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Abstract - In this paper we propose a scheme for the design
of a Symmetrical Multiple Valued Logic (SMVL) arithmetic
circuit based on the use of restricted moduli Symmetrical Signed
digit Residue Number system (SSRNS). Sign and overflow
detection as welI as magnitude comparison operations are
accomplished without recourse to the traditional complex Mixed
Radix number System (MRS) conversion process and
multiplicative inverse computation. The method is particularly
general purpose systems oriented. Addition operations are
executed economicalIy, fast and at constant speed.
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I. I TRODUCTIO

pRACTICALLY all human endeavours today are
Information and Communication Technology Systems

(ICTS) driven. These systems rely on high speed, secured
and trusted communication gadgets whose operations
depend on special classes of very big integer arithmetic
circuits. The type of arithmetic operations employed in
these devices is not only fixed point but also must be carry-
free. The method of number representation is a critical
design factor in order to attain the desired high-speed
operations of these circuits; designers still have to find
optimal ways of managing carry propagation chains [I],
[2].

It has long been established that the non-redundant
non-weighted Residue Number System (R S) and the
weighted highly redundant Signed-Digit Number System
(SDNS), attract fast and efficient arithmetic. [2], [3], [4],
[5], [6]. However, RNS arithmetic is beset with complex
conversion procedure, difficult sign detection, cost
intensive overflow detection and magnitude comparison
strategies that require Mixed Radix number System (MRS)
and practically none in-existence simple division
algorithm. Hence, R S arithmetic found application in
special areas such as: error correction, fault tolerance and
digital filter design, power dissipation reduction in VLSI
design, fast Fourier transform structures and cryptography
[7], [8], [9], [10], [II]. On the other hand, the SDNS
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representation in addition to the above benefits of RNS
provides a means of presenting operands at higher radices
thereby supporting SMVL systems design which find
application in image processing, robotic, and finite field
arithmetic [6], [7]. The SDSN drawback is that it requires
more character digits for operands representation. Thus in
systems of high frequency addition operation this
requirement is a setback in terms of circuit power
consumption.

It is already established that combined Signed Digit
(SD) and Residue Number (RN) arithmetic could result in
reduced carry propagation delay and power consumption
but the deployment of this in fast arithmetic circuit design
is still at its infancy. For example the related arithmetic
circuits in [2] are parameterized to provide basic building
blocks for binary logic signal VLSI processors. Binary
logic VLSJ circuit's main objective is miniaturization with
improved circuit complexity all at reduced cost. The
Multiple Valued Logic (MVL) systems extend the horizon
of this objective by virtue of its higher information per line
capacity. Very recently, a Symmetrical Multiple Valued
Logic (SMVL) developed from Restricted radix-7
Quaternary Signed Digit (Rr7SqSd) number system has
been proposed [7]. It is highly probable that an interesting
cross line could evolve when the character digit set of a
symmetrical SDNS coalesces with a symmetrical signed
digit RNS character digit set.

The proposed SSRNS addition scheme widens the
scope of RNS arithmetic application by removing the
inherent bottle neck in RNS arithmetic operations namely:
sign detection, overflow detection and magnitude
comparison. This contribution will thus make RNS
arithmetic possible for use in general purpose digital
systems. The organization of the remaining part of this
paper is as follows. The background to this paper is
presented in section II. Section III presents the SSRNS and
the conversion procedures. SSRNS addition is presented in
section IV.

II. BACKGROUND

Exegesis of RNS arithmetic can be found in popular works
such as [2], [4], and [5]. Similar works on Signed-Digit
Number System (SDNS) arithmetic can be found in [6].
The concept of restricted radix-7 Symmetrical quaternary
Signed-digit number system (Rr7SqSd) and its arithmetic
is in the most recent works of [7], [12], [13], and [14].
Hence, by extension restricted radix-5 Symmetrical ternary
Signed-digit (Rr5StSd) number system with the character

digit set L E {- 2,-1,0,1,2} and Restricted radix-3
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Symmetrical binary Signed-digit (Rr3SbSd) number

system exist with the character digit set L E {-1,0,1}.

III. THE SSRNS

The number system we are proposing here provides a
cross over point between the SONS and the RNS. It
therefore possesses the properties of the two number
systems as it is composed of symmetrical signed residues

numbers xj , of the moduli set PIP2"Pk"PIl, A

symmetrical signed residue number xk' is a unique

representation of the signed integer x , such that for a set of

unsigned relative prime moduli set ~;k = 1,2, .. ,n the

signed integer x can be described as

x = (x1jxzl.. j.xnj)sSRNS{r;jr;j ... j.PNj) (I)

for alljxjE[-M,M], where. x, =xmodpk'
n

jMj = ITPk and if c, is a restrictor :<::; jPk -lj of
1

modulo Pk residues then the SSRNS digit x p, takes the

values

-; E ((J;k-(Sk -l)l,T,ol,,(Pk -(Sk -1))) (2)

Now for bridging Rr7SqSd and SSRNS we take as an
example k = 3 and the relative prime moduli set

as (7jSj3j) which provide a unique representation of any

signed integer x , in the dynamic range -1 OS < x < I OS .
It then follows that with (S7' c;S3) = (3,2,1)

x7, E {- 3,-2,-1,0,1,2,3} }
xs, E {- 2,-1,0,1,2}

x3, E {-1,0,1}
The following procedures apply for the specified cases.

(3)

A. Decimal to SSRNS conversion

I. Obtain the radix - MIi form

X· = X· m-I X· m-2 ••••X· 0, of the number.

2. For each x; compute the RNS residue

T;, = x: mod Pk'
3. Represent T;, in SSRNS i.e. ti,1 = f(T;,) and

IE {1,2,3}

Hence, X = {X',}= (ti,lti,2ti,S)sSRNS{7jSj3),

e,g X = 6S; Xi = (2jljI)sSRNS{7jSj3).

B. Rr7SqSd to SSRNS
I. Partition the given number

XRr7SqSd = XRj_1XRj_2.... XRjO where

XRj_i E {- 3,-2,-1,0,1,2,3}, from the right into

m groups of 3 -Rr7SqSd

xRj 3X··2X. 1 = (apk),, I)}. }}}

-172 < aj,Pj,Aj < 172

a,p,A E {-3,-2,-1,0,1,2,3}.

2.Compute the SSRNS equivalent IRlj' tR2j' tR3j of the

Rr7SqSd r partition ajPjAj as follows;

IRjl = Aj }
tR2j = (7(7aj +pJ+ Aj )mod P2 (4)

IR3j = I(aj + Pj + Aj) mod P3
e.g.

1323 = 213)0 = 213Radir_A~= (22 TI30 T)sSRNS(71513).

C. SSRNS to decimal

Rather than using the Mixed Radix number System
(MRS) , multiplicative or Look Up Tables (LUT) the
following formular is developed heuristically. If
PIP2 .i.p , is a set of relatively prime moduli in the

( M MJ Iinterval --,- M = 2ITPk then there exist the
2 2 k=1

M M
set of integers u1 ,,,,,uk' --:<::;ui:<::;- such that. 2 2

{O
± 1 ; if i = j

ui modpj =

; if i * j
Satisfying the equation (10)

M M
u1 + .... +ul =-+1 or u1 --+2 2

M
.. +u,--=-(M-l) ;for u) mod zi, =

2
.... =u,modp, =1
Similarly,

- u) - ... - », = -( ~ + 1J or ~ - u) +

M
.. +--u,=M-l ; for u)modp, =

2
.. =u,modp, =-1

(5)

(6)

(7)

If the decimal equivalent of the SSR S digits 1/2 •.•• 11 is

CfJi-lS7:<::; (jJi :<::;IS7 and denoting J1k = Uk mod P«-
k = 1,2, ..,/ then,

(J1ID>h JmodP) = 1~ J1) = 1
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(
111-' I )

f.J/1/Dp". lIt" mod r: = 1=> f.J11I= 1 (8)

(f.J1 Up" JmOd PI = 1 => f.J1 = /-1

Mh
provided: Uk = f.Jk -- . Consequently,

Pk
I M;i I

cp= If.Jk -tk = IUktk (9)
k=' Pk k

For lmax = 3 ; f.J, = 1, Ji2 = 1 and f.1, = 2 therefore;

u, =IS, u2 =21and u3 =70. Hence,

cp;= (1St, + 21t2 + 70tJ (10)

Long SSRNS digits strings are partitioned into g groups

of 3 - SSRNS digits and

cp= I,cp; = I,(ISt,; + 21t2; + 70t3;)(M;i) (II)
;=0 ,=0

IV. SSRNS ADDITIO SCHEME

In this contribution we are more concerned with very
big integer operand SSR S addition operations that are

operands are converted to radix - Mh number system

character digits and subsequently to SSRNS. We describe
the addition operation by equation (12)

{

I ;if a;p + P;p < ap}

0;1' = 1 ;ifa;p + P;p > ap

o ; otherwise

y;p = a;p + P;p - p8;p

ap E (3,2,I)RNS(7ISI3)

(12)

Where a ,p. are operand pairs and y. sum of the
'PI: 'PI; 'PI;

signed radix - ~ character digits in the SSRNS

representation addition operation. a7;.Pi7' Y7; = {x7• },

as;'PSi'Ys; = {xs.}, and

a3;, P3;, Y3; = {x3• } as earlier defined in equation (3).

There are inherent problems here, i) since the addition is

radix - ~ pair-wise there is danger of the weighted

number systems equivalent of operand's radix - M;i
character digit-partitions to acquire varying signs that may
lead to inaccurate computed final result. ii) The magnitude

IfI 0 ,of any operand participating in an SSR S arithmetic

lies in the dynamic range - ~ < lfIo < M;i just as

that of the computed sum CPs lies in the interval

[- M, M]. The implication of these observations is that

there is bound to be numerical trimming of any computed
sum magnitude that lies outside the SSRNS dynamic range.
This of course can bring about fictitious sums of the
addition operation. Which means long SSRNS digit input
string addition schemes must have mechanism for

identifying/detecting radix - M;i -partition sign,

operand-pair and result pairs parity (odd or even) status,
extend of partition sum overflows detection and it's
reporting. Existing methods of solving these difficult-to-
handle problems in the R S domain [8], [9] as earlier
enunciated require conversion of the RNS operands to
MRS domain for computability as well as multiplication
inverse computations.

In this paper, these problems are again solved
heuristically in a very simple way using the Rr7SqSd

addition. The Radix - M;i character digits input stream

of operands appear both in 3-Rr7SqSd and in the
corresponding 3-SSRNS digits packet streams. The 3-
Rr7SqSd operand-pairs are added together per Rr7SqSd in
parallel in a four level Rr7SqSd addition operation
described by equation (13)

z, =o. + P;

{

-I; If z, < a
81 = I ; if z, > a

o ; if otherwise
'I = ZI - 7 81

AI = 'I + 81_1
where: a;,p;,T"A;{-3,-2,-I,O,I,2,3} and 8j,8j_1

€ { -1,0, I}. The addition accomplishes the magnitude
comparison aspect. The sign of the

t" radix - M;i character digit pair Rr7SqSd addition

operation is the sign of the most significant Rr7SqSd . of

that partition and the corresponding outputs A;= = 0;,
,1,;,3' ,1,;,2and A;" facilitates overflow discussion making.

The actual radix - M;i character digit-pair addition

operation is executed in SSRNS domain modulo-wise
using equation (16). Overflows appear just as inter-radix
carnes.

One immediate area of application for the SSRNS
arithmetic circuits is in SMVL systems where the
processing signal profile, rather than the binary logic, is
the Rr7SqSd logic levels. The Rr7SqSd number system
being weighted is susceptible to carry propagation chains
that adversely affect system operation speed. To avoid this
problem, we embed SSR S addition procedure in
Rr7SqSd addition operation. Long Rr7SqSd-input-string

operands x; = x;, ,x;, ,X;I Y; = Y;, ,Y;, 'Y;I are

divided into m-groups of 3-Rr7SqSd each with

-171 ~ x;, Y, ~ 171. Let - 342 ~ Z; ~ 342, be the

(13)
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sum of the jth partition addition be such that

z; =Zi3Z;2Z;I' ziJ E{-3,-2,-1,0,1,2,3} IE{3,2,1}.

In the SSRNS domain, two radix - MJi character digits

are required to represent xp y; and z;' Taking

(80/11;),(.90;.91;) and (YO;YI;) asx;,y; and z; then

- (MJi -1)~ 81P.9IPYI; ~ (~ -1),
-1~80;.90; ~ 1 and - 3 ~ Yo; ~ 3. To reduce cost and

enhance operation speed operands are first represented in

radix - MJi character digits and then each

radix - ~ character digit is converted to both

Rr7SqSd and SSRNS presentations. In terms of

radix - MJi the addition process is represented by

equations (17), (18) and (19)

YI; = 81; + .91; (17)

{

±l;ifYJ, ~~or =±(~-1),
YI, = ± MJi -1, YII_I and C,_2 = ±1

C = (18),
o ; Otherwise

{

YII+I =+= IMJi; if < = ±1

Y = (19)1,1+1

YII+I ; otherwise

Where IE {- 3,-2,-1,0,1,2,3} corresponding

to {-315,-210,-105,O,105,210,315} and

81p E {a7pas;,a;J, .9lp E {;37; 'Ps;,!33;}·

Computational experiments conducted showed 50%
operation execution speed increment using this detection-
compare-migrate-and-return for alignment approach.
There is a 75% increase in speed when magnitude
alignment is also carried out in the SSRNS domain though
with a higher complexity trade-off. The approach does not
need a Chinese Remainder Theory (CRT) and the
Extended Euclidean Algorithm (EEA) for backward
conversion operation.
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Restricted Moduli Symmetrical quaternary Signed-
digit Addition: A design Implementation Overview

Michael Naseimo Daikpor
Department of Electrical and Electronics Engineering,
University of Lagos - Akoka,

Lagos, igeria.
e-rnail: michaelnaseimodaikpor@rocketmail.com

Abstract-In this paper we present an overview of design
implementation of a Symmetrical Multiple Valued Logic (SMVL)
arithmetic circuit based on the use of restricted moduli
Symmetrical Signed Residue Number System (SSRNS).
Restricted radix-7 Symmetrical quaternary Signed digit
(Rr7SqSd) T -gate based interconnections and full adders are
used to implement sign detection, overflow detection and
magnitude comparison without recourse to Mixed Radix number
System (MRS) converters design or Chinese Remainder Theorem
(CRT) computation.

Keywords-component; circuit design; full adders; magnitude
generator; signed residue; T-gates

1. INTRODUCTION

High speed arithmetic circuits are the kernel of the
emerging information and secured communication systems.
They operate in such manners that very big integer operand
chunks are fetched and executed in one clock cycle. This
requires precise and concise arithmetic operation carry
propagation chain reduction techniques [I ],[2] during the VLSI
circuit design stage. The developments of quantum functional
semiconductor devices such as the Resonant Tunneling Device
(RTD) and the Single Electron Tunneling Transistor (SETT) as
well as the SMVL concept [3] are some of the other current
research directions. An absolute carry-free arithmetic circuit
that can bring about ultra-high speed system operation is the
ultimate target.

It is already established that the Residue Number System
(RNS) and the Signed-Digit Number System (SDNS)
separately provide efficient arithmetic and parallel system
architecture, necessary for high speed operations [4],[5],[6],[7]
. However, the RNS is beset with difficult sign and overflow
detection as well as complex magnitude comparison procedure
and SDNS has the drawback of requiring more character digits
to represent operands.

In the part I of this work [8] we suggested the cross over
point for RNS and SDNS arithmetic in a way that resulted in
tremendous increase in the addition operation execution speed.
In this part II, we present the hardware implementation
considerations of the scheme. This paper is organized as
follows. In section II we present a brief review of the SSRNS

Oluwole Adegbenro, Member IEEE
ational Centre for Energy Efficiency and conservation,

University of Lagos - Akoka,
Lagos, igeria.

e-rnail: wole_adegbenro@yahoo.com

addition scheme. The circuit realization is presented in section
III while performance evaluation is presented in section IV.

II. SSRNS ADDDTION REVIEW

The SSRNS is composed of symmetrical signed residue

nurnbers x. , of the moduli setPIP2"Pk ..Pn' A symmetrical

signed residue number xk ' is a unique representation of the

signed integer x, such that for a set of unsigned co-prime

moduli set Pk;k = 1,2,..,n the signed integer X can be

described as

x = (x1IxJ.lxJS'SRNS(Pllp21 ...lpJ (I)

foralllxlE [-M,M],where: xk =xmodpk'
n

IMI=n Pk . If (;k is a restrictor S IPk -II of modulo
I

Pk residues then the Symmetrical Signed Residue Digit

(SSRO) x p, takes the val ues

X p, E {(J;k - ((;k -I )1..,1,0,1, ..., (Pk - ((;k - I))} (2)

For the co-prime moduli set (715131) a unique representation

of any signed integer X in the dynamic range
-105 < X < 1OS can obtained. If the restrictors

((;1' (;2' (;3)= (3,2,1) corresponds to the moduli set {7,S,3}
then

x7, E {-3,-2,-1,0,1,2,3} }
xs, E {-2,-1,0,1,2}

x3, E {-1,0,1}

(3)

In our design, sign and overflow detection as well as
magnitude comparison operations are performed in Rr7SqSd
environments. The exact addition operation is conducted in
SSRN domain. Operands pairs are initially converted into

packets of radix - Mii character digit strings. Each
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radix - M;i character digit is then converted to Rr7SqSd

and SSRNS forms of number representations that yield 3-
Rr7SqSd and 3-SSRNS digits per partition respectively. The
addition operation is performed simultaneously on each

radix - M;i character digit pair now appearing as 3-SSRNS

digit partition-pair. Equations (4),(5), and (6) describe the

addition process in radix - M;i character digit, Rr7SqSd

and SSRNS respectively.

C· =,

Y; = 8; + z9; (4a)

=t=1;if y,"2M;i or r,=±(M;i-l).
r,+1=±M;i -1 and C,_I =±1

(4b)° ;otherwise.

_{ r,+1=t=I M;i; if c, = ±1

r,+1- (4c)

r,+1; otherwise.

r,E{-3IS,-314, ..... ,-1,0,1, ... ,314,3IS} 8;,z9; are

operand pairs in radix - M;i but in Rr7SqSd or SSRNS

forms of representation. 8p, E {a7" as;' a3,}

'iJp;E{j37",8S",83J and IE{-3,-2,-1,0,1,2,3} is the

modulo M;i multiplier corresponding to

I M;i E {-3IS,-21 0,-1 OS,O,1 OS,21 0,31S}.

(5)
{

- 1 ; if z; < z
8; = 1; if z; > a° ;if otherwise
t, = z; -78;

A, = t,+ <5;-1

Where i) a;,,8;,'f;,A; E {-3,-2,-1,0,1,2,3} and ii)

8;,<5;_1 E {-1,0,1}. Again with a, ,,8, astheSSRNS
p p

operands pairs and 'Yip sum of the signed radix - M;i

f 1 ; if a;p + ,8;p < Zip }

8; = 1; if a; +,8, > a (6)
p p p° ;if otherwise.

r, = a, +,8; - p<5;
p p p p

character digits In the SSRNS representation.

a7;, ,87;' Y7, E {x7• } as;' ,8s" r; E {xs, } and

a),' ,8);, Y), E {x), } as defined in (3).

(4)

III. THE SSRNS VLSI CIRCUIT

The SSRNS VLSI circuit is shown in fig. I. All the
functional blocks are implemented on Complementary Pass

(CP) gate derived Rr7SqSd T-gates [3]. The radix - M;i
character digit-packet-streams are passed, operand pair-wise
simultaneously to the Rr7SqSd and SSRNS converters. The
first SSRNS adder performs the SSRNS addition on the input

operand while the second handles possible inter radix - M;i
carry addition operation. Inter radix - M;i carry digit

generation and the overflow evaluation operations are
accomplished in the 4-level 3,2,1,I-Rr7SqSd adders, the
magnitude generator cascade and the wired AND-OR

connection. The sign of a radix - M;i character-digit

partition addition operation result is simply the sign of the most
significant digit Rr7SqSd addition operation's sum. The
cascade of 3,2,1, I -Rr7SqSd adders execute the operations

a), + ,8), ' a2, + ,82, ' ai, + ,81, and ai, + ,81, according to

equation (5).

The dynamic range of input operands to these adders is

- (M;i - 1)5 x 5 (M;i -I) which in the Rr7SqSd number
-- -

system is 2 1 I 5 x 5 21 1 . The magnitude of a partition sum
outside this range indicates an overflow. The least value of this

sum is ± M;i = (210,2,1,0 )Rr7SQSd and the maximum is

± (171 + 171 + 1= 343)= (1000,1000)Rr7SqSd The

output of Rr7SqSd adders cascade w;, x., y, and z, goes

into the 'magnitude generator' where equations (7) and (8) are
implemented.

+1· if v* >+MI
* {-' If; - - 12

OJ; =
0; otherwise.

1
±1; if a(2=±I, r,=(M;i-I)

and r,-I = ±(M;i - I)

UJ,_I = (8)

0; otherwise
The magnitude generator thus generates four outputs namely:

OJ;; for Y: "21~1' OJ;; for Y;* = IM;i -II ' cq, for

(7)
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"sign of the addition" (sgn)

operation. The first two outputs can be described by equations
(9) and (10) respectively.

• { ± 1 ; if w, = ± 1
~i=

o ; otherwise.

[

1 ;iflxJ~2,IYJ~;1,zi ~O or

Ixil = IYil ~ 2 or Wi = O,lxil = 3.
OJ2i = (10)

o ; if otherwise.
Detailed explanation of the Rr7SqSd full adder circuit can be
found in [9]. The same procedure is used to design the

SSRNS(7ISI3) adder.

IV. EVALUATION OF THE EXPECTED
PERFORMANCE

A major cause of information delay in VLSI circuits is the
signal propagation time between interconnected subunits. In
our proposal, we adopted the most popular solution to this
problem which is embracing an interconnection-free
architecture by integrating several subunits into a single

functional block. For example, the SSRNS(7ISI3) adder

block consists of moduli 7,S and 3 SSRNS adders. Similarly,

the 3 - Rr7 SqSd adder unit consists of 3 separate Rr7SqSd
full adders. Consequently, the signal propagation delay time
metric is used to evaluate the expected performance of the
proposed VLSI circuit.

Let "lIr7,"MG,"SSIINSp"lIr7P"AND 011 be the signal
delay times of a 7-value CP-gate derived T-gate, the magnitude

generator, SSRNS(7ISI3) and Rr7SqSd full adders

respectively and the wired AND-OR interconnection. The ratio

of the number of radix - Mh character digits n to a given

operand length of m »1 decimal digits, we found to be 1: 2.
Neglecting the time for converting operands to
Rr7 SqSd / SSRNS representation the speed T , of the
addition circuit can be described by equation (II)

T = max(4"lIr7+' "SSIINSJ+ "MG + Ii ("AND-OR)

(II)

In [3] "Rr7 = 300nsee while from our circuit's

synthesis "SSIINS+ = 2"IIr7

"Rr7+ =3"Rr7

"MG = "AND-Oil = 4"Rr7

Hence, the speed of

radix - Mh character digit operands restricted moduli

(9)

signed-digit residue addition operation is expected to
be 611see . The mod- 23 COO" 6 - bits) also a single

radix - Mh character digit operands addition in a bit-slice

MVL architecture [10] required 10m see [5] operation-
execution time. Ordinary binary circuits where component
interconnections are necessary for parallel processing required

100m see to perform mod- i6 or a 3,

radix - Mh character-digits arithmetic [5]. Using our

proposed circuit the estimated periods for,

mod- i6
, mod- 264 and 2512 (corresponding to 3, I0 and

96 radix - Mh character-digits arithmetic operations) are:

7.2Ilsee, 11AIlsee and 631lsee respectively. Most
merging Information Technology and Secured Communication
devices are elliptic curve cryptosystem supported. These
devices require just 160 - decimal digits or S12 - bits key-
size for an acceptable transmitted message security level. It is
our opinion that the performance of such devices using our
proposed scheme for the design implementation of the
arithmetic circuits will no doubt have an edge over their
contemporaries.
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Abstract+- this paper investigates the multiply-by-7 Elliptic

Curve (EC) point P Scalar Multiplication algorithm for
reduced computational complexity and enhanced inherent
parallel property based on the Area-Time (AT2) metric. The
findings were compared with those obtained when the algorithm
was again realized on the Jacobian projective coordinate and the
Non-Adjacent FOI'm (NAF). The investigation revealed 27%
and 8% computational complexity reductions over the
Jacobian and NAF realizations. The algorithm also presents the
best AT2 value.

K eywords- concurrent processing; computational complexity;
dataflow graph; scheduling algorithm

l. INTRODUCTION

Todays' emerging Information Technology and secure
Communication Systems (lTCS) such as: pocket size laptop
computers, palm held operating systems, Personal digital
assistant, ubiquitous sensor networks, automated teller
machines, smart cards, mobile phones are beneficiaries of
Elliptic Curve Cryptography (ECC) [I J, [2]. These gadgets are
driven by EC arithmetic operations of which scalar or point
[3J multiplication is the major operation. EC scalar
multiplication is essentially scaling a random point p(x, y)
on the elliptic curve with a scalar quantity m » I, in such
manner that the product W = mP is also a point

p(xw, Yw ) on the same elliptic curve. Finding W, from

known values of P and In is easy; but finding In from
given values of W and P is an exponentially hard
mathematic problem known as the Elliptic Curve Discrete
Logarithm Problem (ECDLP). While ECDLP is the main
attraction of EC into Cryptography the manner of computing
mP is also a critical issue in the design of secure
communication systems [4], [2]. Elliptic curve scalar
multiplication computation is based on two basic arithmetic
operations namely: EC points' addition and EC point
doubling. They are in turn calculated using finite field
addition, multiplication, squaring and inversion operations.
The inversion operation is slow and expensive.

The conventional method of computing W = mP by

978-1-908320-00-1/11/$26.00 ©2011 IEEE 797
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m -I consecutive EC point addition operations in the affine

coordinate system requires In - 1 field inversions. For large
values of In the procedure is sluggish, slow and cost
prohibitive. There are now various high speed EC scalar
multiplication techniques. The Double Base Number System
(DBNS) [6], the direct Tripling 3P and Quadrupling
4P approach in [3J, the binary addition/subtraction chain
methods of [7] have become house hold methods. Another
popular method of accelerating EC scalar multiplication
operation is to perform the main computation in projective
coordinate system [5J that is inversion free and return to the

affine system for the final xlJI , Yw computation. Many forms

of projective coordinate systems now exist but the choice of a
particular is determined by the dominating EC arithmetic
operation. Most of the existing scalar multiplication
algorithms are serial or sequential machine implement-
oriented. This poses on devices upper speed limit.
Consequently, current solutions have not been able to totally
meet the intended high speed requirements such as in real time
cri tical servi ces del ivery system.

Naturally EC arithmetic is concurrent implement-friendly
in nature so attention now focuses on exploiting this inherent
parallelism to accelerate scalar multiplication operation.
Concurrent realization of an operation is all about performing
several sub operations simultaneously provided resources are
available to extract optimal performance from the system.
The resources are usually the hardware circuits of the most
dominant arithmetic operation(s). Generally with EC
arithmetic, field multiplication is the dominant operation
hence; the resources in this case are multipliers. Pioneer works
on concurrent EC scalar multiplication computation
procedures can be found in [8J where non adjacent binary
sequences are used to reduce the total number of addition. In
[9J, where scalable multipliers are used to replicate design for
varying key sizes and [I OJ in which EC processors are
designed and simulated on FGPA. These works remain novel
and laudable contributions. However, they are all based on the
projective coordinate systems that trade fewer number of



inversion operations for increased computational complexity
cost.

In this contribution, we model concurrent realization of EC
scalar multiplication in the affine coordinate system based on
a simple rnultiply-by-? algorithm to reduce computational
complexity and enhance operation speed. The rest of this
paper is organised as follows. In section II we recall the
normal EC basic arithmetic operation equation in the affine
and Jacobian coordinate systems and a slight modification we
have made in the original affine coordinate version. The
rnultiply-by-? scalar multiplication algorithm is presented in
section III. The concurrent computation model is presented in
section IV. In section V we briefly discuss the results of our
investigation. Conclusion is given in section VI.

II. EC BASIC OPERATION EQUATION

EC rank after straight Iines and conics in the hierarchy of
curves. TIley are projections of non-singular genus one
algebraic curves defined over some K fields with k rational
points and a point at infinity constituting a group. It is
customary [II], [12], and [13] to concisely describe an elliptic
curve E, together with the point 0, at infinity defined over
either binary or prime fields by (I).

y2 = x3 + ax + b ; for prime fields

p ~ 3; a,b, (x,y) E GF(Pk) and

4a3 + 27b2
'# a

E: (I)
, 3 2 b f b' G I .y- + xy = x + ax + ; or mary a OIS

fields and a,b,(x,Y)EGF(2*)
If the three points U = p(xu, Yu ), V = p(x,. ,y" )
and W=p(xw,Yw)EE then, W=V+U and

W = U + U = 2U are respectively referred to as the EC
points' addition and point doubling operations. These
operations are traditionally computed in two phases namely,
pre-computation of the quantity A. , phase and a cardinal point

components xw, Yw computation phase. The prime field

versions of the two phases can be represented by (2).

Yv - Yv-'----''-; if points' addition

3x2 +a
v ; ifpoint doubling (2)

2yv

{

2 _ Xu - x v ; if points addition

Xw

,1.2 -2xv; ifpoint doubling

Yw = A.(xu -XIV)- Yv

As earlier mentioned performing EC arithmetic operations in
the projective coordinate system increases computational
complexity but it is less expensive. In the projective and in
particular the Jacobian projective coordinate system a point
p(x, y) in the affine coordinate is equivalent

to p(Yz 2 'Iz 3)' Thus, (2) in the Jacobian projective

coordinate is represented as in (3)

Y"I _Yvl
Iz3 IZ3

v U ; ifpoints' addition
Xvi x;/Z~ - Z~

3X~ +a

2Y.Yz '
Z3

U

{

A.2 - Xu 12 - Xv 12 ; ifpoints' additionIzv IZ,.

- ,1.2 - 2X v; ifpoint doubling

= ,1.2( X/zl~-X1z;)-y/z ~

ifpoint doubling (3)

Equations (2) or (3) form the bases of all scalar
multiplication techniques. However, in both (2) and (3)

Yw component is computed based on the availability of the

XIV component. We el iminated this XIV before YIV

requirement by modifying (2) in such manner that XII' or Yw
is computed directly from source to enhance parallel
hardware-i mplementation friendly architecture. The
modi fication is described by (4).

;:/Y -!'/ x\lx

{

2 ; ifEC points' addition
6x

XIV

A2 -8x,y;
o I , ; ifEC point doubling
(2yJ2

t:.3y-t:.2X(\lx6y-f1xy) .
3 .tr (4)

6x
points' addition operation

Yw
-A~ + 12Aox"y,; -8YI~---"---;-"'::""'-'7--"--'--"- ; if

(2y"Y
point doubling operation
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Where: 'Ilx = Xv + Xu ' Sx = Xv - Xu ' /1y = Yv - Yu '

tuy = Xv Yu - Xu Yv and Ao = 3x~ + a. It is important
to note that migrations to projective coordinate system only
postpone inversion operation and never completely remove it.
Practical applications require the computed result in the affine
domain. The implication is that there is at least one inversion
operation for every terminal computation in the projective
coordinate system. Using: A, M, S,I to represent field
Addition, Multiplication, and Squaring and Inversion
operations respectively the computational complexity costs of
executing (2), (3) and (4) are as presented in table I.

TABLE 1 COMPARATIVE COMPUTATIONAL COMPLEXITY

Equation (2) Equation (3) Equation (4)
EC in affine in in affine

Operation coordinates projective coordinate
system coordinate

Addition 6A+3M+1I 6A+23M+1I 7A+12M+II
Doubling 4A+4M+II 4A+13M+II 4A+I1M+II

Considering multiplication operation only the proposed
modification is efficient. The algorithm we review in the next
section is based on (4).

III. THE MULTIPLY-BY-7 SCALAR
MULTIPLICATION ALGORITHM

As already enunciated there are several novel schemes
[3], [6] for computing EC scalar multiplication operation. The
work [14] in particular used special addition chains. The
rnultiply-by-? algorithm repeatedly multiply a random point
on an EC by 7 and adds or subtracts 1, 2 or 3 multiples of the
previous point. The exact multiple is determined from a
Restricted radix-7 Symmetrical quaternary Signed digit
(Rr7SqSd) representation [15] of the scalar quantity. Hence, we
shall first review the Rr7SqSd number system and its
addition/subtraction chain concept before introducing the
algorithm.

A. Definition of the Rr7SqSd number system and its
addition-subtraction chain

Definition 1: TIle Rr7SqSd number system is a radix-7
number system with its character digits 0,1,2,3,4,5,6 recoded
III the symmetrical quaternary signed character

digits 3,2,1,0,1,2,3.
The overlay T = =i and the recoding are obtained by reducing
all the radix-7 character digits with a restrictor a = 3 . Table 2
shows the radix-7 character digit-Rr7SqSd-binary equivalents.

TABLE 2 RADIX-7 Rr7SqSd BINARY EQUIVALENTS

Radix-7 4 5 6 a I 2 3

Rr7SqSd -3 -2 -I a I 2 3

Binary lOa 101 110 000 001 010 all

Arithmetic operations in the Rr7SqSd number system can be
described by (5)

(

1 ; if(ai e ~j)< a
OJ= l;if(aie~J>a

o " otherwise
Ti= (c, • ~j) - 70j

where: the operator G E {+,-,*, /}
and a., Pi> 'j E {'3,2,1,0,1,2,}. Decimal numbers are first
converted to radix-7 before using the addition option of (5) to
convert the radix-7 character digits to Rr7SqSd number
system. Conversion from Rr7SqSd to decimal can be carried
out using (6)

(6)
;=n-1

Where X is the decimal equivalence of the Rr7SqSd string

a = an_lan_2 alaO

The Rr7SqSd number system similar to the binary
number system supports addition-subtraction chain
representation [7J of an integer. A binary addition-subtraction
chain of integer W is a sequence of integers ao al a2 .... a,
where the starting value ao = ±1 and the ending term

a, = W such that any ak = aj + a j tor 0< i, j < k . For

example one form of the integer W = 23 addition-subtraction
chain is ± 1,2,4,5,7,11,18,23. In a similar manner we define
the Rr7SqSd addition-subtraction as follows.
Definition 2: Ifa=an_lan_2 al.ao is the Rr7SqSd
representation of any integer w. then an Rr7SqSd addition-

subtraction chain of w is the sequence of integers Wo

WI w2 .. " ..... w, starting from Wo E (1,2,3) and ending

with w, = W such that any wk is the sum or difference of the

previous integer term Wk_1 multiplied by 7 and the kl"

character symbol ak E {'3,2,1,Q,1,2,3} of the integer

w· S Rr7SqSd representation

wk = 7wk_1 +ak (7)

For example, the Rr7SqSd representation of w = 1237 is

13322 and its Rr7SqSd addition-subtraction chain is
4 25 177 1237 . An addition-subtraction chain is an
algorithm for computing mP given the integer In and the
random point P on an EC. Hence, we now present the
multiply-by-? EC scalar multiplication algorithm.
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B. Multiply- by-7 EC scalar multiplications
Detailed treatment of the algorithm we review below can

be found in [16]. TIle algorithm can be appl ied to both EC
defined over both binary and prime fields however, in this
work discussion is limited to prime fields only. Let E, denote

an EC defined over the prime field GF(pk) together with

the point 0, at infinity such that

E: y2 modpk = x3 + ax+ bmodpk
4a3 +27b2 mod zr' '# 0 (8)

If p(xG'YG) be a generator point of E and m,(m» 1) a

scalar quantity. Let the string all_"all_2, .. ,aj, ... ,a"ao

and aj E (3,2,1,0,1,2,3)with a11-' E {I,2,3}
n -I < j ~ a be the Rr7SqSd representation ofm . Now if
the elements of the
sequence J!V E {w"-,, W

II
_2 , .. , Wj •. , W, , Wo}

Wj = p{X j' Y j) are points on E , obtained by using (9)

=all_,P(xG'YG) ;if j=n-I

{

WII_'

Wj=
7W

j
_, + a jWj_, ; if n - 2 s j s 0

Then, (9) computes the consecutive points of the EC scalar
multiplication operation W = mP by way of several one-stop
or direct 7P computations We call (9) in this contribution the
multiply-by-? EC scalar multiplication algorithm. Obviously,
(9): i) effectively reduce the number of inversions from
m -1 to j; (j » m). ii) Decomposes the art of computing

EC W = mP arithmetic operation to several one-stop 7P
computations. Fig. I shows the procedure for computing (9)
using (4). First, depending on the most signiticant digit

all_, E {1,2,3} the EC generator point p(Xu., YG) is simply

taken as the start point i.e., Q = p(XG, YCi) or doubled

Q = 2P(xG'YG) or tripled Q = 3P(xG'YG) to become

(9)

W
II

_, or Wj_, . These pre computations processes are

designated IPSEl., 2PSEL and 3PSEL respectively in fig. I.
Their internal and external out variables are designated
,pi E {A, B, C, D, E, F, H}, i E {O,I,2} in the top square of

fig. 1. TIlis value of Q (= W
j
_,) is separately multiplied by

7 and by a j E {3,2,1,0,1,2,3} in the EC domain. The sum

or difference of the two products 7Wj_, and ajW,,_,

represents the r iteration of the multiply-by-? EC scalar
multiplication operation. This sum/difference is field inverted
to extract the x 11" Y II' components which is the new generator

lPse' module, 2Pse' module

Aa = 0 A, = 3X~ + A
Bo = XG B, = A,2 - 8XGYci
Co = 1 C, = 2YG

2D, = XGC, -B,
2F, =XGC, +B,

E, =A, D, - 8YG

Eo = YG

XUD = BO
YUD = Eo

WUIJ = Co XUD = B,
r;)D = E,

3Pse' module

~ = YGC,3 -E,

B2 = A~ - F;D,2

C2 = C,D,
2H2 = B,D, -B2

E2 = A2H2 - E,D,
XUD = B2.

r

YUD = E2 ; WUD = C2

WUD = C,

A'7 = 3X,27P + A

BI7 = A,27 - 8X17 pr;; P

C'7 = 21~7p

D'7 = X'7PC,27 - B'7
F;7 = X'7PC;z., + BI7

E'7 = AI7DI7 - 8r;~p

An = E27C~7 - B37C~7

B77 = A~7 - F37D;7
C77 = C27C37D37

tt; = B37 (C27D37 Y - s;
E77 = A77H 77 - E)7 (C 27D37 Y

3
A27 = Y17pC'7 - E'7

2 2
B27 = An - F'7Di7
C27 = C17D'7

2ti; = X/7PC27 - B27

F27 =Xl7pC272 +B27
2

H27 = B'7DI7 - B27
3

E27 = A27H27 - E'7D'7

A37 = ~7PC{7 - E27

E37 = A;7 - F27Di7
C37 = CI7DI7Di7

D37 = E27C;7 - E37C;7

F37 = E27C;7 + E37C;7

H37 = B27Di7 - B37

E37 = A37H37 - E27D;7

AUD = E77WJD - YuDCi7

DUD = B77WJD -xuDci7

FUD = B77WJD + X UDC~D

BUD = A[~D - FUDD~D
CUD = C77WUDDUD

H UD = X UD(CnDuDY - BUD

EUD = AUDH UD - YUD(C77DuDY

B _ EUD
XII' =-T- ' Yw -

CUd C~D

Figure. I Multiply-by-? EC scalar multiplication algorithm.
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point for the (j + 1)'" iteration. Multiplying Wj_1 by a

negative value of cxj E{-3,-2,-1} is merely a tripling,

doubling or just IP EC operation on - p{X l+? Yj-J
which is equal to CXj p{X j_1> - Y j-J

The manner of realizing the one-stop or direct 7P
computation is crucial to the scalar multiplication operation
speed. To avoid the traditional method of 6 repetitive EC
point addition operations which in turn requires 6 field
inversion operations the operation is executed with one field
inversion by using four sub processes: 2P == P + P ,
3P == 2P + P , 4P == 3P + P and 7 P == 3P + 4P . TIle
internal and external outputs of these four sub processes are
simi larly designated by the elements of the set
qJI7 E{A,B,C,D,E,F,H} where iE{1,2,3,7}

correspond to 2P , 3P , 4P and the 7 P . They are the
contents of the 3 left hand and tirst right hand rectangles that
are below the top square .. Internal and external variables of
the 7Wj_, +cxjWj_1 computation (or update) are also

designated AUD' DUD' FuD, BUD' CUf)' H ut» EUD and

presented in the rectangle directly below the qJn sub process
of fig. 1.

The following numerical example illustrates the working
of fig. I. Consider the EC E described by the equation

y2 ==x] -53x+218modI7011 and let

P(8360,14564) be a generator point. Given the scalar

quantity m == 16299 == 10 1 333 IIr7SqSd' TIle result of an

EC scalar multiplication operation W == mP using the
multiply-by-7 algorithm would yield the 6 curve points:
IP = (8360,14564), 7P = (13509,216),

48P == (12536,6665), 333P == (10407,4280),

2328P = (14924,5526), 16299P == (1594,2138).
TIle algorithm execution time with Quick Basic version 4.5 on
a Pentium III processor for values of m up to 640 decimal
digits took 0.087 seconds.

Equation (9) was also realized in the Jacobian projective
coordinate and in the Near Adjacent Form (NAF) projective
coordinate domains using equation (3). The computational
complexities for the NAF, Jocabian and the rnultiply-by-?
options are respectively: 34A + 94-"1 + 11
38A + 110M + II and 36A + 87M + 11.Thus, there is a
relative 27% and 8% reduction in computational complexity
over the Jacobian and the NAF respectively by the multiply-
by-7 algorithm. In the next section we present the concurrent

realization model of this algorithm and estimate a parallel
mode-versus- sequential mode speed enhancement figure of
merit ratio ~ .

N CONCURRENT OPERA TION MODEL OF TI:IE
MULTIPLY-BY-7 ALGORITI:IM

Concurrency is all about performing more than one
operation simultaneously provided resources are available to
extract optimal performance from a system. In order to
balance devices chip areas and system speed it is necessary to
determine the most appropriate number of resources that can
run concurrently. Dependency graphs are usually employed to
identify concurrency in a given computational processes and
determine the optimal number of resources. To achieve this
objective the operation processes are scheduled using popular
scheduling algorithms such as: the As Soon As Possible
(ASAP) and As Late As Possible (ALAP) scheduling
algorithms described in [10], [9], [17] and [18]. In this work
we adopted the method outlined in [10] to identify those
statements in fig. I that can be performed simultaneously.
These are grouped together to form a batch so that the
multiply-by-7 scalar multiplication operation is executed in
batches. We judge the system performance by establishing the
number of field multi pi ication operations in a batch and the
total number of batches necessary to execute the entire
algorithm. It is necessary to note that in this context a batch is
a multiplication cycle. The time to execute a particular field
multiplication operation is distinct hence, in a batch the
longest execution time constitutes the batch processing time.
This constituted our concurrent model of fig. 1. TIle data
flow graph for the 2P sub process is given in appendix A as
an example.

Our concurrent processing model of the multiply-by-7
scalar multiplication algorithm based on the ASAP scheduling
principle consist of eight data flow graphs corresponding to

the eight sub processes IP.'iEL' 2P'iEL' 3PSEL ' 2P .
3P , 4P, 7P and the 7Wj_, +cxjWj_1 • TIle

computation flow of the graphs follows pipeline processing.

Input variables of a (" sub process are output variables of

(i - 1)''' sub process. Thus, the input variables for 2P sub

process are the outputs of either IPSEL' 2PSELor 3PSEL in the

start-value selection stage. The 2P output

variables: C?7 ' EI7 ' F;7 ' DI27 , B,7, D17, CI
2

7 and CI7

are part of the input values to the 3P sub process. These
outputs in turn are the inputs for 4P sub process. Analyses
of the entire sets of graphs provide an insight to the concurrent
processing ability of the algorithm. Furthermore since a
batch is essentially a multiplication cycle the total number of

batches constitutes the number of multiplication cycles me of
a gi ven su b process.
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The number of field operations n fo in a batch is the number

of hardware units that run simultaneously in that batch. TIllis
the number of hardware units required to execute a sub
process equals the highest number of field operations

n fomax among the batches of the sub process. That

is n fomax = max{n fos » n f02 , .... n fOil) . We ignored the
number of addition and subtraction operation as well as their
durations in our models.

Similar models (8 data flow graphs each) were developed
for the Jacobian and NAF option of realizing equation (9). Up
to 7 field multiplication operations could run simultaneously
in the 7P = 3P + 4P sub process of the NAF realization
option. The information extracted from the models are:

i) Number of multiplication cycles per sub process.
ii) Total number of field multiplication operations per

sub process per realization as the number of
multipliers running concurrently increases from I to
7.

iii) TIle highest number of multipliers in one
multiplication cycle per sub process per realization

The corresponding Area-Time squared (AT2) values per sub
process for each realization were computed. The expression

h

TJ = L> jl where t - represent multiplication cycle
1=1

I ·ril bduration of t le} su process evaluates the speed
algorithm.

The trend in today's ITCS is for the system to be as small
as possible. This has made device chip area (A) also as a
factor of merit. Hence, in design works either area A, or time
T is considered more important (sometimes A and Tare
considered equally important). Thus, the products metric: AT,
A2T or AT2 are often used to judge operation parallelism. We
employed the AT2 metric. This automatically made the chip
area A conunon denominator.

One objective of this section is to determine the best
method of parallelizing the scalar multiplication process of
(9). Equation (2) based Jacobian, NAF realizations or a (4)
based method of implementing (9). TIle relevant parameters
for this decision are the: i) lowest number of multiplications in
the sequential mode. ii) Best AT2 value as the number of
resources increases from I (sequential) to 7 (parallel mode).
iii) Highest speed enhancement as a result of the concurrent
realization. iv) TIle total number of multipliers in parallel to
provide the figures of merit in the various implementation
options .. It must be noted also that the grand total number of
(multiplication cycles for the Jacobian, NAF and the proposed
algorithm are 37,34 and 29 respectively which shows that the
proposed algorithm has the smallest number of field
multiplication operation cycles. TIle speed enhancement ratio
.;; was determined using (10).

(10)
7 72: (AT/)

;=2.j=t

Where i-is the number of multipliers in parallel and i-a
subscript representing any of the sub processes:
IPSEL ,2PSEL,3PSEL,2P,3P,4P,7 P and Ugp.

V DISCUSSION
Figures 2 ,3 and 4 show the graphical presentation of

some major information from the various realizations. The bar
chart plots of fig. 2 represent total number of field
multiplication operations as the number of multipliers
increases from I to 7. The plots in groups of three represent
the Jacobian, NAF and the algorithms options of realization.
All plots as expected are exponential decays as the resources
on line increase. The
proposed method presents the smallest total number of field
multiplication operations (87M) required to execute iteration.
Similarly, fig. 3 shows the plot of AT2 values for increasing
number of resources in parallel The Jacobian and NAF
approaches presented their best AT2 values at 5 multipliers
working concurrently. Our proposal do not only presents the
lowest A T2 value but also at 4 multipliers operating in parallel.

120 ·r--·-·--..-·-·-·---·-·-----·--·---·--·--------------·---.--.-.---.-.

I Jacobian
80

60

INAF

liAlgoritllm

40

20

3 456
Number of multipliers in parallel

Figure. 2 Total number of field multiplication operations per realization
versus number of multipliers
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Figure. AT' Values as a function of number of resources in parallel.

Finally the plot of fig. 4 shows the percentage speed
enhancements as a result of concurrent processing of scalar
multiplication operation. The NAF approach presents the
lowest speed enhancement percentage while the proposed
algorithm presents the highest speed enhancement.

80 r-..·-----..·- -..- --- -- -------.-------- -.
% !

70 !
-Jacobian

30

so

40 ,

20 j

10

I 0:· - -....•

I
4 5

Number of multipliers In parallel
•.......•.•.•..........•......•...• _ .

Figure. 4 Percentage speed enhancement over sequential regime.

The speed enhancements for the Jacobian and NAF
approaches peaked at 5 multipliers working concurrently. In
the related work of [19], the authors chose the standard
projective coordinate as the appropriate efficient choice for
parallel designs and implemented their parallel architecture.
This was as a result of the corresponding speed enhancement

-NAF

- -Algorthm

peaking at 4 multipliers. The proposed algorithm speed
enhancement also peaked at 4 multipliers working in parallel.
This simply indicates that the approach is efficient and that it
provides a 25% saving in hardware over Jacobian and NAF
styled implementations.

VI CONCLUSION AND FURTHER WORK

This investigation has established that an Rr7SqSd
addition/subtraction chain based multiply-by-? EC scalar
multiplication scheme if concurrently realized can result in
reduced computational complexity and high parallel operation
execution speed. The approach is useful in the design of
multiple-valued logic elliptic curve cryptosystem.
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Appendix A

i) Example of the 2P sub process data flow graph.

Notes to the appendix A:
i) The rectangular shapes represent field addition or
subtraction operations while the circular and elliptical
shapes represent field multiplication operations.
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ii) Number of multiplication cycles is 4 and the highest
number of field multipliers that can run simultaneously is
4.


