Groundwater Flow Characterisation

and

Quality

around Selected Waste Dumpsites

in

Lagos, Nigeria

ADEGUN, Olubunmi Adeoti

(990906003)

B.Sc Geography (Lagos), M.Sc Geography (Lagos)

A Thesis Submitted to

The School of Post Graduate, University of Lagos, Akoka, Lagos, in Partial Fulfilment for the Award of the Degree of Doctor of Philosophy (Ph.D) in Geography

December, 2012

i

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that this thesis:

Groundwater Flow Characterisation and Quality around Selected Waste Dumpsites in Lagos Nigeria

Submitted to the School of Postgraduate Studies, University of Lagos for the Award of the DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) is a Record of Original Essay Carried out by

ADEGUN, OLUBUNMI ADEOTI

in the Department of Geography

Author's Name	Signature	Date
Major Supervisor's Name	Signature	Date
Second Supervisor's Name	Signature	Date
Internal Examiner's Name	Signature	Date
External Examiner's Name	Signature	Date
External Examiner's Name	Signature	Date
SPGS School Representative	Signature	Date

DEDICATION

То

The Almighty God, My Glory and the Lifter of My Head

То

My Mother, Mrs. Olusola Adegun

My Jewel of Inestimable Value, My Pillar and Source of Inspiration

and

The Memory of My Late Father, Mr. Felix Babajide Adegun

(You will Forever Live on in My Heart)

ACKNOWLEDGMENT

I thank the God of all possibilities, in whom I live, and move and have my being. Thank you Lord for granting me the wisdom and the grace needed to complete this research.

My heart felt appreciation goes to my first supervisor, Dr. I.I Balogun. You have been a Father figure, a mentor, a source of inspiration, a counsellor and a good role model. I appreciate your invaluable contributions and support all through the years. May God bless you and your family forever. I am also grateful to my second supervisor, Dr. F.O Oni. Thank you for your encouragement and support at all times. May God bless you and all that concerns you.

My appreciation also goes to the Head of the Department of Geography, University of Lagos, Prof. S.I. Oni and all the academic staff of the department: Prof. A.S. Omojola, Dr. A.S.O Soneye, Dr. O. Babatola, Dr. N.Uluocha, Dr. O.A Adeaga, Dr. M.J. Fasona, Dr. A.O. Ayeni, Dr. S.S. Odunuga, Mr. O.J. Ogunkunle, Dr. V.T. Adedayo, Ms J.O. Omenai, Mr. A. Akintuyi, Dr. G.E. Ekop, Dr. P.O. Elias, Mr. E.A. Urirri, Dr. E.E. Ege, and Dr. R.K. Ojekunle. My thanks also go to all administrative staff of the department for their goodwill: Mr. J.A. Fashuan, Mrs. J.B. Lukong, Mrs. N.J. Ogunkoya, Mrs. G. Nwaolise, Mrs. Waidi and Mr. Taiwo. Thank you all for your Support

I am grateful to the Ph.D cohort of the department: Mr. Segun Adepoju, Mrs. Emily Ojukwu, Mr. Isaiah Akoteyon, Mr. Rafiu Olorunnimbe, Mark Oyewo, Bola Daramola, and the others. I am also grateful to my friends within and outside the department: Aunty Toun Adenuga, Juilano Appiah, Kayode Fashuan, Seun Raji, Adedoyin Bello, and Emmanuel Wunude. Thank you all for your support and encouragement at all times. My sincere appreciation also goes the School of Postgraduate Studies University of Lagos, for the Graduate Fellowship Grant I enjoyed throughout my Ph.D programme.

Special thanks to you Uncle Taiye for believing in me, encouraging me and inspiring me every step of the way. God Bless you. I am also highly grateful to my Uncle, Prof. G.A Sote, for his fatherly counsel and support and encouragement all through the years. May the Lord continue to bless and strengthen you.

To my siblings: Debo, Moji and Yemi, and my friends Adijat, Bose and Peggy, I say thank you for all your love and support.

Special thanks to my lovely mother, Mrs Olusola Adegun. May you live long to the reap the fruits of your labour over me and my younger ones in Jesus Name.

TABLE OF CONTENTS

Title Page	i
Certification	ii
Dedication	iii
Acknowledgment	iv
Table of Content	vi
List of Figures	xi
List of Tables	xiv
List of Appendices	xv
Abstract	xvi

CHAPTER ONE

Introduction	1
1.1 Background to the Study	1
1.2 Statement of Problem	7
1.3 Aim and Objectives	12
1.4 Research Questions	13
1.5 Significance of the Study	13
1.6 Scope and Limitation of the Study	14
1.7 Operational Definition of Terms	15
1.8 Study Area	17
1.8.1 Location	17
1.8.2 Geological and Hydrogeological Setting	20
1.8.2.1 Hydrogeological Profile 1.8.3 Geomorphological Setting	21 25
1.8.4 Climate	26
1.8.5 Vegetation	27
1.8.6 Landuse	27
1.8.7 Human Setting	28

1.8.8 Operational Practices	28
1.8.9 Characterisation and Volume of Waste Tipped	32

CHAPTER TWO

Literature Review and Conceptual Framework	37
2.1 Literature Review	37
2.2.1 Groundwater Flow Modelling	37
2.1.2 Waste Degradation Processes Operating in Landfills and Dumpsites	48
2.1.3 Landfill Leachate Characterisation and Contamination	55
Potential	
2.1.4 Leachate Transport through a Landfill or Dumpsite	59
2.1.5 Approaches used in the assessment of Leachate Migration	63
from Waste Dumpsite	
2.1.6 Impact of Landfill Leachate on Groundwater Quality	65
2.1.7 Use of Index in the Assessment of Groundwater Quality	67
2.1.8 Attenuation of Landfill Leachate	69
2.2 Laws and Concepts on the Flow and Quality of Groundwater	72
2.2.1 Darcy's Law	72
2.2.2 Fick's Law	73
2.2.3 Natural Attenuation Concept	75
2.3.4 Water Quality Index Concept	79

CHAPTER THREE

Research Methodology	86
3.1Methodological Framework	86
3.2 Methodologies Adopted	91
3.2.1 Characterisation of Groundwater Flow around Abule-Egba and	91

Solous 1 and Solous 2 Dumpsite	
3.2.1.1 Development of a Conceptual Model	91
3.2.1.2 General Simplifying Assumption	93
3.2.1.3 Governing Flow Equations	95
3.2.1.4 Modelling Approach	96
3.2.1.5 Spatial Discretisation of Model Grid	97
3.2.1.6 Physical Parameters of the System	98
3.2.1.6.1 Initial Hydraulic Heads	99
3.2.1.6.2 Hydraulic Conductivity and Transmissivity	99
3.2.1.6.3 Aquifer Geometry	100
3.2.1.6.4 Aquifer Thickness	101
3.2.1.6.5 Effective Porosity	101
3.2.1.6.6 Model Boundary Conditions	101
3.2.1.6.7 Model Run or Flow Simulation	102
3.2.2 Leachate and Groundwater Quality Analyses	103
3.2.3 Leachate Characteristics and Pollution Index	108
3.2.4 Variability and Spatial Patterns of Groundwater Quality	109
3.2.4.1 Variability of Groundwater Quality	109
3.2.4.2 Spatial Patterns of Groundwater Quality	110
3.2.5 Groundwater Contamination Index	111

CHAPTER FOUR

Results and Discussion

4.1 Groundwater Flow Modelling for Abule-Egba and Solous Dumpsites Environs	113
4.1.1 Abule-Egba Dumpsite Vicinity	113
4.1.2 Solous Dumpsites Vicinity	115
4.2 Leachate Characterisation and Leachate Pollution Index	117
4.2.1 Leachate Characterisation	117
4.2.2 Leachate Pollution Index	122

4.3 Variability and Spatial Patterns of Groundwater Quality	123
4.3.1 Statistical Summary of Groundwater Quality	123
4.3.2 Variability and Spatial Patterns of Groundwater Quality around	128
the Dumpsites	
4.3.2.1 Variability of Groundwater Quality	128
4.3.2.1.1 Abule-Egba Dumpsite Vicinity	128
4.3.2.1.2 Solous Dumpsite Vicinity	131
4.3.2.2 Spatial Pattern of Groundwater Quality	133
4.3.2.2.1 Spatial Pattern of Groundwater Quality around	133
Abule-Egba Dumpsite for the Wet Season	
4.3.2.2.1.1 Nitrate	133
4.3.2.2.1 .2 Chloride	135
4.3.2.2.1.3 Zinc	137
4.3.2.2.1.4 Total Dissolved Solids	137
4.3.2.2.2 Spatial Pattern of Groundwater Quality around	139
Abule-Egba Dumpsite for the Dry Season	
4.3.2.2.2 .1 Total Dissolved Solids	139
4.3.2.2.2 .2 Chloride	140
4.3.2.2.2 .3 Nitrate	142
4.3.2.2.2 .4 Iron	144
4.3.2.2.3 Spatial Pattern of Groundwater Quality around	145
Solous Dumpsites for the Wet Season	
4.3.2.2.3 .1 Nitrate	145
4.3.2.2.3 .2 Chloride	146
4.3.2.2.3.3 Zinc	149
4.3.2.2.3 .4 pH	149
4.3.2.2.3 .5 Iron	153
4.3.2.2.4 Spatial Pattern of Groundwater Quality around	155

Solous Dumpsites for the Dry Season	
4.3.2.2.4 .1 Sulphate	155
4.3.2.2.4 .2 Nitrate	157
4.3.2.2.4 .3 Total Dissolved Solids	159
4.3.2.2.4 .4 Zinc	161
4.4 Groundwater Contamination Index	163
4.4.1 Abule-Egba Dumpsite Vicinity	163
4.4.2 Solous Dumpsites Vicinity	165
4.5 Link between Possible the Groundwater Flow Patterns, the Leachate	168
Generated at the Dumpsites and the Quality of Groundwater	

CHAPTER FIVE

Implications of the Results of the Study for Waste Dumpsite	170
Management	
5.1 Groundwater Flow Patterns and Waste Dumpsites	170
Management	
5.1.1 Abule-Egba Dumpsite and Environs	170
5.1.2 Solous Dumpsites and Environs	171
5.2 Characteristics of the Leachate Generated and Waste Dumpsites	171
Management	
5.2.1Presence of Heavy Metals in Leachate	171
5.2.2 Effervescence of Leachate	172
5.2.2.1 Impact on Groundwater Quality	173
5.2.2.2 Impact on the Environment	174
5.2.2.1 Contribution to the Green House Effect	174
5.2.2.2.2 Inhalation of Toxic Gases by Humans	174
5.2.2.3 Explosion Hazard	175
5.2.2.4 Vegetation Stress	175
5.3 Groundwater Quality, Contamination Index and Waste Dumpsites	175
Management	

5.4 Waste Management Policies in Lagos
5.4 Waste Management Policies in Lagos

CHAPTER SIX

Summary of Findings, Conclusion and Recommendations	179
6.1 Summary of Findings	179
6.2 Contribution to Knowledge	180
6.3 Conclusion	181
6.4 Recommendations	182
6.5 Future Research Directions	184
References	186
Appendices	210

LIST OF FIGURES

Fig. 1.1: Conceptual Diagram of a Modern Landfill	2
Fig. 1.2: Location of Olusosun, Abule-Egba, Solous 1 and Solous 2 Dumpsites	3
within Lagos	
Fig. 1.3: Leachate Spring at Abule-Egba Dumpsite Fig. 1.4: Leachate Spring at	10
Abule-Egba Dumpsite	
Fig. 1.4: Water Table Mounding and Leachate Spring at the Periphery of Waste	11
Deposited at a Dumpsite	
Fig. 1.5: Abule-Egba Dumpsite and Environs	18
Fig. 1.6: Solous Dumpsites and Environs	19
Fig. 1.7: Stratigraphy of Eastern Dahomey Basin	21
Fig. 1.8: Hydrological Features around Abule-Egba and Solous	26
Dumpsites	
Fig.1.9: Mound of Refuse and Scavenging Activities at Abule-Egba	29
Dumpsite	
Fig.1.10: Leachate Runoff at Abule-Egba Dumpsite	30
Fig.1.11: Waste Deposited at Solous 1 Dumpsite Fig. 1.12: Scavenging Activities at Solous 2 Dumpsite	31 32
Fig. 1.13: Total Volume of Waste from Different Sources Deposited at Abule-	34
Egba Dumpsite in 2007	

Fig. 1.14: Total Volume of Waste from Different Sources Deposited at Abule-	34
Egba Dumpsite in 2008	
Fig. 1.15: Total Volume of Waste Deposited at Abule-Egba Dumpsite from	35
January to June, 2009	
Fig. 1.16: Total Volume of Waste from Different Sources Deposited at Solous 1	35
Dumpsite in 2007	
Fig. 1.17: Total Volume of Waste from Different Sources Deposited at Solous 1	36
Dumpsite in 2008 Fig. 1.18: Total Volume of Waste Deposited at Solous 2 Dumpsite from January	36
to June, 2009	
Fig. 2.1: Major Stages of Waste Degradation in Landfills and Dumpsites	53
Fig. 2.2: Details of Stages Involved in the Degradation of Solid Waste	54
Fig. 3.1: Methodological Framework for the Study	90
Fig. 3.2: Conceptual Model of Groundwater Flow System	92
Fig. 3.3: Illustration of the Spatial Discretisation of an Aquifer System and the	98
Cell Indices	
Fig. 3.4: Leachate and Groundwater Sampling Locations at Abule-Egba	106
Dumpsite	
Fig. 3.5: Leachate and Groundwater Sampling Locations at Solous, Igando	107
Fig. 4.1: Groundwater Flow Direction and Pattern in the Vicinity of Abule-Egba	114
Dumpsite	
Fig. 4.2: Groundwater Flow Direction and Pattern in the Vicinity of the Solous	116
Dumpsites	
Fig. 4.3: Emergence of Effervescent Leachate from the Solid Waste Matrix at	118
Solous 2 during the Wet Season	
Fig. 4.4: Leachate Pollution Index of Abule-Egba, Solous 1 and Solous 2	
Dumpsites for the Wet and Dry Seasons	123
Fig. 4.5: Spatial Pattern of Variability in Nitrate Concentration of Groundwater	135
around Abule-Egba Dumpsite for the Wet Season	
Fig. 4.6 Spatial Pattern of Variability in Chloride Concentration of Groundwater	136
around Abule-Egba Dumpsite for the Wet Season	

Fig. 4.7: Spatial Pattern of Variability in Zinc Concentration of Groundwater	138
around Abule-Egba Dumpsite for the Wet Season	
Fig. 4.8: Spatial Pattern of Variability in Total Dissolved Solids Levels of	139
Groundwater around Abule-Egba Dumpsite for the Wet Season	
Fig. 4.9: Spatial Pattern of Variability in Total Dissolved Solids Levels of	141
Groundwater around Abule-Egba Dumpsite for the Dry Season	
Fig. 4.10: Spatial Pattern of Variability in Chloride Concentration of	142
Groundwater around Abule-Egba Dumpsite for the Dry Season	
Fig. 4.11: Spatial Pattern of Variability in Nitrate Concentration of Groundwater	143
around Abule-Egba Dumpsite for the Dry Season	
Fig. 4.12: Spatial Pattern of Variability in Iron Concentration of Groundwater	144
around Abule-Egba Dumpsite for the Dry Season	
Fig. 4.13: Spatial Pattern of Variability in Nitrate Concentration of Groundwater	147
around Solous Dumpsites for the Wet Season	
Fig. 4.14: Spatial Pattern of Variability in Chloride Concentration of	148
Groundwater around Solous Dumpsites for the Wet Season	
Fig. 4.15: Spatial Pattern of Variability in Zinc Concentration of Groundwater	151
around Solous Dumpsites for the Wet Season	
Fig. 4.16: Spatial Pattern of Variability in pH Levels of Groundwater around	152
Solous Dumpsites for the Wet Season	
Fig. 4.17: Spatial Pattern of Variability in Iron Concentration of Groundwater	154
around Solous Dumpsites for the Wet Season	
Fig. 4.18: Spatial Pattern of Variability in Sulphate Concentration of	156
Groundwater around Solous Dumpsites for the Dry Season	
Fig. 4.19: Spatial Pattern of Variability in Nitrate Concentration of Groundwater	158
around Solous Dumpsites for the Dry Season	
Fig. 4.20: Spatial Pattern of Variability in Total Dissolved Solids Level of	160
Groundwater around Solous Dumpsites for the Dry Season	
Fig. 4.21: Spatial Pattern of Variability in Zinc Concentration of Groundwater	162
around Solous Dumpsites for the Dry Season	

LIST OF TABLES

Table 1.1: Lithological Profile of Borehole 1 at Abule-Egba Dumpsite	22
Table 1.2: Lithological Profile of Borehole 2 at Abule-Egba Dumpsite	22
Table 1.3: Lithological Profile of Borehole 3 at Abule-Egba Dumpsite	23
Table 1.4: Lithological Profile of Borehole 1 at Solous 1 Dumpsite	23
Table 1.5: Lithological Profile of Borehole 1 at Solous 1 Dumpsite	24
Table 1.6: Lithological Profile of Borehole 1 at Solous 1 Dumpsite	24
Table 3.1: Data Types and Sources.	89
Table 3.2: Leachate and Groundwater Parameters and Analytical Devices	105
Table 4.1: Constituents and Concentration of Leachate Collected at Abule-Egba,	119
Solous 1 and Solous 2 Dumpsites	
Table 4.2: Constituents and Concentration of Leachate Collected at Abule-Egba,	119
Solous 1 and Solous 2 Dumpsites in Milliequivalent Units	
Table 4.3: Statistical Summary of the Chemical and Heavy Metals Analyses of	124
Groundwater Quality in the Vicinity of Abule-Egba Dumpsite for the Wet	
and Dry Seasons	
Table 4.4: Statistical Summary of the Chemical and Heavy Metals Analyses of	125
Groundwater Quality of the Control Sites of Abule-Egba Dumpsite	
Vicinity for the Wet and Dry Seasons	
Table 4.5: Statistical Summary of the Chemical and Heavy Metals Analyses of	126
Groundwater Quality in the Vicinity of Solous 1 and Solous 2	
Dumpsites for the Wet and Dry Seasons	
Table 4.6: Statistical Summary of the Chemical and Heavy Metals Analyses of	
Groundwater Quality of the Control Sites of Solous 1 and Solous 2	127
Dumpsites Vicinity for the Wet and Dry Seasons	
Table 4.7: Component Loadings after Varimax Rotation of Hydrochemical	130
Parameters for Abule-Egba Dumpsite Vicinity for the Wet Season	
Table 4.8: Component Loadings after Varimax Rotation of Hydrochemical	130
Parameters for Abule-Egba Dumpsite Vicinity for the Dry Season	
Table 4.9 Loadings 7: Component after Varimax Rotation of Hydrochemical	132

Parameters for the Solous Dumpsites Vicinity for the Wet Season	
Table 4.10: Component Loadings after Varimax Rotation of Hydrochemical	133
Parameters for the Solous Dumpsites Vicinity for the Dry Season	
Table 4.11: Contamination Index of Groundwater in the Vicinity of Abule-Egba	165
Dumpsite	
Table 4.12: Contamination Index of Groundwater in the Vicinity of Solous 1 and	167
2 Dumpsites	

LIST OF APPENDICES

Appendix 1: Hydrogeological Profile of Abule-Egba Dumpsite	210
Appendix 2: Hydrogeological Profile of Abule-Solous Dumpsites	215
Appendix 3 : Chemical Constituents of Groundwater in the Vicinity of Abule-	219
Egba Dumpsite for the Wet and Dry Seasons	
Appendix 4 : Heavy Metal Constituents of Groundwater in the Vicinity of Abule-	220
Egba Dumpsite for the Wet and Dry Seasons	
Appendix 5 : Chemical Constituents of Groundwater in the Vicinity of Solous 1	221
and Solous 2 Dumpsite for the Wet and Dry Seasons	
Appendix 6 : Heavy Metal Constituents of Groundwater in the Vicinity of	222
Solous 1 and Solous 2 Dumpsite for the Wet and Dry Seasons	
Appendix 7: LPI Computation for the Leachate Generated at Abule-Egba	223
Dumpsite for the Wet Season	
Appendix 8 : LPI Computation for the Leachate Generated at Abule-Egba	223
Dumpsite for the Dry Season	
Appendix 9 : LPI Computation for the Leachate Generated at Solous 1	224
Dumpsite for the Wet Season	
Appendix 10 : LPI Computation for the Leachate Generated at Solous 2	224
Dumpsite for the Wet Season	
Appendix 11 : LPI Computation for the Leachate Generated at Solous 2	225
Dumpsite for the Dry Season	

ABSTRACT

Dumpsites in Lagos constitute a major source and risk of groundwater quality impairment in the environments where they are located. This is because the waste management practices at these dumpsites allows rainwater to infiltrate the waste matrix and combine with interstitial water released during the process of waste degradation, to produce leachate, which may eventually contaminate groundwater resources around the dumpsites. In achieving the aim of this study which is to assess the possible linkage between the groundwater flow pattern, leachate and the quality of groundwater around the dumpsites, three dumpsites were selected. These are the Abule-Egba, Solous 1 and Solous 2 Dumpsites.

In line with the objectives of this research, the study characterised groundwater flow pattern around the dumpsites through 2-Dimensional numerical groundwater flow modelling using processing MODFLOW (Pmwin version 5.3). The leachates generated at the dumpsites were characterised and their contamination potential were assessed using the Leachate Pollution Index. Furthermore, the variation, spatial pattern, and degree of groundwater contamination around the dumpsites were assessed through Principal Component Analysis, the inverse distance weighting method of spatial interpolation and Groundwater Contamination Index.

The results of the groundwater flow modelling revealed a predominantly horizontal and multidirectional flow pattern at Abule-Egba and Solous Dumpsites vicinities respectively. The assessment of the contamination potential of the leachates generated at the dumpsites through the Leachate Pollution Index revealed a low contamination potential, while the results of the groundwater quality assessment showed that a combination of waste disposal activities and lithogenic interactions groundwater with the aquifer and underlying geology were responsible for

the variation and mostly minimal level of groundwater contamination recorded around the dumpsites.

The higher mean concentration of parameters such as Electrical Conductivity, Total Dissolved Solids and Chloride downgradient of Abule-Egba Dumpsite is attributed to the predominantly horizontal groundwater flow pattern, while the multidirectional flow pattern around Solous Dumpsites implies the potential for leachate to migrate in different directions.

The study therefore advocates a number of measures to reduce the risk of groundwater contamination around current and future dumpsites locations in Lagos. The study recommends amongst others that detailed hydrogeological and groundwater flow characterisation be conducted before the location and commencement of waste disposal activities at future dumpsites in Lagos.