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1 Introduction

After Huang and Zhang [8] re-introduced cone metric spaces, several authors
have extended many known fixed point results in usual metric spaces to cone
metric spaces (e.g. [1,2,11-14,18]). Recently, F. Sabetghadam and H. P. Masiha
[17] investigated the existence of the common fixed point of generalized ϕ-pairs
in cone metric spaces, a notion previously studied by C. Di Bari and C. Vetro
[6]. Our first aim in this manuscript is to make use of the simplest of such ϕ
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[ϕ(ω) = kω] to generalize and unify their results with those in [1]. The corol-
laries of our Theorems provide integral type conditions under which mappings
in cone metric spaces have common fixed points. conditions which are more
general than those in [12]. After several studies of integral type operators in
metric spaces (e.g. [4,5,7,16,19]), the authors of [12] introduced the concept
of integration in the setting of cone metric spaces and attempted to prove the
existence of fixed point of a map satisfying the Biancari integral type condi-
tion (see [5]). However, in their paper, I.D. Arandelovic and D.J. Keckic [3]
furnished a counterexample of the former theorem, suggesting by the way, an
additional hypothesis in the proof thereof.
Here are some useful definitions and propositions stated in [8], [6] and [9].

Let E be a real Banach space. A subset P ⊂ E is called a cone if:
(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P ⇒ ax+ by ∈ P ;
(iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E, we define a partial ordering ≤ on E with respect
to P by x ≤ y if and only if y − x ∈ P . We will write x < y to indicate x ≤ y
but x 6= y, while x� y will stand for y − x ∈ int(P ) (interior of P ).

A cone P ⊆ E is called normal if there is K > 0 such that for all x, y ∈ E

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying the above inequality is called the nor-
mal constant of P . The cone is called regular if every increasing sequence
which is bounded from above is convergent. That is, if {xn} is a sequence
such that x1 ≤ x2 ≤ ... ≤ y for some y ∈ E, then there is a x ∈ E such that
limn→∞‖xn − x‖ = 0. Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is convergent. In [15], it was
shown that every regular cone is normal.

Let us assume that P is a cone in E with int(P ) 6= ∅ and ≤ is partial
ordering with respect to P .

Definition 1.1 [8] Let X be a nonempty set. Suppose that d : X×X → P
satisfies the following conditions:
(i) ∀x, y ∈ X, d(x, y) = 0 if and only if x = y
(ii) d(x, y) = d(y, x) for all x, y ∈ X
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 1.2 [8] Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R,
d : X × X → E such that d(x, y) = (|x − y|, α|x − y|) where α ≥ 0 is a
constant. Then (X, d) is a cone metric space.
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Example 1.3 [13] Let E = lp, (1 ≤ p <∞), P =
{
{xn}n≥1 ≥ 0, for all n

}
,

(X.ρ) a metric space and d : X×X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1.
Then (X, d) is a cone metric space.

Definition 1.4 [8] Let (X, d) be a cone metric space and {xn} a sequence
in X.
(i) {xn} is said to be a Cauchy sequence if for every c ∈ E with 0� c, there
exists N > 0 such that for all n,m ≥ N , d(xn, xm)� c.
(ii) {xn} is said to be convergent to x ∈ X, denoted by limn→∞xn = x or
xn → x as n → ∞, if for every c ∈ E with 0 � c , there exists N > 0 such
that for all n ≥ N , d(xn, x)� c.
It is shown in [6] that a convergent sequence in a cone metric (X, d) is a
Cauchy sequence. When the converse is true, the cone metric space is said to
be complete.

Proposition 1.5 [8] Let (X, d) be a cone metric space, P a normal cone
and {xn}, {yn} two sequences in X. Then:
(i) {xn} is a Cauchy sequence if and only if d(xn, xm)→ 0 as n,m→∞.
(ii) xn → x if and only if d(xn, x)→ 0 as n→∞.
(iii) The limit of {xn} is unique.
(iv) d(xn, yn)→ d(x, y) as n→∞.

Definition 1.6 [9] The self mappings f and g of a cone metric space (X, d)
are said to be weakly compatible if they commute at their coincidence points,
that is, if f(p) = g(p) for some p ∈ X, then f(g(p)) = g(f(p)).

The concept of weak compatibility is known to be the most general among all
commutativity concepts in fixed point theory. For review of those notions of
commutativity, see [9].

Definition 1.7 [17] Let P be a cone and let {ωn} be a sequence in P . One

says that ωn
�−→ 0 if for every ε ∈ P with 0� ε there exists N > 0 such that

ωn � ε for all n ≥ N .

In the sequel, let F : P → P , a non-decreasing mapping satisfying the following
properties:

(F1) For every ωn ∈ P , ωn
�−→ 0 if and only if Fωn

�−→ 0;
(F2) For every ω1, ω2 ∈ P , F (ω1 + ω2) ≤ F (ω1) + F (ω2).

2 Generalized weak contractive conditions

We first state the following:
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Proposition 2.1 Let (X, d) be a cone metric space and let A,B, S, T :
X → X be four mappings such that:

F
(
d(Sx, Ty)

)
≤ kF

(
ψ
(
d(Ax,By), d(Sx,Ax), d(Ty,By),

d(Sx,By), d(Ty,Ax)
))

where 0 < k < 1
2

and ψ : P 5 → P satisfies

ψ(a, a, b, 0, c) and ψ(a, b, a, c, 0) ≤


2a if b ≤ a
2b if a ≤ b
a+ b if a− b /∈ P ∪ (−P )

(2.1)

for all c ≤ a+ b

and
ψ(t1, t2, t3, t4, t5) ≤ 2t when for all i ∈ {1, 2, 3, 4, 5}, ti ≤ t. (2.2)

Suppose that A and S, B and T are weakly compatible with S(X) ⊂ B(X),
T (X) ⊂ A(X) and such that one of A(X), B(X), T (X), S(X) is a complete
subspace of X. Then the maps A,B, S, T have a unique common fixed point.

Proof: Let x0 ∈ X. We construct the following sequence:
x0 ∈ X
y2n+1 = Sx2n = Bx2n+1

y2n+2 = Tx2n+1 = Ax2n+2

Let dn = d(yn, yn+1).

F (d2n+1) = F (d(y2n+1, y2n+2)) = F (d(Sx2n, Tx2n+1))
≤ kF (ψ(d(Ax2n, Bx2n+1), d(Sx2n, Ax2n), d(Tx2n+1, Bx2n+1),

d(Sx2n, Bx2n+1), d(Tx2n+1, Ax2n)))
≤ kF (ψ(d2n, d2n, d2n+1, 0, d(y2n, y2n+2))).

(2.3)
d(y2n, y2n+2) ≤ d(y2n, y2n+1) + d(y2n+1, y2n+2) = d2n + d2n+1, hence,

ψ(d2n, d2n, d2n+1, 0, d(y2n, y2n+2)) ≤


2d2n if d2n+1 ≤ d2n
2d2n+1 if d2n ≤ d2n+1

d2n + d2n+1 if d2n and d2n+1

are not comparable.
(2.4)

If d2n ≤ d2n+1, then from (2.3) and (2.4), F (d2n+1) ≤ kF (2d2n+1) ≤ 2kF (d2n+1) <
F (d2n+1), which is a contradiction.
If d2n+1 ≤ d2n, then from (2.3) and (2.4),

F (d2n+1) ≤ kF (2d2n) ≤ 2kF (d2n). (2.5)
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If d2n and d2n+1 are not comparable,

F (d2n+1) ≤ kF (d2n + d2n+1) ≤ k[F (d2n) + F (d2n+1)].

Thus

F (d2n+1) ≤
k

1− k
F (d2n). (2.6)

Hence for all n, combining (2.5) and (2.6),

F (d2n+1) ≤ max{2k, k

1− k
}F (d2n) = 2kF (d2n). (2.7)

F (d2n) = F (d(y2n, y2n+1)) = F (d(Sx2n, Tx2n−1)
≤ kF (ψ(d(Ax2n, Bx2n−1), d(Sx2n, Ax2n), d(Tx2n+1, Bx2n−1),

d(Sx2n, Bx2n−1), d(Tx2n−1, Ax2n)))
≤ kF (ψ(d2n−1, d2n, d2n−1, d(y2n−1, y2n+1), 0))

d(y2n−1, y2n+1) ≤ d(y2n−1, y2n) + d(y2n, y2n+1) = d2n−1 + d2n, hence,

ψ(d2n−1, d2n, d2n−1, d(y2n−1, y2n+1), 0) ≤


2d2n−1 if d2n ≤ d2n−1
2d2n if d2n−1 ≤ d2n
d2n−1 + d2n if d2n−1 and d2n

are not comparable.

If d2n−1 ≤ d2n then F (d2n) ≤ kF (2d2n) ≤ 2kF (d2n) < F (d2n), which is a
contradiction.
If d2n ≤ d2n−1,

F (d2n) ≤ kF (2d2n−1) ≤ 2kF (d2n−1).

If d2n−1 and d2n are not comparable,

F (d2n) ≤ kF (d2n−1 + d2n) ≤ k[F (d2n−1) + F (d2n)].

Thus,

F (d2n) ≤ k

1− k
F (d2n−1).

Hence for all n,

F (d2n) ≤ max{2k, k

1− k
}F (d2n−1) = 2kF (d2n−1). (2.8)

Now, from (2.7) and (2.8) we have for all n > 1, F (dn) ≤ hF (dn−1) where
h = 2k < 1.
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By induction F (dn) ≤ hF (dn−1) ≤ h2F (dn−2) ≤ ... ≤ hnF (d0).
For m > n, we have:

F (d(yn, ym)) ≤ F (d(yn, yn+1) + d(yn+1, yn+2) + ...+ d(ym−1, ym))
≤ F (dn) + F (dn+1) + ...+ F (dm−1)
≤ (hn + hn+1 + ...+ hm−n+1)F (d0)
≤ hn

1−hF (d0)

As n,m→∞, F (d(yn, ym))
�−→ 0 hence by (F2), {yn} is Cauchy.

Suppose that A(X) is complete. As {y2n} ⊂ A(X), there exists u ∈ X such
that yn → Au. Let v = Au. Let us prove that Su = v.

F (d(y2n, Su)) = F (d(Su, Tx2n−1))
≤ kF (ψ(d(Au,Bx2n−1), d(Su,Au),

d(Tx2n−1), Bx2n−1), d(Su,Bx2n−1), d(Tx2n−1, Au)))
≤ kF (ψ(d(Au, y2n−1), d(Su,Au),

d(y2n, y2n−1), d(Su, y2n−1), d(y2n, Au))).
(2.9)

By the triangle inequality,

d(y2n−1, y2n) ≤ d(y2n−1, Au) + d(Au, y2n),

d(Su, y2n−1) ≤ d(Su,Au) + d(Au, y2n−1).

Since all the elements in the argument of ψ in (2.9) are less than d(y2n−1, Au)+
d(Au, y2n) + d(Su,Au), by (2.2),

ψ(d(Au, y2n−1), d(Su,Au), d(y2n, y2n−1), d(Su, y2n−1), d(y2n, Au))

≤ 2d(y2n−1, Au) + 2d(Au, y2n) + 2d(Su,Au).

Hence,

kF (ψ(d(Au, y2n−1), d(Su,Au), d(y2n, y2n−1), d(Su, y2n−1), d(y2n, Au)))
≤ kF (2d(y2n−1, Au) + 2d(Au, y2n) + 2d(Su,Au))
≤ k(2F (d(y2n−1, Au)) + 2F (d(Au, y2n)) + 2F (d(Su,Au)))
≤ 2kF (d(y2n−1, Au)) + 2kF (d(Au, y2n)) + 2kF (d(Su,Au)).

(2.10)
Using the triangle inequality, (2.9) and (2.10), we have

F (d(Au, Su)) ≤ F (d(Au, y2n)) + F (d(y2n, Su))
≤ F (d(Au, y2n)) + 2kF (d(y2n−1, Au))

+2kF (d(Au, y2n)) + 2kF (d(Su,Au)).

Hence, F (d(Su,Au)) ≤ 1+2k
1+2k

F (d(Au, y2n)) + 2k
1−2kF (d(y2n+1, Au)).

Since d(Au, y2n)
�−→ 0 and d(Au, y2n−1)

�−→ 0, then F (d(Su,Au))
�−→ 0 and
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so d(Su,Au)
�−→ 0. Thus d(Su,Au) = 0 i.e v = Au = Su.

Since S(X) ⊂ B(X), there exists w ∈ X such that Su = Bw.
Next we prove that Bw = Tw.

F (d(Bw, Tw)) = F (d(Su, Tw))
≤ kF (ψ(d(Au,Bw), d(Su,Au),

d(Tw,Bw), d(Su,Bw), d(Tw,Au)))
= kF (ψ(0, 0, d(Tw,Bw), 0, d(Tw,Bw)))
≤ kF (2d(Tw,Bw)) ≤ 2kF (d(Tw,Bw))

Thus, (1− 2k)F (d(Bw, Tw)) ≤ 0. Since 1− 2k > 0, F (d(Bw, Tw)) = 0 which
implies that d(Bw, Tw) = 0 and so v = Bw = Tw.

Since {A, S} and {B, T} are weakly compatible, we have the following:{
Au = Su⇒ ASu = SAu⇒ Av = Sv,
Bw = Tw ⇒ BTw = TBw ⇒ Bv = Tv.

Let us prove that Sv = Tv.

F (d(Sv, Tv)) ≤ kF (ψ(d(Av,Bv), d(Sv,Av), d(Tv,Bv), d(Sv,Bv), d(Tv,Av)))
= kF (ψ(d(Sv, Tv), 0, 0, d(Sv, Tv), d(Sv, Tv)))
≤ kF (2d(Sv, Tv)) ≤ 2kF (d(Sv, Tv))

Thus (1−2k)F (d(Sv, Tv)) ≤ 0, hence, F (d(Sv, Tv)) = 0, and so d(Sv, Tv) = 0
i.e Sv = Tv. We have Av = Sv = Bv = Tv. Now let us prove that v = Sv.

F (d(y2n+1, T v)) = F (d(Sx2n, T v)
≤ kF (ψ(d(Ax2n, Bv), d(Sx2n, Ax2n),

d(Tv,Bv), d(Sx2n, Bv), d(Tv,Ax2n)))
= kF (ψ(d(y2n, T v), d(y2n+1, y2n), 0,

d(y2n+1, T v), d(Tv, y2n))).

(2.11)

Since d(y2n, T v) ≤ d(y2n, y2n+1) + d(y2n+1, T v), we have from (2.2),

ψ(d(y2n, T v), d(y2n+1, y2n), 0, d(y2n+1, T v), d(Tv, y2n))

≤ 2d(y2n, y2n+1) + 2d(y2n+1, T v).
Hence from (2.11),

F (d(y2n+1, T v)) ≤ k(2F (d(y2n, y2n+1)) + 2F (d(y2n+1, T v)))
= 2kF ((d(y2n, y2n+1)) + 2kF (d(y2n+1, T v)).

which yields F (d(y2n+1, T v)) ≤ 2k
1−2kF (d(y2n, y2n+1)).

Since d(y2n, y2n+1)
�−→ 0, then F (d(y2n+1, T v))

�−→ 0 and d(y2n+1, T v)
�−→ 0.

So y2n+1 → Tv i.e v = Tv from the uniqueness of limit of {yn}.
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So A,B, S, T have a common fixed point. The uniqueness follows from
the contractive condition. The same result holds if we suppose that one of
S(X), T (X), B(X) is complete.

Remark. If S = T , A = B and ψ(t1, t2, t3, t4, t5) = t2 + t3 (respectively
ψ(t1, t2, t3, t4, t5) = t4 + t5) in Proposition 2.1, we obtain Theorem 2.9 (respec-
tively Theorem 2.12) in [17] and the corollaries ([2]).

Theorem 2.2 Let (X, d) be a cone metric space and let A,B, S, T : X → X
be four mappings such that:

F (d(Sx, Ty)) ≤ kF

(
ψ
(
d(Ax,By), d(Sx,Ax), d(Ty,By),

d(Sx,By), d(Ty,Ax)
))

where F in addition is such that for every ω ∈ P , F (ω) = 2F
(

ω
2

)
, 0 < k < 1

and ψ : P 5 → P satisfies

ψ(a, a, b, 0, c) and ψ(a, b, a, c, 0) ≤


a if b ≤ a
b if a ≤ b
a+b
2

if a− b /∈ P ∪ (−P )
(2.12)

for all c ≤ a+ b

and

ψ(t1, t2, t3, t4, t5) ≤ t when for all i ∈ {1, 2, 3, 4, 5}, ti ≤ t. (2.13)

Suppose that {A, S} and {B, T} are weakly compatible with S(X) ⊂ B(X),
T (X) ⊂ A(X) and such that one of A(X), B(X), T (X), S(X) is a complete
subspace of X. Then the self-mappings A,B, S, T have a unique common fixed
point.

Proof: Using the additional property of F , i.e, ∀ω ∈ P , F (ω) = 2F
(

ω
2

)
, the

above contractive condition can be written thus:

F (d(Sx, Ty)) ≤ k
2
F (ψ′(d(Ax,By), d(Sx,Ax), d(Ty,By),

d(Sx,By), d(Ty,Ax)))

where ψ′ = 2ψ satisfies the hypothesis in Proposition 2.1 and 0 < k
2
< 1

2
. �

Letting F = Id and ψ(t1, t2, t3, t4, t5) ∈
{
t1, t2, t3,

t4+t5
2

}
(respectively

ψ(t1, t2, t3, t4, t5) ∈
{
t1,

t2+t3
2
, t4+t5

2

}
) in the contractive condition of Theorem

2.2, we obtain the following corollaries:
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Corollary 2.3 [1] Let A,B, S and T be self mappings of a cone metric
spaceX with cone P having a non-empty interior, satisfying S(X) ⊂ B(X),
T (X) ⊂ A(X) and

d(Sx, Ty) ≤ hu

where h ∈ (0, 1) and

u ∈

{
d(Ax,By), d(Sx,Ax), d(Ty,By),

d(Sx,By) + d(Ty,Ax)

2

}
for all x, y ∈ X. If {A, T} and {B, S} are weakly compatible, then A,B, S
and T have a unique common fixed point.

Corollary 2.4 Let A,B, S and T be self mappings of a cone metric spaceX
with cone P having a non-empty interior, satisfying S(X) ⊂ B(X), T (X) ⊂
A(X) and

d(Sx, Ty) ≤ hu

where h ∈ (0, 1) and

u ∈

{
d(Ax,By),

d(Sx,Ax) + d(Ty,By)

2
,
d(Sx,By) + d(Ty,Ax)

2

}
for all x, y ∈ X. If {A, T} and {B, S} are weakly compatible, then A,B, S and
T have a unique common fixed point.

Remark. Corollary 2.3 is Theorem 2.2 in [1]. Also, when (X, d) is a metric
space, the contractive condition in our main result is the same as in Theorem
2.3 in [6].

3 Some general conditions of integral type

We start with some definitions, examples and properties as stated in [12].

Definition 3.1 [12] Suppose that P is a normal cone in E. Let a, b ∈ E
and a < b. We define:

[a, b] := {x ∈ E : x = tb+ (1− t)a, where t ∈ [0, 1]}

[a, b) := {x ∈ E : x = tb+ (1− t)a, where t ∈ [0, 1)}

Definition 3.2 [12] The set {a = x0, x1, ..., xn = b} is called a partition for
[a, b] if and only if the sets [xi−1, xi], 1 ≤ i ≤ n, are pairwise disjoint and

[a, b] =

{
n⋃

i=1

[xi−1, xi)

}
∪ {b}
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Definition 3.3 [12] Suppose that P is a normal cone in E, φ : [a, b] → P
a map. φ is said to be integrable on [a, b] with respect to cone P (or cone
integrable function) iff for all partition Q of [a, b]

limn→∞L
Con
n (φ,Q) = SCon = limn→∞U

Con
n (φ,Q)

where SCon must be unique and:{
LCon
n =

∑n−1
i=0 φ(xi)‖xi − xi+1‖ (Cone lower summation)

UCon
n =

∑n−1
i=0 φ(xi+1)‖xi − xi+1‖ (Cone upper summation).

We note

SCon =

∫ b

a

φ(x)dP (x) =

∫ b

a

φdP

The set of all cone integrable functions φ : [a, b]→ P is denoted L1([a, b], P ).

Definition 3.4 [12] The function φ : P → E is called subadditive cone
integrable function iff ∀a, b ∈ P∫ a+b

0

φdP ≤
∫ a

0

φdP +

∫ b

0

φdP

Example 3.5 [12] Let E = X = R, d(x, y) = |x − y|, P = [0,+∞) and
φ(t) = 1

t+1
∀t > 0. Then φ is a subbaditive cone integral function.

We are now in position to state the following proposition

Proposition 3.6 Let (X, d) be a cone metric space and let and P a normal
cone. Let φ : P → P be a nonvanishing map and a subbaditive cone integrable
on each [a, b]. Let A,B, S, T : X → X be four mappings such that:∫ d(Sx,Ty)

0

φ(t)dP (t) ≤ k

∫ M(x,y)

0

φ(t)dP (t), k ∈ [0,
1

2
) (3.1)

where

M(x, y) = ψ

(
d(Ax,By), d(Sx,Ax), d(Ty,By), d(Sx,By), d(Ty,Ax)

)
, (3.2)

and ψ : P 5 → P is a mapping satisfying (2.1) and (2.2) in Proposition 2.1.
Suppose also that the function of y →

∫ y

0
φdP is invertible and that the in-

verse is continuous in 0. If {A, S} and {B, T} are pairs of weakly com-
patible mappings with S(X) ⊂ B(X), T (X) ⊂ A(X) and such that one of
A(X), B(X), T (X), S(X) is a complete subspace of X, then the self-mappings
A,B, S, T have a unique common fixed point.
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Proof. Proposition 3.6 is a corollary of Proposition 2.1 when F (y) =
∫ y

0
φdP .

Under this case, F satisfies conditions (F1) and (F2). (F2) results from the
subbaditivity of φ. The condition (F1) results from the continuity of F and

its inverse in 0. In fact, in a normal cone, if ωn
�−→ ω, then ωn converges to

ω. Now, since F is continuous in 0, for every sequence ωn converging to 0,
F (ωn) converges to F (0) = 0. Since F−1 is continuous, given any sequence
F (ωn) converging to 0, F−1(F (ωn)) = ωn converges to F−1(0) = 0; thus (F1)
is satisfied.

Theorem 3.7 Let (X, d) be a cone metric space and let and P a normal
cone. Let φ : P → P be a nonvanishing map, a subbaditive cone integrable on

each [a, b] and such that
∫ a

0
φdP = 2

∫ a
2

0
φdP . Let A,B, S, T : X → X be four

mappings such that:∫ d(Sx,Ty)

0

φ(t)dP (t) ≤ k

∫ M(x,y)

0

φ(t)dP (t), k ∈ [0, 1) (3.3)

where

M(x, y) = ψ

(
d(Ax,By), d(Sx,Ax), d(Ty,By), d(Sx,By), d(Ty,Ax)

)
, (3.4)

and ψ : P 5 → P is a mapping satisfying (2.12) and (2.13) in Theorem 2.2.
Suppose also that the function of y →

∫ y

0
φdP is invertible and that F and

F−1 are continuous in 0. If {A, S} and {B, T} are pairs of weakly com-
patible mappings with S(X) ⊂ B(X), T (X) ⊂ A(X) and such that one of
A(X), B(X), T (X), S(X) is a complete subspace of X, then the self-mappings
A,B, S, T have a unique common fixed point.

Proof. Theorem 3.7 is a corollary of Theorem 2.2 when F (y) =
∫ y

0
φdP .

Remark. Theorem 3.7 is the cone version of Theorem 2.4 in [6], extending
thus to cone metric spaces many other known results in metric spaces. It also
furnishes the additional hypothesis to those in Theorem 2.9 of [12] which would
make it valid, as suggested in [3].
The following corollary is a result of existence of the fixed point of a single
map

Corollary 3.8 Let (X, d) be a complete cone metric space and let and P
a normal cone. Let φ : P → P be a nonvanishing map, a subbaditive cone

integrable on each [a, b] and such that
∫ a

0
φdP = 2

∫ a
2

0
φdP . Let S : X → X be

a mapping such that:∫ d(Sx,Sy)

0

φ(t)dP (t) ≤ k

∫ M(x,y)

0

φ(t)dP (t), k ∈ [0, 1) (3.5)
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where

M(x, y) = ψ

(
d(x, y), d(Sx, x), d(Sy, y), d(Sx, y), d(Sy, x)

)
, (3.6)

and ψ : P 5 → P is a mapping satisfying (2.12) and (2.13) in Theorem 2.2.
Suppose also that the function of y →

∫ y

0
φdP is invertible and that the in-

verse is continuous in 0. Then S has a unique common fixed point.

Proof: Take A = B = IdP and S = T in Theorem 3.7.
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