222222222222222	212111251217557575726656368600885650978578575754978021895 676595028142940640795374045529566907853275754691419203

SLHU4'E

17LR8.34 [TIC-9200384, 100x-585584] +VE CI, REAGENT: AMMONIA

LH11	1	
L'EAK NO.	NEASURED MASS	% INT. NRFF
о	391	. 30
5	345	26
6	344	10.4 f
16	313	. 27
17	312	2.4
18	311	3.1
20	309	. 27 .
25	298	1.8
28	295	3. 6
29	293	1.8
30	291	1. 13
35	282	. 25
34	281	1. 🕏
37	280	37
38	279	7. 2
40	277	3.2
1 59	256	2. 8
61	254	2.1
37	226	1.7.8
63	225	20. 4
102	211	· 8.5
133	180	· 7.1
144	167	5.8
150	163	5. 3
161	152	<u>†</u> 5.5
162	151	5.3
163	150	5. 2
165	148	5.6
174	139 ,	7 4
175	138	10.7
176	137	6.4
177	136 135	ุ 5. 4
178	F -44-	
187	126	6.5
188	125	13. 9
189 190	124 123	13.3
191	122	7.5
172	121	5. ś
201	112	6.5
202	111	6.8
203	110	15 1
204	107	9.3
205	103	6. 1
211	102	17. 2
213	100	7. \$
215	98	: a. o
216	97	. 7. 5
217	26	22 1
218	95	11.3
219	94	8.8
223	90	7.7
227	86	7. 3
228	85	13, 9
220	0.4	10 5

PAGE	2	
PEAK	MFASURFD MASS	% 1NT

PEAK	MFASURFD	% 1NT
NO	MASS	NRFF
• 1		-
230	83	10.6
231	82	8.2
232	81	12 8
233	80	7 4
234	フテ	61.5
235	78	7. 2
239	74	12.2
241	72	11. 0
243	70	75
244	ራዮ	7 1
251	61	18 4
252	60	ዮ 3
253	57	7.2
254	58	26.2
256	5.8	10.8
257	55	j. 6, 5
260	52	7.4
265	45	16 1
266	44	36 3
262	41	6.3
270	39	. 7 0
271	36	21.5
275	33	38 6
276	32	100.0
277	01	19.0
278	30 .	70. 2

SLHU4

SLHM4CI.

ţ.

7.328

98-47-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2371.0 2

__ SL5

17LR9.39 [TIC=58561536, 100x=1062656] E:

PFAK NO.	MÉASURED MASS	% INT. NRFF
	320 304 305 304 303 292 291 290 277 277 277 277 277 277 277 277 277 27	NRF 5517608** /** ** ** *** *** *** *** *** *** **
		· _

SLHW5

PEAK NO	MEASURED MASS	% INT. NREF
148 .	218	6. B *
149	217	5. 4 ×
153	214	5.6
154	213	19. 1
:55	212	44 🤼 K
156	211	36.7 *
157	210	10.4 *
158	503	5. 5 *
159	208	6 B
160	207	7. 2
161	205	89
162	205	12 2
:70	199 -	10. 3
171	198	23. 5
172	197	17. 2
174	196	9. 6
175	195	7. 9
1.77	194	7. 2
178	193	8. 6
.179	192	9.7
180	191	+ 6 6 10.6
186	185	14.7
187	184 183	17 9
189 191	182	9. 1
197	181	ŝ. 7
194	180	7. 0
195	179	7. 3
204	171	7. 9
205	170	8, 2
206	169	13, 5
208	168	13 2
209	167	10.5
210	166	7. 3
211	165	7.5
213	163	9. 2
221	157	8. 9
225	155	12.6
226	154	8. 2
227	153	8.8
229	152	11.9
231	151	8. 6
273	129	24. 1
277	127	19. 1
281	175	19. 5
285	123	18.8
003	115 111	30, 2 30, 0
201	110	27. O
013 015	109	24. 7
020,	107	18. 6
025	105	20. 1
338 - 375	55 50	19. 5
040	98	37. 0
042	97	47. 1.
46.46		

POČÁKÍ MENCUPED V IN

SLHUS	- -	F,	برا
-------	------------	----	-----

	ì			
<i>!</i> ~		PÉAK	MEASURED	
Ť	È			
a	È	NO.	MASS	NRFF
		345	96	29. 6
•		047	95	39. 0
		349	94	20. 2
		050	73	20. 7
>	1	352	92	18. 4
•		355		
			91	32, 5
		363	87	27 9
`		047	85	44. 🕄
		369	84	41.6
		071	83	50.5
3		374	87	
•				42 6
		376 376	81	47. 1
		079	79	28. 4
•		381	78	18. 7
		084	77	39. 3
		087	76	26. 2
		091	75	
		092		25. 3
			74	27. 9
		094	73	45. 🤋
`		028	71	53. 6
		400	70	42 6
		402	69	66. 1
`	•	. 405	68	38 8
		406		
			67 17	45. 6
_		411	<i>6</i> 5	24. B
•		416	63	34.7
		421	60	45 2
		426	58	23. 4
s }		478	57	67. g
		430	56	54. 7
		431	55	
t				75. 2
•		434	54	42. 2
		435	53	48. 4
		436	52	58. 8
		438	51	43. 2
		440	50	62. 9
		444	4/3	18. 7
		445	45	
				67. 7
		448	44	100.0
		449	43	92 O
		451	42	72 4
		452	4 1	<i>6</i> 5, 5
		455	40	79. 7
		45%	Öğ	50. 9
		108		
			38	30. 1
		161	36	54. 5
		162	35	28, 5
		% 67	31	5 0. 9
	٤	169	30	53. 8
		¥70	29	98. 7
		\80	27	56. 3
		-	. ,	વાવા. વા

17LR9.40 [TIC=12817152, 100%=553468] +VE CI, REAGENT: AMTONIA

17			PEAK NO.	MEASURED MASS	% INT. NRFF	SLHU5 Cl.	<u></u>
18 335 3.7 3 3 4 0 20 333 4 0 3 20 333 4 0 0 27 323 4 8 3 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	→		17	336	1. 8		
20 333 4.0 22 331 2.0 23 323 4.8 30 322 3.2 31 321 11.6 32 320 3.1 33 319 5.3 35 317 2.7 42 310 2.4 43 308 4.2 44 308 4.2 45 307 13.1 46 206 4.6 47 305 7.8 48 49 303 2.9 51 301 2.1 55 297 2.6 56 296 5.5 57 295 23.3 58 294 10.1 58 299 2.9 59 299 3.0 59 30 30 30 30 30 30 30 30 30 30 30 30 30					3. 7		
29 323 4.8 30 322 3.2 31 321 11.6 32 329 3.1 321 321 11.6 32 329 3.1 33 319 5.3 35 317 2.7 42 310 2.4 43 308 7.8 44 308 4.2 45 307 13.1 46 306 4.6 47 305 7.8 48 300 1.8 49 300 2.9 51 301 2.1 55 297 2.6 55 297 2.6 55 297 2.6 55 298 10.1 58 299 3.9 51 301 2.1 58 299 3.9 51 301 2.1 58 299 3.9 51 301 7.7 70 295 11.7 89 39 39 39 80 39 39 80 39 39 39 80 39 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 80 39 39 8		,					
29 323 4.8 300 372 3.2 31 321 11.6 327 320 3.1 327 320 3.1 33 319 5.3 355 317 2.7 42 310 2.4 43 309 7.8 44 308 4.2 45 307 13.1 46 206 4.6 47 305 7.8 48 304 1.8 49 303 2.9 51 301 2.1 55 297 2.6 56 296 5.5 57 285 23.3 58 294 10.1 58 293 28 8 49 303 2.1 58 294 10.1 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 303 3.3 58 293 28 8 49 30 3.3 58 293 28 8 49 30 3.3 58 293 28 8 49 30 3.3 59 293 28 8 49 30 3.3 50 293 28 8 49 30 3.3 50 293 28 8 50 293 28 50 293 28 50 293 28 50 293 28							
30' 372 3.2 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.2 3.1 3.3 3.1 3.5 3.3 3.1 3.5 3.3 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.1 3.4 3.3 3.9 4.2 3.1 3.1 4.4 3.3 3.0 4.2 4.2 4.5 3.0 7 13.1 4.4 4.5 3.0 7 13.1 4.4 6.4 7 3.0 5 7.8 4.6 4.7 3.0 5 7.8 4.6 4.7 3.0 5 7.8 4.8 3.0 4 1.8 4.9 3.0 3 2.9 5.1 3.0 1 2.1 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5							
31 321 11.6 32 320 3.1 33 319 5.3 35 317 2.7 42 310 2.4 43 309 7.8 44 308 4.2 45 307 13.1 46 206 4.6 47 305 7.8 48 304 1.8 49 303 2.9 51 301 2.1 55 297 2.6 55 297 2.6 56 57 296 5.5 57 296 23.3 58 294 10.1 88 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 49 299 8.3 41.2 42 40 291 11.2 43 45 291 11.2 44 291 11.2 45 291 11.2 46 291 11.2 47 291 11.2 48 291 10.7 71 281 45.6 71 281 45.6 72 280 17 2 73 295 28 17 2 74 28 29 17 2 75 295 28 17 2 76 275 3.3 77 295 2.8 78 277 10.7 78 273 3.3 79 273 3.3 70 3.3		·	30				
32 320 3.1 33 313 5.3 315 5.3		l				•	
03						•	-
35		ļ					
42 310 2 4 43 308 4.2 44 308 4.2 45 307 13.1 46 206 4.6 47 305 7.8 48 302 1.8 48 302 1.8 49 303 2.9 51 301 2.1 55 297 2.6 56 296 5.5 57 295 23.3 58 294 10.1 59 293 29 49 299 3.3 58 294 10.1 59 293 29 49 297 3.3 58 294 10.1 59 293 29 49 297 3.3 58 294 10.1 59 293 29 49 297 3.3 58 294 10.1 59 293 3.9 51 301 2.1 52 29 3.3 58 294 10.1 59 293 3.3 58 294 10.1 59 293 3.3 58 294 10.1 59 293 3.3 58 3.1 58 294 10.7 70 70 70 70 70 70 70 70 70 70 70 70 70 7		i.					
43 308 7.8 44 308 4.2 45 307 13.1 46 206 4.6 47 305 7.8 48 304 1.8 49 303 2.9 51 301 2.1 55 297 2.6 56 296 5.5 57 285 23.3 58 294 10.1 58 293 10.7 79 203 10.7 71 281 45.0 72 280 17.7 73 74 75 77 10.7 74 77 275 2.8 75 273 2.3 76 273 2.3 77 275 2.9 78 270 2.8 80 270 2.8 80 270 2.8 80 270 2.8 80 270 2.8 80 270 2.8 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6 80 264 7.6						•	
44 308 4.2 45 307 13.1 46 306 4.6 47 305 7.8 48 302 1.8 49 303 2.9 51 301 2.1 55 297 2.6 56 296 5.5 57 296 5.5 57 296 5.5 58 294 10.1 58 293 22 9 46 292 3.3 46 292 3.3 47 293 1.0 48 28 29 1.0 49 20 3.2 60 290 3.2 60 290 3.0 60 290 3.0 60 290 3.0 60 290 4.0 60 290 4.0 70 280 1.0 70 280 1.7 71 281 45.0 72 280 1.7 73 20 9.7 74 291 77 2.8 75 77 10 7 76 20 7 77 27 10 7 77 27 10 7 78 20 7 79 27 10 7 70 20 1 2 8 80 27 7 6 7 7 80 20 2 8 80 27 7 6 7 80 27 1 8 9 90 26 1 9 0 90 26 1 9 0 90 26 1 9 0 90 26 1 9 0 90 26 1 9 0 90 26 3 10 3 90 26 3 10 3						*	
45		*				• • •	
46		i					
47 305 7.8 48 303 1.8 49 303 2.7 51 301 2.1 55 297 2.6 56 296 5.5 57 295 23.3 58 294 10.1 38 293 29 9 49 200 3.2 40 3.2 40						•	
48 304 1.8 49 303 2 9 51 301 2 1 55 297 2 6 56 296 55 57 296 23.3 58 294 10.1 28 292 9 3 29 9 3 4 10.1 28 292 9 3 29 9 3 4 10.1 28 292 9 3 29 9 3 4 10.1 28 292 9 3 29 9 3 20 9 4 10.1 28 292 9 3 20 9 4 10.1 29 10.1 20 10.1 20 10.1 20 10.1 20 10.1 20 10.1 20 10.1 20 10.1 20 10.7 21 280 17.2 21 280 17.2 22 280 17.2 23 21 8.1 24 228 8.1 25 277 10.7 26 273 3.3 27 279 2.8 274 278 8.1 275 277 10.7 276 273 3.3 277 279 2.9 278 278 278 278 278 278 278 278 278 278							
\$1 303 2 9 \$1 301 2 1 \$5 297 2 6 \$5 296 5.5 \$5 296 5.5 \$5 298 20.3 \$8 298 10.1 \$9 299 29.3 \$4 20.1 \$2 299 9.3 \$4 20.1 \$2 299 9.3 \$4 20.1 \$2 299 9.3 \$4 20.1 \$2 299 9.3 \$4 20.1		•					
51 301 2 1 55 297 2 6 56 296 5 5 57 295 23 3 58 294 10 1 59 299 29 9 59 29 9 3 59 299 9 3 59 299 9 3 50 299 9 50 299 9 5							
55		-				<u> </u>	
56 296 23 3 5 5 5 5 5 5 5 5 5 7 295 28 3 5 5 7 295 28 3 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							
57 295 23.3 58 294 10.1 59 293 29 9 59 295 60 297 6.3 62 297 6.3 63 280 63						: : : : : : : : : : : : : : : : : : :	
58 294 10.1 Se 293 29 9 46 299 8.3 461 291 11.9 62 090 3.2 63 280 2.0 64 082 2.1 A5 287 1.8 65 090 4.9 70 186 10.7 71 081 45.0 72 280 11.9 73 019 77 2 * 74 275 10.7 75 277 10.7 76 275 0.9 77 275 0.9 78 274 7.6 79 275 2.9 10 276 276 3.3 77 277 3.3 78 274 7.6 79 275 2.5 10 271 3.2 62 270 2.8 63 264 7.6 63 264 7.6 69 265 10.3 90 265 10.3 90 265 10.3 90 265 10.3 90 264 7.6 90 265 10.3							
SS						: :	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		·			29 9		
★ 641 291 11.9 62 090 3.0 63 780 3.0 A4 082 2.1 A5 287 1.8 A65 293 4.0 70 280 10.7 71 281 45.0 72 280 11.72 73 21.9 77.2 * 74 278 8.1 * 75 275 3.3 76 275 3.3 77 275 0.9 78 274 7.6 79 273 26.5 30 270 3.2 97 3.5 3.2 97 3.2 3.2 97 3.5 3.2 62 270 2.8 83 269 5.0 94 208 12.4 85 207 60.7 80 264 7.6 99 263 10.3 100 204						· •	•
87		1			11. 🖟		
63	~				3 2	•	
At 1 282		T.					
A5					7 1	• •	
69							
70		1.			4)		
71					10.7	•_	
77 280 17 7 78 79 79 77 2 8 74 77 70 77 76 76 77 76 7					45. ò		
70 719 77 2 * 74 779 777 10 7 75 777 10 7 76 275 3.3 77 275 0.9 78 774 7 6 79 270 25 6 00 770 \$ 5 01 271 8 2 02 270 2 8 03 269 \$.0 04 268 \$12 4 05 267 60.7 06 266 \$14.9 07 165 \$6.0 08 264 7.6 09 066 \$10.0 100 261 \$2.9 100 261 \$2.9 100 261 \$2.9 100 261 \$2.9		!				· ·	
74	·	i				•	
75		1				•	
76 275 3.3 77 275 3.7 78 774 7.6 79 273 26.5 90 270 4.5 90 270 2.6 90 270 2.6 90 270 2.6 90 270 4.0 90 270 60.7 90 260 14.9 90 260 10.0 90 260 10.0 94 261 27.6 90 260 4.0 94 27.6 94 27.6					10 7	•	
77							
78					O. 7	•	
00 077		,		274		· ·	
61 271 8 2 62 270 2 8 63 769 5 0 04 768 12 4 65 267 60 7 66 7 67 755 66 7 68 264 7 6 69 263 10 3 90 263 4 7 91 261 7 9 94 200 2 7			77.474	270			
62 270 2 8 63 769 4 0 04 268 12 4 65 267 60.7 66 7 66.7 67 165 66.7 68 264 7.6 69 263 10.3 60 262 4.7 60 263 2 9 60 263 2 9 60 263 2 9				277			
83 769 9.0 04 968 12.4 85 267 60.7 96 266 14.9 07 765 66.7 08 264 7.6 09 263 10.3 90 263 4.7 91 261 7.9 94 200 2.8		1	· 1711	271			
04 268 12 4 85 267 60.7 66.7 67 266 14.9 67 765 66.7 68 264 7.6 69 263 10.3 1 20 263 4.3 21 264 270 2.3			82				
85 2A7 60.7 96 256 14.9 97 755 66.7 98 264 7.6 99 253 10.3 90 2A2 4.7 91 2A1 7.9 94 200 2.7		i t	83				
96 286 14.9 97 755 66.7 98 264 7.6 99 263 10.3 90 262 4.7 91 261 2.9 94 200 2.8		j			12 4	·	
97 7.55 %6.7 98 264 7.6 99 263 10.3 90 263 4.8 91 261 7.9 94 200 2.8		· .	85				
08 264 7. 6 09 263 10. 3 1 20 263 4. 8 21 261 2 9 24 200 2. 8		į ·					
09 753 10.3 1 70 753 4.3 21 751 7 9 24 200 2.8		!			5 <u>5</u> , 7		
90 2A2 4.8 4.8 91 2A1 2 2 94 200 2.8		ŀ				· ·	
91 7A1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					10. 3		
94 270 270		!			÷. 🖺	:	
	,				구 후		
<u>, 95 - 237 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 2</u>							
	Ļ		. 25	7.37	岁. 主		•

SL

う	FACE	2 223	
	PEAK	MEASURED	% INT.
•	NO.	MASS	NRFF
		5 5 7	4.4
•	96 97	256 255	4. 9
٥	, 28	254	3. 0
100		253	22. 8
Ó	. 100	252	7. 0
	101		. ୧୦. ଞ୍
, a	_\$03	248	9.2
· ` .	104	748	5.7
	305 311	: ⊋47 ?41	る。フ 41. フ
	113	739	. B. 6
: .	115	237	13. 3
	117	235	5.4
3.	∕ d?1 ~		.5. 8
	173	229	5.3
. 1	124	228 227	. 7.3 28.4
٠,	125 126	276	6.5
	, 127	225	6.8
î	108	214	17. 5
	109	213	87.3
	140	717	13.5
١.	141	711 700	21. 1 7. 8
	-	199	40. 1
	्राज्य इ ल्	198	7.3
),55	197	7. 3
į.	1.67	185	5. 3
	3.69	. 483	S. F
	170	187	5, 9
,	172	180	8, 5 5, 8
	182 . 183	170 169	,5, 8 ,√ &, 0
	180	167	5.7
	199	153	7.6
	200	152	5. 4
	,.201	151	5, 6
	207	145	5.3 5.4
	208	144 141	5 4 5 7
	711 · 713	139	5. 5
	5.734 5.734	338	7. 9
•	ខ្មែ	137	. 3. 1
_	216	136	6.8
- '.	217	135	7. 7
	218	134	10. 9
	224 225	. 178	5, 6 8, 2
	225. 226	127 - 126	7. Z
_	227	125	10. 1
	238	124	11. 🕏
	229	123	7. 2
	236	116	5. 1 5. 4
•	237.	115 113	5, 6 6, 4
:	239	115	<i>□.</i> →

_		
10	PAGE	3

PEAK NO.	MEASURED MASS	% INT. NRFF
240	112	6. 9
241	111	11.6
242	110	11.5
243	109	7. 5
244	103	7. 3
252	100	6 4
253	ን ን	7. 1
254	78	11. 9
255	ウフ	7. 8
256	26	F. 1
257	7 5	タ. 1
253 .	74	9. 3
266	. 86	5. 7
268	84	11 🕆
1268	83,	5. 7
270	87	6. 7
271	81	10 6
272	90	6. 1
280	72	3. 0
232	70	7. 1
203	69	6.0
`@@ 1 .	A0	7. 7
93	59	78 6
275	5.0	ক, কু
734	E G	· 6 9
24545	新文	6√1
302	45	14. 🔽
	4.3	27.6
007	:197	10.8
2009	.71%	18 字
017	30	ធានា ទ
513	27	100.0
314	3 !	16. C
T-4-55	ette et a	61 6
316	79	1ত ত
317	79	7. 0

SLHUS Cl.

SYD, CD. CHART 200-9522

SNO, CB.

5 B 1741.

6LR11.28 [TIC=34445312, 100%=1122880] EI

	PLAK NO.	MFASURFO MASS	% INT NRFF
	43	294	11. 1
	44	273	9.8 £
	44	274	10.5
	65	273	58
	75	263	11. 2
	78	260	9. 5
	ଓଡ଼	249 249	8. A
	71	247	8. 6
	72	246	7. 9
	117	221	6. 7
	118	212	7 1
	131	207	5. 7
	133	205	6. 3
	156	182	11.4
	170	169	27.9
	171	168	27. 7
	173	167	21.1
	1,75	166	6.0
	195.	149	37. 5
٠.	256	107	23. 2
	258	105	33.0
	299	79	21.9
	303	. 7 7	36, 7
	១៛៩	69	22 0
	036	61	19. 4
	045	57	38. 4
	049	55	45 . 3
	057	52	32 5
	059	51	28, 5
	061	50	81.8
	0.67	45	78. 2
,	369	44	99. 8
	372	43	100.0
	374	42	33. 7
,	074	43	64.8 £
	379	40	76 3 ¥
	081	39	37. 8
	-084	38	33. 6
	088	36	70. 7
	370	35	19. 2
	327	31	67. 4
	099 	30	45. 2
	401	29 2	43.1 *
	402	29	79.4 *
	406	28	54. 1
	407	27	40. Z

SBHUL E

6LR11.4 [TIC=44526592, 100x=1759104] +VE CI, REAGENT: AMMONIA

ø	Δ	r.	7
ı	_	1-1	٠.

PEAK NO.	MEASURFT MASS	% INT. NRFF
40	391	7. 3
02	369	3. 4
17:4	367	5. 7
26	355	4. 0
27	354	10. 6
28	353	41. 1
99	352	4. 5
100	351	6. S
101	350	5. 6 *
102	349	12.1 *
114	337	30. 4
128	323	48. O
140	311	20. 2
142	309	34.8
144 144	307	33. 1
154	207 29 7	21, 3
155	796	41. 2 *
155 156	295	100.0 *
157	294	23.4 *
158		23. 7 8 54. 8 8
	793 	20.0 *
159	292	
160	291	27.0 *
163	289 272	22. 1
174	279	33.0
177	277	24.1.8
178	276	30. // *
179	275	84.3 *
181	273	21.7 8
188	267	33. 5
190	265	35.3 *
192	263	25 3 *
193	262	20. 9 · #
194	261	70.1 *
207	249	28. 1
212	247	41.5
240	223	73.3
242	221	20. 7
· 281	183	20. 4
286	180	27 3
289	177	22.3
000	169	55. O
001	1.68	44.8
322	A REPORT	32 2
335	146	27 1
371	124	51.8
081	117	24. 3
350	108	23. 0
438	60	76. 🤋
440	. 59	17. 9
443	58	22.7
460	. 44	25. 0
ົ 473 ູ	· , 35	61.8 *
474	35	21.4 *F
477	、32	73. 4
481	30	33. 3 *

SBHUICI.

7.328

SBHUZ.

6LR4.11 CTIC=32844800, 100%=9126403 Et

SBHU2

Γ	'AÇE	1

PEAK	MFASURFD	% JNT.
NO	MASS	NRFF
7 5 5 7	201	15. 1
- 6 ,56	200	21. 1

PAGE	- 7

-		
PEAK	MEASURED	% INT.
NO	MASS	NRFF
257	177	19.6
		11.3
258	198	
263	193	ខន
271	185	16.4
274	183	10.4
275	187	37. 4
277	181	10.7
282	177	15. 2
292	169	8.9
		20.1
293	168	
294	1.67	25 A
226	166	11 9
298	1.55	9, 3
301	163	
203	161	⊙ 4
317	150	18. 2
046	149	100.0
លវទ		
\$127	142	22.7
040	129	15 %
044	127	45 6 ×
		16 9
249	123	
051	121	20 0
053	119	16 3
อธร	117	31.0
057	115	19.3
259	113	17 2
040	117	15, 8
	111	21 8
364		
364	109	23. 7
367	107	29. 5
240	105	42. 6
070	104	19. 0
070		
37 <i>2</i>	103	16.7
375	101	15, 5
279	29	18 4
380	28	
187	97	32.0
084	96	15.7
	95	33 4
086		
ପଟଣ	93	21 1
374	71	27 7
404	. 85	26.7
406	84	18 3
40F	83	43 3
412	32	17 5
414	81	34, 3
	79	26. 4
417	<u> </u>	
427	77	31 2
427	75	18.7
431	73	24 3
	72	15 7
433		
435	71	45 G
437	70	26. 7
439	69	56. 1
		31.0
443	67 <u></u>	51. U

PAGE :

PľAK	MEASURED	% INT.
NO	MASS	NRFF
455	. 60	29 5
457	59	21 5
461	57	74 9
463	56	24 8
465	55	87 8
479	45	44 1
461	44	21 4
483	43	95 3
485	47	19 0
437	-41	61, 0
497	3루	21, 4
504	2루	17, 6 3

SBHUZ.

6LR4.18 [TIC=6130688, 100%=380624] +VE CI, REAGENT: AMMONIA

CA	GE	1

→ PEAK NO.	MEASURED MASS	% INT. NRFF
92	413	12 3
114	371	7. 0
136	369	5.0
168	337	5, 3
174	331	7. 🕏
182	323	5. 2
192	313	5. 6
174	311	5 4
196	302	5. 1
ታ ምፅ	307	7. 0
205	255	S. 1
207	298	7. 2
208	297	7. 2
205	296	5. 🕏
210	295	12 4
212	293	9. 2
216	289	6.6
726	279	17. 8
238	267	18. 5
239	266	5. 2
240	265	19. 1
241	264	5.3
243	262	5. 2 3
258	247	10.8
265	241	5. 2
279	227	6. 5
281	225	5. 8
282	224	15. 3
283	223	100.0
285	222	6. 2
286	221	18, 5
291 .	216	5.4
293	214	10. 2
302	205	5. 6
003	204	5. 7
306	201	6.6
312	195	5, 5
313	194	5, 5 12, 5
017	190	13. 4
318	189	5 1
319	188	8.5
320 .	187	5. 7
023	184	6. 4
324	រគន	S. 1
027	180	6. 7
029	178	5. 7
330	177	21. 8
332	175	5.3
334	173	11.5
3 35	172	5. 5
036	171	7.7
337	170	7. 4
ាធន	1 45	82
332	168	5. 8
040	167	5. t

SBHN ? CI

PľAK NO.	MHASURED MASS	X INT. NREF
341	166	6.1
∂45	4.62	5 1
355	152	12 1
057	150	5.4
259	148	5 ទ
361	146	6. 2
073	134	7. 0
083	124	87
385	122	5 1
೧೯೦	117	17 7
3 99	108	5 6
402	105	5 9
405	107	9.7
430	74	10.8
441	58	6. 2

242

SMD. CR. CHART 200-91522

17LR10.44 [TIC=26613760, 100x=1046400] EI

PFAK NO.	MEASURED MASS	% INT. NRFF
	1,18447,117,11	14171 1
4 47	275	6. 2
48	274	1 9. 9
49	273	11. 3
50	272	6. 2
60	261	7. 0
31	260	27 8
62	259	5. 0
83	258	5. 0
<i>55</i>	254	5. 1
72	249	5. 7
73	248	4. 3
74	247	7. 7
75 - ·	246	11.3
76	245 246	9. 7 7. 9
72	243	6. 2 5. 0
09	233 232	4.6
20 21	231 231	5. 4
7 x 92	230	4.3
701	221	5. 7
103	219	7. 8
104	218	5. 4
115	207	4. 4
117	206	5. 6
ij8	205	<i>5.</i> 7
N 101	182	10.8
142	181	4. 🔊
154	169	6. 1
155	169	17.0
154	1.67	9.1
157	166	4. S 4. S
182	141 140	9. S
183 184	139	5. 4
185	138	4. 3
1.57	137	5.3
198	130	5. 7
200	129	7. 9
202	128	10. 2
204	127	7. 0
203	123	4 -
211	127	7.4
212	121. 5	
223	115	11.6 5.8
725 002	114 113	7. O
226 227	112	4. 2
228 228	111	6. O
200	110	5 5
232	109	5. S
236	107	4.7
242	103	S. 1
244	107	5 7
246	101	5. 3
248	55	5. 3
•		

SBH43 El

•	PEAK NO.	MEMBUREN MASS	T INT NREF
	249	28	9
	250	97	8.5
	251	96	6.9
	253	9 5	. 90
	255	94	4 🥫
	25%	ያઉ	5.7
	258	学 1	6. 6
	261 270	85	4 8
	263 264	88 ~ ~	5 4
	265	87 84	10 7 5 8
	266	95 95	14 1
	267	84	6 F
	269	83	12.6
•	271	87	19. 1
	273	នាំ	13.3
	274	80	5.2
	276	7%	6.9
	クプフ	78	A 1
	2713	77	12.3
	279	76	7. P
	250	- 75	9, 3
	281	74	12.3
	2022	<u>7</u> 3	18 7
	203	72	5.8
•	204 286	71 70	18.4
	208	69	12 0 27. 2
	289	48	8.6
•	290	67	12.8
	291	66	4.9
	202	85	6.8
	223	64	5.7
	295	63	12.5
	226 .	62	5.5
	297	51	13.5
	278	50	28 1
	799	気タ	F 2
	300	58	17. 9
	301	57	43 7
	302	56 55	18 4
	003 004	55 54	46 3 1
	305	53	12.7
	207	52	113
	308	51	15 0
	009	50	17. 1
	012	47	6. 2
	313	46	29. 3
	1114	45	72 7
	G15	. 44	63. Q
	31.6	43	80-9
	017	47	43. 2
	018	41	48 4
	919	40	A5. 8

PAGE 2

PEAK	MEASURED	% INT.
NO	MASS	NRFF
320 321 323 324 325 326 327 328 304 340 345 352 357	39 37 37 36 35 34 33 31 30 29 28	35 5 5 8 4.2 * 4.2 * 4.4 .2 * 4.4 .2 7 14. 6 16. 2 2 7 9. 0 100. 0 2 * 52 .2 *

S. E. 1. 12.	. . .	
PEAK NO	MEASURED MASS	% INT. NRFF
11	351	1. 7
12	350	1. 1
13	349	3. 7
	339	1. 7
21		3. a*
arry ar op arts, are	337	2 1
24	335	1. 1
37	327	1.3
34	375	23
35	374	1. 7
26	323	3. 6
37	027	1. 1
38	323	7 1
		5. 4
50	307	⊕. + 4. 4
51	308	
52	307	9. 3
54	305	3. 6
5.7	297	9. 4
A3	276	7. 7
<u>64</u>	295	29. 8
, 35	2941	11.2
56	273	39.4
	79 7	5.4
7.7 3.7		
68	291	8.8
44.0	250	4 3
70	789	7. ?
80	279	3. 0
87	277	7.8
63	276	5. 7
£14	275	15 7 4 8
35	274	4 (3)
40%	273	17 4
71	768	5. 0
		73. 5
92 55	267	
73	265	5.7
24	755	17. 2
25	264	3. 2
26	263	3, 5
27	262	5. B
28	261	20.0
29	260	3, 5
504	255	3. 0
108	251	3. 3
	749	8. 7
110		4.8
111	748 -47	
112	247	16.6
113	246	4.3
177	237	3.7
124	235	4. 心
176	233	0.1
132	227	3, 2
136	273	3. 3
1.38	- 221	5. 0
14/	213	11. 5
147	212	18:3
448	211	4. 1
, T	4	4. 4

5BH43 C)

PACE	2	
PEAK	MEASURED	% INT.
NO.	MASS	NRFF
152	2077	3, 3
153	206	3. 2
159	200	4. 5
161	198	4. 9
162	197	3.8
1.63	196	4. 1
164	195	3. 2
145	194 186	3, 4 3, 5
173 174	185	11.3
) 75) 75	184	5. t
176	183	14. 7
177	187	3 3
±78	181	4. 1.
179	180	16.6
188	171 170	3. 0 7. 8
187 170	169	23. 2
191	168	7.7
192	167	3, 5
193	1/5/5	3, 5
195	164	3. 2
196	163	3.4
197	162 160	3. 3 3. 8
199 203	156	ક. છ 3. 0
205	154	4. 0
204	153	4 7
207	157	3. 9
208	151	3. 4
209	150	7. 7
213	146 145	4. 3 3. 2
714 715	144	3. 5
216	143	3
218	141	3.4
219	140	5 2
771	138	7. 7 4. 7
223	136	4. 7 5. 0
225 220	134 130	4. 4
200 279	129	9. §
237	127	4 . O
733	126	4. 1.
204	125	3. 4
735	174	11.8
735 .	123 122	3. 4 3. 9
23 7 232	120	4. B
241	118	, 4
242	117	.0. 1
243	116	3.7
244	115	5. 4 4. 7
245 246	114 113	3, 8
7. 40	3 3 42	

.3

,		
1	PAGE	3

}

SBHU	3	CI	•
			

			-	عقدية بلايونتشاسي أأريار	-	•	
*	PAGE	3					_
					,		
	≁ F'ERK	MEASURED	% INT.		,		
•	NO.	MASS	NRFF				
	247	112	4. 5				
	248	111	4. 🤋				
	249	110	8, 5				
	250	109	4. 2				
	2 251	108	フ. フ				
	257	102	4 9				
	260	タウ	3, 5				
	761	28	5. 0				
	282	27	4. 0				•
	263	26	4. 7				
	264	25	5 2				
	265	94	4.6				-
	269	90	3. 6				
	272	87	3 6				
	273	86	4. 0				
	274	35	4. 0				
_	275	34	5. 2	•			
	278	81	4. 4				
	279	80	3. 2				
	280	75	5. 1				
	261	78	3. 0				
	285	74	5 0				
	. 287	72	3. 1				
	767	70	. 4.9				
	290	69	4. 4				
4	278	61	8, 8				
	233	60	11.3				
	cot	58	9. 2				
,	003	56	4. 4				
	304	55	5. 1				
	308	50	7. 1				
	331	4.	6.1				
	312	4	8. 6	· ·			
	ារខ	4 }	20. 1				
	014	43	4. 1				
	316	41	3. 6				
	318	ୁନ	5. 8				
	020	35	10. ద				
	023	33	53. 0				
	024	37	75. 3			ŗ	
	075	31	57 . 0			•	
	327	30	100. 0				
	078	29	36. 3				
	029	28	12. 3				

•

Fred. Bub-									1		
7:58	· .		_				7.2%				
85.00		~~~	m\		25 02			1			
	Wa 7 J 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		····	/- -}-/- -		23	6.86 Accyloral	1-1-1-			
			112 (1) 7 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(79.57		Bichylund-	SBH43-		. 2962;t	0 ===€8 37 0 === 28∙87
	M 1772 1224 1524						1	<u> </u>) =: 71 88) +6 31
				=	11111	- E CPECHTORIL	1200mg	<u>re - .</u>		1405.0) = ::50,74
1.73.72						- = = = = = = = = =	##FEE! #000 0 - 1.	saa a Isri-Ii		1256.1	1 . 44 66
1 -		1 _ 1 _ 1 _ 1					H944 33151 − G114 0.50	in vi Vi		1047	54.32
68:67		F. H. H4			63 67	PERCUTION		1 2 - 1		987.0	55
			: : . .			aadamaista aakin asa t	22	1 1	1 - 1 - 1	763	0 1168-70
62 42 E	SISHUS	1 45-4	; - ; :-!: -		63-42					7367	
58.77	- 1 .1.7			- - -	56.77		I. I				1
				 ┃ ╶ ┤┤┤ <mark>┤</mark> ┃	1		-			1 - 1 - 1 - 1	
	· = - ! : - i: := .: ·: :: !: =: :::::::	: 		 	51712	1. 211 21 17. - 1 1721 1 171 172	2.12.1	++-	1	7 1 1 1 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1	
<u> </u>					5\712			1-1		: 12 4- 12-	::.::: <u>:</u> :::
1 45 47					45:40			1 1 1 1			
<u> </u>				1,				.			
								- -			
39.87					39-82			Jan E			
									deline ex		
-28.52				 	18.51						
	2493	90-90 16	(O) 1	288	800		e de la companya de	,			
	PE, chart r	- 1.00 1405			The state of the s	The second of th			OE shart	ro L106-1435	
	F.E. CHAIL I	100-1405							- T. T. CHAIL	10 2.00-1400	1

. .

. ;

-		
Pl"AK	MEASURED	x INT.
NO.	MASS	NRFF
,	CIAGO	ů.
ລ	500°	
., 5	500g	
	4987	
14	462	5.3
31	421	3.5
34	417	4. 8
36	415	1.6
72	331	ESBHU
94	329	28 TITE
160	257	- 花が雪崎 せつりかい
		ू के क्रम्बुड स र व
161	256	
167	250	2.3
168	249	2 3
169	?48	5, 6 -37 · · · · · · · · · · · · · · · · · · ·
173	744	3.3
174	ຶ່ 743 `	11 8 The second of the second
175	242	i. 5
231	186	7 1
253	164	10 6 C
		7.2
257	160	7,3
023	-	6.7
325	95 _	122 FSRHUZEI
333	87	122 ESBHU3 E)
035	වේ `	
337	84	8.0
038	83	11. 3
039	82	8. 4
340	81	7 . 2
		6. 4
342	79 	
344	7 7	6.8
048	73	6.5 12.4
350	71	12, 4
351	70	इ. इ.
352	ሪ ዮ	रो 5 12 5 *
353	6ዮ	24.8 *
355	67	9.6
	60	21. 7
362		
365	57	28. 6
366	58	15.3
067	55	. 31. 2
368	54	9. 2
263	53	7. 9
370	52	9.3
371	51	10. 7
372	50	14.4
377	(45)	66.3= Ph. 105
378	44	38.7
	43	100.0
379		27. 0 34 15 15 15 15 15 15 15 15 15 15 15 15 15
380	42	□ Table and the control of the
281	41 .	44. 3
283	40	33. 1. %
084	ଅନ ୍	22.11.200
388	3/5	14.0
สรร .	(31_	34. 131 - New
394	30	15. 5
ି ଅ ୭ ୭	29	88.42.
,		apply graduated to the control of th

27LR1.20 [TIC=50996272, 100%=1058624] +VE CI, REAGENT: AMMONIA

PAGE	1		
PEAK	MEASURED	% INT.	i,
NO.	MASS	NRFF	
64	509	3. 7	
70	502	11,4 *	•
71	501	30. 0 *	
72	500	27.0 *	
73	499	77.2 *	
74	498	8.4 *	
77	495	11.5 *	
? 5	477	3.0 *	
107	465	8.6 *	
108	464	·· 26, 7 * 🚅 📑	
109 .	463	75.6 🖈 📜	
110	462	14.4 #	
111	461	31.7 *	•
113	459	10.6 #	· .
131	441	8.8	
167	405	11. 9	TCOMODI
745	307	.11.8	ESBH43C1
276	296	35. 5	
278	294	71. ን	,
278	274	26. 7	
314	258	56. 7	
037	236	25. 1	
041	232	26. 7	. :
351	222	58. 4	
053	220	40. ም	<i></i>
063	210	38. 5	•
366	207	27. 3	
367	208	100. 0*	
370	204	01.0	
. 087	185	48. 🤊	•
Sec	176	34. 5	·
403	174	33. 4	
409	1674	33. 3	
412	166	26. 8	
413	1651	61.0	
418	160	27. 7	
491	87	52 2	
498	80	24. 2	
504	74	27, 2	
518	60	57. 5	
519	59 50	31.8	•
520	58	45. 9.	• •
532	45	48. 1	44
533	. 44	70.8	•
545	03	97. 2	• •
546	32		r v
548	30	94. O 🔭 🚚	

ES

37.74	8 m fr		<i></i>	— ⊢ 3;			} -	!	 ; ⊦	 ·	129	j-		· ⊢ -		- 1		∺	11			4 H	日一				H -	(i—			
						/\u	\					= -	۲.			45		== 4.74 == 4.72	29	58 H								THE S.	PLO 3		
43	(A)									#		三十	J	133		1 12	.08			SBH	u i							3753	<u>`</u> □ ‡=3	8.78	
	- 4														- -						n							3714 3692	0 3	8.05	
- 3	75 - 1			/-			: [. <u>i=:</u> .!				FEE	-1 - 38	75	0		(O)								-13406 -13926	0 -1	2-12 }- 5-5)	KBr
	1=+1=													-\-^	``	FFE					10.2							3346 	0 1 0 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2	9.39 =	
		11.11.11.1		[= ::l= ==================================		ia lais		11 2242 12 22	==.i== ==:i==.	# :- I	· : 1		- 1 1 1 1 1 1 1 1 1 1	$-\sqrt{f}$	^D \ + 35	.42	FES	·		<u> </u>							1121	0 - 2	50]	K.R
	1==== 1					-								<u> </u>				5. Mp.:		~5- 3 								- 753 (2)	0 3	2.91	
- 132	709 7				-						1 4 1	i. iu	T_ 17 T_ T_ 1				- 66												0 3		
- 4	375		/-		- :-{-				1		-11					-1-2									1 2					1:- 1-	
				SO	70,0	Fi	İ							71	寸								87			1		1 1		4-4.	1 -
- 2	Cu 17					H]}-:}:		\top \setminus \setminus	7		1 =: !	- :	F 25	.62							: :::::::::::::::::::::::::::::::::::::				1 - 1			
	- i i i	7 = 1 7 = 12 1 = 2												=				===	1:2								- 1 -			-:-1:	
7,	.η-		/				===	目計	#1			-	-		27 3			::::::::::::::::::::::::::::::::::::::	3-33	=====											===
									<u> </u>					- ==-			=====	====	-1							7=	=				
1	.573									= -																		==			
															====	- 1.															
Į,	7 99																7.44														
						- 7:																		1							
															#		5)(
Sen.	1.77	3200	Service of the servic	2463	299 24 64	0 - 4 ·		. 160 };	ه بادر ۱۳۰۹ در مهم راه		12 00 (2007)	23 % 12 M		800		20 35 C							7								
no. I	. 106 -1435					被推	LA .			. ÷3	1 (1 kg) 1 (1 kg)	rice di Sistema	کامیڈر مارید	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		PE	cha	, na l	106 - 14	35			• 1	.F	. * :		•				
	<u> </u>	A A	J 1 1		1						1	يَت		1.1	<u> </u>				T	ــــــــــــــــــــــــــــــــــــــ				 	صند		<u> </u>	11_	<u></u>		

est.

PAGE	1.	
FIFERK	MEASURED	% INT.
NO.	MASS	NRFF
72	334	5, 6 3, 7
73 02	333 324	3. 8 3. 8
02 04	372	5. 2
55.	321	5. 0
28	308	24. 6
29	307	24.8 ¥
115	291	14. 7
101	275	17. 0
132	∵74 263	14. 1 17. 5
143 145	763 761	73. S *
146	760	44 4 ×
147	250	13.5 *
158	749	14. 🖨 😤
159	74 8	14.0 8
160	247	34. 7 ★
161	246	55 6 *
167	245 244	24. 1 × 12 9 ×
163 164	243	15 9 *
173	734	12 9 *
174	233	21.8 *
175	237	27 3 ¥
176	231	31. 🤊 🔻
177	- 230	19. O *
179	777	18.1 *
186	771	16.9 * 22 6 *
187 188	770 719	37, 6 ¥
155 157	218	39.8 *
190	217	16 9 *
201	207	13. 6
203	204	14.3 *
204	705	19.9 *
215	196	14 🕏
217	195	15. 6 13. 2
277 207	191 183	128
	187	71.6
204	181	17. 7
236	180	12 5
257	169	37. O
77.7	168	୍ଟେ 4
254	167	27. 2
253	166	13. 0 41. 0 *
061 425	115 85	27. 5
479	9 3	26. 3
433	81	26.5
447	77	41.9
447	75	27. 7
450	73 71	39. 6 32. 4
453 455	71 70	37. 4 27. 6
455	70	35.7 (A)

SBH44

El

PAGE	2	
OFAK NO.	NEASURED MASS	% INT. NRFF
457 460 467 470 476 480 483 484 486 486 497 498 499 509 510	69 67 63 60 55 55 55 57 51 50 44 42 44 40 39 36 31	51. 4 28. 3 34. 3 44. 2 63. 0 35. 7 39. 0 25. 3 41. 9 30. 9 64. 0 100. 0 88. 1 62. 5 62. 5 45. 2 52. 2 31. 0
511 513	29 27	94, 3 55, 3

17LR12.36 [TIC=18651136, 100x=559952] +VE CI, REAGENT:AMMONIA

PEAK NO.	MFASURFD MASS	% JNT. NRFF
1317.1	((6.1% 1.7.	11.
34	339	6. 3
36	337	7. 0
46	327	3. 5
48	325	10. 2
49	324	10. 5
50	323	44. 1
51	322	4. 🕏
52	321	5. 9
CO	283	15. 9
02	791	21. 5
24	279	23. 4
106	267	16.4
108	265	36. 4
110	763 274	31, 1 18, 4
122	251	10. 4 50. 8
124	249 247	50. 6 19. 0
326	235	38. 7
138	230 226	19. 2
147	223	18 8
150 151	277	26 5
152	221	84. 2
154	219	17. 7
161	212	53. 3
176ء 176ء	197	24. 5
177	196	16. 0
120	183	42.7
191	187	16.6
193	180	51. 5
203	170	74.4
204	169	63. 2
705	168	24. 1
213	160	19. 6
271	152	19. 7
223	150	18. 4
227	1.46	21. 5
205	138	24, 8 20, 1
239	134	20. r 15. 6
243	130 127	16.0
246 249	124	54. 4
260	113	17. 2
263	110	25. 3
2.00 265	108	31.7
315	56	25. 9
324	46	24.4
026	44	31. 9
336	33	16. 7
337	02	100. 0
202	30	36. 7

SBHU-4 c1

THE PLANT HUNTERIA UMBELLATA

MRS. F. O. OGUNSULIRE REMOVING BARK FROM THE PLANT HUNTERIA UMBELLATA

BARK CHIPS OF HUNTERIA UMBELLATA

A BUNCH OF SEED PODS OF HUNTERIA UMBELLATA

,X

τ

LEAVES OF HUNTERIA UMBELLATA

LEAVES, BARK AND SEED POD OF HUNTERIA UMBELLATA