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ABSTRACT

In this study, the class of state pace model for which optimal forecasts may be computed using a
recursive estimation procedure called the Kalman Filter is developed for the analysis of
hydrological series. The state-space formulation yields a practical means of estimation for his -
complex time varying dynamical process. It provided a generic and flexible framewark for
hydrological modeling and inference. A straight forward implementation was achzeved in the

software package S-Plus

*

1.0 INTRODUCTION

Hydrological variables such as rainfall are
proglucts ~ of =~ complex  time-varying
phenomena which can be measured by a
finite number of observations. The highly
non-linear andsextremely sensitive process
governing rainfall makes a purely
deterministic  physical description . and
forecasting impossible (Bardossy and Plate,
1991). 'A detailed study of hydrologic
phenomena requires mathematical models
that should take into account time
variability. Recently, there is growing
interest in non-linear models combined with
a greater computational facility for
describing data where the variance changes
through time.

State-space models, Durbin and Koopman
(2000, 2001, 2002) and Chatfield (2004) are
a widely used.tool in time series analysis to
deal with processes which gradually change
over time. The state-space model represents
a physical system as n first order coupled
differential equations. The state-space
representation is . essentially a convenient

notation to estimate stochastic models in which
one assumes measurement errors in the system
which allows handling a large set of time series
models. The recursive nature of the model and
the computation techniques used for its
analysis allow the direct incorporation of
known breaks in the system structure over
time. ‘
Kalman (1960) estimated co-etficient of a non-
linear differential equation using an optimal
sequential estimation techniques often referred
to as Kalman filter. Kalman’s derivation took
place within the context of state-space models
whose core is the recursive least squares
estimation. Within the state-space notation, the
Kalman filter derivation rests on the
assumption of normality of the initial state
vector, and as well as the disturbances of the
system. ‘

The state-space formulation is useful in its
ability to cast many models within the
mathematical frame work of two equations;
system equation and measurement equations.
The linear state-space form has been
demonstrated to be an exfremely powerful tool
in handling all linear, and many ¢lasses of non
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linear time series models (Harvey, 2001).
Box and Jenkins (1976) use the term non-
linear estimation to describe procedures for
minirizing a sum of squares function when
numerical methods have to be used.
Theoretically, there 1s no distinction
between the state-space and the ARMA
representations of a stationary process (Wei,
£990). Akaike (1974) expressed the state-
space model parameters in terms of ARMA
models. The ARMA forecast updating
models can also be reformulated in the state
variable form u'ﬁon which the Kalman filter
“algorithm can be  employed to obtain
hydrological forecasts. It is argued that
when hydrological time series model is
assumed to be an auto-regressive moving
average (ARMA) model, the corresponding
hydrological series are considered to be free
of measurement errors, and the minimum
mean square error forecasts obtained by
using the conditional Box and Jenkins time
series forecasting méthods are identical with
‘those abtained by using the Kalman filtering
technique (Chatfield 2004, Ahassan and
O’connor, 1994).

It will be demonstrated in this paper that the
Kalman filter technique is adopted as the
best linear filter in an expected square error
sense, and the filter algorithm degenerates
into simpler algorithm that 1s identical with
the conventional time series method of

forecasting. A major practical advantage of .

the Kalman filter is that the calculations are
recursive, so that, although the current
estimates are based on whble past history of
measurements, there is no need for an ever
expanding memory (Chatfied 2004).

Kalman {1960) procedure is the .most
efficient category of prediction models that
have an adaptive behaviour. In application
of Kalman filtering theory, the mathematical

formulation of the problem and the-
computational techniques involved may
depend heavily on the = computational

simplicities of the system model which is
“used. Kalman filtering is designed to strip
unwanted noise obut of the stream of data
(Cipra, 1993) and it addressed the question

i~

of getting accurate information out of
inaccurate data.

Kalman (1960) and Kalman and Bucy (1961)
papers have generated thousands of other
papers on aspects and application of filtering.
Their work has also simulated mathematical

research in such areas as numerical methods

for linear algebra (Cipra, 1993). Kalman
filtering has been wused for parameter
optimization  or  sequential  parameter

estimation of linear rainfall- run off models as
new data become available in real time (Ahsan
and O’connor, 1994). Kalman filtering has
been applied in non linear modeling and
estimation problems related to river flow
forecasting. As the original version of the
Kalman filter is intended for linear estimation

~only, the later appiications usually require prior

linearization so that the linear Kalman filter
can be applied. This type of.applications is
described as the extended Kalman filter.

2.0 LINEAR STATE SPACE MODELS
Many problems in science require estimation
of the state of a system that changes over time
using a sequence of noisy measurements made
on the system. Systematic errors and non-
homogeneities are introduced into rainfall data
by changing the type or location of a rain
gauge or by construction of buildings nearby or
the growth of trees. These .factors should be
noted in the station history and the user should
always be aware of this potential problem.

The prime objective of state-space modeling s
to estimate the signal in the presence of noise.
The state-space approach to time series
modeling focused attention on the state vector
of a system. The measurement vector
represents noisy observations that are related to
the state vector. It is assumed that the noise
contaminates the signal in an additive manner
so that the observations are given by the
following measurement equation

Z, =Fg +v,

where Z, (t =12,.............. N) 1s the observed
noise corrupted time series, F, is a¥sumed to

be an ((nx1) known column vector, & and v,
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are the time series representing an (nx1)
state vector and the observation noise
respectively.  Although @ may not be
directly observable, it is often assumed as a
vector difference equation or state equation
represented as

0 =HO W, ool 2

i Y
where the (nxn) matrix H, is assumed
known, and :W, denotes an (nx1) vector of
deviations | such that

=(w,, [CPR. w,,) . In fitting the
mod'el, the state equations are permitted to
wander in the form of a random walk. The

model is allowed to bend so as to minimize
the '~ distance between
Z, and the prediction Z,

The pair of equations in (1) and (2)
constitute the general form of the ,state-
space model. The errors in the measurement
(or observation) equation in (1) and state (or
transition) equation in’ (2) are generally
assumed to be serially uncorrelated and also
to be thcorrelated with each other at all time
periods. Further, the measurement error v,
is assumed as an independent random
Gaussian process while W, is a white
Gaussian noise with zero mean and variance
matrix o, . Additionally V, andW, are
assumed to be orthogonal at all pairs of
time.

KALMAN

3.0 THE
ALGORITHM

The Kalman filter is the main algorithm to
estimate dynamic systems in state-space
form. Kalman (1978) defined filtering as
any mathematical operation which uses past
data or measurements on a given dynamical
system to make 'more accurate statement
about present; future or past variables in that
system. Kalman has based the construction
of the filter in probabilistic theory, more
specifically, on the conditionally Gaussian
properties of random variables. For the
linear Gaussian estimation problem, the
required pmHahilily density function (pdf)

FILTER

remains Gaussian at every iteration of the filter,
and the Kalman filter relations propagate and
update the mean and covariance of the
distribution(Chatfield, 2004).

The Kalman filter recursively evaluates the

estimator of the state vector conditional on the
past observations up to time (1—1) . By
considering Equation (2), “Where W is still
unknown at time -1, the obvious estimator
for @ is given as

o

t/r-1

=¥ ; § - S SNISCR. e .(3)
with variance covariance matrix ‘

B, =HF_ : ;

Equations (3) and (4) are the prediction
equations. Equation (4) follows from standard
results on variance -covariance matrices for
vector random variables (Chatfield, 2004;
Stark and Woods, 1986). When new
observation has been observed, the estimator

for 6 can be modified to take account of this

extra information. At time (r—1) , ths! best

forecast of Z, is given as FH,, 1 SO that the
prediction error is given by '

E =2 ~FB, oo (5)
£ 1n (5) 1s called the prediction error. This

quantity can be used to update the estimate of

0, and of its variance-covariance matrix .and
the best way to do this is by means of the

following equation

0 =0, +KE oo, (6)
And

P=F, —KFP, ..., s e (7)
Where

K, =P, _F[EP, _F +a] .......... P (8)

K, in (8) is called the Kalman gain matrix and
is a vector of size (mxl) Equations (6) and
(7) constitute the second updatmg stage of the
Kalman filter and are called the updating
equations. The solution is optimal provided the
filter combines all observed information and
previous  knowledge about the system’s
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behaviour such that the state estimation
“minimizes the statistical error.

4.0 ~ APPLICATIONS

The study applied the model to monthly
rainfall at Abeokuta, Ogun State between
1995-2004 collected: from the Metrological
Service, . Federal Ministry of Aviation,
Abeokuta. The plot of the monthly rainfall

as in Figure 1 indicates that the series is
stationary. The . first step in state-space

“modeling is to find an optimal. AR model

that fits the data. Table 1 is the ACF and the
PACF of the monthly rainfall and the
correlogram is as in Figures 2 and 3. Based on
the ACF and PACF of the monthly rainfall in

" Table I, one may suggest an AR (1). The Splus

package use the Akaike Information Criterion

- (AIC) to provide an optimal or best fit for the

autoregressive model. The value of the AIC for
the monthly rainfall data is as in Table 2. The
AIC is minimum at p=1. Hence, the optimal
AR order p is chosen to be one. Tables | and 2
indicate the behaviour of the monthly rainfall
data.

Table 1: Sample ACF and PACF of the Monthly Rainfall at Abeokuta.

from the rainfall data using ARMA model is
0 =02740,_, +W, t=0

* with mean equal to zero and o = 0.0078.
The Kalman gain K, as defined in (8) is

- K, =0.082. The prediction error variance
as defined in 5)is¢€ = () 089 The Kdlman
filter is asvmpl()tlmll) ouen by
( = =0.2520 v ,+0087/

Lag 1 2 L. 4 5 6 7 g . 9 10
ACE | 0421 0.154 |-0.023 |-0.260 |-0.450 |-0.537 |-0.428 |-0.202 |0.018 |0.175
:PACF | 0.421 -0.028 | -0.095 | -0.261 |-0.311 |-0.339 |-0.235 | -0.127 | -0.127 | -0.147
Lag |11 12 |13 14 15 16 17 8 9 20
ACF 0436, |0486 |0473 |0.224 |-0.023 |-0.291 |-0.417 |-0.448 | -0.376 | -0.235

:PACF | 0.095 [0.056 |0.219 |0.035 |0.032 -0.126 | -0.028 | -0.023 |0.003 | -0.105
Table 2: AIC of the Monthly Rainfall at Abeokuta.

Lag |1 |2 3 4 5 ) 7 8 9 . 10

AIC 10.000 |12Q0 [2562 |4.287 |5.890 |7.356 [9.298 |[11.219 |12.685 | 14.630

i~
The Gauss Markov signal model generated 5.0 CONCLUSION

. The Kalman filter revisited the estimates by

adding a correction to the preliminary estimate.
The magnitude of thie correction is determined
by how well the preliminary estimate predicted
the new observation and this will tend towards
a steady state when the Kalman  gain
approaches a limit. The Kalman filter uses the
least squares method to generate recursively a
state estimator at time ¢ , which is linear,
unbiased and with minimum variance. The
filter is in line with the Gauss-Markov theorem
and this gives the Kalman filter a great power
to solve a large range of statistical inference
problems. |
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Figure 2: Sample ACF for the Monthly Rainfall Data
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Figure 3: Sample PACF for the Monthly Rainfall Data
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