A HYBRID VIRTUAL FORCE FIELD MODEL FOR
AUTONOMOUS MOBILE ROBOT NAVIGATION

By

AYOMOH, Michael Kweneojo
B.Eng (Ilorin), M.Sc (Ibadan), MNSE
(039047007)

Thesis Submitted to the School of Postgraduate Studies,
University of Lagos, in partial fulfilment of the
requirement for the degree of Doctor of Philosophy

Systems Engineering

Department of Systems Engineering
Faculty of Engineering
University of Lagos, Nigeria

November, 2008

SCHOOL OF POSTGRADUATE STUDIES
UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that the Thesis:

“A HYBRID VIRTUAL FORCE FIELD MODEL FOR AUTONOMOUS
MOBILE ROBOT NAVIGATION”

Submitted to the
School of Postgraduate Studies
University of Lagos

For the award of the degree of

DOCTOR OF PHILOSOPHY (Ph. D)

is a record of original research carried out
By

AYOMOH, MICHAEL KWENEOJO
in the Department of Sys?ems Engineering

L AVomod, mesaEl K- e - 22 [n]os
AUTHOR'S NAME ﬁ{IGNA%RE DATE
Dw? V0.8, Orontep W‘LSZ er 21— eoy
15T SUPERVISOR’S NAME SIGNATURE DATE
Ww« Q0 Vndodye - U qu)—% 2000k
2"° SUPERVISOR’ S NAME SIGI!IATURE DATE
Orp 0 Poam Dwdties aufwr
157 II\iTERNAL EXAMINER SIGNATUHE DATE
D QD aMmiSa Q'MVM <N-90.8
2ND INTERNAL EXAMINER IGNATURE DATE
—
Vm Japos (Kalowde ;/’ﬁ“mf-f’ QM- 2008
EXTERNAL EXAMINER S@NATU > DATE

» — \
&“/ £ 0 Breqouun % | 1771,/ 0F
SPGS REPRESIEN'{'ATIVE SIGNATURE DATE

DECLARATION
I declare that this thesis is a record of the research work carried out by me. I also certify

that neither this nor the original work contained therein has been accepted in any previous

application for a degree.

All sources of information are specifically acknowledged by means of references.

: el /SZ/Z/O?

AYOMOH, ML.K.O Date

iii

DEDICATION
This research work is dedicated to God Almighty for seeing me through from the

inception time to the end.

iv

ACKNOWLEDGEMENTS

My profound gratitude goes to my Supervisors: Distinguished Professor V.0Q.S. Olunloyo
and Prof. O. Ibidapo-Obe for their relentless effort and extreme commitment to ensuring

that all physical and mental resources needed for this research work are made available.

I will specially thank the family members of my Supervisors for their unique
understanding, diligence and strong spirit of accommodation throughout the course of
this project. I must uniquely express my sincere gratitude to the family of Distinguished
Prof. V.O.S. Olunloyo for being instrumental to the ready availability of most of the
imported components I used in building the prototype machine. Even at very short

notices, they never hesitated.

Special regards goes to the Head of Department Prof. O.A. Fakinlede for his
encouragement and ever willing desire to assist especially in the administrative issues
around the completion of this research. I am also grateful to the PG Coordinator Dr. T.A.
Fashanu for his commitment and time ensuring that no stone was left unturned in the

processing of results in the Graduate School.

My warm regard goes to all members of staff of Systems Engineering Department for
their rare concern and support in diverse ways. In addition, 1 am expressing my sincere
gratitude to all my senior colleagues, colleagues and friends in the faculty of Engineering
for their numerous support. My warm regard goes to Engr. Adedayo, Mr. Fofo and others
in the Faculty workshop for their availability and assistance whenever the need arose

while fabricating the chassis of the prototype robot.

Many thanks to Distinguished Prof. V.0.S. Olunloyo’s research team members. The
constructive criticism during our Saturday meetings has significantly influenced not just
my PhD work but the totality of my person as an academic. At this point, I say thanks to
Prof. R.1. Salawu, Dr. C.A. Osheku , Dr O. Kamiyo and other members of the team.

Many thanks to Distinguished Prof. V.0.S. Olunloye’s administrative workers for their
ever readiness to support even at odd times. Most significantly, I say thanks to Mr. O.

Moshood, Mr. Robert, Mr. Femi and others.

My warmest regards goes to my family members. I say thanks to my Dad, Mr. F.I
Ayomoh, Mum, Mrs. P.I. Ayomoh and siblings: Mr. 5.0. Ayomoh, Miss Winifred,
Elizabeth and Roseline Ayomoh for being their always for me. T appreciate their timeless

support in prayers, financial assistance and moral support.

I am also indebted to my friends in the Catholic Charismatic Renewai for their prayerful
support. Finally, I wish to say thank you to everyone who has in any way influenced the

completion of this research work. May God bless you ail.

In conclusion, 1 give all the glory to God Almighty for reasons too numerous to be

mentioned.

Vi

A

TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTION

1.1

Background of the study

Local Path Planning

1.1.2 Global Path Planning

1.2 Statement of Problem

1.3 Objective of Study

1.4 Motivation for the present work
1.5 Scope of the Study

1.6 Significance of the Study

1.7 Operational Definition of Terms
CHAPTER TWO

LITERATURE REVIEW

2.0 Preamble

2.1 Graphical Approach

2.2 Classical Approach

2.3 Heuristic Approach

2.4

Potential Field Method

vii

11

11

12

17

21

CHAPTER THREE

PATH PLANNING MODEL FOR AN AUTONOMOUS MOBILE PLATFORM

IN A COMPLEX OBSTACLE DOMAIN

3.1 Preamble 29
3.2 The Virtual Force Field Algorithm 29
3.2.1 Geometry 35
3.22 Vectors 35
3.2.3 Production Rules 37
3.3 Algorithmic Procedure 39
3.4 Virtual Obstacle and Virtual Goal Concepts 42
3.4.1 Virtual Obstacle Concept (VOC) 45
3.4.1.1 Itemization of the procedural flow of the VOC 46
3.42 Virtual Goal Concept (VGC) 47
3.4.2.2 Itemization of the procedural flow of the VGC 48
3.5 Description of the Environment/Obstacle nature 50
3.5.] Case of Partially known environment with static obstacles 51
3.52 Case of Completely Unknown environment with static obstacles 51
3.5.3 Case of Completely Unknown environment with dynamic obstacles 51
CHAPTER FOUR

A PATH PLANNING IN A COMPLETELY UNKNOWN DOMAIN FOR
CONCAVE SHAPED OBSTACLE

4.1 Preamble 52

42 Algorithmic Procedure 52

viii

4.3 Virtual Obstacle Concept (VOC)

4.3.1 Ttemization of the procedural flow of the VOC
4.4 Virtual Goal Concept (VGC)

45 Axial Line Selection Procedure

4.6 Virtual Goal (VG) Placement Position

4.7 Reoccurring Position Technique

4.8 Adaptive Velocity Concept

CHAPTER FIVE

54
55
55
57
59
60

60

VALIDATION EXERCISE: SYSTEMS DESIGN AND IMPLEMENTATION

5.1

52

5.2.1

5.2.2

523

524

5.2.5

5.2.6

5.2.7

53

5.4

5.5

5.6

5.7

Preamble

Hardware

BX-24 Microcontroller

Hitec Servomotor

MaxSonar-EZ1 Ultrasonic Sensors
Connecting Cables

Caster Wheel

Rolling Wheels

Aluminium Sheet

Software

Control System Architecture
Robotic Testbed

Forward Kinematics Model of the Differential Wheel Drive

Model Assumptions for the Prototype robot

ix

64

64

65

65

65

69

69

69

69

69

69

70

70

73

5.8 Modeling of the Robot’s Rotational Difference
5.8.1 Identifying Quadrant for Robot Initial Orientation
5.9 Navigation Algorithm for Real Robot

5.9.1 Navigation Algorithm without obstacle

5.9.2 Navigation Algorithm with obstacle
CHAPTER SIX

RESULTS AND DISCUSSIONS

6.1 Results

6.2 Algorithmic Comparison

6.2.1 Level of Automation

6.2.2 Obstacle Motion types and Geometry

6.2.3 Rotations

6.2.4 Growing Obstacles

6.2.5 Computer Memory Size Optimization
CHAPTER SEVEN

SUMMARY AND FINDINGS, CONTRIBUTION TO KNOWLEDGE AND
FUTURE WORK

7.1 Summary and Findings

7.2 Contribution to Knowledge

7.3 Future Work

REFERENCES

Appendix I: Prototype Design

Appendix II: Programme for partially known environment: a simulation study

73

74

75

77

77

80

105

105

107

107

107

108

110

1

111

113

129

133

Appendix III: Programme for completely unknown obstacle domain: 144
a simulation study

Appendix IV: Programme for the Real Robot 210

Xi

LIST OF FIGURES

FIGURE

la Local minimum trap by a concave shaped obstacle

1b Local minimum trap by a lengthy obstacie

le Oscillatory motion by two narrowly spaced obstacles

2a Basic Vector Operations

2b Vector Addition, Three Vectors

2c Vector Addition, Four Vectors

2d Forward Chaining in Production Rules

2e Backward Chaining in Production Rules

2f A flow Chart Diagram for the HVFF Algorithm

3a Case I: Sample Workspace Demonstrating the Virtual Obstacle
Concept and the Virtual Goal Concept

3b Case 1I: Sample Workspace Demonstrating the Virtual Obstacle
Concept and the Virtual Goal Concept

3c Case IV: Sample Workspace Demonstrating the Virtual Obstacle
Concept and the Virtual Goal Concept

3d Case 111: Sample Workspace Demonstrating the Virtual Goal Concept

3e Model of an assumed thin and lengthy obstacle

4 A flow chart diagram for the HVFF algorithm for dynamic obstacles

5 Mode! of an assumed thin and lengthy obstacle

6 Generalized Coordinate for Virtual Goal Placement

7 A flow chart diagram for VG placement

A view of the radiation cone on first sight of an obstacle by the robot

xii

36

36

36

37

38

41

42

42

43

44

44

53

54

56

58

61

10

lla

11b

llc

11d

12a

12b

13

14a

14b

14¢

14d

lde

14f

15a

15b

16a

16b

17a

17b

A view of the radiation cone assuming a static obstacle and 2 moving
robot

A view of the radiation cone assuming both obstacle and robot
are dynamic

Sound Frequency Range

Block Circuit diagram of an Ultrasonic sensor (Source: Festo Didactic
GmbH & Co. KG FP 1110)

A pictorial view of MaxSonar EZ1 sensor

Block Circuit diagram of an Ultrasonic sensor (source: Festo Didactic
GmbH & Co. KG + FP 1110}

Front view of our AMR

12b: Side view of our AMR

Control System for our AMR

Differential whee! drive system: a schematic view
A rotated view of an AMR in the direction of the target point
A view of the robot’s quadrant system

Initial orientation of robot before navigation
Rotated robot orientation for navigation

A simple robot navigation sketch

Developed Problem Sample Space(1

Solution for developed Sample SpacéO]
Developed Problem Sample Space(2

Solution for developed Sample Space02
Developed Problem Sample Space03

Solution for developed Sample Space03

Xiil

62

66

68

68

70

71

72

72

73

74

76

84

85

85

85

86

86

18a

18b

19a

19b

20a

20b

20c

20d

20e

2la

21b

21c

22a

22b

22¢

23a

23b

23¢

23d

23e

24a

24b

24c¢

Developed Problem Sample Space04

Solution for developed Sample Space(4
Developed Problem Sample Space03

Solution for developed Sample Space03
Problem Sample Space06

Solution for Sample Space06 using regular grids
Solution for Sample Space06 using quadtree
Solution for Sample Space06 using framed-quadiree
Solution for Sample Space06 (current scheme)
Problem Sample Space07

Solution for Sample Space07

Solution for Sample Space07 (current scheme)
Problem Sample Space(8

Solution for Sample Space(8

Solution for Sample Space08 (current scheme)
Problem Sample Space(9

Solution for Sample Space09 using CMM
Solution for Sample Space09 using A*
Solution for Sample Space(9 using PRM
Solution for Sample Space(9 (current scheme)
Problem Sample Spacel0

Solution for Sample Spacel0

Solution for Sample Spacel0 (current scheme)

xiv

86

87

87

87

88

38

88

89

39

89

90

90

90

91

91

91

92

92

92

93

93

93

94

25a Problem Sample Spacell 94

25b Solution for Sample Spacel | 94
25¢ Solution for Sample Spacell (current scheme) 95
26a Problem Sample Spacel2 95
26b Solution for Sample Spacel2 95
26c Solution for Sample Spacel2 (current scheme) 96
27a Problem Sample Spacel3 96
27b Solution for Sample Spacel3 96
27¢ Solution for Sample Spacel3 (current scheme) 97
28a Problem for converse of Sample Spacel3 97
28b Solution for converse problem Sample Spacel3 (current scheme) 97
29a Problem Sample Spacel4 98
29b Solution for Sample Spacel4 98
29¢ Solution for Sample Space14 (current scheme) 98
30a Problem Sample Spacel3 99
30b Solution for Sample Spacel5 99
30¢ Solution for Sample Spacel5 (current scheme) 99
31a Problem Sample Spacel6: case of dynamic obstacle 100
31b Solution for Sample spacel6 Frame I (current scheme) 100
31c Solution for Sample spacel6 Frame II (current scheme) 100
31d Solution for Sample spacel6 Frame III (current scheme) 101
3le Solution for Sample spacel6 Frame 1V (current scheme) 101
31f Solution for Sample spacel6 Frame V (current scheme) 101

XV

3lg
32a
32b
32¢
32d

32e

Solution for Sample spacel6 Frame VI (current scheme)
Problem Sample spacel7: case of real robot

Solution for Sample spacel7 Frame] (current scheme)
Solution for Sample spacel7 Frame II (current scheme)
Solution for Sample spacel7 Frame III (current scheme)

Solution for Sample spacel7 Frame IV (current scheme)

xvi

102

102

103

103

104

104

LIST OF TABLES

TABLE
1 Success Rate for typical Sample Workspaces 82
2 A Comparative Chart of some widely used Path Planning Methods 106

xvii

NOTATIONS

X, - Robot x-coordinate

¥, - Robot y-coordinate

¢ - Dimensional description of robot’s active window

dia popr - Diameter of robot

d opsracte - Distance between the robot and an obstacle in the robot’s active window

A, gt - Distance between the robot and the desired goal state

Fer - Repulsive Force variable of sensed obstacle

rel_angle - Orientation of active sensor relative to robot head

y grid - Gridline equivalent on the y-axis of cell currently occupied by the robot
within the active window

x grid - Gridline equivalent on the x-axis of cell currently occupied by the robot
within the active window

i - Range of robot’s active window on the x-axis.

j - Range of robot’s active window on the y-axis.

X prracte - Obstacle’s x-coordinate

Vobstacte - Obstacle’s y-coordinate

¥, - Positioning distance between robot and virtual goal

s(n) - Number of sensors on robot

Xt nrger - x coordinate of robot goal state

Vimger - y coordinate of robot goal state

U, (q,) - Initialized repulsive force (y-component)

initia

U}, (g,) - Current repulsive potential generated by the obstacle (y-component)

current
winat Urep(4,) - Initialized repulsive force (x-component)

currem Unep(@,) = Current repulsive potential generated by the obstacle (x-component)

xvili

U’ (q,) - Attractive force generated by the goal state (y-component)

U, (g,) - Attractive force generated by the goal state (x-component)

v,, 4.) - Repulsive potential generated by obstacle(s) within sensing range

(x-component)
U, (4,) - Repulsive potential generated by obstacle(s) within sensing range

(y-component}

U*(q,) - Resultant potential in the x axis

U’(q,) - Resultant potential in the y axis

U(g,) - Combined resuitant potential from x and y axes

U, (g,) - Total attractive potential from the target point

U..(q.) - Total repulsive potential from obstacies

(7] - Initial orientation of robot after rotational difference (before navigation).
) - robot’s orientation during navigation

¥, - Orientational difference between initial and current orientation: case of

the left wheel

W, - Orientationa! difference between initial and current orientation: case of
the right wheel

A% - Grad operator

g, - Free configuration space describing current robot position

G orget - Free configuration space describing target point

2 - - Distance of the virtual goal from the real goal

v, - Generalized representation of virtual goal

v, - x coordinate of virtual goal

Vv - y coordinate of virtual goal

v, - Incremental distance for virtual goal placement

s, - Minimum permissible sensor reading

s - current sensor reading

xix

ABSTRACT

This work improves upon the Potential Field Method (PFM) for the navigation of
autonomous mobile robots, through the introduction of a new Hybrid Virtual Force Field
(HVFF) concept. The HVFF concept integrates the virtual force field (VFF), which is
based on the principles of artificial attractive and repulsive potentials, with the virtual

obstacle concept (VOC) and the virtual goal concept (VGC).

In particular, the specific challenges resolved by the HVFF, include the local minima
problem posed by either lengthy or concave shaped obstacles as well as the potential
field induced oscillatory motion of such a robot when maneuvering in the corridor
berween two narrowly spaced obstacles. These were all studied in a static obstacle
domain. Furthermore, we extend our solution technique to the unstructured obstacle
environment all in a 2-D domain. In this context the general problem of dynamic

obstacles in a completely unknown environment was examined in detail.

Simulations of the motions were used to validate the efficacy of HVFF over existing

algorithms for the dynamic and static obstacle architectures using MobotSim (a

customized software for robot animation).

Furthermore, we also confirm the feasibility of the new HVFF concept by demonstrating
the performance of a prototype robotic vehicle designed, built and operated as an

implementation platform for the HVFF algorithm.

XX

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Autonomous robot path planning with obstacle avoidance is a fundamental and important
problem in the study of robotics. Navigation is one of the most important tasks in intelligent
control of an autonomous mobile robot. The degree of intelligence, dexterity and versatility
of a robotic vehicle in respect of task performance is a function of so many varying factors.
Infact the last few decades have recorded a paradigm shift from remotely operated to
autonomous robotic vehicles. Consequently, research to enhance autonomous navigation has
received so much attention as seen from recent literature. In this regard, for a machine to be
christened “autonomous”™ it must possess a sense of direction independent of human

intervention while it navigates.

The problem of navigation can be summarized using the three cardinal questions namely:

where am 17", where am I going?", and how should I get there?" The first question is one of

" localization: The second and third questions are essentially those of specifying a goal and

being able to plan a path that results in achieving this goal. Investigations of the latter two

questions usually come under the domain of path planning and obstacle avoidance.

One of the most important advantages of using a reactive control strategy is that it is online
compliant and has the ability to cope with unstructured environments. To achieve its goal, the
robot must be able to perceive its environment sufficiently to allow it navigate safely. In
recent times, some areas of success have been reported in the literature but nonetheless
research in autonomous mobile robots is still in its infancy, and extensive research is going on

for improvements to make their widespread use possible.

According to Sugihara and Smith (1997), motion planning is one of the important tasks in
intelligent control of an autonomous mobile robot. Path planning according to Cleghorn et al.

(1988) could refer either to a mobile vehicle or to an end effector on an arm moving through a

cluttered workspace. In both instances there may exist many solutions, some of which are
better than others, either in terms of distance traversed, energy expended, joint angle or even

reach capabilities.

Robot Path planning, in a broader sense could be referred to as the process of identifying
obstacle free configurations within a given workspace in order to enhance a collision free
navigation of a robot from its current position to its desired position. To be sure, Path
planning for mobile robots is a complex problem that does not only guarantee a collision-free

path with minimum traveling distance but also requires smoothness and clearances.

Two fundamental classifications suggested by Fu, Gonzalez, and Lee (1987) to describe the
robotic path planning problem are Obstacle Constraint and Path Constraint. Obstacle
Constraints indicate that there are some points in space which are already occupied, and are
not free for the robot to pass through. Path Constraints are usually provided as points on a
path which the robot must follow. As a robotic vehicle translates and orientates her member
components at different points with time and in space, while accomplishing an assigned task,
it does this in some defined paths ensuring that obstacles are avoided both locally and

globally. Local and global path planning are next discussed below:

1.1.1 Local Path Planning (sensor based planning)

Sometimes information may not be available at the inception of solving a problem, thus we
must sclve the problem in stages as information are progressively made available. Sensor
based planning is an indispensable function when environments change with time, are
unknown, or there are inaccuracies in the robotic equipment. A postieri knowledge can be
used to find the next trajectory in a path (by collecting information about the outcome of the
previous trajectory) or may also be used to guide the robot in a random sense when exploring
an environment. These techniques correspond to an “‘execute and evaluate” strategy. The
information feedback in such cases is acquired with the aid of sensors while the sensors used

may range from vision systems to contact switches.

1.1.2 Global Path Plarning (knowledge based planning)

It is much easier to solve a problem if all the information needed about the workspace is
available at the beginning and prior to the onset of motion. In robotics we may plan paths
before their execution if we have sufficient knowledge of the environment. Planning paths
before execution facilitates solutions of a shorter path time, more efficient dynamics, and
absolute collision avoidance. When working in this mode, a priori knowledge (i.e. known
before) is used. Techniques are available to solve a variety of problems, when given a priori
information. Some of the knowledge which we use for a priori path planning may come from
different sources such as vision systems, engineering specifications, or CAD programs. Such
a priori knowledge may also be applicable to moving objects, if they have a predictable
frequency or motion. However, a priori knowledge cannot be used for unpredictable or

random moving objects.

1.2 Statement of Problem

The establishment of a trajectory to navigate a robot from an initial position to a target point
within a 2-D workspace clustered with static or mobile obstacles forms the basis of our
problem definition. It follows that the path planning problem is an optimization problem that
involves computing a collision free path between two locations viz: the current position of the

robot and the desired position of the robot. Consider a 2D workspace W whose configuration
is such that the Robot R is a single rigid object moving in a Euclidean space defined by

W=C", where the dimensionality N =2 . Let f§........ S, be rigid obstacles distributed in W
and ¢ is the free configuration space. If R is described as a compact subset of W, then a
configuration of R is a specification of the position of every point in R relative to a fixed
cartesian coordinate system. Assuming the moving robot R is subject to both attractive and

repulsive potentials resulting from the target position and obstacles respectively then one of
the cardinal questions in robot navigation “how do I get to the target?” is asked. Getting to the
target point without any form of obstacle collision along an optimal path is the first challenge
posed. Another issue is the likelihood of the robot getting trapped in local minima as a result
of some specific type of obstacle configurations. These obstacle types as discussed below are

shown in Figs. la, 1b and lc. Over the years researchers have proliferated the literature of

3

robot navigation for different navigation schemes without leaving out the imaginary force
techniques. During the past few years, the idea of imaginary forces christened the potential
field method (PFM) acting on a robot was suggested by Andrews and Hogan (1983) and
Khatib (1985). In this robot navigation approach, obstacles exert repuisive forces on the robot,
while the target applies an attractive force to the robot. The resultant force determines the

subsequent direction of motion.

The PFM is popular with researchers in the domain of autonomous navigation due to its
simplicity (relatively lesser computation time), continuous nature (adaptive to changing
environment) and its ability to generate smooth paths. Borenstein and Koren, (1989)
developed a potential field (PF) driven method christened the virtual force field (VFF)
technique. Some of the specific problems associated with the VFF concept that were
discussed in their paper are inherent in the PFMs. The following underlisted problems form a
highlight of these associated problems.

(i) Trap situations due to local minima

(i) Inhibited passage between closely spaced obstacles

(tif) Oscillations in the presence of obstacles and

(iv) Oscillations in narrow passages.

The specific problems to be addressed in this research work include the local minima problem

posed by:

(i) lengthy obstacles
(i) concave shaped obstacles as well as
(i) the potential field induced oscillatory motion of a robot when maneuvering in the

corridor between two narrowly spaced obstacles.

Iiustrated in Figs. la-1c below are some of the flaws associated with the VFF approach. In
particular Fig. 1a illustrates the occurrence of a local minimum trap occasioned by a concave
shaped obstacle which results in continuous re-circulation of the robot within the trap while in

Fig. 1b the dimensions of the intervening obstacle is such that the additional force gained

from mere displacement to either side is insufficient to take it across the line of the obstacle
towards the goal thereby leading to some zig-zag or irregular motion. On the other hand Fig,
1c illustrates the oscillatory motion of the robot when maneuvering between two narrowly
spaced obstacles as it is successively repelled by the nearer of the two obstacles as it moves

within the cormdor.

] D\
™ C]
| @ ®
Figure 1a: local minimum trap Figure 1b: local minimum trap by
by a concave shaped obstacle lengthy obstacle.
y | 1
o
] [®

Figure lc: oscillatory motion due to two
narrowly spaced obstacles

Robot [
Target @

1.3 Objective of Study

Our research aims at finding a suitable algorithm based on the virtual force field (VFF)

concept, to control the navigation of a robot in a 2-D domain containing either static or mobile

obstacles. The proposed navigation scheme is to be validated firstly through simulation

experiments on.

® varying workspace formations of complex static obstacles in a partially known
environment and

(1) varying workspace formations of dynamic concave shaped obstacles in an unknown

environment.

(iii) Following this is a second stage of validation which will be conducted on the platform

of a prototype mobile vehicle.

1.4 Motivation for the present work

Our motivation for this study is hinged in part on the growing demand for automated and
intelligent systems in different facets of human life and various sectors of the economy in the
twenty-first century. These systems range from stationary intelligent sensing and monitoring
systems such as surveillance and monitoring stations, airport entrance and exit channels,
banks, shopping malls etc to industrial robots such as robotic assemblers in automobile plants,
industrial robots for mixing, pick and place operations in hazardous environments such as in
tobacco industries, asbestos industries, etc. The deployment of dynamic autonomous
navigation systems is also becoming standard practice in high risk operations or hostile
environments such as with the Mars rover, intelligent subsea rovers, unmanned aircraft

systems, unmanned ground vehicles, etc.

More often than not, the robots we see in science fiction movies appear to navigate with
effortless precision; however, in reality mobile robot navigation is a fairly formidable
problem. Indeed, answering the basic question; “where am 1?” in a truly autonomous fashion
is a serious challenge for today's mobile robot. The technical advancements in the twentieth
century made possible the advent of robotic systems. Initially, these systems were used in
manufacturing industries as industrial robots deployed to improve product quality and reduce
overall manufacturing cost. Next came field robots which handle tasks such as space
exploration, deep sea research, mine exploration, data collection in volcano prone areas,
surveillance and rescue operations, etc. This development has facilitated the emergence of
another sub-class of devices referred to as service robots. Service robotics addresses the
increasing affinity in man-machine interaction such as is found in robot-based
cleaning/sanitary operations, delicate surgical operations guided by robotic devices as well as
in the gencral field of entertainment, etc. The relative flexibility and reprogrammable
capability of these microprocessor driven systems has resulted in the advent of flexible
automation. The effect of such skills in promoting technical and economic advancement is

wide and encompassing, dynamic and global.

1.5 Scope of the Study

In Chapter one the thesis is introduced. Chapter two is a review of the literature. In Chapter
three the static obstacle problem for complex mazes in a partially known environment is
solved. In Chapter four the algorithmic procedure and formulation for the dynamic concave
shaped obstacle problem in a completely unknown environment is presented. Chapter five is a
description of the prototype machine developed for the implementation of our scheme while
Chapter six is a presentation of simulation results for the static obstacle problem, as well as
the dynamic concave shaped obstacle problem and the built machine. Chapter seven is the
conclusion which contains the summary of our findings, the contribution to knowledge and

identified areas for future research work,

1.6 Significance of the Study

The robustness and versatility of application areas for autonomous mobile robots (AMR) is all
encompassing and provides a good indicator of the significance of this research. The quest for
improved or enhancing navigation algorithms capable of meeting the overall navigation
objectives especially in relation to effectiveness and efficiency amidst workspace obstacles is
unending and forms a core area of activity in today’s literature. The underlisted examples give

a few of the areas of application of AMR.

+ Automated Guided Vehicles (AGVs) in harbors and airports: These are mobile robots
that are used in large facilities such as warehouses and container ports, for the
movement of goods, or even for safety and security patrols. Such vehicles follow
wires, markers or laser-guidance to navigate around the work space and can be

programmed to move between locations to deliver goods or patrol a certain area.

+ For high risk operations such as bomb disposal or hazardous material management,

which would be potentially dangerous for humans.

« For subsea pipeline corrosion and leakage detection and high level precision or spot

welding

e In the area of geo-resources tracking by integrating the concept of electronic nose

sensing for detecting mines especially in human unfriendly terrains.

e For enhancement of agricultural technology in developing nations e.g. development of

robotic planting machines, fertilizer applicators etc

« In medicine: Robots are being used to perform highly delicate and precision surgery.
Also, they allow a surgeon who is located remotely from their patient to perform a

procedure using a remotely controlled robot. More recently, robots can be used

autonomously in surgery.

« For automatic navigation of vehicles in constrained environments, missile guidance,

aircraft routing

e For surveillance, rescue operations and military technologies.

e Unmanned ground vehicles (UGVs) have important military reconnaissance and
materials handling applications. Many of these applications require an UGV to move
at high speeds through uneven, natural terrain with various compositions and physical

parametiers.

The main use of robots has to date been in the automation of mass production industries,
where the same definable tasks must be performed repeatedly in exactly the same fashion.
Robots are used in that capacity for painting, welding and assembly of cars. Robots are

particularly good for such tasks because the tasks can be accurately defined and must be

performed the same way every time.

As indicated earlier, they are also useful in environments which are unpleasant or dangerous
for humans to work in, for example bomb disposal, work in outer space or underwater

environment, in mining and for the cleaning of toxic waste. Robots are now being used for

patrolling toxic areas; the Robowatch OFRQ, and Robowatch MOSRO are examples of such

deployment.

For the home environment, domestic robots are now available that perform simple tasks such
as vacuum cleaning and grass cutting. By the end of 2004 over a million of such vacuum
cleaner units had been sold. Examples of these domestic robots are the Scooba and Roomba
robots from iRobot Corporation, the Friendly Robotics' Robomower, Electrolux's
Automower, and Samsung. Thus ability to propose advancement in path planning technology

will contribute positively to the safe and efficient deployment of such devices in the economy.

1.7 Operational Definition of Terms
Path Planning: This is a process of identifying obstacle free configuration spaces in a given
navigation environment in order to facilitate the smooth navigation of a robot from its initial

state to desired target point without any form of collision with the obstacles in the

environment,

Reactive Algorithm: A reactive algorithm is defined as one which facilitates the process of
continuous adaptive decision making by the robot through the process of replanning while

navigating to its goal position.

Static Obstacles: An obstacle is said to be static when its position and orientation relative to

a known and fixed origin does not change with time.

Dynamic Obstacles: An obstacle is said to be dynamic when either its position or orientation

or both relative to a known and fixed origin does change with time.

Workspace: The area (2D) or volume (3D) of space within which a robot is confined to carry

out its activities. It is also referred to as the environment.

Obstacle: Any item, material or object, other than the goal, within the line of sight of the

robot’s sensor(s) is an obstacle.

Autonomous Mobile Robot: An autonomous mobile robot (AMR) is one that is capable of

performing its task absolutely without any form of human intervention.
Target point: Also referred to as the goal state, this is the desired destination of the robot.

Completely Known Environment (CKE): A robot navigation environment is christened
Completely Known Environment when the robot has a predefined trajectory from its initial
position to the target position prior to navigation. The implication here is that the position and
geometric configuration of all the obstacles in the workspace are programmed and stored in
the robot’s knowledge base ahead of navigation. This type of path planning technique is

confined to static environment.

Completely Unknown Environment (CUE): This type of path planning is said to be
invoked when the robot has no prior knowledge of the workspace before navigation. The
robot develops its own trajectory of motion progressively as it navigates to the goal state

independent of human but dependent on its control algorithmic procedures and sensing

system.

Partially Known Environment (PKE): A navigation type is said to be partially known
(PKE) when prior to navigation, the robot already has knowledge of some areas within the

workspace i.e. areas likely to pose local minima problem. These areas are identified through

the process of workspace mapping usually by a human agent.

10

CHAPTER TWO

LITERATURE REVIEW

2.0 Preamble

This chapter gives a detailed review of literature of various robot pathplanning techniques.
Researchers over the years have developed and used different concepts to solve the robot path
planning problem. These concepts have been categorized into the following sub-class namely:

the graphical approach, the classical methods, the heuristic approach as well as the use of the

potential field methods.

2.1 Graphical Approach

Several graphical techniques such as: voronoi diagram, spatial planning, vgraph, transformed
space, oct trees, cell decomposition and configuration space have been proposed and
extensively used in the past few decades. Graphical methods are founded on the principles of

geometry and they are dominantly known for their limitation to static environment.

In his work, Lozano-Perez (1987) discussed a generate and test strategy which is used for path
planning. Another well known graphical approach is the Configuration Space method as used
by Laumond (1986), Palma-Villalon and Dauchez (1988) and Tseng et al. (1988). On the
other hand Meng (1988); Takahashi and Schilling (1989); as well as Song et al. (2001)
suggested the Voronoi Diagrams as an approach to representing space. In fact Wong and Fu
(1986) carried out a study which allows a path planning method to be run with three views of
a work cell, and from these three views deduced the maximum filled volume. A method
proposed by Kant and Zucker (1988) involves collision avoidance of rectangles based upon

the search of a VGRAPH.

Furthermore, the Oct-tree was used by Soetadji (1986) who in addition used the breadth first
search technique. Others include Faverjon and Tournassoud (1987) and Muck (1988) who
focused 'primarily on the Oct-tree technique. Morecover, the use of slack variables was

suggested vaguely in a paper by Zaharakis and Guez (1988) while Lengyel et. al. (1990)

11

developed a path planner based on the integration of the configuration space and some
dynamic programming concepts. This facilitated easy handling of any polyhedra geometry of
robot and obstacles, including disjoint and highly concave unions of polyhedra while Behring
et al. (2000) on the other hand used the cellular automata concept which is dominantly hinged
on the configuration space approach to grow obstacles. Lingelbach (2004a; 2004b and 2005)
also proposed a novel path planning method called Probabilistic Cell Decomposition (PCD).

The problem of motion planning among multiple robots in a dynamic environment of
obstacles was recently investigated by Gayle et al. (2007). Their approach was based on a new
roadmap representation christened Reactive Deforming Roadmap (RDR), for multiple robots.
Furthermore, they deployed Newtonian Physics and Hooke’s Law to update the position of
the milestones and deform the links in response to the motion of other robots and the
obstacles. Their solution is however not collision free and has high computational storage

requirements for multirobot scenarios

2.2 Classical Approach

A second approach which has also been widely explored over the years is the use of classical
algorithms. Some of the classical methods that have been used over time include: gradient
descent, steepest descent, sieepest ascent dynamic programming, iterative technique,

randomized methods, kinodynamic, fibonacci Improved Network Optimization algorithms

etc.

Park (1984) used the state-space representation technique in his quest to find a fast path
planning method while Verbeek et al. (1986) proposed the steepest descent method in context
with the work of Park (1984). Montano and Sagues (1991) studied the stability limits and the
dynamic behaviour as a function of the control parameters. They presented a non-contact
compliant motion control scheme embedded in a multi-sensorial robotic system. Control in
their case was based on the idea of generalized damping with the aim of finding the most
suitable control scheme for each task. System parameters vary with the robot location and

when it approaches object surfaces, the controller is programmed to take the most

12

conservative values which gives an over-damped response in any workspace location close to

the object.

Clark et al. (2000} on the other hand carried out path planning of dynamic robot networks.
The system they developed enables multiple mobile robots that have limited ranges of sensing
and communication to maneuver safely in dynamic, unstructured environments. The motion
planning algorithm used within such networks was based on kinodynamic randomized motion
planning techniques that construct trajectories in real-time. Both simulations and real robot
experiments were used to validate the system. Several assumptions had to be made to allow
such a concise world model. The first is that all objects can be considered circular, or
approximated by a set of circular objects. This allows the geometry to be described

completely by one parameter (i.e. a radius). The second assumption is that obstacles have

constant velocity.

A commonly used classical technique for shortest path search technique is Dijkstra’s
algorithm. Tt finds the shortest path between two nodes in a graph and in the process also
extracts the minimum cost path from all nodes to the source node. Relative distance
information between all points involved is required. Obviously, this requires complete
knowledge of the robot’s environment and is not suitable for dynamic obstacle environment.
Asaolu (2001) applied Dijkstra’s algorithm to solve the shortest route problem. Furthermore,
a new approach christened the intercept approach was used to solve the pursuit problem while
some classical and geometrical approach were deployed in the obstacle avoidance problem.
Ibidapo-Obe et al. (2002; 2006) used some classical, numerical and optimization techniques
in solving problems related to intelligent MetaHeuristics. They also developed

generalized solutions of the pursuit problem in three dimensional Euclidean spaces.

Around the same time, Wong et al. (2002) proposed two measures namely; percentage of
coverage using computer vision and distance travelled by the robot. Their problem type is a
sub-category of the multi-goal attainment problem. Carpin and Parker (2002) introduced and
discussed the cooperative leader following task concept for multi-robot teams. They described

the design and implementation of a distributed technique to coordinate team level and robot

13

level behaviors for the task, as well as a multi-threaded framework for the implementation of
a heterogeneous multi-robot system. Their concept enables robots to remain in formation as
they deal with other obstacles that may appear within the formation. Han and Amato (2000);
Song (2001) and Kim (2003) used the probabilistic roadmap technique while Trihatmo and
Jarvis (2003) used the Distance Transform and the linear vector combination in the
development of their path planning method. Sabe et al. (2004) later on focused on obstacle

avoidance and path planning for humanoid robots using Stereo Vision.

Malik (2004) used a technique which predicts the possible future positions of obstacles. This
technique is to be coupled with the generalized Voronoi diagram. The aim of the robot is to
select avoidance maneuvers so as to avoid dynamic obstacles. Spenko et al. (2004) presented
a model-based analysis tool and hazard avoidance algorithm for unmanned ground vehicle
(UGVs) in rough terrain using the concept of trajectory space. Soucy and Payeur (2004}
studied new strategies and compared them with classical ones viz: multi-resolution vs
standard occupancy grids and probabilistic vs deterministic datasets. The goal of their
research was to identify the best solutions for path planning and collision avoidance in semi

autonomous robotic systems operating in complex environments.

Similar to the study of Yannier et al. (2003), Karlsson and Munich (2004) presented three
core technologies that enable the next generation of service robots for robot configurations.
The first technology is an object recognition system. The second technology is a vision-based
navigation system while, the third technology is a flexible and rich software platform. The
problems to be solved for each technology are respectively listed below and can:

i. be used by the robot to interact with the environment.

ii. assists developers in rapid design and prototyping of robotics applications.

iii. simultaneously be used to build a map and localize the robot in the map.

Heero et al. (2004) also presented a method for mobile robot navigation in environments
where obstacles are partially unknown. The method uses a path selection mechanism that
creates innovative paths through the unknown environment and learns to use routes that are

more reliable. Ismael et al.(2004) described how robot trajectory planning could be

14

formulated as a semi-infinite programming (SIP) problem. The formulation as a SIP problem
allowed for the treatment of the problem with one of the three main classes of methods for
solving SIP, the discretization class. Two of the robotics trajectory planning problems
formulated were coded in the SIPAMPL environment which is publicly available. A B-Spline

library was also created to allow the codification of the robotics trajectory problem.

Fasola et al. (2005) developed an algorithm that makes use of a single monocular camera for
both localization and obstacle detection. Their paper described a technique by which a robot
can visually navigate to globally-defined goal points on the soccer field while avoiding static
obstacles. The algorithm alternates between two different navigation modes. When the area in
front of the robot is unobstructed, the robot navigates straight towards the goal. However

when the path is obstructed, the robot follows the contours of the obstacles until the way is

clear.

A novel approach for trajectory optimization of a mobile robot with dynamic obstacle
avoidance was developed by Belkhous et al. (2005). The new method presented in the work
combined the static and dynamic modes of trajectory planning to provide an algorithm that
gives fast and optimal solutions for static environments, and gencrates a new path when an
unexpected situation occurs. The novelty of their solution method lies in the representation of
the static environment in a judicious way facilitating the path planning and reducing the
processing time. Moreover, when an unexpected obstacle blocks the robot trajectory, the
method uses the robot sensors to detect the obstacle, finds an optimum way to circumvent it

and then resumes its path toward the desired destination. Experimental results showed the

effectiveness of the proposed approach.

Murrieta-Cid et al. (2005) worked on the surveillance problem of computing the motions of
one or more robot observers in order to maintain visibility of one or several moving targets.
The targets are assumed to move unpredictably and the distribution of obstacles in the
workspace is assumed to be known in advance. The algorithm computes a motion strategy by
maximizing the shortest distance to escape. The algorithms were implemented using real
mobile robots for the single target case, and simulation results for the case of two targets-two

observers. The probabilistic method of randomization was adopted.

15

Bikdash (2006) used the finite element mesh analysis and COMSOL software for the robot
path planning problem. In their article, Becker et al. (2006) described the development of a
new obstacle avoidance procedure based on the Obstacle Velocity approach and adapted their
work to both autonomous and semi-autonomous robots. Recently, Philippsen et al. (2006)
presented a work on sensor-based motion planning in initially unknown dynamic
environments. Motion detection and probabilistic motion modeling are combined with a
smooth probabilistic navigation function (PNF) to perform on-line path planning and
replanning in cluttered dynamic environments such as public exhibitions. Their algorithm, an
extension of lterative Closest Point, combines motion detection from a mobile platform with
position estimation. This information is then processed using probabilistic motion prediction
to yield a co-occurrence risk that unifies dynamic and static elements. The risk is translated

into traversal costs for an E* path planner. It produces smooth paths that trade off collision

risk against detours.

Kunwar and Benhabib (2006) developed a rendezvous-guidance trajectory planning for
dynamic obstacle avoidance and interception. This was achieved through the development of
an online trajectory-planning method for the autonomous robotic interception of moving
targets in the presence of dynamic obstacles. The proposed time-optimal interception method
was a hybrid algorithm that augments a novel rendezvous-guidance (RG) technique with the
velocity-obstacle approach, for obstacle avoidance. The obstacle-avoidance algorithm itself
which could not be used in its original form was modified to ensure that the online planned

path deviates minimally from the one generated by the RG algorithm.

In their paper, Li et al. (2006) analyzed the vehicle dynamics of redundantly actuated wheeled
mobile robots with powered caster wheels. The condition that describes the limits of contact
stability in terms of contact forces, was also derived and force distribution scheme proposed
to satisfy the stable contact condition. Furthermore, a Sliding mode observer was proposed to
estimate the system states and its effectiveness demonstrated by simulation. For Future work
they proposed to work on the problem of slip based traction control. Also, is the plan of

implementing the proposed method on the real robot.

16

2.3 Heuristic Approach

Another class of dominating navigation technique is the heuristic based technique. This
technique is based on inferential and evolutionary theory. Usually they are associated with
some degree of inconsistency. Some widely used heuristic techniques include A* algorithm,

E* algorithm, genetic algorithm, mementic algorithm and simulated annealing

A widely used heuristic search approach is the A* algorithm. Originally proposed by Hart et
al. (1968), the literature over the years has shown the effectiveness of integrating this concept
with some form of graphical methods such as the configuration space technique which was
used by Davis and Camacho (1984). The A* heuristic algorithm is used to compute optimal
path from one given point to another amidst alternative routes, Here, the relative distance
information between all nodes as well as the direct distance estimate from each node to goal
are required, meaning that the robot must have global knowledge of the environment. It is also

not feasible for a dynamic obstacle environment.

Furthermore, Brooks and Lozano-Perez (1985) researched into integration of A* into the
generalized cones for the representation of Free Space. Whitley et al. (1990) combined
Genetic Algorithm and Neural Networks while Shibata and Fukuda (1993) combined Fuzzy
logic and Genetic Algorithm. Glasius et al. (1995) demonstrated the effectiveness of a
Hopfield Neural Network algorithm with nonlinear analog neurons for path planning and
obstacle avoidance. This deterministic system can rapidly provide a proper path, from any
arbitrary start position to any target position, avoiding both static and moving obstacles of
arbitrary shape. The model assumes that an (external) input activates a target neuron
corresponding to the target position and specifies obstacles in the topologically ordered neural
map. The path follows from the neural network dynamics and the neural activity gradient in
the topologically ordered map. The analytical results are supported by computer simulations

to illustrate the performance of the network.

Xu et al. (1998) and Xu, W.L., (2000) used a virtual target approach to resolve the limit cycle

problem in navigation of a behavior-based mobile robot with the incorporation of a fuzzy

17

behavior-based controller. The model was further validated through simulation and a real

experiment with a Nomad 200 robot incorporating a fuzzy behavior-based controller.

Yang and Meng (2000) researched on a biologically inspired neural network for real-time
collision-free motion planning of mobile robots or robot manipulators in a non-stationary
environment. Each neuron in the topologically organized neural network has only local
connections, whose neural dynamics is characterized by a shunting equation. Thus the
computational complexity linearly depends on the neural network size. The real-time robot
motion is planned through the dynamic activity landscape of the neural network without any
prior knowledge of the dynamic environment. This is done without explicitly searching over
the free workspace or the collision paths, and without any learning procedures. Therefore it is
computationally efficient. The global stability of the neural network is guaranteed by
qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the

proposed approach are demonstrated through simulation studies.

Stachniss and Burgard (2002) presented an approach that integrates path planning with
sensor-based collision avoidance. Their proposed algorithm simultaneously considers the
robot’s pose and velocities during the planning process. Their technique applies the popular
A* algorithm and the grid-graph induced by the occupancy grid map to compute heuristic
values in finding the shortest navigation path. The proposed technique assumes that a map
representing the static aspects of the environment is given prior to navigation. This
assumption classifies their technique under the sub-categories of path planning in partially
known environment. Their work was tested on both simulated and real environment. In the
case of simulated environment, obstacles were formed by using point objects with a convex
geometry while humans and real objects formed the obstacles for the real world. In all
experiments their technique was able to generate safe trajectories. They compared the
proposed approach to the popular Dynamic Window Approach (DWA). The experiments
accordingly demonstrate that the algorithm yields more efficient trajectories which are often

close to the optimal ones.

18

Geisler and Manikas (2002) improved on the genetic algorithm performance by developing a
more efficient genotype structure case for a known environment with static obstacles. Motion
was constrained to only row-wise navigation. Sedighi et al. (2004) presented results of a
genetic algorithm based path-planning mode! developed for local obstacle avoidance (local
feasible path) of a mobile robot in a given search space. Zacharia and
Aspragathos (2004) introduced a method to determine the optimum sequence of task points
visited by the tip of the end effector of an articulated robot and it can be applied to any non-
redundant manipulator. This method is based on genetic algorithms and an innovative
encoding is introduced to take into account the multiple solutions of the inverse kinematic
problem. The results show that the method can determine the optimum sequence of a

considerable number of task points for robots with up to six-degrees of freedom.

Janglova, (2004) used the artificial neural network while Mbede et al. (2004) developed two
robust adaptive Neuro-Fuzzy motion controllers for the navigation of mobile manipulators
among dynamic obstacles. The first controller was used to generate the commands for the
servo-systems of robot arm in order to allow for autonomous meandering to the goal while the
second fuzzy reactive navigation was implemented to maintain a permanent flexible path

between two nodes in network generated by a probabilistic roadmap approach.

Youssef (2005) developed a new Evolutionary Neuro-based Approach (ENA) that combines
the neuro-based reinforcement learning capabilities with an evolutionary path planning
algorithm. Du et al. (2005} combined Neural Network and Genetic Algorithm. Their paper
proposed a method for global path planning in static environment and for convex shaped
obstacles. Simionescu et al. (2006) discussed a new approach to solving constrained nonlinear
programming problems using evolutionary computations while Qiao et al. (2006) proposed

other evolutionary computation techniques.

In their paper, Valavanis et al. (2006} presented fundamental aspects of a multi layer, hybrid,
deliberative and reactive Distributed Field Robot Architecture (DFRA) that has been designed
to support functionality of heterogeneous teams of unmanned (ground and aerial) robot

vehicles. The DFRA was implemented in Java using Jini to manage distributed objects,

19

services and modules between robots and other system components. Navigation experiments
in the field utilized single and multiple robots and included scenarios in which a single robot
navigated through an environment with many unknown obstacles to reach a distant goal
location and scenarios in which robots executed search routines by traveling through sets of

intermediate points. Robots negotiated both static obstacles and dynamic obstacles including

other robots.

In their work, Ayari and Chatti (2007) used the neuro-fuzzy controller in an unknown obstacle
environment while Yu et al. (2007) worked on the detection of static and dynamic obstacles in
environmental mapping of mobile robot. They presented an unsupervised clustering algorithm
to realize feature extraction of obstacles based on the analysis of ranging data obtained from
2D laser scanner. Considering the unknown clustering number in advance, a validation index
function was introduced into the self-learning mechanism to determine the accurate clustering
number automatically. At the same time, fuzzy logic was integrated into incremental data
association of obstacle features to make the static or dynamic obstacles classification decision
reduce the uncertain influence. Their office was used as the operating environment to

implement the experiment of feature extraction and obstacles classification.

Ordonez et al. (2008) presented a solution named the Virtual Wall Approach (VWA) to the
limit cycle problem for robot navigation in very cluttered environments. This algorithm is
composed of three stages: detection, retraction, and avoidance. The detection stage uses
spatial memory to identify the limit cycle. Once the limit cycle has been identified, a labeling
operator is applied to a local map of the obstacle field to identify the obstacle or group of
obstacles that are causing the deadlock enclosure. The retraction stage defines a waypoint for
the robot outside the deadlock area. When the robot crosses the boundary of the deadlock
enclosure, a virtual wall is placed near the endpoints of the enclosure to designate this area as
off-limits. Finally, the robot activates a virtual sensor so that it can proceed to its original
goal, avoiding the virtual wall and obstacles found on its way. A fuzzy based behavioral
system was used to navigate the robot. Simulation experiments were further carried out to

validate the algorithm.

20

A new fuzzy method was presented by Jaafar and McKenzie (2008) for an action selection
method. The action selection problem is based on fuzzy a-levels incorporated with the
Huwicz criterion. The objective was to solve behaviour conflict in behaviour-based

architectures for virtual agent navigation in unknown virtual environments.

24 Potential Field Method

We now review some of the potential field models on which the virtual force field concept is
hinged. This technique is predicated on the gravitational force field. It is popular because of
its simplicity, online adaptive nature and real time prompting. However, it is associated with

some basic navigation limitations which results in “cu de sac” also known as the local minima

problem.

To be sure, the concept of virtual forces acting on a robot under navigation was introduced
long ago by Andrews and Hogan (1983) and later by Khatib (1986). Within this context, and
for avoidance of collisions, obstacles are deemed to exert repulsive forces on the robot while
the target is presumed to simultaneously apply an attractive force on the robot. In such
circumstances the resultant force determines the robot’s subsequent direction and speed of
motion. Indeed the simplicity and elegance of the technique popularized the use of the

potential field method (PFM) in robot navigation over the years.

Subsequent adaptations of the technique have been applied and generalized to cover for
example, off line path planning problems by Thorpe (1984) as well as for combined global
and local path planning by Krough and Thorpe (1986). Khosla and Volpe (1988) also
developed an alternate approach which avoids the local minima found in traditional potential
field methods. Notwithstanding its simplicity and elegance, the PFM stiil suffers from a
number of significant problems itemized by Koren and Borenstein (1991). Some of these
problems as further illustrated in chapter 3 of this thesis involve the occurrence of trap
situations associated with local minima as well as inhibited passage between closely spaced
obstacles. Others include pronounced oscillations in the presence of obstacles especially when
entrapped in narrow passages in-between obstacles. Whitcomb and Koditschek (1991) have

also extended the application of the PFM to automated assembly planning and control.

21

Montano and Sagues (1991) studied the stability limits and the dynamic behaviour as a
function of the control parameters of a robot. While analyzing a more complex setting,
Hwang and Ahuja (1992) as well as Dozier et al. (1998) had earlier developed a method that
utilises polygons and polyhedra to represent an object from which a potential field is
generated. Murray and Little (2000) presented a working implementation of a robot that uses
correlation-based stereo vision and occupancy grid mapping to successfully navipate and
autonomously explore unknown and dynamic indoor environments. The path planning
algorithm is however potential field based, although enhanced with the shortest path
algorithm concept. One limitation with their technique is found in their update rule i.e. low

quality data can obscure better data when obstacles are viewed at longer range.

Moravec and Elfes (1985) developed the certainty grid concept which represents an obstacle
map of the environment using probabilistic representation of obstacle locations in order to
overcome the inaccuracies emanating from sensory data. One limitation with this technique
however is that it assumes a static environment. Moreover, Borenstein and Koren
(1989; 1990) had developed a new concept for robot navigation. The novelty of this approach,
entitled the Virtual Force Field, lies in the integration of two known concepts viz: Certainty
Grids for obstacle representation and Potential Fields for navigation. This approach permits
the simultaneous detection of unknown obstacles and the steering of the mobile robot to avoid
collisions while advancing towards the target. This combination is especially suitable for the
accommodation of inaccurate sensor data (such as, may be produced by ultrasonic sensors) as
well as for sensor fusion, and enables continuous motion of the robot without stopping in
front of obstacles. This navigation algorithm also takes into account the dynamic behavior of

a fast mobile robot and solves the "local minimum trap" problem.

Furthermore, Borenstein and Koren (1991) developed another PFM based algorithm
christened the vector field histogram (VFH) which was also referred to in Ulrich and
Borenstein (2000). Other recent attempts to develop the artificial potential field model include
the work of Vadakkepat et al. (2000), Park et al. (2001); Savage et al. (2004) all in an effort

to resolve the local minima problem. Ogren and Leonard (2002) have recently proposed a

22

modified concept of the dynamic window approach (DWA) which is also a potential field
driven technique. Mbede et al. (2000) introduced a planning technique based on artificial
potential fields and fuzzy motion for robot manipulator navigation among dynamic obstacles.
The focus was on autonomous motion planning of manipulators in known environments with
unknown dynamic obstacles. In their case the navigation technique of robot control using
artificial potential functions was based on fuzzy logic and the stability was guaranteed by
Lyapunov theory. In this application, the fuzzy system presented was used to approximate the
gradient of the harmonic functions which handled both the mapping between the input and the

output space, and the navigation problem.

The research work conducted by Ge and Cui (2000a2) describes the problem of goals
nonreachable with obstacles nearby when using potential field methods for mobile robot path
planning. They presented new repulsive potential functions by taking the relative distance
between the robot and the goal into consideration, which ensures that the goal position is the
global minimum of the total potential. Simulations were conducted on convex obstacles and
the results verified that the new repulsive potential function developed can solve the problem

of goals non reachable with obstacles nearby (GNRON) effectively.

A new potential field method for motion planning of mobile robots in a dynamic environment
where the target and obstacles are moving was proposed by Ge and Cui (2000b). Firstly, the
new potential function and the corresponding virtual force are defined. Then, an on-line
motion planning algorithm based on the new potential field method is presented. Finally,
computer simulation was used to demonstrate the effectiveness of the dynamic motion

planning scheme based on the new potential field method.

The attractive potential is defined as a function of the relative position and velocity of the
target with respect to the robot. The repulsive potential is also defined as the relative position
and velocity of the robot with respect to the obstacles. Accordingly, the virtual force is
defined as the negative gradient of the potential with respect to both position and velocity
rather than position only. The new definitions of the potential functions and the virtual forces

allow the robot to track the target in a desired manner.

23

The motion planning problem for a mobile robot in a dynamic environment is to plan and
control the robot motion from an initial position to track a moving target in a desired manner
while avoiding moving obstacles. To simplify the analysis, we have the following
assumptions:

Assumption 1: The robot is a point mass which can move omni-directionally, whose mass,
position and velocity are known and its maximum velocity is greater than that of the target.

The acceleration of the robot is omnidirectional.

Assumption 2: The point target moves at constant velocity and its position and velocity are

known.

Assumption 3: The obstacles are assumed to be balls of radius centered at powsi, with i =1; 2; :
: 1} Nows, Where ngps is the number of obstacles. The positions pgysi and velocities vqsi of the
obstacles can be measured accurately.

Assumption 4: At each time instant, only one obstacle is close enough to the robot and needs
to be avoided. The rest are assumed to be farther away and their influences are neglected for

that instant.

Furthermore, Wei et al. (2001) worked on intelligent motion planning. Their solution method
was based on fuzzy rules for the idea of artificial potential fields using analytic harmonic
functions. The purpose of combining these controller types was to design a realistic controller
for nonlinear electromechanical systems such as an electric motor actuating a robot arm. The
control algorithm was applied to the three basic navigation problems of intelligent robot
systems in unstructured environments viz: autonomous planning, fast non-stop navigation
without collision with obstacles and dealing with structured and/or unstructured uncertainties.
Also, Bruce and Veloso (2003) used a vision based pattern detector to sclve the robot
navigation problem while Castro et al. (2003) used the reactive local navigation technique.
Wolf et al. (2004) discussed an improved Potential field method which tries to resolve the
problems identified in the traditional PFM particularly with regard to the oscillation problems.
In addition, lagnemma and Dubowsky (2004) worked on Traction Control of Wheeled
Robotic Vehicles in Rough Terrain with Application to Planetary Rovers.

24

In his research thesis, Beckhaus (2002) developed a method to provide guided exploration in
virtual environments. The adopted technique is hinged on the concept of dynamic potential
fields, a local method derived from the physics of the motion of a charged particle however,
in this research work, a camera serves as the charged particle (in an electric potential field). It

uses a discretized representation of the environment in a uniform rectangular grid.

They also presented the CubicalPath system which is able to deal with interactive, real-time
input by the client application and the user, which can consist of dynamic, unpredictable
object locations, dynamic or re-adjusted targets, a modified application view and a force input
generated by an interaction tool. As part of the future works recommended in his thesis,
emphasis was placed on the issue of unwanted local minima, the main drawback of the
potential field approach and also a drawback for this research work. Some recommendations
as stated in the thesis towards tackling this problem are namely: (i) automatically filling
concave objects (it} introducing global knowledge by navigation objects, using Brownian
motion (iii) using a search technique to move out of the minimum or (iv) modifying the field

function in a way such that it has minima positions only where a target is defined.

Furthermore, the developed technique, works best in sparse environments with convex
objects. As a result of unwanted local minima, it will fail in complex environments like
mazes. In addition, the parameters controlling the motion behavior of the system are manually
modified when the need arises to meet certain desired target. This limitation calls for the
development of an automatic tuning system which analyzes the geometric environment and

adjusts the field functions and control parameters to match a specified behavior description.

In this study, Park (2003) combined the artificial potential ficld technique (APF) and the
virtual obstacle concept. The virtual obstacle helps to bring the robot out of local minima trap
during navigation. The virtual obstacle comes in as an extra potential which is added to the
global potential and is located at the point of local minima trap. A sensor based discrete
modeling method is also proposed for modeling of the mobile robot with range sensors. This
modeling method is adaptable for a real-time path planning because it provides lower

complexity. Some limitations associated with this technique include:

25

i. The extra potential which also represents the virtual obstacle is said to repel the robot
in the opposite direction to the trap point. The extent of repulsion was not clearly stated. It
was also stated that the extra potential reduces with distance from the trap meaning that the
robot may still return to the trap once the extra potential is exhausted following that the
attractive potential of the target is still active and the target position has not changed.

ii. The need for a relatively large number of ultrasonic sensors, viz: about sixteen in
number mounted in an arc-like form at the front side and back of the proposed robot design
does not indicate economic and optimal use of hardware. It is however not ciear whether the
effectiveness of this proposed virtual obstacle technique is a critical function of either the
number of sensors or even the relative distance of one sensor from another.

iii. Validation was done only by simulation. The degree of authenticity and effectiveness

of this scheme would have been demonstrated better on a real robot.

Bastan (2004) worked on concave shaped obstacles and dynamic obstacles in general. The
results obtained from his experiments showed that some modifications and improvements
have to be made to get satisfactory results from the implemented algorithm, which was
claimed to work well in simulations. He further observed that it is usually impossible to have
a complete model of the real world in simulations, or the mode! adopted in simulations may
be too simple to faithfully represent the real system. Therefore, some modifications and
improvements are suggested with experimental results analyzing their successful and
problematic aspects. Shimoda et al. (2005) however looked at high Speed Unmanned Ground

Vehicles on Uneven Terrain.

Nguyen et al. (2005) considered a motion planning method based on cooperative biological
swarming models with virtual attractive and repulsive potentials (VARP). The motion
planning map results led to the development and implementation of a point to point controller
which is subsequently used as part of a cooperative searching algorithm. The VARP control

method is scalable and can be used to organize a swarm of robotic vehicles.

Ogren and Leonard (2005) proposed a new navigation scheme based on the combination of a

model-based optimization scheme and a convergence-oriented potential field method.

26

Inspired by the works of Primbs et al. (1999), they presented a way to merge the convergent
Koditschek scheme with the fast reactive dynamic window approach (DWA). This was done
by casting the two approaches in a model predictive control (MPC) and control Lyapunov
function (CLF) framework, respectively and combining the two as suggested by Primbs et al.

This combined technique significantly aided the convergence process.

In their paper, Nourani-Vatani et al. (2006) presented a robotic platform for autonomous
coverage tasks. The system architecture adopted for their case integrates laser based
localization and mapping using the Atlas Framework with Rapidly-Exploring RandomTrees
(RRT) path planning and Virtual Force Field obstacle avoidance. Their model was validated
by simulation as well as with real world experiments. Some of the limitations of their work
include: (i) as a result of the randomness of the algorithm, the trajectories created by planner
do not always follow the desired way-points, which influences the efficiency of the coverage.
(ii) the number of iterations RRT has to grow its trees to ensure real-time performance was
limited. As a consequence, RRT occasionally does not complete a path connecting the way-
points. Future work as stated in their paper comprises improving the RRT based local path
planner to follow the desired paths more closely and to extend the global path planner to
generate paths that can completely cover a given area while taking into account all of the

vehicle’s kinematic constraints.

Heinemann et al. (2006) presented a path planning algorithm based on time variant potential
fields that efficiently plan paths around moving obstacles. Their research was adapted to robot
soccer game where planning collision-free paths is one of the basic skills for a mobile robot
performing a goal-oriented task in highly dynamic environment. In this problem, there is need
for smooth navigation avoiding both the cooperating and competing players. Several
approaches for tracking objects have been implemented and tested over the past few decades
however, they have also developed robot control algorithms that incorporate the velocity of
the objects for ball interception as goal keeper or pass receiver and for path planning. One of
the main challenges for their high-level software was how to accurately model the robot’s

environment including the velacity of the objects resulting from a robust tracking over time.

27

Their result showed that the iterative path planning process needs very little iteration to

converge to a reasonable path that avoids the trajectories of moving obstacles.

Chengging et al. (2000) earlier pioneered the virtual obstacle concept as a strategy for local-
minimum-recovery in potential-field based navigation. Im and Oh (2000) used an approach
christened Extended Virtual Force Field (EVFF) by integrating neural network theory and
evolutionary programming. Zou and Zhu (2003) were the first set of investigators to work
with the virtual local target approach for solving the local minima problem associated with the
potential field method. Hussein and Hamid (2006) recently employed the Artificial potential
approach combined with Maxwell’s equations and christened FDTD Method. The objective
of their research is Autonomous Motion Planning in Global Dynamic Environment. They

stated that the proposed model is extendable to 3D.

In this chapter we have reviewed the literature in robot path planning. Also, the different
pathplanning techniques have been grouped into different sub-classes ranging from the
graphical approach through the classical methods to the heuristic approach and the potential

field methods.

28

CHAPTER THREE

PATH PLANNING MODEL FOR AN AUTONOMOUS MOBILE PLATFORM IN A
COMPLEX STATIC OBSTACLE DOMAIN.

3.1 PREAMBLE

This chapter describes an obstacle avoidance method designed to plan paths for an
autonomous mobile robot in a partially known 2-D workspace. The workspace consists of
static obstacles and a robot desired goal state. The Hybrid Virtual Force Field (HVFF), which
is an integration of the Virtual Obstacle Concept (VOC) and the Virtual Goal Concept (VGC)
in combination with the traditional Virtual Force Field concept is proposed for an efficient
robot path planning. The specific problems addressed in this chapter include the local minima
problem posed by either lengthy or concave shaped obstacles as well as the potential field
induced oscillatory motion of such a robot when maneuvering in the corridor between two

narrowly spaced obstacles.

3.2 The Virtual Force Field (VFF) Algorithm

Assuming ¢, and ¢, respectively describes the configuration space of a robot and its target

point in a 2D domain such that ¢, = f(x,,y,) with x, =iand y, = j

it then follows that ¢, = ¢, () +4,(Jj) (1)

is the directional representation of g, . If the vector operator V defined by V =i gx- + j%is

. .Oq, .9q
d hv4 = _ir —r
considered, then V(g,) (i A +j o J (2)

If at every point in time the moving robot R is subject to both attractive and repulsive

potentials resulting from the target position and stationary obstacles respectively then

U,(g,)and U,,(g,) would represent the resultant potential acting on the robot where,

U, (g,) is the sum of the total attractive potential from the target point at a given instant

29

while U, (g,) the total repulsive potential from the obstacle(s) in the work space at the same

instant such that instantaneous motion of the robot is governed by these resultant potentials.

The gradient of U at ¢, is given as:
o]
E
VU(g,)= &)
U
L O |

VU(q,)is a vector that points in the direction of the fastest change of U at configuration ¢, .

The magnitude of the rate of change is expressed in terms of

=\j[e }+[%% J 4)

Moreover each of the potentials can be further decomposed in terms of attraction and

VU(g,)

repulsion on both x and y axes. As such we have:

Uaﬂ (qr) = U;rr (qr) + U:lr (qr) (5)
while

U, (4,)=U, (4.)+U;, (3,) (6)
Assuming that d, ., = \/((xmgﬂ ~%,)” + (Vyuger -y 7
where,
d — Euclidean distance between the robot and the target point

target

30

where,

x, = robot x-coordinate and

y, = robot y-coordinate

It follows that d

g, arpet q,

target = i

(8)

Assuming displacement is considered along the x- axis then

142
=[rz=l(x:a:gea —xr)- J (9)
(Xy arg et x)Z] (10

drarger = HQIa.rger -9,

r arg ef (Qr (x)) V(

rel

n 2 \-1/2 n
=1/2[by (xtarg et —%yp)) V(rzl(xtargez ‘xr)2] (11)
r= =
n 2 y-1/2
=1.'[2[E (xtargEt_xr)) [2(xtarger_x‘l J 2[xtarget = Xp) J (12)
r=

e [ns) (s
. FIENT- R NI (13)
Xiarger — o Xrarger ~ %r
r=1 r=1
Assuming the robot’s displacement is considered along the y- axis then

., 1/2
= [;(ymgcr "J";—)2) ‘ (14)

A

Vd:argcr (q. (v,)= V(Z(ytargﬂ _y’)z J (15)

r=l
=1/2[

dl arg el = “qr arg ef - qr

(ytarg et) e [Gruger = 7.)] (16)

|| 1

31

n 2 N=1/2
=V X Vrarger ~Vr)) 2| Vrarges ~ M |2 Yrarget ~n 17
1 g (17)

F=

[Yiarget J_(Vpperere Y J (Yiarget —¥r J

B " 2 \1/2 . 2 \1/2
El(Yiarget ~Fr] J r-z_—l(Viarget ~Vr]]

From (12) and (17) above, it could be deduced that

[q!arger -_qr]

v"drarger (qr(xr:yr)) = n 3 /2 n 2 \1/2 (19)
x”’rg‘” —X, J] +Z [y.rnrge! Y J J
r=1

(18)

_ qioger -4,
g — 9] (20)
Hence for our problem,
x (x:ar e —xr)
Ug (g)=—3— @D
farget
and
U (q,)= M (22)
drarger

Within the same context, we can, by following the work of Koren and Borenstein represent
the repulsive potentials as:

Cf,f * (x—grid — xabsracle) (23)
d

x x Fer
current Urep (qr)zt’nitr'af Urep (qr) + 3 * d 2

obstacle obstacle

32

Fer. € (v grid =Y suece)
current U::,p (qr)zinﬂiaf Ui:'p (qr) + 3 * 2 : * g d batoel (24)
obstacte ohstacle

where,

F._is the repulsive constant defined as shown below:

when c; 0

oo

when ¢; ; <> 0

Also,
it U nep (@,) @nd 0, U7, (g,) both have initial boundary values of zero.
The initial boundary values of zero assigned to .., U, (g,) and ., U+, (g,) are n line with

the assumption that the robot ideally takes off from a state of rest where it is absolutely

ignorant of its environment,

As the vehicle moves, a dynamic window ¢, overlying a region of the workspace

accompanies it. We call this region the active region and cells that momentarily belong to the
active region are called active cells. In our current implementation, the dimension of the

window is square shaped and the window is always centered about the robot position.

Also, each cell in the active window of the robot has an attribute called the certainty value
(CV). This parameter is a measure of confidence by the robot as to whether or not an obstacle
exists in a given cell. The concept was originally developed by Moravec and Elfes, (1985) and
the CV of a cell increases once the range reading from a sensor indicates the presence of an

obstacle in that cell.

33

In particular,

if no obstacle is present in any cell in the robofs
0 active window

i,j
L if obstacle is present in any cell inthe robols
active window

where, i, j represents the grid lines of the cell that forms the active window

if c,;<>0and d, .. >0 then

2 2
dobslacle: \[((xr - xobsrac!e) + (yr - y obstac!e)) (25)
where,
d measures the distance between the closest obstacle and the robot.

obstacle

Here, X, psiacte and Yobsracte are the coordinates of the obstacle and thereby as the robot

navigates towards the target point, it is updated by the control unit based on whether or not an

obstacle is present in any cell within its active window.

Each active cell exerts a virtual repulsive force towards the robot given by the components of

their potentials as spelt out in equations (23) and (24). The variable force of repulsion Fer ,
contained in the afore-mentioned relations, is in our case given by the expression

*
3 ;el_angle 26)

Fer =

obsiacle

Fer is usually activated when an obstacle is present in the robot’s active window. . In the

absence of an obstacle, Fer gives an output of zero. Thus in general

U*(q,y=U, g)+U,, 4,) (27)
and
U’(g)=U;, (g.)+U;, (g,) (28)

34

Tt should be noted that the variables UZ, (g,)and U} (q,) of (27) were earlier obtained

rep
from (21) and (23) respectively while variables U}, (g,)and U}, (q,)of (28) were both

obtained from (22) and (24) respectively. Equations (27) and (28) denote the resultant
potential in the x and y axes respectively. The actual navigation path of the robot is
determined by these two variables as they jointly determine the robot’s new position as it
navigates from one state space towards the target point. The robot’s orientation at every new

configuration is usually in the direction of the resultant which tends towards the target point.

The virtual force field and the potential field methods are fundamentally hinged on the
concept of repulsion of one body from another and attraction of the same body to another
through the use of algorithms capable of generating virtual or artificial attractive potentials
and artificial repulsive potentials. Our proposed approach christened Hybrid virtual force field
(HVFF) concept is basically aimed at improving the performance of the VFF technique
through the integration of some methodologies hinged on three concepts namely; geometry,

vectors and production rules:

3.2.1 Geometry: This is a branch of mathematics that is concerned with the properties of
configurations of objects - points, (straight) lines and circles being the most basic of these. It
is the study of shapes and configurations and basically uses the physical attributes of the
workspace objects to represent, describe and establish interrelationship among them. Such
objects include the robot and the obstacle(s). Geometry attempts to understand and classify

spaces in various mathematical contexts.

3.2.2 Vectors: This involves the use of geometrical primitives such as points, lines, curves
and shapes which are all based upon certain mathematical equations. Usually, a study of
motion will involve the introduction of a variety of quantities which are used to describe the
physical world. Such quantities include: distance, displacement, speed, velocity, acceleration,
force, mass, momentum, energy, work, power and as further depicted in Fig. 2a. Vectors are
usually described by both magnitude and direction. Vector quantities are often represented by

scaled vector diagrams as in Figs. 2b and 2c. Vector diagrams depict a vector by use of an

35

arrow drawn to scale in a specific direction. In the context of this work, we apply vectors in
order to understand motion and direction which occurs 1n two dimensions. Also, vectors have
been used to represent the positions of obstacles, the desired goal state and changing positions

of the robot as it navigates towards the goal state.

~ Vegtor

moiude. .
e \ Operations frtiphed
Reststuetiun il ' :
gt et Td < 65
components mutiplied
; with a

Scatar
product
. which is used
wushg! ht:.ﬁ‘ i pekadstion of

Work

Graphical ™\
Addition

Figure 2a: Basic Vector Operations

L s LI WO R I E
g“%‘?”‘?;‘" addition g+ - Vector addition
- B+ U= 7 R - At +D=R
S e 2 e & 4 m & m . - - I
':-:'_'.Z'." ﬁ%;" -
P’F n<
il i
X ' LA SE
Ldehodeialoflfid j-dddbodd !j
‘...‘....:._:"E‘ -
: L ErEREas aukd
= puaRyes i iRaRRARER
Y Ve ainnanannngnne
- Wt i veoiss 1€ 1% 6
Figure 2b: Vector Addition, Three Vectors Figure 2c: Vector Addition, Four Vectors

Source: R. Nave

36

3.2.3 Production Rules: These are also referred to as the if-then rules or condition-action
rules. Rule-based systems consist of a set of rules, a working memory and an inference
engine. The rules encode domain knowledge as simple condition-action pairs. The working
memory initially represents the input to the system, but the actions that occur when rules are
fired can cause the state of working memory to change. The inference engine must have a
conflict resolution strategy to handle cases where more than one rule is eligible to fire. The
match-resolve-act cycle is what the inference engine does. The components of a rule-based
system have the form:

if <condition> then <conclusion» Orif <condition= then <actions

Rules can be evaluated by using either the forward chaining or backward chaining techniqupe

as shown in Figs. 2d and 2e respectively.

Forward Chaining

« Given some facts, work forward through inference net.
« Discovers what conclusions can be derived from data.

FACT 1
FACT 2 DECISION 1
FACT 3
FACT 4

@ DECISION 2
FACT S
[FET &} 0+ DECTSON 3]
7

T

b

i'\/!

Figure 2d: Forward Chaining in Production Rules

Backward Chaining

« To determine if a decision should be made, work backwards looking for justifications
for the decision.
« Eventually, a decision must be justified by facts.

37

DECISION 1
(ANG) DECISION 4
DECISION 2

DECISION 3

DECISION S

Figure 2e: Backward Chaining in Production Rules

The primary objective of our algorithm is to address the local minima problem associated
with the potential field method. Our algorithm uses the concept of “line of sight” derived
from the concept of ray theory. Prior to navigation, the robot has knowledge of areas that
could result in the local minima problem. Once the robot is prompted for motion, it first
checks whether its line of sight (which is usually a straight line to the goal state} is obstructed
by any obstacle in the workspace. If the line of sight is obstructed then the next issue to be
investigated is the nature of obstruction whether it falis in the category of those that could
result in the local minima problem. If yes then the HVFF concept which involves the use of
VOC and VGC is deployed. This is in contrast with the traditional VFF concept, where the
robot ordinarily would continue its navigation even along a path of local minima until it gets

trapped and thereafter begins to oscillate.

The VOC in our algorithm impedes the robot from motion. This prevents the robot from
moving in the direction of local minima and spontaneously triggers the VGC. Unlike the VOC
which is a preventive algorithm, the VGC is a directive algorithm. It helps redirect the robot’s
line of sight away from the local minima region hence resulting in navigation along a new line
of sight defined by the virtual goal. Further details on how our algorithm works is given in

sections 3.4.1 and 3.4.2 where the VOC and VGC are respectively described in detail.

38

3.3 Algorithmic Procedure
We next itemize how the traditional VFF concept is embedded within our proposed hybrid

concept by giving an outline of the sequential order of the overall algorithm as illustrated in

Fig. 2f below:

Step I: This module allows us to create a 2D workspace of dimension X by Y and select a
fixed reference point for the workspace. The emphasis in this step is the availability of a
workspace or navigation envitonment. Since the current problem is 2D, we have the x and y
axes for the purpose of position tracking. A navigation environment may be regular or
irregularly shaped; what is important is the availability and delineation of the boundaries of
the workspace. This task is next followed by the identification of a point within the workspace
which serves as a reference point for the robot navigation. The reference point helps the robot

to know its own relative position, as well as those of the goal state or target point and the

workspace obstacles.

Step II: This module carries out a survey of workspace for identification of areas that may
pose navigation problems to the traditional Virtual Force Field concept. Such areas are
characterized by navigation impediments leading to local minima problems etc as earlier
discussed in section 1.2. Once the areas prone to local minima occurrence are identified, it is
complemented by a mapping exercise which aids in the identification of their relative position
vectors from a specified reference point. Such information is encoded in the robot’s
knowledge base prior to commencement of the navigation exercise. The relevance of this step
is hinged on the fact that our proposed algorithm is for a partially known environment where

some a priori knowledge of the navigation environment is needed.

Step III: This module basically serves as a sequel to step 11 above in that the outcome of the
survey exercise in step 11 determines the activation or deactivation of certain algorithms in the
control sub-unit, If the environment is such that a local minima trap is not likely to occur then
we proceed to step IV. However, if navigation traps are suspected then we skip step IV and
proceed to either step V or step V1. Hence, the essential purpose of this module is to link step

I1 with either step IV or step V as the case may be.

39

J*-

Step IV: This module, when triggered implements the traditional Virtual Force Field (VFF)
algorithm. If the outcome of the workspace survey in step 11 is such that local minima trap is
not likely to occur, then the flow is from step III to step IV. At this point the environment of
navigation is referred to as a completely unknown environment since the robot’s navigation
control is completely reactive and no a priori knowledge about the workspace obstacles is
needed. If the outcome of the workspace survey is such that local minima trap is likely to
occur then the algorithmic flow is from step III to either step V or step VI depending on the
causative factor(s) of the local minima problem as earlier stated. Either of these steps is

prompted by local minima problems.

Step V. This module is prompted when local minima problem results from either concave
shaped obstacles or from a relatively lengthy obstacle as modeled in Fig. 3e below. Here, the
virtual obstacle concept (VOC), the virtual goal concept (VGC) and the virtual force field
(VFF) concepts are co-implemented. At this point the environment of navigation is classified
as a partially known environment since the robot’s navigation to the target point is dependent
on a priori knowledge of some obstacles in the workspace. The implementation procedures

for the VOC and VGC are described in sections 3.4.1 and 3.4.2 respectively.

Step VI: This module is prompted when the local minima problem occurs as a result of two
closely spaced obstacles which requires the robot to go in between them to arrive at the goal
state. Here, the virtual goal concept (VGC) as well as the virtual force field (VFF) concept are
co-implemented. For this scenario, the environment of navigation is also classified as a
partially known environment since the robot’s navigation to the target point is dependent on

the a priori knowledge of some obstacles in the workspace.

40

ONO,

ONONO

Create 2D workspace and select a fixed reference
point or origin.

4

Survey workspace to identify areus that may pose navigation
problem to the traditicnal virtual force field concept.

Is there a concave shaped obstacle?

Is the target point on the opposite side of a
lengthy obstacle?

Is the robot navigating between two narrowly

Yes

Yes

spaced obstacles?

Implement the virtual force field concept (VFF)
only

Implement the virtual obstacle concept (VOC)
the virtual goal concept (VGC) AND the virtual |

Jforce field concept (VFF)

Implement the virtual goal concept (VGC) AND

the virtual foree field concept (VFF)

end

r

Figure 2f: A flow chart diagram for the HVFF algorithm

41

3.4 Virtual Obstacle and Virtual Goal Concepts.

By way of implementation of our new algorithm, we propose a combination of two emerging
concepts for solving the inherent problems associated with the traditional VFF technique.
Although it has earlier been established in the literature that either of these concepts could be
used independently, the dual use of both concepts as an integral part of the solution process is
infact novel. To be sure, it was Chengqing et. al (2000) who first integrated the virtual
obstacle technique with the potential field method to maneuver cylindrical mobile robots in
unknown environments and christened the method as the virtual obstacle method. In a similar
fashion, Zou and Zhu (2003) later introduced the concept of integrating a virtual goal with
the potential field principle and they called this approach the Virtual Local Target (VLT)

method.

X
.
»

Robot

O \
a P Virtual obstacle Location (will prompt VOC algorithm)

{current proposal)

Virtual Obstacle location
(Chengqing et al. (2000)

Virtual goal Location
{current proposal)

Resl goal Location

Figure 3a: Case 1 sample workspace demonstrating the virtual obstacle
concept and the virtual goal concept

Robot

Virtual obstacle Location
(current proposal)

Virtual Obstacle location
{Chengging et al. (2000)

Virtual Goal location

. Back tracking / line of sight
* Concept (Current method)

TTY— & Ral goal Location

Figure 3b: Case IT sample workspace demonstrating the virtual obstacle
concept and the virtual goal concept

R

42

For example Fig. 3a illustrates the use of VOC and VGC concepts in an environment
containing a star shaped obstacle while in Fig. 3b the goal is located diametrically opposite
the robot but with the line of sight grazing two touching obstacles leaving no clearance

through which the robot could maneuver.

Robot

Virtual obstacle Location
(current proposal)

Virtugl Obstacle location
(Chengging ef al. (2000}

Back tracking / line of sight
Concept (Current method)

Real Goal location

Virtual Goal location

Virtual Goal distance from obstacle edge
=diameter of robot (d}
r (Current method)

Y

Figure 3¢: Case 11I sample workspace demonstrating the virtal obstacle
concept and the virtual goal concept

Fig. 3c on the other hand treats the case where two obstacles create a concave architecture
concealing the goal state from the robot whereas in Fig. 3d there is sufficient clearance
between two stationary obstacles separating the robot from the goal state. Lastly, the case of a
thin and relatively lengthy obstacle shielding the goal state from the robot is illustrated in Fig.
3e.

For a start we note that in Figs. 3a to 3¢ the HVFF scheme locates a virtual obstacle right next
to the robot. This is merely to trigger the VOC scheme as described in section 3.4.1

which allows the robot to respond faster than in the algorithm of Chenquing et al. (2000) who
placed their virtual obstacle farther down the line. At the same time the complementary effect
of using back tracking along the line of sight from a hidden goal state around the perimeter of

the obstacle facilitates optimal location of virtual goals.

43

v >

Robot

v

Virtuel goal Location
{current propasal)

Real goal Location

Figure 3d: Casc IV sample workspace demonstrating the virtual goal concept

Fig. 3e is a schematic model of a lengthy obstacle with a display of the robot and its target

point at opposite sides of the obstacle.

assuming a thin
rod (obstacle)

robot

Figure 3e: Madel of an assumed thin and lengthy obstacle.

Different cases that could emerge as a result of the relative position of the robot and the target
at either side of the obstacle is as represented below. The procedure to adopt is a function of

the rtobot-obstacle relative position as well as the interplay of the variables

L'éx,X,.Y,.d d' and D, as analyzed below.

x =L cosé (29)
L=|X, ~ Xige) + (¥ = Vi) | (30)
H=Lsin¢ (31)
D, =|(x, - X,) +¥ %) | (32)

d, =X, +0)-X,) +@-m-1) | (33)

dy=|(X, +r) - X,) +((,-m-TY) | (34)
d =D —d 33)

Assuming that g = f{dia, 0D, (X upers Veaged s Krasor» Y robor)} where u is the maximum
distance of the robot from either side of the obstacle’s vertices for which the resultant
potential acting on the robot would be capable of overcoming the local minima trap, either of
the following cases become valid:

Casel:if d <=p and d's >

Casell: if d, > pand d's <=

In cases I and II above the robot navigates to the goal state along the obstacle’s edge whose
distance from the goal is shorter

Case III: if d, <= pand d'o <= p

In case I1I above the robot navigates to the goal state in the direction of the steepest descent
along the goal position.

CaseIV:if d, > pand d'. > u and abs(8 - 6) >=y, and abs(0 - 6) <=y,

(i.e. robot has orientated by close to rev/2) then VOC is automatically prompted followed by
VGC.

3.4.1 Virtual Obstacle Concept (VOC):

The virtual obstacle concept in our context is basically a proactive algorithm that ensures that
the robot is not attracted into a corner region of obstacles that has no outlet. It is hinged on the
concept of completely blocking off such passageways that could lead the robot to a local
minimum trap. The approach we are proposing for the representation of our VOC is the
concept of intersecting vertices. This involves the introduction of a new line that closes the
edges of the obstacles that frame the local minimum trap. The intersection of the line of sight
of the target from the robot with this new line represents the farthest location the virtual

obstacle can be placed from the robot; otherwise it is located right next to the robot along the

45

line of sight of the target from the robot. The VOC representation for some sample

configurations is as shown in Figs. 3a to 3c.

The location of the target point relative to the robot’s initial position at the start of navigation
determines whether or not the virtual obstacle algorithm should be implemented or not. Our
concept of virtual obstacle is generalized in principle, and is in no way limited by the shape of
the obstacles that circumscribe the concave environment. We have tried to illustrate its level
of completeness and generalization by creating different scenarios of concave shaped
problems using different types of obstacle shapes. In comparison with the earlier work of

Chengqing et al (2000) our VOC algorithm is more efficient.

The reader is also invited to note that in the case of Chengging et al (2000), entrapment in
local minima was avoided by replacing the two converging obstacles with a virtual third side
of the triangle that blocks the trap. In our case we do subscribe to the concept of preventing
access into the corner region but instead of introducing a virtual third side we are proposing

the intersecting vertices concept as described below:

3.4.1.1 Itemization of the procedural flow of the VOC

» Need For a Virtual Obstacle (VO)

The function VOC=f(l) is an index used to determine whether the VO is needed.

I1s = intercepted line of sight of robot from the goal position by obstacles that could cause a

local minima problem as earlier stated in section 3 .

line of sight of robot is not int ercepted by obstacle likely to cause a
0 local minima problem

line of sight of robot isint ercepted by obstacle likely to cause a
local min ima problem

if I.s<>0 then VOC is prompted.

46

> Positioning a Virtual Obstacle (VO)

Step 1: Locate the vertices at the corners of the obstacles that form the entry into suspected

minima traps e.g. Points p and p' in Figs. 3a, 3b and 3¢ are typical examples.
Step 2: Project a [ine ;p;’ as illustrated in Figs. 3a, 3b and 3c.

Step 3: Draw a straight line oo' from the robot’s position to the desired target point. This
shows the natural trajectory of the robot to the target point assuming no obstacle was present

see Figs. 3a, 3b and 3c.

Step 4: If 00" intersects E at any point along E it implies that the robot’s natural

trajectory is in the direction of a trap.

Steps 1-4 are verification steps as to whether or not the VOC should be initiated, If it is

verified that the robot’s trajectory is in the direction of a trap then Step § is initiated.

Step 5: This introduces a virtual obstacle at the current position of the robot. This is done by
using some form of production rules as control algorithms to impede the robot from motion.
This prevents the robot from moving in the direction of local minima trap and hence

facilitates the eventual minimization of the overall navigation time. Immediately following

this step, proceed to implement the VGC as discussed below by setting Sooe =1 .

3.4.2 Virtual Goal Concept (VGC)

Assuming an object at an arbitrary position say p, ; is viewed from a translated position
P . then the visibility of this object at its initial state p, ; from its current state p,,, .,

forms a significant question posed by the VGC. The VGC in our work hinges on the concept
of relative visibility, It operates on the principle of backtracking from an initially known
position to a newly navigated position. The primary objective of the VGC in this context is to
lead the robot from the point where the virtual obstacle was activated to the final target point

through the aid of one or more temporary goals referred to as virtual goals.

47

The number of virtual goals and their relative position is a function of the geometry of the
obstacles intercepting the visibility of the robot from the goal state. The degree of visibility of

an object from its initial position p, ; as earlier described, relative to its new position p,,, ;..
determines whether the new position should be considered a virtual position of the object. If
the object’s visibility is obscured at point p,,, ., then the preceding point p,,,_, ;.. is

considered for the virtual position of the object. For this purpose the intermediate points

between p, , and p,, . are selected along and close to the vertices of the intervening

obstacle boundary. Figs. 3a to 3d above are also case illustrations of the VGC. The required

steps for the VGC are itemized as follows:

3.4.2.2 Itemization of the procedural flow of the VGC
» Need For a Virtual Goal (VG)
Step 1: Is a VG needed?

If either the function JSyoe or Tase =1 is satisfied then a VG is needed.

Here

0 virtual obstacle module is not activated

f;:oc -

1 Jirtual obstacle moduleis activated

T,se has also been introduced to describe the situation that occurs when the robot and goal are
at opposite ends of the space in between two narrowly spaced obstacles. Here although the
orifice is wide enough the robot might still find it difficult to meander its way unaided
through the clearance between the two obstacles to the goal position.When such a condition
exists we set Ty =1; Otherwise Tns=0 which is equivalent to the situation that would trigger

the introduction of a virtual obstacle sealing off entry into the region.

» Locating a Virtual Goal (VG)

Step 1: Locate the goal position or the target point. This is as shown in Figs. 3a, 3b, 3c and 3d

at point o'.

48

Step 2: Locate the robot’s position. This could also be seen in Figs. 3a, 3b, 3¢ and 3d at point

0.

Step 3: From the goal position, backtrack along a projected line of sight towards the robot
position skirting the perimeter of the intervening obstacle. Ensure that the line of sight is not

intercepted by any obstacle(s). See Figs. 3a, 3b and 3c.

NOTE: The line of sight is drawn using the concept of ray theory. It is drawn to
circumnavigate the obstacle(s) whose boundaries frame the local minima problem.

Step 4: locate and position virtual goals at appropriate points along the line of sight as you
back track from the real goal to the robot position. The exact location of each virtual goal is a

function of two variables: (Vg , d).

where,

V.= relative visibility of most recent virtual goal from immediate preceding virtual goal or
relative visibility of virtual goal from the real goal (in the case of the first virtual goal).

d= distance between VG and the edge of the obstacle obstructing robot’s line of sight from the

real goal.

These are as shown in Figs. 3a, 3b and 3c.

Furthermore,

when telative visibility of virtual goal from immediate preceding virtual goal
0 does not exist

Vrg =
' \hen relative visibility of virtual goal from immediate preceding virtual goal
does exist
d>=0.5(dia g,)
where,

V,, = visibility of the virtual goal and

dia, . = diameter of robot

49

Another important variable which is necessary to terminate the process of introducing VG is

the variable (V).

where,

Ve represents the relative visibility of the most recent virtual goal from the robot.

0 virtual goal is visible from robot position

er =

U virwal goal is not visible from robot position

If V., =0 then no more VG is needed however if V=1 then another VG is needed.

Step 4: Repeat step 3 until Vi, = 0.

3.5 Description of the Environment/Obstacle behaviour

The HVFF scheme described in Fig. 2f could be expressed using a mathematical model as
shown in (36). This representation is a generalized form of the HVFF model. However the
actual functionality of the model is subject to the nature of the navigation environment which
could be described as being completely known, partially known or completely unknown. In
addition, the obstacle configuration and behaviour could also influence the prompting of the
HVFF model as expressed in (37) through (39). Obstacle configuration could be concave or
convex while the behavior could be static or dynamic. It is to be noted that the governing

theories for (38) and (39) are contained in chapter 4.

HVFF=VFF+VOC+VGC (36)
where,

HVFF= Hybrid Virtual Force Field,

VFF= Virtual Force Field

VOC= Virtual Obstacle Concept and

VGC= Virtual Goal Concept

50

3.5.1 Case of Partially Known Environment with Static Obstacles

HVFF =VFF +VOC +VGC 37

3.52 Case of completely Unknown Environment with Static Obstacles

HVFF = VFF +VGC (38)

3.5.3 Case of completelyUnknown Environment with Dynamic Obstacles

HVFF =VFF +VGC (39)

This chapter has presented the Hybrid Virtual Force F ield model (HVFF) in a partially known
2. environment for an autonomous mobile robot. The workspace consists of static obstacles
and a robot desired goal state. The, Hybrid Virtual Force Field (HVFF), is an integration of
the Virtual Obstacle Concept (VOC) and the Virtual Goal Concept (VGC) in combination
with the traditional Virtual Force Field concept. The specific problems we have addressed in
this chapter include the local minima problem posed by gither lengthy or concave shaped
obstacles as well as the potential field induced oscillatory motion of such a robot when

maneuvering in the corridor between two narrowly spaced obstacles.

31

CHAPTER FOUR

A PATH PLANNING MODEL IN A COMPLETELY UNKNOWN
DOMAIN FOR CONCAVE SHAPED OBSTACLE

4.1 PREAMBLE

In this chapter, the performance of the Hybrid Virtual Force Field (HVFF) concept on both
static and dynamic concave shaped obstacles in a completely unknown environment is
examined. Within this context, the problem domain poses considerable challenge when the
robot navigates in a dynamic or non-stationary environment and particularly when there is no
prior knowledge of the kinematics of the mobile obstacles. This type of path planning
technique is obstacle constrained and is associated with reactive rather than deliberative
control strategy. The obstacles were modeled as discrete circles albeit arranged in a concave
arc. The robot considers the affinity of the discrete obstacles with priority given to the closest

one which is assumed to represent the whole obstacle.

4.2 Algorithmic Procedure

The proposed hybrid concept is now described in some detail by giving an outline of the
sequential order of the overall algorithm as illustrated in the Flow Chart in Fig. 4 below: We
hereby note that unlike in the previous chapter, the activation of VOC and VGC in the current

application is absolutely based on sensory data. The hybrid concepts are automatically

prompted when a local minima trap is ascertained.

52

}

point or origin.

@ Create 2D workspace and select a fixed reference

Yes

Is there a concave shaped obstacle?

k 4

Yes
~

Is the target point on the opposite side of a
lengthy obstacle?

Implement the virtual force field concept (VFF)
only
Implement the virtual goal concept (VGC) AND
the virtual force field concept (VFF) -t

4

end \e

Figure 4: A flow chart diagram for the HVFF algorithm for dynamic obstacles

53

The mathematical concept of lengthy obstacles as shown in equations (29) through (35) for
Fig. 3e is as well adaptable to Fig. 5.

XY X Y
e target target
ZX . T
y I NES] hi
Xy | WA A ° * %
YL S b'Yh
H
b/} || \‘
X do__"""’ obstacle

robot

Figure 5: Model of an assumed thin and lengthy obstacle.

Consider the different cases that emerged as a result of the relative position of the robot and
the target on either side of the obstacle. The procedure to adopt is a function of the robot-

obstacle relative position as well as the interplay of the variables

L&k X .Y, d,,d, and D, as analyzed below.

prtpos

43 Virtual Obstacle Concept (VOC):

Unlike in our previous application where the robot is not attracted into a corner region of
obstacles that has no outlet, this application, in the first instance, allows the robot to navigate
towards the target point not mindful of whether a concave trap is on its line of sight. One
significant way by which the robot confirms the presence of local trap is with the aid of on-
board sensors. The robot updates and compares its current orientation with orientation at the

onset of navigation, If the difference has an absolute value ranging between y, a default
lower orientation limit on the cardinal system and ¥, a default upper orientation limit on the

cardinal system of navigation then it is an indication that a local trap is present. This prompts

the VOC and VGC into action in the case of static obstacle and VGC alone in the case of

dynamic obstacle.

54

4.3.1 Itemization of the procedural flow of the VOC

> Need For a Virtual Obstacte (VO)
The function VOC=f(I ;) is an index used to determine whether the VO is needed.

I, = index for recording the presence of an intercepted line of sight of robot from the goal

position by obstacles that could cause a local minima problem as earlier stated in section 3

line of sight of robot is not int ercepted by obstacle likely to cause a
0 local minima problem

I ine of sight of robot isint ercepted by obstacle likely to cause a
local minima problem

If 1. =1 then

if abs(6 ~ 8) >=y, and abs(@ -) <=y, then prompt VOC. (40)

4.4 Virtual Goal Concept (VGC)
The primary objective of the VGC in this context is to redefine a new line of sight capable of

bringing out the trapped robot from the local minima environment and redirect same to the
target point. In the current application, the virtual goal (VG) placement scheme is hinged on
two procedures viz: (i) axial line selection from a generalized coordinate system and (i) VG
placement position on selected axial line. Assuming that the ends of the axial lines defining

the generalized coordinate frame as shown in Fig. 6 are numbered corresponding to the virtual

goal they represent such that v, = f(v,,,v,;) where /=1 fo n then the different virtual goal

locations could be obtained as shown below viz:

55

D+———-— Target point

: M

Xps YriTe
6
7 P Xpt Fey ¥relc
XeTo Yot Te
2 - A — 1
X Ty Yr xl"" Tes yr
xl'! Yr
8 5
y X~ Yea ¥r- Fe 4 Xt Yoy ¥em Fe
Xes ¥r |
4
X
Figure 6: Generalized Coordinate for Virtual Goal Placement _/

vxl =f(xr +rc)

Vi =f(y.)

Va =f(X, "rc)
V2 =f()

Vs :f(xr)
vy3 :f(yr+rc)

vx4 =f‘(xr)
Lvytt :f(yr —rc)

vxszf(xr—rc) |
Vys =f(y, +7,)

v =f(x, +r,)

vyﬁ :f(yr —rc)

Ver =f(xr _rc)
vy'! :f(yr _rc)

Va zf(xr+rc)

vy8 :f(yr +rc)

A

56

(41)

N,

b

45 AXIAL LINE SELECTION PROCEDURE
The axial line selection procedure is dominantly a function of the relative positions of the
(robot, target point and concave obstacle) workspace objects. By default from our model, the

VGC is a function of the VOC i.e. VGC = f(VOC) hence,

if VOC does not activate

VGC =
1 if VOC does activates

If VGC =1 then the axial line selection algorithm activates.

Assuming the end points of each axial line and the corresponding virtual target placed at these
points are denoted by / and V; respectively such that / ranges from 1 o n then if Ay rager
represents the Euclidean distance between the virtual targets at the end points of the axial

lines v; and the real target, then the generalized concept

o=l

vi_target

vager = Vai) + Frager —V,) || holds for all axial fines.

In the current application, #=238 i.e. number of points available for VG placement. In an

elaborate form our model could be represented as follows:

dv!_rarge!-_(sarger xl) +(!arger yl) " dvz _targe? ”(!arggl xz) +(target y2) "

dv3wtnrgel (rarge! x3) +(rarger y3) ” dxd !a:ger_"(targer :4) +(targe! vy4) “

dvs_targef = (X'rargel _vxs) +(Ytarger _Vys) " dvﬁ_ta.rge! -:”(‘Xraxgez xﬁ) +(rarget yﬁ) "

dv?_.rargel (target xT) +(rarge: y‘.’) || dvs _targer “(farger xB) +(large: y8) ”

(42)

57

oNoje
l

CD@CE S

®®].®0

L J

Monitor sensors for activation

Is there any sensor activation?

Yes

Get the following infoermation and save them:

. the first sensor(s) io activate

. sensing range of activated sensor(s)

. side of robot where activated sensor(s) is/are mounted

How many sensor(s} activated at the first
instance?Maore than one?

Yes

identify the sensor with shortest sensing range.

— v

select sensor

I there a virtugl obstacle prompt?

Yes W

Position VG using information from step (3) for single sensor activation

Position VG using information from steps (3) and (5) for multi-sensor
activation

¥
Implement the virtual force freld concept (VFE)

only

Is the distance between robot and VG
equal to zero?

|- l‘
" Proceed to real target f

Js the distance between robot and real
tareet equal to zero?

Figure 7: A flow chart diagram for VG placement

58

Assuming points v, and v,,, represent the two virtual goal points of a particular axial line

then it follows that if @y, soger > Grager TG yiy surger > Ayarger then the axial line with

end points i and i+1 would be selected for VG placement. Taking Fig. 6 as a case for

application of our axial line selection algorithm, it would be seen that the axial

line with end points 1 and 2 above others satisfy our generalized model resulting in

d > d and dvz_.rarger > drarge:

vl_targer target

4.6 VIRTUAL GOAL (VG) PLACEMENT POSITION

Assuming our robotic system is fully autonomous i.e. sensor driven such that we have
onboard sensors s(i/) mounted with i ranging from (i to n) then we could have a sensor
distribution system of the form s(¢), s(i+1),.....s{(i+n—1) and s(i-+n). The selection of
VG placement position between the two end points of any axial line of choice such as points:
1&2, 3&4, 5&7 and 6&8 as shown in Fig. 6 is sensor driven and instantaneous. This process
directly follows the axial line selection process. The flow chart in Fig. 7 describes the steps

involved in the VG placement algorithm.

As summarized in Fig. 7, the interest is to identify either the first sensor to activate i.e. a case
of single sensor activation and the side of the robot where the sensor is mounted while in the
case of multi-sensor activation, the focus is on identification of the particular sensor with the

shortest radiation cone and the side of the robot where the sensor is mounted.

The proximity concept of the onboard sensors is used. By this, it is meant that the sensing
range is reduced to a very small distance usually of the order of a few multiples of the robot’s
diameter. The robot is allowed this close range with obstacles along its line of sight in order to
minimize or isolate interference effects from other workspace obstacles whose navigation

path for dynamic obstacles may not be directly in the way of the robot.

59

4.7 Reoccurring Position Technique (RPT)

The distance between the VG and the robot along the axial lines is given by r, as deployed

in the set of equations in (19) where, r, is the first sensor reading as the robot senses an

obstacle assuming only one sensor activates while in the case of two or more sensors

(4

activating simultaneously, r, is the sensor reading with the shortest radiation cone. The

reoccurring position technique (RPT) is a control algorithm that keeps prompting the VGC
provided the robot is still within the confines of the local minima trap. It is a feedback concept
that checks the current status of the robot in respect of its position and updates. Below is a

generalized form of the RPT control algorithm:

if abs(0-38) >=y, and abs(6 - 8) <=y, then for (43)
v, = f(v,,v,) do

v, =f(x, £tr,) and

v, =f(y, tr) where,

if v,=x, 01 v; =)

r. =
e if Vi #X 0 Vo # Y
if abs(@—-56) <=y, or abs(6 —8) >=y, then exit RPT (44)

4,8 Adaptive Velocity Concept

The adaptive velocity model predicts how the robot will respond to changes in the speed of an
on coming obstacle under varying conditions. Our adaptive scheme is hinged on a predictive
concept that depends on the rate of change of the length of the radiation cone generated by

sensors when an obstacle is encountered in the workspace.

60

» tnitial position of obstacle

o~ Initial radiation cone

initial position of robot

L

Figure 8: A view of the radiation cone on first sight of an obstacle by the robot.

Fig. 8 shows the initial conditions of the radiation cone at the robot’s first encounter with an
obstacle. Fig. 9 is a schematic representation of the initial and current conditions of the
radiation cones as the robot navigates aithough the obstacle in this figure is static. Motion can
be detected as differences between successive scans since moving objects change sensor

readings.

- initial obstacle position

initial radiation cone

 currcnt radiation cone obstacle

_» current robot position

» initia] robot position

Figure 9: A view of the radiation cone assuming a static obstacle and a moving robot

Assuming the robot’s velocity prior to navigation is set as v,,,, then, the current distance

between the robot and the obstacle is given by
Q=8—(d+d) (45)

where,

S js the initial distance between the robot and the obstacle

61

d= ‘\/_(xinitiai = X current)2 + (ymirr'ai = Y current)2) (46)

s the distance between the initial and current position of the robot while the time taken

,initial obstacle position

Q o Ei’ current obstacle position

,current radiation cong

- initial radiation cone

_current Tobot position

PR initial robot position

Figure 10: A view of the radiation cone assuming both obstacle and robot are dynamic

In the case of static obstacles as shown in Fig. 9, 4! =0 while d">0 when the sensed obstacle is
dynamic as for the example shown in Fig. 10. The speed of the obstacle on the other hand is

given by:
1
vob.stac!e = d/ (48)

If d+Q<S then d' >0 however,

Fd+Q=S8 then d' =0

For the prompting of the adaptive velocity, the following conditions as stated below must be

satisfied i.e.

if Voot ~ Vobstacle <=c and abs(8 —6)>=y, and abs{@ —6) <=V, then

if Voobot ~Vobstacle < € and abs(6 — &) <=y, or abs(@ - 38)>= ¥4 then

(49)

62

=4t Y obstacle (50)

Y robot
where,
A is a real number (constant) >=2

€ represents a minimum value below which the adaptive velocity concept prompts.

The robot’s velocity however is returned to the initial value when the conditions in (51)
below are satisfied i.e. the (obstacle=> target) distance > (robot=>target) distance. It should be
noted that this concept is applicable to dynamic obstacles and when they are along the robot

line of sight.
2 2 2 2
¥ (\/_ (Xeurrent = Xtarger)” + Weurrent = It arget) <= \[_ Corient —*rarget)” + (Yorient = Vrarget))

(1)

then Vi obot = Vrobot

where,

Xourrent A Veurreny YEPresents the current coordinates of the robot on the x and y axes

respectively

Xopient WA Yoriens TEPresents the coordinates of the robot at the point of orientation where

the VG was prompted.

In this chapter, we have presented the Hybrid Virtual Force Field (HVFF) concept on both
static and dynamic obstacles in a completely unknown environment. The obstacle geometry
emphasized in this chapter is primarily the concave shape obstacle which has proven to be the
major cause of the local minima trap in robot navigation. The obstacles were modeled as
discrete circles albeit arranged in a concave arc. The robot considers the affinity of the
discrete obstacles with priority given to the closest one which is assumed to represent the
whole obstacles. Furthermore, the adaptive velocity concept was also considered for dynamic

obstacles.

63

CHAPTER §

VALIDATION EXERCISE: SYSTEMS DESIGN AND
IMPLEMENTATION

51 PREAMBLE

Having developed the HVFF concept for the navigation of a robot within an obstacle
clustered 2-D workspace in search of a specified goal, two separate exercises were conducted
to validate the algorithms developed in Chapters 3and 4. For one thing, by using a
customized mobile robot simulator, it is possible to conduct simulations to test the efficacy of
the proposed schemes and in particular compare them with other existing algorithms
developed by earlier workers in the field. In carrying out such an exercise, we payed special
attention to some of the peculiar workspaces where existing algorithms either have limited or

varied levels of success. The results of this exercise are discussed in Chapter Six.

A second exercise involves the design and construction of a simple prototype autonomous
mobile robot (AMR) on which has been deployed a navigation sub-system based on our
proposed HVFF paradigm and algorithms. The successful performance of such a system in a

2-D workspace test bed environment will give added confidence as to the feasibility of the

scheme.

We next describe some of the components used to construct a laboratory AMR for the

demonstration of the practicability of the HVFF navigation software.

52 HARDWARE
The basic hardware components deployed for this implementation process are viz: BX-24
Microcontroller, Hitec Servomotors, MaxSonar-EZ1 ultrasonic sensors, Connecting cables,

Caster wheel, 3 inches diameter Rolling wheels and 3mm thickness Aluminium Sheet.

64

5.2.1 BX-24 Microcontroller

The BX-24 microcontroller was developed by Netmedia inc. In general terms, a micro-
controller is a highly integrated chip that contains all the components comprising a controller.
Typically this includes a CPU, RAM, ROM, I/O ports, amd timers. They are sometimes called
“embedded” chips meaning that they are part of a large device or system. Following that it is
the central processing unit of the robot, a microcontroller is responsible for task coordination,
monitoring and control. Intra-modular communication among the hardware components is
also done by the microcontroller. It allows a coalition of programs to share data and
commands through an efficient shared memory mechanism. In our context, BX-24 is a 24- pin
controller having 3-pin equivalence on the motherboard. Each of these pins has a specific
identity and signal type. The pin closest to the microcontroller is the signal pin, while the
middle pin is meant for power and the fartherest pin is the ground pin for earthing. We used a
Pentium IV PC with windows XP operating system for downloading our codes via serial

cable to the microcontroller.

5.2.2 Hitec Servomotors

Servomotors are prime movers of the robotic system. They are actuators that convert digital
signals into physical signals. They are the agents that transform perception to action. Servos
have a measure of intelligence following their feedback capability. Though electromechanical
devices, they are most commonly found in radio controlled (R/C) airplanes, cars and boats.
Furthermore, they are small mechanical devices whose sole purpose is to rotate a tiny shaft

extending from the top of the servo housing.

5.2.3 MaxSonar-EZ1 ultrasonic sensors

The MaxSonar-EZ1 ultrasonic sensor is a proximity sensor produced by MaxBotix® Inc. It is
a sound based sensor. Usually, sound pulses of frequencies relatively higher than the human
hearing range are emitted and echo received in turn. The time interval between sound signal
dispatch and echo reception is used to determine the position of an obstacle in the workspace.
Sound frequency which is above the limit of human hearing is described as ultrasound. The

lower limit is at approximately 20 kHz. The particular characteristics of ultrasound applied to

65

proximity sensors are the result of the high frequency and the correspondingly short

wavelength.

10 100 1k 10k 100k 1M 1OM 100M 16 (HI)

i 1 | | 1 i L i
H 1 [1 1 1 I H

Infra (1) Audible {2} Uitra (3} Hypersound (4)

Figure 11a: Sound Frequency Range

Hiiky
by
&
A
V
!

— i I

internal constant voltage supply (7)

Oscillator (1)
Evaluation unit (2)

Triggering stage (3)

Switching status display (4)
Output stage with protective circuit {5}
Switch output (6}

Ultrasonic transducer (8)
External voltage (9)

Figure 11b: Block Circuit diagram of an Ultrasonic sensor {Source: Festo Didaclic GmbH & Co. KG « FP 1110)

A high frequency alternating voltage is generated to excite the piezoceramic module into
oscillation. This AC voltage is switched through to the ceramic module by means of a pulse
generator, when the transmitting pulse is to be emitted. Distance measurement is calculated
according to the ultrasound propagation time. A ramp generator is triggered at the time of

transmission, which generates a time dependent voltage. Thereupon, the piezoceramic module

66

is switched over to receiving. The ultrasonic signal is reflected if an object is present in the
active range of the proximity sensor. The proximity sensor receives the signal and the ramp

generator is stopped. The voltage Jevel is evaluated at this point and an output signal emitted.

Near fictd (—~D7/2) (1) Far ficld (B

Figure 11d: Block Circuit diagram of an Ultrasonic sensor {source: Festo Didactic GmbH & Co. KG « FP 11 10)

An object must not be present in the sound field of the proximity sensor within the so-called
near field, as this can lead to error pulses at the proximity sensor output. For an ultrasonic
proximity sensor with a transducer diameter of 15 mm and an emitting frequency of 200 kHz,

the range of the near field is approximately 130 mm.

67

Figure 12b: Side view of our AMR

68

5.2.4 Connecting cables
The connecting cables deployed are pre-designed for a 3-pin controller system. The cables are
glued together into an entity of distinct signal types. Usually, the lightest with yellow or white

colour is meant for signal transmission, while the middle cable which is red in colour is for

power and the third coloured black is for ground or earthing.

5.2.5 Caster wheel
The caster wheel is basically a redundant wheel mounted at the front of the AMR to facilitate

navigation. We used a ball like whee! of relatively small size just enough to aid motion.

5.2.6 Rolling wheels

For the locomotion of mobile robots the most often used components are: wheels or rollers,
crawlers and feet for walking robots. The wheels are driven by actuators. The two wheels
mounted at the back of the AMR to the left and right sides are differential wheels. Each of

these wheels has a dedicated servo and is independently controlled. The wheels are about 3

inches in diameter.

5.2.7 Aluminium Sheet
The car-like design of our AMR was achieved through design and fabrication of the chasis.
Aluminium sheet of 3mm thickness was used due to its relative lightness. Details on the

Chasis design using Aluminium sheet is available in the appendix.

5.3 Software
The software used for this validation procedure is an integral part of the microcontroller. The
BX-24 microcontroller uses a hybrid software christened basicX. Though with some unit

instruction set, BasicX emerged from the Qbasic and Vbasic softwares.

5.4 Control System Architecture
The control system architecture of our built AMR is as shown in Fig. 13. It is a Sensor-based
control system capable of operating in an unstructured environment with variable

traversability of the state space. The structure is made up of a closed loop which consists of

69

sensors, perception, control and actuation. A typical autonomous mobile robot system
requires at least five control levels, running at different cycle times. These are namely motor

control or actuation, emergency supervision, obstacle avoidance, localization and planning of

the task.
CONTROL
SENSORS >

PERCEPTION COGNITION
CONCEPTION

RFEPLANNING

WORLD
\\
ACTUATION

Figure 13: Control System for our AMR .

The control module implements both wall following and obstacle avoidance in the same
module. When an unexpected obstacle blocks the robot trajectory, the machine uses the robot
sensors to detect the obstacle, finds a way to circumvent it and then resumes its path towards

the desired destination.

5.5 Robotic Testbed
A testbed was developed for implementation of our AMR. The platform made of polished
wooden sheet has a dimension of (170 x120x8.75) cm. Obstacles of different sizes were

carved out from the same polished woods and used to create different obstacle configurations

ranging from convex shapes to concave shapes.
56 Forward Kinematics Model of The Differential Drive Wheels

For the purpose of effective control of the vehicle motion, a differential drive mechanism was

deployed on the rear wheels with the use of servo controlled motors. Fig. 14a shows a

70

e

stationary vehicle with the independent wheels. The two rear wheels are servo controlled

based on the differential drive mechanism while the front wheel is a redundant caster wheel.

N “ "

T

Yﬁl

Ye

!

>
X X

Figure 14a: Differential wheel drive system: a schematic view

The velocities vy, and vg are the respective velocities of the left and right rear wheels. L is the
distance interval between the two rear wheels. It ranges from the mid-point of one wheel to
ihe other. The vectorial position of the vehicle on the measurement plane is given by the

coordinate values (X, Yy). The differentiai mechanism operates in two ways Viz:

i. keep one wheel stationary and drive the other wheel forward or backwards.

ii. drive one wheel in the reverse direction and the other in the forward direction and vice-

versa

71

Figure 14b: A rotated view of an AMR in the direction of the target point

entation of 6. The quadrant system in

Fig. 14bis an orientated view of the vehicle with an orn
sub-modules for effective position

Fig. 14c, aims at discretiZing the navigation process 1nto

and orientation tracking.
Y

?

Quadrant 2 Quadrant 1

i,

Quadrant 3 Quadrant 4

4

Figure 14c: A view of the robot’s quadrant

72

57 Model Assumptions for the prototype robot:
The following underlisted are highlights of the assumptions considered in modeling the real

prototype robot.

i. at rest the robot’s head is usually in the direction of the +ve (y axis) with an initiai
orientation of 90 degrees.

ii. the cartesian plane is divided into four quadrants as seen in Fig. 14c above

iii. atrest position, the coordinate reading for the robot is zero for both axes.

iv. apart from the sensory based obstacle, every other conditions that could inhibit

navigation are assumed normal

58 Modeling of the Robot’s Rotational Difference
Below is a diagrammatic representation of the robot’s orientation before and at the prompt of

navigation. In Fig. 14d, the robot is inactive with an initial orientation of 8,,,, While Fig. 14c
shows the robot’s new orientation 8 ., at the prompt of navigation. With this the robot

aligns its line of sight with the target position before transiating.

B Target position

Figure 14d: Initial orientation of robot before navigation

73

g Tarsct position

erotared

-—

Figure 14¢: Current orientation of robot during navigation

5.8.1 Identifying Quadrants for Robot Initial Orientation

The quadrant to which a robot orientates is a function of the position vector of the target
point. Below is an highlight of the different target point positions within the quadrant system:
Case I: when x_target>0 and y_target>0 then following that by default the robot is at the

centre of origin as shown below where x, = Oand y, =0 then the robot’s orientation would

be in the direction of the first quadrant.

Quadrant 1

Case II: when x_target<0 and y_target>0 then the rotational difference of the robot orientates

towards the second quadrant

Quadrant 2 ¥
x_target,y_target 4
0

L ———p
xl', Yr X

Case III: when x_mget<0 and y target<O then the rotational difference of the robot

orientates towards the third quadrant

74

—
0 ¥ %y, X
Quadrant 3
A4

x_target y target

Case IV: when x target>0 and y target<O then the rotational difference of the robot

orientates towards the fourth quadrant

]
xTJYI ; 9 X

Y

Quadrant 4
X target y target

t t-
In cases 1 and 2 above, # = arctan(XTATEe - %o (52)
y_target-y,
While,
{ -
In cases 3 and 4, @ = arctan{ J=%Yr) (53)
X_target-x,

Where,

& = rotational difference between the robot and target
x_target= x coordinate of target point and,

y_target= y coordinate of target point

5.9 Navigation Algorithm for Real Robot
Fig. 14f represents a simple trajectory of a robot navigating from an initial point O to a target
point. This is a display of both obstacle avoidance and pathplanning. The triangle OAB

formed by the robot’s trajectory is a simple description of different aspects of the entire

75

navigation process to the target point. Between the interval [OA] the robot navigates in an

obstacle free path hence moving along the shortest path which is a trajectory formed by a
straight line. At point A, an obstacle is sensed and this prompts the repulsive algorithm

resulting in a new trajectory along lAB] by an orientation & .

The prompting of the virtual objects i.e. the virtual obstacle and the virtual goal is a function
of the orientation & . If & >= 4/9 of a revolution it implies that there is a trap surrounding the
robot and preventing it from reaching the goal along the initial trajectory hence the virtual
objects are prompted to establish a new robot trajectory and redirect it from the trap. Detailed
explanation about the virtual objects modeling is contained in chapter 3 for the static case of

partiaily known environment and chapter 4 for the completely unknown environment

respectively.
y 4 B
T
N\, arget
A Obstacle
Robot —» 5
0 X o

Figure 14f: A simple robot navigation sketch

In modeling the navigation process, we first initialize the robot’s coordinate at point O the
ongin:

x =0and y, =0

where,

x, =robot coordinate on the x-axis.

y, =robot coordinate on the y-axis

Also, the navigation counter is initialized as: counter =0

while the initial distance L travelled = 0

76

5.9.1 Navigation Algorithm without obstacle
The model representing trajectory|OA| i.e. navigation path free of obstacle is as given below:
counter = counter+1.0

length_per_step = constant

=length_per_step*counter

%, = L*sin(8) (54)
y, = L*cos(8) (5%
dis_targ= U(x, —x_targef) +(y,—y_larget) H (56)

if dis_targ <=0.01then exit.
where,
counter = the number of times navigation pulses are sent to the servo.

dis-targ =Euclidean distance between robot and target

5.9.2 Navigation Algorithm with obstacle

In addition to the models in sub-section 5.9.1, once an obstacle is sensed during navigation

the following algorithms are prompted

Fry=(y, -y terge)*[- | 57)

Frx=(x_-x_target)*[(é) - (;1_)] (58)

Fex =(x_target-x,)} *— (59)
dis_targ

Fey=(y_target-y,)* (60)

dis_targ

where,

Frx =x coordinate value for repulsive potential
Fry = y coordinate value for repulsive potential
Fex =x coordinate value for attractive potential

Fey = y coordinate value for attractive potential

77

s =actual sensor reading
s, = minimum threshold sensor reading for repulsion

dis_targ = euclidean distance between robot and target

—

0A

-

OBand | 4B

>

From Fig. 14f above, the vectors
equations:

08 =cx, -5, -9) +(, -, -9 |
04 =|(x, - %, 1)) +(¥, -y, - |
45| = |G, - (%, - m) + (- G- |

Furthermore, from cosine rule we can determine the orientation ¢ from Fig. 14f

[| 0A|%(] AB|*>-| OB |?)
2*| OA |*| AB |?

O = Cos~

resulting in,

5=180"-¢o

& represents the robot orientation while avoiding an obstacle in its travel direction
Rx = Frx+ Fex

Ry = Fry+ Fey

where,

R_ =robot resultant position on x axis
R, = robot resultant position on 'y axis

x, =x +Rx

Y, =y, +Ry

x. and y, are cumulative variables driven by the resuitants from the potentials

if dis_targ <=0.01 then exit navigation.

78

could be determined using the following

(61)
(62)

(63)

(64)

(65)

(66)
(67)

(68)

(69)

where,

x, = X coordinate of robot.

¥, =Y coordinate of robot.

This chapter has provided a summary of the modeling procedure, analysis, and general
considerations in the design, construction and implementation of a simple prototype

autonomous mobile robot which has served as a platform for further validation of our

proposed HVFF scheme.

79

CHAPTER SIX
RESULTS AND DISCUSSIONS

6.1 Results

As a means of validating our algorithm, simulations were conducted both on newly developed
workspaces and some selected workspaces developed by earlier workers. We implemented
our simulation using MobotSim software, a customized mobile robot simulator, on an Intel

Pentium®4, 2.4GHz, 1GB of RAM.

Figs. 15a,16a,17a,18a,19a,31a and 32a are mazes originally developed in this work to
demonstrate the completeness and generalized applicability of our algorithm in complex static
obstacle domains. The corresponding robot trajectories for each of these developed mazes is
as shown in Figs. 15b, 16b,17b,18b,19b, 31b — 31e and 32b-32e respectively. We may
observe here that the developed workspaces included both obstacles with regular and irregular

shapes so as to simulate a more generalized model of the real world.

Comparison with the results of other researchers are as shown in Figs. 20a through Figs. 30c.
This exercise was carried out by reproducing their workspaces in terms of the shape, size and
position of the obstacles in the respective workspaces. However, it was not always possible to
reproduce these selected workspaces exactly to scale in our work. This is mostly due to non-
availability of detailed information such as the obstacle dimensions and in some cases, the
workspace dimensions. Nevertheless, our priority is to be able to reproduce such workspace

environment to a justifiable degree to carry out our validation.

We further ensured that the workspaces selected for this exercise are mostly those that
ordinarily look complex or where earlier authors recorded difficulties in navigating the robot
to the goal state. Our objective in doing this is to be able to validate the overall effectiveness

of our new concept relative to some existing models.

Firstly, we recall the work of Yahja et al. (1998) where three different cell decomposition

techniques viz: the approximate technique, the quad-tree and the framed quad-tree were

80

as

validated on a common sample workspace as initially shown in Fig. 20a, The framed quad-
tree was proposed as a result of some inherent limitations associated with the conventional
quad-tree approach. From the workspaces as shown in Figs. 20b,c.d and e the resulting
trajectories show that our proposed technique is as effective as the framed-quadtree technique.
The algorithmic complexity of the framed-quadtree could be a littie bit demanding following

from the fact that it is hinged on the D* algorithm which is an extension of the effective but

greedy A* algorithm.

Furthermore, Fig. 21a shows a problem workspace as developed by Geraerts and Overmars
(2004). The algorithmic complexity of this technique lies in the fact that it involves the
integration of two planner types namely: the Probabilistic Road Map technique (PRM) and the
Potential Ficld Method (PFM). Firstly possible navigation paths are identified after which the
optimal path is selected to be then followed by the actual navigation. Our proposed
algorithmic simulation result shown in Fig.21¢ is quite comparable to the result obtained by

Geraerts and Overmars in terms of effectiveness and efficiency.

Also, shown in Fig. 22a is a complex maze as developed by Geraerts and Overmars (2004).
The algorithmic complexity here is just as mentioned in respect of Fig. 21 above. The

resulting trajectories as shown in Figs.22b and 22c demonstrate the effectiveness of our

algorithm.

In addition, Geraerts and Overmars developed a 3d-like workspace shown in Fig.23a. Three
different planner types viz: the Corridor Map Method, the A* algorithm and Probabilistic
Road Map method were validated here. The respective trajectories developed shows that Fig.
23¢ is much demanding in terms of algorithmic complexity. Next is Fig. 23d which generates
low quality paths due to the probabilistic nature i.e. paths that represent many unnecessary
motions or do not obey user defined criteria Kim et. al (1992) and Song et al. (2001). The
path generated by our proposed algorithm as shown in Fig. 23e is efficiently driven and also

effective as that displayed in Fig. 23b.

81

The cellular Automata approach was deployed by Behring et al. (2000) in the navigation
problem of Fig.24a with the authors’ solution shown in Fig. 24b and ours shown in Fig. 24¢ in
a similar workspace. The concept is dominantly hinged on the theory of configuration space
and involves the growing of obstacles. It is observed that the actual execution time of the
algorithm depends on several factors. The most important of which are the frame rate of the
camera and the data transfer rate by the parallel port that limits the transfer velocity. The
authors however affirmed that further study involving many more benchmarking examples are

necessary.

The computational cost for the cellular automata is proportional to the number of updates
executed on the cells. Sometimes a cell has more than one neighbor with the same Manhattan
distance to the goal. To follow always the steepest descend of the function may not work as
there could be cases where the gradient may have the same value in several directions. In

order to select a reasonable good path, heuristics are applied among the neighbors of a cell:

Table 1: Success Rate for typical Sample Workspaces,
Sedighi et. al. (2004)

Search Success Rate (%)
Space
Geisler’s Hermami’s Sedighi’s PROPOSED
GA GA GA (HVFEF)

SPSei01 100 933 933 100
SPSet02 0.00 86.7 100 100
SPSet03 73 86.7 100 100
SPSet04 53 80 100 100
SPSet05 0.00 100 100 100
SPSet06 0.00 20 100 100
SPSet07 0.00 0.00 86.7 100
SPSet08 0.00 0.00 733 100

Furthermore, we recall the work of Sedighi et al. (2004). where their genetic algorithm was
compared with those of earlier workers for specific work spaces as reproduced in Table 1. In
particular it was reported that for search spaces SPSet 06, 07 and 08 the solutions of both
Geisler and Harmani had poor performance in relation to the genetic algorithm of Sedighi et
al. for which success rates (i.e ability to reach the desired goal) of 100%, 86.7% and 73.3%
were recorded respectively.

82

Fig. 25b and 26b are sample workspaces SPSet07 and SPSet08 as shown in Table 1. From
this table as shown in section V of Sedighi et al. (2004) it could be seen that these two
workspaces were the most difficult cases considered by Sedighi et al. On the other hand, their
GA gave a success rate of 93.3% for SPSet01, 100% in work spaces SPSet02- SPSet06 while
SPSet07 and SPSet08 gave a success rate of 86.7% and 73.3% respectively. For the
workspaces SPSet07 and SPSet08, Figs. 25a and 26a represent the initial positions of the
robot relative to the goal state before navigation while Fig. 25¢ and 26¢ are navigation results
obtained from current research. The trajectories in Figs. 25b, 25¢, 26b and 26¢ clearly show
that our model is efficient. It is also to be noted that where the solution is hinged on
evolutionary algorithm, the evolving set of paths for different trials may not be consistent.

Our concept does not vary the path over trials as long as the conditions of the workspace

remain constant.

Similar comparison has been carried out in respect of the recent work of Zou and Zhu (2003)
where the algorithm is not based on genetic programming but rather on the use of
intermediate local targets. Two particular workspaces of interest were selected as shown in
Figs. 27a and 29a respectively. In respect of Fig. 27a we find that the workspace is such that
the robot is almost completely encircled by obstacles, ab initio, in an enclosure. Fig. 29a on
the other hand presents a complex maze-like workspace with the position of either the robot

or goal state being arbitrarily located.

We also observe from Fig. 27b that while the robot in the Zou and Zhu (2003) scheme is
eventually able to get to the target it is first bounced around a few times within the enclosure
before it finds its way. In comparison our scheme on the other hand as shown in Fig. 27¢ is
able to avoid such wandering and is set on track of the goal right from the onset thereby
saving time. Fig. 28a presents the situation for the converse to the problem in Fig. 27a; i.e. in
this case it is the target that is virtually enclosed by obstacles and for which Fig. 28b presents
the solution navigation path. In respect of the maze-like environment shown in Fig. 29a both
schemes appear equally efficient at navigating their way through the work to the target

without any wandering.

83

The environment in Fig. 30a is one that simulates narrow passages within a cluster of
obstacles and was the problem for which Chengging et. al. introduced the concept of virtual
obstacle as a strategy for recovery from local minima in potential field driven navigation
algorithms. Here we find that whereas the robot is bounced around between obstacles and
oscillates as shown in Fig. 30b before ultimately finding its way to the target, the HVFF
scheme as shown in Fig. 30c allows the robot to chart a direct minimum path trajectory to the
goal without any of such handicaps. Figs. 31(a-g) is a set of robot navigation frames
representing a special case of dynamic obstacles formed into concave shape. While Fig. 31a
represents the problem frame, F ig. 31(b-f) are the different intermediary frames showing how
the virtual concepts of our model aids the robot from being trapped in the concave trap
formed. Fig. 31g show the robot at the target position. Figs. 32(a-¢) is a set of intermediary
frames for a case demonstration of our real robot while navigating to its target point. The
trajectory of navigation was redefined by the prompting of the virtual goal bringing it out of
the trap zone. This demonstrated case is for an unknown environment i.¢ robot has no

knowledge of workspace prior to navigation.

Arsv. 480 vl 4if

Srmiiaar oy OB = B B 2 Wk AT T Ok LT
- .« [SR

Figure 15a: Developed Problem Sample Space0Q1l

84

Fa ver =3
O & T * - T W ™ e P
»

=

L

-

>

-

-

-

N

|4

-

-

£

!
%
i
!
i
!

r——
s x 3wt W T JB D

=3
[}
o
1]
-

[KTAPL]] KEALEY
@q

i, e WY Gm 4 MWSETm 188

Ponrde

Figure 16b: Solution for developed Sample Space02

85

WA gt Ay (et MBS BN ek

- - 7

{

el
- %

)

(ATAPIT] BEAY BT

pam - ' " Srwpaar T TR ERLET K De M P

Figure 17a; Developed Problem Sample Space03

b Vems dBalIFraE PhA adekh Morkk BEHL PeA

Do W & ¥ F o2 W R tHoEBAR
3

f s .
[]

-

-

-

-

-

»

-

-

-

Figure 17b: Solution for developed Sample Space03

Mlemiz Cmpes Wwka Bisc el

Co—
h i >, & W m.. "k

[
.l;i
L]

(RTARII] BE1Y BLEY

S, fo GO0 B GRS e S

Figure 18a: Developed Problem Sample Space04

36

%
L
1]
!

|
4
{
[
i
i

Avde SRR saply o

ETAN] | IELT XA

- e n o m r———n e e N
e P Wi bE SR F erwt e b P

Figure 19b: Solutio

n for developed Sample Space05

87

[STARLE] BRI TL0NS. ¢

Flgure 203 Prob]em Sample Space06 (Y ahjaet al 1998)

s o ot i e o e i e i e g S - ———
Ao g gl s o= ¢ N K
P 8 NI & Sgpp ¥ TRREE L SR B SPE & e B R = o
= Em= = e = FF—= 5T
44 L e e
-, . T.) i Y
e - - ._‘.TI—'--H_—‘_H"—-_' 4 B - - —— e A
= & LS = S S e - i [= ¥ i S SRAS
3 . - Syl . ot » - I -
- mgeeS. & S 5 Sb e pss = el P - — o -
s = . :.t:p::*_:::p:ﬂ:‘:—-;bﬂ::__‘, = - 555
= R : — — — = T e —
=¥ 3 - = = =i
B S e - = = ho 4 - - N
=1 e - = 3 . Crim R R
it Rl = —. — e = F o — —— =
L - - - B fEaaiceny 3 - Earml 38 8- PR B M - g)
> L . SN B IS B DI B g §
j——x— e e | — 3
- S 5 o] - e — 3
- I Fra P N - e -
___-.._..-_........._....._...........__-.........._-_..--.......-.._.._..-......r-._.....;_.._......_..c

Figures 20b: Solution for Sample Space06

room

e

using regular grids (Yahja e al. 998}

e T T T ¢
..‘
o
“
E
o
d“"

.-—-T—n- .
PE

= A8

I'n
v -
i -

i’r&tﬁ'r'ﬁ

Figures 20c: Solution for Sample Space06 using quadtree (Yahja ef al. 1998)

88

£
i
.
-
3
Eme - ==z
fmroz=z g :
E] AL g s <
‘wy mof . Z_zb 2} !
i i i
I i i
i T 2z "
3 i 3% z
ny [y 1L
#ﬁ_._ la"l'_':‘l H 3 - - - - - - @ wm am -

et Ve G e 3n & Wwhe . DR

AR, R T A

pace06 (Current scheme)

Yo wtart P i i

Flgurez(]e Solution for Sampl S

X

MORCHs el W BATK e

4
of

Fibn
a L .y
ir
< E c
. o =
,
=
- & ,
* |
’
= : l
- ' o t
)
ﬁ5::—-"‘s i
.
i
[—— - . [1
l‘.nlv_ — Gevuiutian Tins B PABEE 1 shE e [y
.o - W WW Q:,‘ - .

Figure 21a: Problem Sample Space07 (Geraerts and Overmars 2004) _

89

Figure 21b: Solution for Sample Space07 (Geraerts and Overmars 2004)

—_— — — |
T e = e
vy 20K) L - e g g
ol
- _
- n
-
-
-
-~
L
-
=
1
ry 1.2) PR ERA Lt]
- e A B el i §F

ﬁﬂm‘ ' ol ==y 1
Figure21c: Solution for Sample Space07 (Current scheme)

— I ' -

— gt . -
L _ o
r—"r_'r ri [:l—l—"

Figure 22a: Problem Sample Space08 (Geraerts and Overmars 2004}

90

Figure 22b: Solution for Sample Space08 (Geraerts and Overmars 2004)

[e

LR . R

i

Lt
T
L]

B_sv 4A0 ArB N7 o4

- ’_’ & ':]
e < - T %
. . . .
i' = e ' %
‘h ﬂ w - ',*
‘ - L] - S ad - .

Figure 23a: Problem Sample Space09 (Geraerts and Overmars 2004)

o1

s

.

Figure 23d: Solution for Sample Spacc09 using PRM (Geraerts and Overmars 2004)

92

[p———

Fie Vema A Aaw Mrmtn by S ety

Cod B e w s il

"

=

-

-

-

-

L - sz trm menind -
— . i * i

: _— = ' o= = z pA . e e — & ¢

v FiEn - ke :
: TR S g Bindaet-4] o4 e -t et Yo - -
e T -5 = P T] S
2 : e 1 3 T35 1] =
oy g 1 - -
o e -m R H y . TR
S ei3s SEETIEEES gE TGS
S gt 33 = i3 e 54
" . :1 = - ‘:"‘1'.—?. b im - '; brusm 4 v
- 3 HE LS T
A 5L HiH TH
- wib i X
ol e g L — 4
™ =
: = riu RN ¥ T
— . R Ly CRN, v i¥ b o = T L]
: PiYESESy-MEgs pes s giiy | B8 -T- ¥ i
; v a1 s = ~3+:

- - n = - - + — o r v €, xm
= . i & o 5;'1';,:$ e TRy
=3 o i a i bR = o i T w33

o | e r——— b 1 r =3t
...... ' e . 8 e S £

Figure 24b: Solution for Sample Spacel0 (Behring ef al. 2000)

93

:J;‘ﬂ““-'w” -..........._.w - e N g B

- B — I
: I "_:...t: Q
z

: | PR

E { ______.___,f"‘"-f

anur24c. Solunn for Sample Spacel 0 (Currer scheme)

W2 e pEEwH . Wl e
e Weces WS Prarar bichartz Obrers Firk s

[l A - s P o o= Y W - g £ e
LTI RIS TR . ’ .)

- s - —

o

HWOUE-\HMH

-.-llllﬂ\“v- X2 n 00O+ PTG K 1.

R o] £S5 > wom s amantt T b E emdarrT Lanar

Figure 25a: Problem Sample Spacel 1 (Sedighi et al. 2004)

Figure 25b: Solution for Sample Spacel 1 (Sedighi et al. 2004)

94

@5 Tnelpe mgmandd 7 - FAubntkin .
i Viewr Wewdd Rrame Mobots Oblects Marks BASTC =
DEE & ¥ o e s Al Tt R B O
UNREGIS TERED) . . ’ ’ :) ! :

|
|
|

Ao 4v 000 aNQ Y

|

L

Shiriation Time: &0 mB80.4 = i 18,78 m ¥: 2225 m M

G Nk ke

Figure25c: Solution for Sample Spacell (Current scheme)

0000 ARy

=
1

A

o T - T . . W e s e TR v e Yo W

Figure 26a: Problem Sample Spacel2 (Sedighi et al. 2004)

f

o B | y h‘

I] ‘Mi . L

—— = = s e —— el 3y

Flgure 26b: Solution attempt for Sample (Sedighi et al. 2004)

L]

DeH o T T i m | biow s VHA S O

I~ - = — — cenhouraton |- — e
=

©@

e M | R

<>

=

= i
-

-

™

»

-

Pt

F -

Shermdotion Tiom: DO m 16.E 5
Cm SIENT - = . - - - Ca @ -

Figure 26¢: Solution for Sample Spacel2 (Current cheme)

®: OZ, 9% m ¥ 0338 m [l

M

Viwes SVhOYED Frivim Mobael OBt Aaha AT PTeRs

CACIE r*-?’sﬂ-"‘.‘.’iﬁ*#m

AMMAL OV STERED

SYAPL]] BKAL AT

Figure 27a: Problem Sample Spacel3 (Zou and Zhu 2003}

kS

3:5 l AL o™ fifa-ﬂg‘? =¥ > *
T I. L e VT STy I . ,ir1 i %-‘*L_&
75 L A g - : N
o ' ':.' g '_.' .i %
=-'m. ¥ - 5 'L "_' : 'g':-
20 | 5 - g i al g
-1 A l- i%ﬂ'?@'g'::'ﬂ-‘ﬂn-c-w B J-':E
gy P s s -‘f- > - s =1 ‘; &
5 L : —— T VE L-F";
| l . . . ﬁ?"@@oénﬁ’*ﬂw "
s = s i3 20 2= 30 33 4o

Figure 27b: Solution for Sample Spacel3 (Zou and Zhu 2003)

96

Eerminanad

Aerbarenng

D oo B T L]

'i .. UNMREGISTERED

AT AL L] MRAYRY

GB: 1. ragbotien . Tk Cocumentl -

- T, I wanoo - MEof -t (fE Y

Figure 27c: Solution for Sample Spacel 3 (Current scheme)

p,__ i it ——— - o [. = |

Ao pus ey e T L e 7
L. wli F . . g B
{ g | e et ik G
ar - - -

4 !
- H

- '
-
-
- 1 -

. i

- .
- i

- '
- i

. . ptpe———— Ll w e e v e]
T . AvCEEET R measwtiierreit R + LY S AP .o it W) e v s - - n—v@-‘gq P

anure 28a: Problem for converse of of Sample

Spacel3 (Current scheme)

rl&ih—l'b\ut—“m - — R e S e = |
R e e Dl sl rt-u owEiy Pese Lt s
"R A N - -wﬁ-'gnpﬁ
- l!uﬂlIJ\YlTﬂfh
=
-
- ..
- /
- /
- i
- <« i
-
I]
-~

N — - J— —

Treresit e i W b T " -m—' 1warm e

[
1 orsEe ‘--—n-—r- [

——— = LA e P W Rrw A

[~ Pp————
Figure 28b: Solution for converse problem Sample Spacel 3 (Zou ana’ Zhu 2003)

97

> - » -

20
80
70
GO
S0
40
30
20
10

O

L)
mmwaﬁﬁ“mmmmumcm

W ditera § - Mot TRET
proper y SqE———————— P BT e

s & ' > 0 o= oW TR e g SR

*
R

RVAV RO Ve lly g

N 25 ¥ 1000w

e P

Flgure 29a: Problem Sample Space14 (Zou and 7hu 2003)

e

Q
—

-

o 1o 20 30 a0 SO 0 F0 80 90 X

Figure 29b: Solution for Sample Spacel4 (Zou and Zhu 2003)

V- ihet 1]

= T e s TR S B

S

31 X7 2@ ¥ 2201 M it
n:_,_.;.;,_'.-.‘c-.;;_. (i 1210 PM

Srredaticon Tmae: 0 m34.5 %

Y e = (macr el - 5. P R P

Figure 29c' Solution for Sample Spacel4 (Current scheme)

98

&P xtrman s o grogris
Pl Afmbme ALgei] Vi et Ciram s flprts naShT el

O k6l & ¥ o om T W e T P AR
w [umnectsrERTE
X
= S U
=
-
pd
=
=
=
-
T
- >
- =3
. L- T e
~

o bl o W N it b el Lo e

Figure 30a: Problem Sample Spacel5 (Chengging et al. 2000)

Figure 30b: Solution for Problem Sample Spacel5 (Chengging et al. 2000)

UNREGIETERED

Wz P, T m Y3 k.30 m P

T Loca) Dl 003 " IEl pnd pm T PaperaorT. @ teneeom

Figure 30c: Solution for Sample Spacel5 (current scheme)

99

%

Wil Frnp Mohats OMar1 Kord JATC ree

LD & Y o= BT e Mo

S

° |

-

-

-

-

-

4 ® e

- ®» []

o o
{
|
o ‘

"WFW;?-.--”) T S A

Flgure 31a: Problem Sample Space16 case of dynamlc obstacle

fre ik wmvm ARG Oijwas Mt RAIC TR
Dot Q) W ow eh e, i PR
- |
&= .
e | '
-
-
- 1
s l
-
5
: |
= ® @
L |
® ®
. TR TR ETIESETA g usrmim AR Tep e ™ S e O et o aEs ¥ PR

Flgure 31b: Solution for Sample space16 Frame I (current schente)

Fom faw Senddopeme WAEME G Aso l-!:‘ T -
LR A R - " 4 . . e = m
)
Pt
-
-
-
»
-
~
”
~
= ® e
® ® 1
® L ‘

e il 5 v prrmr————Teaeertels—SET Sl

igure 31c: Solution for Sample Spacel6 Frame I (current scheme)

100

N

e Warld Pradep | Mutealy GAgorte Mmis awi risep
DR & Y R TS WA

[11-J4)

FAM]I D

N

1314

xidv-000

= o i PR F - LT . r, T 11T
IV {current scheme)

S SET——— SETE T b 4R

Flre 31e. Solution for Sample Space16 Frame

el b abot ONeOE Meds B Py
&S v v o m Hom e i AAW

e

#3810 p7

aaav el

e r o SRR S m SR gy e e e e S S G

Flgure 31f Solution for Sample spacel6 Frame V (current scheme)

101

D SRR A LG VAT e

T e VDG Froert hlaton ONTSh WaAa BARC Mg

‘usnuav R . . - Fo-gi 0
»
=
o
-
-
-
-
-
]
r
-
=
& ®
& & .
Lt L Thgwa poelwa

P mer Bt Pl | b
Virw Play Hiwgdc Frocvitts Kelp

Figure 32a: Problem Sample spacel7 (current scheme)

102

Fiz View May Hivsale Faeortel el

e, 1. comomtal Kovrw o [

mple spacel7 Frame I (current scheme

P i
Fhe Viom Moy hedgwee Freedies Moy

103

o LA Kt Mmhn o ¢ linor
P View Py Heegye Fresos Hip

e

t scheme)

"__vl 347

Fle Womae Py Mawigeln Savoetes Help

Figure 32e: Solution for Sample spacel7 Frame IV (current scheme)

104

e, M ow4 Ry

-

6.2 ALGORITHMIC COMPARISON

Whereas a comparative analysis of path planning algorithms is desirable, its significance
sometimes becomes contentious when the evaluation process is carried out using different
pedestals for the host navigation environments, or operating with different underlying
libraries and machines. To enable an unbiased, fair and easy evaluation process of path
planning techniques, the need to have uniform standards for source codes and ensure that
testing is carried under the same workspace conditions, remain paramount. It is only under
such conditions that the use of running time becomes a good measurement criterion.
Traditionally some of the popular criteria invoked for algorithmic comparison in robot path
planning include: computational time, ability to find a solution, optimality of solution, ability
of method to avoid getting trapped, ability to find alternate paths and degree of automation in
the planning process. These set of criteria are rarely fully discussed in most path planning
papers. For instance in considering the use of execution time as a measure of the efficacy of
an algorithm we are confronted with the problem that computers, languages and programs
run at different speeds, and that the execution time for the same algorithm may vary between
different implementation environments. Nonetheless comparisons between algorithms can
still be carried out as shown in Table 2 and it might be sufficient at this stage to highlight

some of the other salient features that should be given attention when analyzing a path

planning algorithm.

6.2.1 Level of Automation

Some of the path planning techniques require a complete knowledge of the navigation
environment prior to the robot’s motion. Otherwise the robot may find it difficult to adapt to
either a changed or changing environment while it is still in motion and this might require
restructuring the control programmes each time a replan is needed. Fundamental planning
techniques that fall in this category include: spatial relationships, configuration space,
visibility graph and Voronoi diagram. A disadvantage of these roadmap-based methods
according to Geraerts and Overmars is that they necessarily output a fixed path in response to

a query. This leads to predictable motions and lacks the level of flexibility required when the

environment or robot changes.

105

Table 2: A Comparative Chart of some widely used Path Planning Methods

Adapted from Jack (2001)

S/N | Path Planning | Space | Machine Robot Setup of Optimized | Solution | Remarks
Technique & Time Rotation | Obstacle space | Variable | Method

1 Cartesian 2D PLA No convex Distance | search of | Good for 2D
Configuration | & 3D | on polygons obstacle mobile
Space IBM370/16 corners robots. Also
{Lozano- time Jfor completely
Perez, 1979) Unknown known

environment

2 Generalized 2D Not No Convex Distances | Search of | Only
Cones available Polygons and midpoints | good for
{Brooks, 1983) avoidance | between 2D

obstacles | mobility; Also
Jfor completely
known
environment

3 Joint 3D 2105 yes Convex Time Search of | Good for
Configuration ntinute Polygons joint planar
Space setup, 15 Configura | motion.

(Red, et.al, second tion
1885) solution Space
on VAX
11/780

4 Spatial 3D VAX yes Work Avoidance | Search of | Excellent for
Planning 11/750 cell Oct-Trees | 3D mobile
Vision 1o 20 views robot
Based Seconds
(Wong, et al,

1986)

5 Velocity minutes on | yes unknown Velocities, | Optimize | Offline
Optimization micro avoidance | Path program
(Dubowsky VAX and joint | splines package
et al, 1986) limits time available

6 Oct-Tree 3D Perkin yes Solid Distance | Searchof | Has
(Faverjon, -Elmer Primitives & Oct-Tree | Potential in
1986) under | from Avoidance CIM System

minuie custom CAD
Potential 2D or | SUN 260, yes convex Avoidance | 3 This is sfow,
Fieid 3D Tens of Polygons or & Findpath | but has
(Y.K. Hwang, Minutes Polyhedra Distance | Routines | produced some
N.Ahuja, in good
1988) Potentials | paths.
Proposed 2D or | Core do Yes Concave or Distance | Artificial | Good for
HVFF 3D Pentiumd; convex Potential, | avercoming
average of polygons virtual concave traps
0.8m/ss; obstacle | for mobile
however it and robots;
could be virtual partially
Jaster than goal known
this. concepts envirommnent

106

On the other hand incremental replanning is a characteristic feature of the VFF concept. This
makes it possible for a planner to greatly reduce computational cost, as it only updates the

path locally, and when possible, obtains a globally optimal path.

6.2.2 Obstacle motion types and Geometry

Obstacles may be categorized into the following motion categories viz: static (un-moving),
deterministic i.e. has predictable occurrence and positions and random i.e. freely moving, with
no regular pattern. A path planning algorithm that is developed for a static or structured
obstacle environment may not be effective in a dynamic or unstructured obstacle domain.

Thus comparison of path planners from different obstacle environments may be of limited

value.

Also, the geometrical nature of obstacles is another criterion that cannot be ignored. In this
regard, an algorithm that performs in a domain of convex obstacles may not perform in a
domain of concave obstacles. Hence, the' above highlights the significance of ensuring
uniformity of certain features before selecting an index for comparing or ranking the

effectiveness of path planning techniques.

6.2.3 Rotations

Another inherent problem for some path planners lies in their rotating capability. During
navigation, some planners do not permit for robot rotation, some will rotate only at certain
’safe’ points, and some will rotate along a complete path. The effective combination of

orientation and translation capabilities suggests the need for a level of intelligence in this area.

6.2.4 Growing of obstacles

Some techniques such as the Road Map techniques e.g. spatial relationships, visibility graph
and configuration space plan their paths by extending the sides, edges or vertices of the
obstacles. Their mode of operation is such that they try to travel at an optimal path by locating

free configurations around the edges of contact obstacles.

107

6.2.5 Computer Memory Size Optimization

According to Yahja et al. (1998), approaches to path planning for mobile robots can be
broadly classified into two categories viz: exact representations of the world as mentioned in
Lozano-Perez (1979) or; Whitcomb and Koditschek {1987) and those that use a discretized
representation such as found in Connolly and Grupen (1993) and Lengyel et al (1990).
Coding of any representation takes up computer memory space and there is need to maintain
some balance between detailing of the workspace representation and available memory space

for such a task.

According to Samet (1988), one way to curtail memory requirements is to use a quadtree
representation instead of a regular grid. Such quadtree representation allows for the successive
subdivision of a region into four equally sized quadrants but is of limited use in environments
where cost values vary over a continuum, unless the environment includes large regions with
constant traversability costs. Yahja etal. (1998} on the other hand have suggested that
quadtrees allow efficient partitioning of the environment since single cells can be used to
encode large empty regions. However, paths generated using quadtrees are suboptimal
because they are constrained to segments between the centers of the cells. Thus what we need
is an appropriate robotic system that can allow auto scaling of Path Planning methods within

the working environmerit, and still provide reasonable accuracy.

Furthermore, we would like to state that our hybrid algorithm inherits a number of attributes
from standard path planning algorithms. One of the concepts adapted from the traditional path
planning approach is the use of uniform cell decomposition, with a sub-class known as the
approximate cell decomposition. This is a sub-category of the cell decomposition approach as

contained in the Road-Map path planning method.

The approximate cell decomposition is basically a grid system made up of a set of square
shaped arrays. In our work this has effectively enhanced capturing of the configuration space
of various objects in the workspace relative to a fixed reference point. Use of arrays is good
when fast recall of information from a map is required. Even though it has some inherent

limitations such as long set up time, large working memory requirement and slow processing

108

of algorithms, the availability of high speed computers has reduced the significance of these
limitations. Some of the other methods by which objects are represented in robot path
planning include: Polygons, Polyhedra (constructed with 3D polygons), Ellipsoids, sets of
points, analytic surfaces, Oct-trees, Quad-trees, Constructive Solid Geometry (CSG), and

Balanced Trees.].

The main advantage of discretization is that the computational complexity of path planning
can be controlled through the adjustment of cell sizes. Road-map concepts are basically
hinged on planned control systems. This invariably means that these methods capture the
global connectivity of the robot’s free space into a condensed graph which is subsequently
searched for a path. It is clear from the above that the method of representation chosen can
limit the use of complex shapes as obstacles. Some methods are very receptive to data

acquired through sensors and CAD systems,

Since autonomous navigation of mobile robots is widely recognized by researchers as the
state of the art in mobile robot technology it implies that a path planning concept that has the
capability of making navigation decisions online is strongly desired. Our hybrid concept we

believe is in this direction of thought.

In this chapter we have presented results obtained from the validation process of the HVFF
algorithm. Simulations of the motions were used to validate the efficacy of HVFF over
existing algorithms for the dynamic and static obstacle architectures using MobotSim (a

customized software for robot animation).

Furthermore, we also confirmed the new HVFF concept by demonstrating the performance of

a prototype robotic vehicle designed, built and operated based on the above HVFF concept.

109

CHAPTER SEVEN

CONCLUSION

[SUMMARY AND FINDINGS, CONTRIBUTION TO KNOWLEDGE
AND
FUTURE WORK]

7.1 SUMMARY AND FINDINGS

In this research, we have presented a robotic platform for both semi-autonomous (partially
known environment) and fully-autonomous (completely unknown environment) navigation
tasks. Experimental results from simulation and real robot validation have shown the
effectiveness of our proposed approach. Our novel technique exhibits combined optimum
planning/control capabilities i.c. it is capable of finding on-line and in real time the location
and trajectory of motion which provides a desired value of some goodness measure in respect

of some cost function.

The most important advantage of using a reactive based control strategy is that it is online
compliant; hence it has the ability to cope with unstructured environments. To achieve this
goal, the robot must be able to perceive its environment sufficiently to allow it navigate
safely. The key requirements and research issues for future evolution of experimental robots,
service robots and field robots are therefore in the areas of environment perception and scene
interpretation, navigation (localization and map-building), multi-modal interaction and

adaptability.
Further to the above, the mechanical and electrical design of the robot system is of key

importance, in order to best adapt to various environments and situations. The physical

architecture of the robotic vehicle also goes a long way to influence the energy consumption

110

Fr

dynamics and the general performance measure or productivity in respect of task

performance.

Our results have demonstrated that the HVFF hybrid concept as characterized by a set of
timely executable algorithms and production rules is quite versatile and robust. It has the
merits of high efficiency and effectiveness in terms of goal state attainment. Irrespective of
the degree to which a workspace is clustered with obstacles of different shapes and sizes, a
robot controlled by this approach can always reach the goal state without collision with

obstacles provided a feasible path that is not smaller than the robot’s diameter exists.

We find that our approach of representation for both the VOC and VGC is generalized for all
shapes of obstacles and is in no way limited by the shape of the envelope of the obstacles
creating a concave environment. We have also tried to establish some level of completeness
and generalization by comparing its performance with those of earlier workers. The

indications are that the HVFF is clearly more efficient than the earlier algorithms.

7.2 CONTRIBUTION TO KNOWLEDGE

Contributions to the Field of path planning for Autonomous Mobile Robots include:

i development of a hybrid navigation concept that can be effectively and efficiently
utilized in a maze of densely clustered static obstacles. A significant application area is a

system where navigation is considered to be mission critical.

ii. development of a novel scheme capable of overcoming the traumatic local minimum
problem associated with the popular artificial potential field technique posed by either lengthy

obstacles or concave shaped obstacles for both static and dynamic cases.

7.3 FUTURE WORK
In subsequent work, we shall consider the following underlisted:
i the multi-goal problem amidst static and dynamic obstacles. Likely areas of

application of this work include problems of distribution of resources, conduct of inspection

111

b

and search operations, especially in humanly unfriendly environments. Others include the

development of intelligent planting machines for agriculture etc.

ii. Finally, there is the challenge of adapting our HVFF concept to higher-dimensional
configuration-spaces for our built robot. In that case we shall be focusing on the navigation
dexterity of the autonomous vehicle in a 2D environment while performing its task in a 3D
domain. We can extend this concept to the robot arm manipulation. Subsequently, we foresee

an integration of the autonomous mobile vehicle and the arm to form a unified system.

112

REFERENCES

. Andrews, J.R. and Hogan, N. (1983) “Impedance Control as a Framework for
Implementing Obstacle Avoidance in a Manipulator, Control of Manufacturing

Processes and Robotic Systems”, Eds. Hardt, D.E. and Book, W., ASME, Boston. pp.
243-251.

. Arras, K.O., Persson, J., Tomatis, N. and Siegwart, R. (2002) “Real-Time Obstacle
Avoidance For Polygonal Robots With A Reduced Dynamic Window”, IEEE

Proceedings of the International Conference of Robotics and Automation,

Washington, USA. pp. 3050-3055.

. Asaolu, O.S. (2001) “An Intelligent Path Planner for Autonomous Mobile Robots™,
PhD Thesis, Department of Systems Engineering, University of Lagos, Nigeria.

. Ayari, 1. and Chatti, A. (2007) “Reactive Controi Using Behavior Modelling of a

Mobile Robot”, International Journal of Computers, Communications & Control Vol.

1I, No. 3, pp. 217-228.

. Bastan, M. (2004) “Visual Servoing Of Mobile Robots Using Potential Fields™, M.Sc.

Thesis, Sabanci University.

. Becker, M., Dantas, C. M. and Macedo, W. P. (2006} “Obstacle Avoidance Procedur
e for Mobile Robots”, ABCM Symposium series in Mechatronics vol. 2, pp. 250-257,
copyright by ABCM.

. Behring, C., Bracho, M., Castro, M. and Moreno, J. A. (2000) “An Algorithm for
Robot Path Planning with Cellular Automata”, Proceedings of the Fourth International
Conference on Cellular Automata for Research and Industry: Theoretical and Practical

Issues on Cellular Automata, Springer-Verlag, pp.11-19.

113

10.

11.

12.

13.

14,

15.

Bikdash, M., Karagol, S. and Charifa, M. (2006) “Mesh Analysis with Applications in
Reduced-Order Modeling and Collision Avoidance” Proceedings of the COMSOL

Users Conference Boston, pp. 1-7.

Borenstein, J. and Koren, Y. (1989) “Real-time obstacle avoidance for fast mobile
robots” IEEE Transactions on Systems, Man and Cybernetics, Volume (19), Issue:

5, pp. 1179-1187.

Borenstein, J. and Koren, Y. (1990} “Real-time obstacle avoidance for fast mobile
robots in cluttered environments”, Proceedings of IEEE International Conference on

Robotics and Automation, Cincinnati, Ohio, pp. 572-577.

Borenstein, J. and Koren, Y. (1991) “The Vector Field Histogram - Fast Obstacle-
Avoidance for Mobile Robots”, IEEE Journal of Robotics and Automation, Vol.7, No.

3, pp: 278-288.

Borenstein, J. and Koren, Y. (1991) “Histogramic in-motion mapping for mobile robot

obstacle avoidance”, 1IEEE Transactions on Robotics and Automation, Volume: 7,

Issue: 4, pp. 535- 539.

Brooks, R.A.and Lozano-Perez, T. (1985) “A Subdivision Algorithm in
Configuration Space for find path with Rotation”, IEEE Transactions on Systems,
Man, and Cybernetics, Vol.SMC-15 (2), 224-233.

Bruce, J. and Veloso, M. (2003) “Fast and Accurate Vision-Based Pattern Detection
and Identification”, Proceedings of the 2003 IEEE International Conference on

Robotics and Automation, Taiwan, pp. 1277-1282.

Carpin, S.and Parker, L.E. (2002) “Cooperative Motion Coordination amidst
Dynamic QObstacles”, Distributed Autonomous Robotic Systems 5, pp. 145-154.

114

16.

17.

18.

19.

20.

21.

22.

23.

Caselli, S., Reggiani, M. and Rocchi, R. (2001) “Heuristic Methods for Randomized
Path Planning in Potential Fields”, Proc. of the JEEE Symp. on Computational
Intelligence in Robotics and Automation, Banff, Alberta, Canada, pp. 426-431.

Castro, D., Nunes, U. and Ruano, A. (2002) “Reactive Local Navigation”, Proceedings
of 28th Annual Conference of the IEEE Industrial Electronics Society - IECON'02,
Sevilla, vol.3, pp. 2427-2432 .

Chengging, L., Ang Jr, M. H,, Krishnan, H. and Yong, L.S. (2000) “Virtual Obstacle
Concept for Local-minimum recovery in Potentialfield Based Navigation”, Proc. of

1EEE. International Conf, on Robotics and Automation, San Francisco, pp. 983-988.

Clark, C. M., Rock, S. M. and Latombe, J.C. (2000) “Motion Planning for Multiple
Mobile Robot Systems using Dynamic Networks”, Proc. of IEEE Int. Conf. on Robot.

& Autom. Taipei, Taiwan 2003. pp. 4222-4228.

Connolly, C. I. and Grupen, R.A. (1993) “The Application of Harmonic Functions to
Robotics”, Journal of Robotic Systems, 10(7): 931-946.

Cosio, F. A. and Castafieda, M. A. P. (2004) “Autonomous robot navigation using
adaptive potential fields Mathematical and Computer Modelling”, Published by

Elsevier Ltd. Volume 40, Issues 9-10, pp. 1141-1136.

Davis, R.H. and Camacho, M. (1984) “The Application of Logic Programming to the
Generation of Paths for Robots” Robotica vol.2, pp 93-103.

Di Gesu, V., Lenzitti, B., Lo Bosco, G. and Tegolo, D. (2000) “A distributed
architecture for autonomous navigation of robots”, Proceedings Fifth IEEE

International Workshop on Computer Architectures for Machine Perception,

Washington, DC, USA, pp.190-194.

115

¥

24,

25.

26.

27.

28.

29.

30.

Dozier, G., Homaifar, A., Bryson, S. and Moore, L.(1998) “Artificial potential field
based robot navigation, dynamic constrained optimization and simple genetic hill-
climbing”, The IEEE International Conference on Evolutionary Computation,

Anchorage, AK,USA, pp.189-194.

Fasola, J., Rybski, P.E. and Veloso, M.M. (2005) “Fast Goal Navigation with Obstacle
Avoidance Using a Dynamic Local Visual Model”, VII SBAI / II IEEE LARS. Sdo

Luis, setembro de, pp.1-6.

Faverjon, B. and Tournassoud, P. (1987) “A Local Based Approach for Path Planning
of Manipulators With a High Number of Degrees of Freedom”, IEEE International
Conference on Robotics and Automation, Raleigh, North Carolina, pp. 1152-1159.

Gayle, R., Sud, A. Lin, M.C and Manocha, D. (2007) “Reactive deformation
roadmaps: Motion planning of multiple robots in dynamic environments”, In Proc

IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, pp-
3777-3783.

Ge, S. S. and Cui, Y. J. (2000a) “New Potential Functions For Mobile Robot Path
Planning”, IEEE Transactions On Robotics And Automation, Vol. 16, No. 5, pp. 615-
621.

Ge, S. S. and Cui, Y. J. (2000b) “Dynamic Motion Planning For Mobile Robots Using
Potential Field Method”, Autonomous Robot, 13, pp. 207-222.

Geisler, T. and Manikas, T. (2002) “Autonomous Robet Navigation System Using a
Novel Value Encoded Genetic Algorithm”, Proceeding of IEEE Midwest Symposium
on Circuits and Systems, Tulsa, OK, pp. 45-48.

116

31.

32.

33.

34.

35.

36.

37.

38.

Geraerts, R. and Overmars, M. H. (2005) “Reachability Analysis of Sampling Based

Planners”, Proceedings of the IEEE International Conference on Robotics and

Automation Barcelona, Spain, pp. 406-412.

Gilbert, E.G. and Johnson, D.W. (1985) “Distance Functions and Their Application to
Robot Path Planning in the Presence of Obstacles”, IEEE Journal of Robotics and

Automation, Vol. (1) No. 1, pp. 21-30.

Glasius, R., Komoda, A. and Gielen, S.AM. (1995) “Neural Network Dynamics for
Path Planning and Obstacle Avoidance”, Neural Networks, Vol. 8, (1), pp. 125-133.

Han, L. and Amato, N. M. (2000) “A kinematics-based probabilistic roadmap method
for closed chain systems”, in Proceedings of the Workshop on Algorithmic

Foundations of Robotics, WAFR’ (00), pp. 233-246.

Hand, A., Godugu, J., Ashenayi, K., Manikas, T. W. and Wainwright, R.L. (2005)

“Benchmarking of Robot Path Planning Algorithms, in Intelligent Engineering
Systems Through Artificial Neural Networks: Smart Engineering Systems Design:
Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and

Artificial Life”, C.H. Dagli, et al., Editors. 2005, ASME Press: New York.

Hart, P.E., Nilsson, N.J. and Raphael, B. (1968) “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”, TEEE Trans. of Systems Science and

Cybernetics, 4 (2), pp. 100-107.

Heero, K., Willemson, J., Aabloo, A. and Kruusmaa, M. (2004) “Robots Find a Better
Way: A Learning Method for Mobile Robot Navigation in Partially Unknown
Environments”, In Proceedings of the 8" Conference on Intelligent Autonomous

Systems, (IAS-8), Amsterdam pp.559-566.

http://www.cut-the-knot.org/Whatls/WhatlsGeometry.shtml [What Is Geometry]

117

39.

40.

41.

42,

43,

44,

45,

46.

47.

http://hyperphysics.phy-astr.gsu.edu/hbase/vect.html (Basic Vector Operations)

http://www.glenbrook.k12.il.us/gbssci/Phys/Class/vectors/u3lia.html Lesson 1:
Vectors - Fundamentals and Operations

Hwang, Y.K. and Ahuja, N. (1992), Gross Motion Planning-A Survey, ACM
Computing Survey, Vol.24, no.3, pp. 219-291.

Tagnemma, K. and Dubowsky, S. (2004) “Traction Control of Wheeled Robotic
Vehicles in Rough Terrain with Application to Planetary Rovers”, International

Journal of Robotics Research, 23 (10), 1029-1040.

Ibidapo-Obe, O. and Asaolu, O.S. (2006) “Optimization Problems in Applied
Sciences: From Classical Through Stochastic To Intelligent MetaHeuristic
Approaches”, 22:1-18; Contributed chapter in Handbook of Industrial and Systems
Engineering, Edited by Badiru, A.B, CRC Press, Taylor and Francis Group, New

York.

Tbidapo-Obe, O., Asaolu, O.S. and Badiru, A.B. (1999) “Generalized Solutions of the
Pursuit problem in Three Dimensional Euclidean Space”, Applied Mathematics and

Computation, Elsevier Science Inc. 6580, pp. 1-11.

Ibidapo-Obe, O., Asaolu, O.S. and Badiru, A.B. (2002) “A New Method for the
Numerical Solution of Simultaneous Non-Linear Equations”, Applied Mathematics

and Computation, Elsevier Science Inc. 125(1), pp. 133-140.

Im, K.Y. and Oh, S.Y. (2000) “An Extended Virtual Force Field Based Behavioral
Fusion with Neural Networks and Evolutionary Programming for Mobile Robot
Navigation”, Evolutionary Computation, IEEE Congress Volume 2, pp. 1238-1244.

Ismael, A., Edite, F.V., Fernandes, M. G. P., Paula, M. and Gomes, S. F.

(2004) “Robot trajectory planning with semi-infinite programming”, European Journal

118

48.

49.

50.

51.

52.

53.

54.

55.

of Operational Research EURO Young Scientists Elsevier B.V. Volume 153, Issue 3,
pp. 607-617.

Jaafar, 1. and Mckenzie, E. (2007) “Escape from local minima agent navigation in
unknown virtwa! environment”, 3 International Conference on Intelligent

Environments, publisher: Institute of Engineering Technology (IET) , pp. 191-197.

Jaafar, J. and McKenzie, E. (2008) A Fuzzy Action Selection Method for Virtual
Agent Navigation in Unknown Virtual Environments, Journal of Uncertain Systems

Vol.2, No.2, pp.144-154, 2008

Janglova, D. (2004) “Neural Networks in Mobile Robot Motion”, International Journal
of Advanced Robotic Systems, Volume 1 Number 1, ISSN 1729-8806, pp.15-22.

Kant, K. and Zucker, S. (1988) “Planning Collision-Free Trajectories in Time-Varying
Environments: A Two-Level Hierarchy”, Proceedings 1EEE International Conference

on Robotics and Automation, Philadelphia, pp 1644-1649.

Karlsson, N., Munich, M. E., Goncalves, L., Ostrowski, 1., Bernardo, E. D. and
Pirjanian, P. (2004) “Core Technologies for Service Robotics”, Proc. of Int. Conf. on

Intelligent Robots and Systems (IROS), Sendai, Japan, vol(3), pp- 2979-2984.

Khatib, O. (1986) “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots”, Int. J. Robotics Res. 5(1). pp 90-98.

Khosla, P. and Volpe, R. (1988) “Superquadric Artificial Potentials for Obstacle
Avoidance and Approach”, proc. of the IEEE Int. Conf. on Robotics and Automation,
Philadelphia, PA, pp.1178-1784.

Kim, J., Pearce, R. and Amato, N. (2003) “Extracting optimal paths from roadmaps
for motion planning”, IEEE Int. Conf. on Robotics and Automation, pp. 2424.2429.

119

56.

57.

58.

59.

60.

6l.

62.

Koren, Y. and Borenstein, J. (1991} “Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation”, Proc. of the IEEE Conference on Robotics

and Automation, Sacramento, California, 1991, pp. 1398-1404.

Krogh, B.H. and Thorpe, C.E. (1986) “Integrated Path Planning and Dynamic Steering
Control for Autonomous Vehicles”, Proceedings of the IEEE International
Conference on Robotics and Automation San Francisco, California, April 7-10, 1986,

pp. 1664-1669.

Kalmar-Nagy, T., D’Andrea, R. and Ganguly, P. (2004) “Near-optimal dynamic
trajectory generation and control of an omnidirectional vehicle”, Robotics and

Autonomous Systems Elesevier computer science.com 46, pp 47-64.

Kunwar F. and Benhabib, B. (2006) “Rendezvous-guidance trajectory planning for

robotic dynamic obstacle avoidance and interception” IEEE Trans Syst Man Cybern B

Cybern, 36(6): pp. 1432-1441.

Laumond, J. (1986) "Feasible Trajectories for Mobile Robots with Kinematic and
Environment Constraints”, Intelligent Autonomous Systems, An International

Conference held in Amsterdam, The Netherlands, pp 346-354.

Lengyel, J., Reichert, M., Donaid, B. R. and Greenberg, D. P, (1990) “Real Time
Robot Motion Planning Using Rasterizing Computer Graphics Hardware,” In Proc.

SIGGRAPH.

Li, Y.P.,, Zielinska, T., Ang Jr. M.H. and Linz, W. (2006) “Vehicle Dynamics of
Redundant Mobile Robots with Powered Caster Wheels”, Proceedings of the Sixteenth
CISM_IFToMM Symposium, Romansy 16, Robot Design, Dynamics and Control, ed.
Teresa Zielinska and Cezary Zielinski, Warsaw: Springer. (Romansy 16 Robot
Design, Dynamics and Control, Warsaw University of Technology, Warsaw, Poland,

pp. 221-228.

120

63.

64.

65.

66.

67.

68.

69.

70.

Lingelbach, F.(2004a) “Path planning using probabilistic cell decomposition,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, USA, pp.
467-472.

Lingelbach, F. (2004b) “Path Planning for Mobile Manipulation using Probabilistic

Cell Decomposition”, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Sendai, Japan.

Lingelbach, F. (2005) “Path Planning using Probabilistic Cell Decomposition”, Tech.
rept. Frank Lingelbach. Licentiate Thesis.

Lozano-Perez, T. (1987). “A simple Motion-Planning Algorithm for General Robot
Manipulators”, 1EEE J. of Robotics and Automation.RA-3(3): 224-238.

Mbede, J. B.,, Huang, X. and Wang, M. (2000) “Fuzzy motion planning among
dynamic obstacles using artificial potential fields for robot manipulators”, Robotics

and Autonomous Systems 32(1): 61-72.

Mbede J. B., Ma S., Zhang L., Toure Y and Graefe V. (2004) “Robust neuro-fuzzy
navigation of mobile manipulator among dynamic obstacles”, Proceedings of IEEE
International Conference on Robotics and Automation New Orleans Riverside, New

Orleans, LA, USA.

Meng, A.C. (1988) “Dynamic Motion Re-planning for Unexpected Obstacles”,

Proceedings IEEE International Conference on Robotics and Automation,

Philadelphia, pp. 1848-1849.

Montano L., Sagues C., (1991) “Non-Contact Compliant Robot Motion: Dynamic
Behavior and Application to Feature Localization”, IMACS Symposium Modelling

and Control of Technological Systems, pp. 457-464.

121

71.

72.

73.

74.

75.

76.

77.

78.

Moravec, H.P. and Elfes, A. (1985) “High Resolution Maps from Wide Angle Sonar,
IEEE Conference on Robotics and Automation”, Washington D.C. pp 116-121.

Muck, K.L. (1988) “Motion Planning in Constraint Space”, Proceedings 1988 IEEE

International Conference on Robotics and Automation, Philadelphia, pp 633-635.

Murray, D. and Little, J. (2000) “Using real-time stereo vision for mobile robot
navigation”, Autonomous Robots, Publisher: Springer, Vol. 8 Number 2, pp. 161-
171(11).

Murrieta-Cid, R., Tovar, B. and Hutchinson, S. (2005) “A Sampling-Based Motion
Planning Approach to Maintain Visibility of Unpredictable Targets”, Autonomous
Robots, Vol. 19, Number 3, pp. 285-300.

Nancy Amato 2004, http//: www parasol.tamu.edu/~amato/Courses/padova04/
lectures/L6.poten-field.ps

Nguyen, B. Q., Chuang, Yao-Li., Tung, D, Hsieh, C., Jin, Z., Shi, L., Marthaler, D.,
Bertozzi, A. and Murray, R. M. (2005), Virtual Attractive-Repulsive Potentials for
Cooperative Control of Second Order Dynamic Vehicles on the Caltech MVWT2005
American Control Conference, Portland, OR, USA

Nourani-Vatani, N., Bosse, M., Roberts, J., and Dunbabin, M. (2006} “Practical Path
Planning and Obstacle Avoidance for Autonomous Mowing”, In Proc. of the

Australasian Conference of Robotics and Automation.

Ogren, P. and Leonard, N. E. (2002) “A Provably Convergent Dynamic Window
Approach to Obstacle Avoidance”, IFAC World Conference, Barcelona, Spain,-
ntntnu.no 15th Triennial World Congress of the International Federation of

Automatic Control, Barcelona.

122

79. Ogren, P. And Leonard, N.E. (2005) “A Convergent Dynamic Window Approach To

80.

81.

82.

83.

84.

85.

86.

Obstacle Avoidance”, IEEE Transactions On Robotics, vol.(21), Issue 2, PP. 188-195.

Ordonez, C., Collins Jr. E.G., Selekwa, M.F., Dunlap, D.D. (2008) The virtual wall
approach to limit cycle avoidance for unmanned ground vehicles, Elsevier, Robotics

and Autonomous Systems 56, pp. 645-657.

Palma-Villalon, E. and Dauchez, P. (1988) “World Representation and Path Planning
for a Mobile Robot”, Robotica, Volume 6, pp 35-40.

Park, W.T. (1984) “State-Space Representation for ~Coordination of Multiple
Manipulators”, 14th ISIR, Gothenburg, Sweden, pp 397-405.

Park, M.G. and Lee, M.C. (2003) “Artificial Potential Field Based Path Planning for
Mobile Robots Using a Virtual Obstacle Concept”, Proceedings of the 2003
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM

2003), Victoria, pp. 735-740.

Park, M.G., Jeon, J. H. and Lee, M. C.(2001) “Obstacle avoidance for mobile robots
using artificial potential field approach with simulated annealing”, in I1EEE
International Symposium on Industrial Electronics, South Korea, vol. 3, pp. 1530-

1535, June 2001.

Philippsen, R., Jensen, B. and Siegwart, R. (2007) “Towards Real-Time Sensor-Based
Path Planning in Highly Dynamic Environments”, Autonomous Navigation in

Dynamic Environments, Springer Tracts in Advanced Robotics, vol.(35), pp. 135-148.

Primbs, J. A. Nevistic, V. and Doyle, J. C. (1999) “Nonlinear optimal control: A
control Lyapunov function and receding horizon perspective”, 4sian J. Control, vol. 1,

no.l, pp. 14-24.

123

87.

88.

89.

90.

91.

92.

Qiao, 8., Tang, C., Peng, I, Hu, J. and Zhang, H. (2006) “BPGEP: Robot Path
Planning based on Backtracking Parallel-Chromosome GEP”, Proceedings of the
International Conference on Sensing, Computing and Automation Copyright Watam

Press.

Sabe, K. Fukuchi, M. Gutmann, J. 8. Ohashi, T. Kawamoto, K. and Yoshigahara, T.
(2004) “Obstacle Avoidance and Path Planning for Humanoid Robots using Stereo

Vision”, Proceedings of the International Conference on Robotics and Automation,

New Orleans,vol. (1), pp. 592-597.

Savage, J., Marquez, E., Pettersson, J., Trygg, N., Petersson, A. and Wahde, M. (2004)
“Optimization of waypoint-guided potential field navigation using evolutionary
algorithms”, Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems [ROS, Sendi, Japan, vol(4), pp. 3463-3468.

Sedighi, K.H., Ashenayi, K., Manikas, T.W., Wainwright, R.L. and Tai, H.M. (2004)
“Autonomous Local Path Planning for a Mobile Robot Using a Genetic Algorithm”,
Proceeding IEEE Congress on Evolutionary Computation (CEC),1338-1345.

Shimoda, S. Kuroda, Y. and Iagnemma, K. (2005) “Potential Field Navigation of High
Speed Unmanned Ground Vehicles on Uneven Terrain”, Proceedings of

the IEEE International Conference on Robotics and Automation Barcelona, Spain, pp.

2828-2833.

Shibata, T. and Fukuda,T. (1993) “Intelligent Motion Planning by Genetic Algorithm
with Fuzzy Critic”, Proceeding of the 1993 International Symposium on intelligent

Control, Chicago, Illinois, USA, pp. 565-570.

124

93.

94.

95.

96.

97.

98.

99.

Simionescu, P.A., Dozier, G.V. and Wainwright, R.L. (2006) “A Two-Population

Evolutionary Algorithm for Constrained Optimization Problems”, IEEE Congress on
Evolutionary Computation, 2006. CEC 2006. Department of Mechanical Enginecering,
The University of Tulsa, 600 S. College Ave., Tulsa, OK 74104 USA, pp:1647- 1633.

Soetadji, T. (1986) “Cube Based Representation of Free Space for the Navigation of
an Autonomous Mobile Robot”, Intelligent Autonomous Systems, An International

Conference held in Amsterdam, The Netherlands, pp 546-560.

Song, G., Miller, S. and Amato, N. (2001) “Customizing PRM roadmaps at query
time”, IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 1500-1505.

Soucy, M. and Payeur, P. (2004) “Robot Path Planning with Multiresolution
Probabilistic Representation: A Comparative Study”, CCECE 2004 - CCGEI 2004,
Niagara Falls, May/mai 2004 0-7803-8253-6/04/$17.00/©2004 1EEE.

Spenko, M. lagnemma, K. and Dubowsky, S. (2004) “High Speed Hazard Avoidance
for Mobile Robots in Rough Terrain”, Paper presented in the SPIE Conference on
Unmanned Ground Vehicles, Orlando, FL,USA, pp. 439-450.

Stachniss, C. and Burgard, W. (2002) “An Integrated Approach to Goal-directed
Obstacle Avoidance under Dynamic Constraints for Dynamic Environments”, Proc.

IEEE/RSJ Int. Conf. Intell. Robot. Syst., Lausanne, Switzerland, pp. 508-513.

Sugihara, K. and Smith, J. (1997) “Genetic Algorithms for Adaptive Motion Planning
of an Autonomous Mobile Robot”, Proceedings of the IEEE International Symposium
on Computational Intelligence in Robotics and Automation, Monterey, CA, pp. 138-

146.

125

100. Takahashi, O. and Schilling, R.J. (1989) “Motion Planning in a Plane Using
Generalized Voronoi Diagrams”®, IEEE Transactions on Robotics and

Automation, Vol.5, No. 2, pp. 143-150.

101. Thorpe, C. and Matthies, L. (1984) “Path Relaxation: Path Planning for a Mobile
Robot”, Proceedings of the National Conference on Artificial Intelligence, OCEANS
84, vol (16), pp. 576-581.

102. Trihatmo, S. and Jarvis, R.A. (2003) “Short-Safe Compromise Path for Mobile Robot
Navigation In A Dynamic Unknown Environment”, Australasian Conference on

Roebotics and Automation,

103. Tseng, C., Crane, C. and Duffy, J. (1988) “Generating Collision-FreePaths for Robot
Manipulators”, Computers in Mechanical Engineering, pp. 58-64.

104. Ulrich, L, Borenstein, 1. (2000) “VFH*: local obstacle avoidance with look-ahead
verification”, Proceedings of IEEE International Conference on Robotics and

Automation, San Francisco, CA, USA,Vol. 3, pp: 2505 - 2511.

105. Vadakkepat, P. and Chen, T.K. (2000) “Evolutionary Artificial Potential Fields and
Their Application in Real Time Robot Path Planning”, Proceeding of the Congress on
Evolutionary Computation, San Diego, CA, pp. 256-264.

106. Valavanis, K. P. Nelson, A. L. Doitsidis, L. Long, M. and Murphy, R. R. (2006),

“Validation of a Distributed Field Robot Architecture Integrated with a MATLAB

Based Control Theoretic Environment: A Case Study of Fuzzy Logic Based Robot
Navigation”, IEEE Robotics and Automation Magazine, Vol. 13, No. 3, pp: 93-107.

107. Verbeek, P.W., Dorst, L., Verwer, B.J.H. and Groen, F.C.A.(1986) “Collision

Avoidance and Path Finding Through Constrained Distance Transformation in Robot

State Space”, Intelligent Autonomous Systems, An International Conference held in
Amsterdam, The Netherlands, pp. 627-634.

126

108. Wang, L.C., Yong, L. S. and Ang Jr., M. H. (2002) “Hybrid of Global Path Planning
and Local Navigation Implemented on a Mobile Robot in Indoor Environment”,

Proceedings of the IEEE International Conference on Intelligent Control, Vancouver,

Canada.

109. Wei, W., Mbede, J. B. and Zhang, Q. (2001) “Fuzzy Sensor-Based Motion Control
among Dynamic Obstacles for Intelligent Rigid-Link Electrically Driven Arm
Manipulators” Journal of Intelligent and Robotic Systems, Vol. 30, Issue 1, pp. 49-71.

110. Whitcomb, L. L. and Koditschek, D. E. (1991) “Automatic Assembly Planning and
Control via Potential Functions”, In Proc. IEEE/RSJ International Workshop on

Intelligent Robots and Systems. Osaka, Japan, vol. (1), pp. 17-23.

111. Whitley, D., Starkweather, T., and Bogart, C. (1990) “Genetic algorithms and neural

networks: Optimizing connections and connectivity”, Parallel Computing, vol. 14,
pp. 347-361.

112. Wolf, J.C., Robinson, P., and Davies, J.M. (2004) “Vector Field Path Planning and
Control of an Autonomous Robot in a Dynamic Environment”, Proceedings of

the 2004 FIRA World Congress (October), Busan, Korea, paper 151.

113. Xu, W.L., (2000) “A Virtual Target Approach for Resolving the Limit Cycle Problem
in Navigation of a Fuzzy Behaviour-Based Mobile Robot, Elsevier, Robotics and

Autonomous Systems 30, pp. 315-324.

114. Xu, W.L., Tso, S.K. and Lu, ZK. (1998) “A Virtual Target Approach for Resolving
the Limit Cycle Problem in Navigation of a Fuzzy Behaviour-Based Mobile Robot,
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Victoria, B.C., Canada, pp. 44-49.

127

115. Yahja, A., Singh, S., and Stentz, A. (1998) “Recent Results in Path Planning for
Mobile Robots Operating in Vast Outdoor Environments™, In Proc. Symposium on
Image, Speech, Signal Processing and Robotics, The Chinese University of Hong

Kong.

116. Yang, S. X. and Meng, M. (2000) “An efficient neural network approach to dynamic
robot motion planning”, Neural Networks, Volume 13, Issue 2, pp. 143-148.

117. Yannier, S.,, Onat, A. and Sabanovic, A. (2003) “Basic Configuration for
Mobile Robots”, International Conference on Industrial Technotogy, ICIT'03,
Maribor,Slovenia, pp. 256-261.

118. Youssef, S. M. (2005) “Neuro-based Learning of Mobile Robots with Evolutionary
Path Planning”, The ICGST Congress International Conference on Automation,
Robotics and Autonomous Systems (ARAS-05), ICGST/ARAS, Cairo, Egypt, pp.64-
70.

119. Yu,J. Cai, Z. Duan, Z. (2007) “Detection of Static and Dynamic Obstacles Based
on Fuzzy Data Association with Laser Scanner”, Fourth International Conference on

Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, Vol.4, pp.172-176.

120. Zacharia, P. T. and Aspragathos, N.A. (2004) “Optimal robot task scheduling based
on genetic algorithms”, Robotics and Computer Integrated Manufacturing, Elsevier

Ltd. Vol. 21, Issue 1, pp. 67-79.

121, Zaharakis, S.C. Guez, A. (1988) “Time Optimal Navigation Via Slack Time Sets”,
Proceedings 1988 IEEE International Conference on Robotics and Automation,

Philadelphia, pp 650-651.

122. Zou, X.Y. and Zhu, J. (2003) “Virtual Local target method for avoiding local
minimum in potential field based robot navigation”, Joumal of Zhejiang University

of Science. 4(3), 264-269.

128

APPENDIX I

PROTOTYPE DESIGN

’ 1.56m .
I I

TOP COVER PLATE

0.2m R

»

0.47m

(COVER PLATE - BACK MOUNT)

129

0.2m

-~

0.87m

(SENSOR MOUNT X 3 PIECES)

0.16m

»
>

"

0.2m

0.2m

(COVER PLATE - FRONT MOUNT X 2 PIECES)

130

L 02m

0 550)

/-:—

0.3dm /
/

(SERVO CASING X 2 PIECES)

0.6m

0.14m

0.12m

LA

131

7
2.
I

0.25m

0.25m R

0.26m

0.47m

¥

7

(CASTER WHEEL MOUNT)

132

APPENDIX II

PROGRAMME FOR PARTIALLY KNOWN ENVIRONMENT

Sub Main
Dim Y As Single

Dim theta2 As Single

Dim thetal As Single

Dim theta As Single

Dim dis_targ As Single

SetTimeStep(.05) 'Set simulation time step of 0.1 seconds
Fct=1 'Force constant (attraction to the target)
SetMobotPosition(0,4.52,6.12,120)
SetMarkPosition(0,2.92,4.45)

X _target=GetMarkX(0) ‘Target coordinates (mark 0)
Y target=GetMarkY (0)

a=X_target

b=Y _target

X1=GetMobotX(0) ' Present mobot coordinates (in meters)
Y 1=GetMobotY (0)

SetDrawTrajectory((,1)

EraseTrajectories

SetCellSize(0,0.05)

numcells=GetNumCells(0)

Wait 1

thetal=GetMobotTheta(0)

dia=GetDiameter(0)

r=dia/2

PointXa=1.52

PointYa=4.3

PointXb=2.02

133

PointYb=3.75
PointXc=2.02
PointYc=4.30
Do ' Start main loop
theta2=GetMobotTheta(0)
X2=GetMobotX(0) 'Present mobot coordinates (in meters)
Y2=GetMobotY(0)
diff x=x2-X
diff_y=y2-Y
X=GetMobotX(0} 'Present mobot coordinates (in meters)
Y=GetMobotY (0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y _grid=CoordToGrid(0,Y) 'mobot center is
' Perform a range scan and update

" the Certainty Grid (max. cell value=3)

Fore=.1To .2
SetSensorRange(0,.05,e)
Next e
theta2=GetMobotTheta(0)
For sen=0 To 5
s=MeasureRange(0,s5¢en,3)
rel_angle=(GetSensorAngle(0,sen,1))
Next sen
s0=MeasureRange((,0,3)
sl=MeasureRange(0,1,3)
s2=MeasurcRange(0,2,3)
s3=MeasureRange(0,3,3)
s4=MeasureRange(0,4,3)
s5=MeasurcRange(0,5,3)

Frx=0 'Repuisive Force (x component)

Fry=0 'Repulsive Force (y component)

134

dis_targ=Sqr((X-X_target)"2+(Y-Y _target)"2)
dis_targAB=(2.03-1.52)
dis_targDB=(4.30-3.77)
dis_targABvar=(2.03-Y)
dis_targDBvar=(X-3.77)
Gradient ADvar=dis_targDBvar/dis_targABvar
Gradient_AD=dis_targDB/dis_targAB
* Each occupied cell inside the windows applies a repulsive force to the mobot.
For i=X_grid-10 To X_grid+10
Forj=Y_grid-10 To Y_grid+10
C=GetCell(0,1,j)
If C<>0 Then
d=Sqr((X_grid-i}"2+Y_grid-j)"2)
[f d<0 Then
Fer=rel_angle/d"2
Frx=Frx+Fcr/3*C/d"2*(X_grid-i)/d"2
Fry=Fry+Fer/3*C/d"2*(Y _grid-j)/d"2
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)
StepForward
SetSteering(0,0,180)
Fort=]1 To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
End If
End If
End If
Next
Next

' The target generates a constant-magnitud attracting force

135

-

Fex=Fct*(X_target-X)/dis_targ

Fey=Fct*(Y _target-Y)/dis_targ

Rx=Frx+Fcx 'Resultant Force Vector

Ry=Fry+Fcy

rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between
‘current direction of trave!l and

'direction of vector

SetSteering(0,.5,rot*3) 'mobot turns into the direction of R at constant speed
and steering rate proportional to the rotational difference
StepForward ' Dynamics simulation progresses one time step
sim_time=GetSimulationTime
If dis_targ<=.1 Then Exit Do
If x<=3.38 And Y<=5.57 Then Exit Do
Debug. Print dia
Loop
vx1=1.73
vyl1=4.55
SetMarkPosition(0,vx1,vyl)
Do ' Start main loop
theta2=GetMobotTheta(0)
X2=GetMobotX(0) ' Present mobot coordinates (in meters)
Y2=GetMobotY ()
diff x=x2-X
diff y=y2-Y
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y grid=CoordToGrid(0,Y) ' mobot centet is
' Perform a range scan and update

' the Certainty Grid (max. cell value=3)

136

Fore=.1To .2
SetSensorRange(0,.05,¢)
Nexte
theta2=GetMobotTheta(0)
For sen=0 To 5
s=MeasureRange(0,sen,3)
rel_angle=(GetSensorAngle(0,sen,1})
Next sen
s0=MeasureRange(0,0,3)
s1=MeasureRange(0,1,3)
s2=MeasurcRange(0,2,3)
s3=MeasureRange(0,3,3)
s4=MeasureRange(0,4,3)
s5=MeasureRange(0,5,3)
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)
dis_targ=Sqr((X-vx1)"2+(Y-vyl}'2)
dis_targAB=(2.03-1.52)
dis_targDB=(4.30-3.77)
* Each occupied cell inside the windows applies a repulsive force to the mobot.
For i=X_grid-10 To X_grid+10
For j=Y_grid-10 To Y_grid+10
C=GetCell(0,i,j)
If C<=0 Then
d=Sqr((X_grid-[)"2+(Y_grid-j)"2)
1f d<>0 Then
Fer=rel_angle/d"2
Frx=Frx+Fcr/3*C/d"2*(X_grid-i)/d"2
Fry=Fry+Fcr/3*C/d"2*(Y_grid-j)/d"2
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)

137

StepForward
SetSteering(0,0,180)
Fort=1 To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
End If
End If
End If
Next
Next
' The target generates a constant-magnitud attracting force
Fex=Fet*(vx1-X)/dis_targ
Fey=Fct*(vyl-Y)/dis_targ
Rx=Frx+Fcx 'Resultant Force Vector
Ry=Fry+Fcy
rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between

‘current direction of travel and direction of vector R

SetSteering(0,.5,rot*3) 'mobot turns into the direction of R
‘at constant speed and steering rate
'proportional to the rotational difference

StepForward ' Dynamics simulation progresses one time step

sim_time=GetSimulationTime

If dis_targ<=.1 Then Exit Do

Debug. Print dia

Loop

vx2=2.63

vy2=483

SetMarkPosition(0,vx2,vy2)

138

Do ' Start main loop
theta2=GetMobotTheta(0)
X2=GetMobotX(0) ' Present mobot coordinates (in meters)
Y2=GetMobotY (0)
diff x=x2-X
diff y=y2-Y
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y grid=CoordToGrid(0,Y) 'mobot center is
' Perform a range scan and update

' the Certainty Grid (max. cell value=3)

Fore=.1To .2

SetSensorRange(0,.05,¢)

Nexte

theta2=GetMobotTheta(0)

For sen=0 To 5

s=MeasureRange(0,sen,3)

rel_angle=(GetSensorAngle(0,sen,1}))

Next sen

s0=MeasureRange(0,0,3)

s|=MeasureRange(0,1,3)

s2=MeasureRange(0,2,3)

s3=MeasureRange(0,3,3)

s4=MeasureRange(0,4,3)

s5=MeasureRange(0,5,3)
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)

dis_targ=Sqr((X-vx2)"2+(Y-vy2)"2)

" Each occupied cell inside the windows applies a repulsive force to the mobot.

For i=X_grid-10 To X_grid+10

139

For j=Y_grid-10 To Y _grid+10
C=GetCell(0,i,j)
1If C<>0 Then
d=Sqr((X_grid-iy"2+(Y_grid-j)*2)
If d<>0 Then
Fer=rel_angle/d”2
Frx=Frx+Fcr/3*C/d"2*(X_grid-i)/d"2
Fry=Fry+Fcr/3*C/d*2*(Y_grid-j)/d"2
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)
StepForward
SetSteering(0,0,180)
Fort=1 To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
e End If
End If
End If
Next
Next
" The target generates a constant-magnitud attracting force
Fex=Fct¥*(vx2-X)/dis_targ
Fey=Fct*(vy2-Y)/dis_targ
Rx=Frx+Fcx 'Resultant Force Vector
Ry=Fry+Fcy
rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between
‘current direction of travel and
'direction of vector R
SetSteering(0,.5,rot*3) 'mobot turns into the direction of R

'at constant speed and steering rate

140

‘proportional to the rotational difference
StepForward ' Dynamics simulation progresses one time step
sim_time=GetSimulationTime
If dis_targ<=.1 Then Exit Do
Debug. Print dia
Loop
SetMarkPosition(0,a,b)
Do ' Start main loop
theta2=GetMobotTheta((0)
X2=GetMobotX{0) 'Present mobot coordinates (in meters)
Y2=GetMobotY(0)
diff x=x2-X
diff_y=y2-Y
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y _grid=CoordToGrid(0,Y)} ' mobot center is
' Perform a range scan and update

' the Certainty Grid (max. cell value=3)

Fore=1To .2
SetSensorRange(0,.05,¢)
Nexte
theta2=GetMobotTheta(0)
For sen=0 To 5
s=MeasurecRange(0,sen,3)
rel_angle=(GetSensorAngle(0,sen,1))
Next sen
s0=MeasureRange(0,0,3)
s1=MeasureRange(0,1,3)
s2=MeasurcRange(0,2,3)
s3=MeasureRange(0,3,3)

141

s4=MeasureRange(0,4,3)
s5=MeasureRange(0,5,3)
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)
dis_targ=Sqr({X-a)"2+(Y-b)"2)
' Each occupied cell inside the windows applies a repulsive force to the mobot.
For i=X_grid-10 To X_grid+10
For j=Y grid-10 To Y_grid+10
C=GetCell(0,i,j)
If C<>0 Then
d=Sqr((X_grid-i)"2+(Y _grid-j)"2)
If d<>0 Then
Fer=rel _angle/d"2
Frx=Frx+Fer/3*C/d"2*(X_grid-1)/d*2
Fry=Fry+Fcr/3*C/d"2*(Y_grid-j)/d"2
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)
StepForward
SetSteering(0,0,180)
Fort=1To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
End If
End If
End If
Next
Next
' The target generates a constant-magnitud attracting force
Fex=Fet*(a-X)/dis_targ
Fey=Fct*(b-Y)/dis_targ

142

Rx=Frx+Fcx ' Resultant Force Vector

Ry=Fry+Fcy

rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between
‘current direction of travel and

‘direction of vector

SetSteering(0,.5,rot*3) '‘mobot turns into the direction of R
‘at constant speed and steering rate
'proportional to the rotational difference
StepForward ' Dynamics simulation progresses one time step
sim_time=GetSimulationTime
If dis_targ<=.1 Then Exit Do
Debug. Print dia
Loop
End Sub

143

APPENDIX III

PROGRAMME FOR COMPLETELY UNKNOWN OBSTACLE DOMAIN:
A SIMULATION STUDY

Sub Main

Dim Y1 _target As Single
Dim distarg As Single

Dim dis_targ]l As Single

Dim time_ratio As Double
SetTimeStep(.1)
SetDrawTrajectory(0, 1)
EraseTrajectories
SetDrawTrajectory(1, 0)

Fct=1 'Force constant (attraction to the target)
robot_angle _initial=0
obstaclespeed=.01
robotspeed=.06

robotspeed 1=robotspeed
robotspeed_initial=robotspeed
SetMarkPosition(0,0.8,4.13)
X_target=GetMarkX(0) 'Target coordinates (mark 0)
Y _target=GetMarkY (0)
q=270
real_targetx=GetMarkX(()
real_targety=GetMarkY(0)
a=X_target

b=Y_target

dia_=GetDiameter(0)
dia_1=GetDiameter(1)

144

dia_2=GetDiameter(2)
dia_3=GetDiameter(3)
dia_4=GetDiameter(4)

r=dia/2

ri=dia_1/2

r2=dia_2/2

r3=dia_3/2

rd=dia_4/2

r_sum=r2+r

inc=.91
‘*****************robot**************
SetDiameter(0,.2)
dia=GetDiameter(0)

r=dia/2
SetMobotPosition(0,1.44,6.87,200)
x_initial=GetMobotX(0)
y_initial=GetMobotY (0}

X_target=GetMarkX(0) 'Target coordinates (mark 0)

Y _target=GetMarkY(0)
SetDrawTrajectory(0,1)
SetCellSize(0,0.05)
numcells=GetNumCells(0)
SetSensorRange(0,.05,.35)
‘***********Obstaclc One* Al ok o e ok o ok ok e ok e ok ok ok
SetSteering(1,obstaclespeed,)
SetMobotPosition(1,0.8743,5.3077,q)
SetMobotRelPosition(1,0,0,0)

newX]1 target=GetMobotX(1)

newY1 target=GetMobotY(1)
SetSensorRange(1,0,0.01)

145

X1=GetMobotX(1)

Y 1=GetMobotY(1)

X1 _target=x1+inc

Y1 target=yl+inc
'*********#****obstaclc two*************
SetSteering(2,obstaclespeed,0)
SetMobotPosition(2,1.1192,5.0999,q)
SetMobotRelPosition(2,0,0,0)

newX2 target=GetMobotX(2)
newY2_target=GetMobotY(2)
SetSensorRange(2,0,0.01)
X2=GetMobotX(2)
Y2=GetMobotY(2)

X2 target=x2+inc

Y2_target=y2+ine

T3¢ o o ok ok ok ********Obstacle three******* Heskdkkkok
SetSteering(3,obstaclespeed,0)
SetMobotPosition(3,1.6754,5.3077,9)
SetMobotRelPosition(3,0,0,0)
newX3_target=GetMobotX(3)
newY3 target=GetMobotY(3)
SetSensorRange(3,0,0.01)
X3=GetMobotX(3)

Y 3=GetMobotY (3)

X3 target=x3+inc

Y3 target=y3+inc
'**************Obstacle four***#t*****t**
SetSteering(4,obstaclespeed,0)
SetMobotPosition(4,1.4296,5.0999,q)
SetMobotRelPosition{4,0,0,0)
newX4_target=GetMobotX(4)

146

newY4_target=GetMobotY (4)
SetSensorRange(4,0,0.01)

X4=GetMobotX(4)
Y4=GetMobotY(4)
X4 target=x4+inc

Y4 _target=y4+inc

x1=GetMobotX(1)
y1=GetMobotY (1)
x2=GetMobotX(2)
y2=GetMobotY(2)
x3=GetMobotX(3)
y3=GetMobotY(3)
x4=GetMobotX(4)
y4=GetMobotY (4)

dis_targ1=Sqr((x1-x_target)"2+H(yl-y_target)"2)
dis_targ2=Sqr((x2-x_target)"2+(y2-y_target)"2)
dis_targ3=Sqr((x3-x_target)"2+(y3-y_target)"2)
dis_targd=Sqr((x4-x_target)"2+(y4-y_target)"2)

Wait .5

dis_targ=Sqr({(X-X_targety"2-HY-Y_target)"2)

X_initial=GetMobotX(0)
y_initial=GetMobotY (0)

Do
x=GetMobotX(0)
y=GetMobotY (0)
x1=GetMobotX(1)
y1=GetMobotY(1)
x2=GetMobotX(2)
y2=GetMobotY (2)
x3=GetMobotX(3)
y3=GetMobotY(3)

147

x4=GetMobotX(4)

y4=GetMobotY(4)
dis_targ=Sqr((X-X_target)"2+(Y-Y_target)"2)
dis_x1_targ=Sqr((x1-x_target)"2+(yl-y_target)"2)
dis_x2_targ=Sqr((x2-x_target)"2+(y2-y_target)"2)
dis_x3_targ=Sqr((x3-x_target)*2+(y3-y_target)"2)

dis_x4 _targ=Sqr((x4-x_target)"2+(y4-y_target)"2)
dis_x1_robot=Sqr((x1-x)"2+(y1-y)"2)
dis_x2_robot=8qr({x2-x)"2+(y2-y)"2)
dis_x3_robot=Sqr((x3-x)"2-+y3-y)"2)
dis_x4_robot=Sqr((x4-x)"2+(y4-y)"2}
dis_targ_x1_robot=dis_x1_robot+dis x1_targ

dis_targ_ x2 robot=dis_x2_robot+dis_x2_targ
dis_targ_x3_robot=dis_x3_robottdis_x3_targ
dis_targ_x4_robot=dis_x4_robot+dis_x4_targ
dis_x1_robot=Sqr((x1-x)"2+(y1-y)"2)
dis_x2_robot=Sqr((x2-x)"2+(y2-y)}"2)

dis x3_robot=Sqr((x3-x)"2+Hy3-y)"2)
dis_x4_robot=Sqr((x4-x)"2+(y4-¥}"2)

If dis_targ]1>0 And X1<X1_target And Y1<Y1_target Then
StepForward

Elself dis_targ]1>0 And X1>X1_target And Y1>Y1_target Then
StepForward

Elself dis_targl>0 And X1>X1_target And Y1<Y1_target Then
StepForward

Elself dis_targ1>0 And X1<X1_target And Y1>Y1_target Then
StepForward

Elself dis_targ]>0 And X1<X1_target And Y1=Y1_target Then
StepForward

Elself dis_targ]>0 And X1>X1_target And Y1=Y1_target Then
StepForward

148

Elself dis_targ1>0 And X1=X1_target And Y1<Y1_target Then
StepForward
Elself dis_targl>0 And X1=X1_target And Y1>Y1 target Then
StepForward
End If
If dis_targl<=0.1 And dis_targ<=0.1 Then Exit Do
'main Start main loop
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y_grid=CoordToGrid(0,Y) ' mobot center is
' Perform a range scan and update
' the Certainty Grid (max. cell value=3)
s0=MeasureRange(0,0,3)
sl=MeasureRange(0,1,3)
s2=MeasureRange(0,2,3)
s3=MeasurcRange(0,3,3)
s4=MeasureRange(0,4,3)
s5=MeasureRange(0,5,3)
rei_angle=Abs(GetSensorAngle(0,sen,1))
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)
For i=Abs(X_grid-10) To X_grid+10
For j=Abs(Y grid-10) To Y_grid+10
C=GetCell{0,i,j)
If C<0 Then
If 50<.3 Or s1<.3 Or 52<.3 Or §3<.3 Or s4<.3 Or s5<.3 Then
d=Sqr((X_grid-iy*2-+Y_grid-j}"2)
If d<0 Then
Fer=3*rel_angle/d”™2
Frx=Frx+Fer/3*C/d"2*(X_grid-i)/d

149

Fry=Fry+Fcr/3*C/d"2*(Y_grid-)/d
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)
StepForward
SetSteering(0,0,180)
Fort=1To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
End If
End If
End If
End If
Next
Next
' The target generates a constant-magnitud attracting force
Fex=(X_target-X)/dis_targ
Fey=(Y target-Y)/dis_targ
Rx=Frx+Fcx 'Resultant Force Vector
Ry=Fry+Fcy
rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between
'current direction of travel and
'direction of vector R
SetSteering(0,robotspeed,rot*3) 'mobot turns into the direction of R
‘at constant speed and steering rate

'proportional to the rotational difference

StepForward ' Dynamics simulation progresses one time step
If dis_targ <=.2 And dd-r_sum>=.01 Then
frx=0
fry=0
End If

150

robot_angle=GetMobotTheta(0)

'Capturing the robot's angle along its line of sight after taking care of the rotational difference
If s50>0 Then

r_adaptive=CStr(s0)

Eiself s1 >0 Then

r_adaptive=CStr(s])

Elself s2>0 Then

r_adaptive=CStr(s2)

Elself s3>0 Then

r_adaptive=CStr(s3)

Elself s4>0 Then

r_adaptive=CSitr(s4)

Elself s5>0 Then

r_adaptive=CStr(s5)

End If

If Abs(x_initial-x) Or Abs(y_initial-y)>=0.15 Then Exit Do
Debug.Print FCX

Debug.Print FCy

Loop

r_adaptive=r_adaptive

robot_angle=GetMobotTheta(0)

DR Rk R R R PLTA G TWOR % % 4 ko ok ok ko oo oo ook ok ko o b ok K K K K K
*

"*NAVIGATION TOWARDS DETECTING THE CLOSEST OBSTACLE CONFIGURATI
ON***

coutr:

Do
x=GetMobotX(0)
y=GetMobotY(0)
x1=GetMobotX(]}

151

y1=GetMobotY(1)

x2=GetMobotX(2)

y2=GetMobotY(2)

x3=GetMobotX(3)

y3=GetMobotY(3)

x4=GetMobotX(4)

y4=GetMobotY(4)
dis_targ=Sqr((X-X_target)"2+(Y-Y_target)"2)
dis x1 targ=Sqr((x1-x_target)"2+(yl-y_target)"2)
dis x2 targ=Sqr((x2-x _target)"2+(y2-y target)"2)
dis_x3 targ=Sqr((x3-x_target)"2+(y3-y_target)"2)
dis x4 targ=Sqr((x4-x_target)"2+(y4-y_target}"2)
dis_x1_robot=Sqr{(x1-x)"2+(y1-y)*2)
dis_x2_robot=Sqr((x2-x)"2+(y2-y)"2)

dis_x3 robot=Sqr((x3-x)"2+{y3-y)"2)
dis_x4_robot=Sqr((x4-x)"2+(y4-y)"2)

dis targ x1 robot=dis_x1_robot+dis x1_targ

dis targ x2 robot=dis_x2_robot+dis_x2_targ
dis_targ x3_robot=dis_x3_robot+dis_x3_targ

dis targ_x4 robot=dis x4_robot+dis_x4 targ
robot_new_angle=GetMobotTheta(0)
rot=RotationalDiff(1,X1_target,Y! target)
s0=MeasureRange(0,0,3)
s1=MeasureRange(0,1,3)

s2=MeasurecRange(0,2,3)

s3=MeasureRange(0,3,3)

s4=MeasurcRange(0,4,3)

s5=MeasureRange(0,5,3)

dis_x1 robot=Sqr((x1-x)"2+(yl-y)"2)
dis_x2_robot=Sqr((x2-x)"2+(y2-y)"2)
dis_x3_robot=Sqr{(x3-x)"2+(y3-y)"2)

152

dis_x4_robot=Sqr((x4-x)"2+(y4-y)"2)
If dis_targl>0 And X1<X]_target And Y1<Y1_target Then
StepForward
Elself dis_targ1>0 And X1>X1_target And Y1>Y1_target Then
StepForward
Elself dis_targl>0 And X1>X1_target And Y1<Y1_target Then
StepForward
Elself dis_targl>0 And X1<X1_target And YI>Y1_target Then
StepForward
Elself dis_targ1>0 And X1<X1_target And Y1=Y1_target Then
StepForward
Elself dis_targ1>0 And X1>X1_target And Y1=Y1_target Then
StepForward
Elself dis_targ]>0 And X1=X|_target And Y1<Y1_target Then
StepForward
Elself dis_targ]>0 And X1=X1_target And Y1>Y1_target Then
StepForward
End If
If dis_targ1<=0.1 And dis_targ<=0.1 Then Exit Do
' main Start main loop
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y grid=CoordToGrid(0,Y) 'mobot center is
' Perform a range scan and update
' the Certainty Grid (max. cell value=3)
rel_angle=Abs(GetSensorAngle(0,sen,1))
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)
For i=Abs(X_grid-10) To X_grid+10
For j=Abs(Y_grid-10) To Y_grid+10

153

C=GetCell(0,i,))
If C<>0 Then
If s0<.3 Or s1<.3 Or 52<.3 Or s3<.3 Or s4<.3 Or s5<.3 Then
d=Sqr((X_grid-1)"2+(Y_grid-j)"2)
If d<>0 Then
Fer=3*rel angle/d"2
Frx=Frx+Fcr/3*C/d"2*(X_grid-i)/d
Fry=Fry+Fcr/3*C/d"2*(Y_grid-j)/d

If GetCollisionAngle(0)<=180 Then

SetSteering(0,-0.1,0)

StepForward

SetSteering(0,0,180)
Fort=1 To 5

StepForward

Next

SetSteering(0,0.1,Rnd*30-15)
End If
End If
End If
End If
Next

Next
' The target generates a constant-magnitud attracting force
Fex=Fct*(X_target-X)/dis_targ
Fey=Fct*(Y_target-Y)/dis_targ
Rx=Frx+Fcx 'Resultant Force Vector
Ry=Fry+Fcy
rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between
‘current direction of travel and

‘direction of vector R

SetSteering(0,robotspeed,rot*3) 'mobot turns into the direction of R

154

'at constant speed and steering rate proportional to the
rotational difference
StepForward ' Dynamics simulation progresses one time step
If dis_targ <=2 And dd-r_sum>=.01 Then
frx=0
fry=0
End If
'sensing the first obstacle or edge closest to the robot
If S0>0 Or s1>0 Or $2>0 Or s3>0 Or $4>0 Or s5>0 Then Exit Do
Debug.Print CStr(s0)
Loop
xnew=GetMobotX(0)
ynew=GetMobotY(0)
rr_circum=Sqr((Xnew-X_target)"2+(Ynew-Y_target)"2)
'choosing a positioning distance for the virtual goal from the current postion of the robot
which would be used in the Next segment after an oscillatory motion is exhibited
cout9:
'approximating negative sensor readings to zero
'assuming that only one sensor activates first
If s0>0 And s1<0 And s2<0 And s3<0 And s4<0 And s5<0 Then
r_circum=CStr(s0)
r_circum{0=CS8tr(s0)
End If
If s1>0 And s0<0 And s2<0 And s3<0 And s4<0 And s5<0 Then
r_circum=CStr(sl)
r_circum1=CStr(s1)
End If
If s2>0 And s0<0 And s1<0 And s3<0 And s4<0 And s5<0 Then
r_circum=CStr(s2)
r_circum2=CStr(s2)
End If

155

If s3>0 And s0<0 And s1<0 And s2<0 And s4<0 And s5<0 Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

If s4>0 And s0<0 And s1<0 And s2<0 And s3<0 And s5<0 Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

End If

If s5>0 And s1<0 And s2<0 And s3<0 And s4<0 And s0<0 Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

End If

'Assuming more than one sensor activates from either side of the robot at a given time
" a case of sensors 3 and 0

If CStr(s3)>0 And CStr(s0)>0 Then

If CStr(s3)<CStr(s0) Then

r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s3)>CStr(s0) Then

r_circum=CStr(s0)

r_circum0=CStr(s0)

End If

End If

' a case of sensors 3 and 1

If CStr(s3)>0 And CStr(s1)>0 Then

If CStr(s3)<CStr(s1) Then

r_circum=CStr(s3)

t_circum3=CStr(s3)

Elself CStr(s3)>CStr(s1) Then

r_circum=CStr(s1)

r_circum!=CStr(s1)

156

End If

End If

'a case of sensors 3 and 2

If CStr(s3)>0 And CStr(s2)>0 Then

If CStr(s3)<CStr(s2) Then

r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s3)>CStr(s2) Then

r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

' a case of sensors 3,1 and 0

If CStr(s3)>0 And CStr(s0)>0 And CStr(s1)>0 Then
If CStr(s3)<CStr(s0) And CStr(s3)<CStr(s1) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s3) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s1)<CStr(s0) And CStr(s1)<CStr(s3) Then
r_circum=CStr(sl)

r_circuml1=CStr(s1)

End If

End If

'a case of sensors 3,2 and 0

If CStr(s3)>0 And CStr(s0)>0 And CStr(s2)>0 Then
If CStr(s3)<CStr(s0) And CStr(s3)<CStr(s2) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s0)<CStr(s3) And CStr(s0)<CStr(s2) Then

157

r_circum=CStr(s0)

r_circum(=CStr(s0)

Elself CStr(s2)<CStr(s0) And CStr(s2)}<CStr(s3) Then

r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

' a case of sensors 3,1 and 2

If CSir(s3)>0 And CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s3)<CStr(s1) And CStr(s3)<CStr(s2) Then

r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s1)<CStr(s3) And CStr(s1)<CStr(s2) Then

r_circum=CStr(s1)

r_circum=CStr(s1)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s3) Then

r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

"a case of sensors 3,1,2 and 0

If CStr(s3)>0 And CStr(s0)>0 And CStr(51)>0 And CStr(s2)>0 Then

If CStr(s3)<CStr(s1) And CStr(s3)<CStr(s2) And CStr(s3)<CStr(s0) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s3) And CStr(s1)<CS8tr(s0) Then
r_circum=CStr(s1)

r_circum!1=CStr(sl)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s3) And CStr(s2)<CStr(s0) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

158

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s2) And CStr(s0)<CStr(s3) Then
r_circum=CStr(s0}
r_circum{0=CStr(s0)

End If

End If

" a case of sensors 4 and 0

If CStr(s4)>0 And CStr(s0)>0 Then
If CStr(s4)<CStr(s0) Then
r_circum=CStr(s4)
r_circum4=CStr(s4)

Elself CStr(s4)>CStr(s0) Then
r_circum=CStr(s0)
t_circum0=CStr(s0)

End If

End If

" a case of sensors 4 and 1

If CStr(s4)>0 And CStr(s1)>0 Then
If CStr(s4)<CStr(s1) Then
r_circum=CStr(s4)
r_circum4=CStr(s4)

Elself CStr{s4)>CStr(s1) Then
r_circum=CStr(s1)
r_circum1=CStr(s1)

End If

End If

' a case of sensors 4 and 2

If CStr(s4)>0 And CStr(s2)>0 Then
If CStr(s4)<CStr(s2) Then
r_circum=CStr(s4)
r_circum4=CStr(s4)

Elself CStr(s4)>CStr(s2) Then

159

r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

' a case of sensors 4,1 and O

If CStr(s4)>0 And CStr(s0)>0 And CStr(s1)>0 Then
If CStr(s4)<CStr(s0) And CStr(s4)<CStr(s1) Then
r_circum=CStr(s4)

r_circam4=CStr(s4)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s4) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s1)<CStr(s0) And CStr(s1)<CStr(s4) Then
r_circum=CStr(s!)

r_circum1=CStr(s1)

End If

End If

' a case of sensors 4,2 and 0

If CStr(s4)>0 And CStr(s0)>0 And CStr(s2)>0 Then
If CStr(s4)<CStr(s0) And CStr{s4)<CStr(s2) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s0)<CStr(s2) And CStr(s0)<CStr(s4) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s2)<CStr(s0) And CStr(s2)<CStr(s4) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

'a case of sensors 4,1 and 2

160

If CStr(s4)>0 And CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s4)<CStr(s1) And CStr(s4)<CStr(s2) Then

r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s4) Then

r_circurn=CStr(s1)

r_circuml=CStr(sl})

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s4) Then

r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

‘a case of sensors 4,1,2 and 0

If CStr(s4)>0 And CStr(s0)>0 And CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s4)<CStr(s1) And CStr(s4)<CStr(s2) And CStr(s4)<CStr(s0) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s4) And CStr(s1)<CStr(s0) Then
r_circum=CStr(sl)

r_circum1=CStr(s1)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s4) And CStr{s2)<CStr(s0) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s0)<CStr(s1)} And CStr(s0)<CS8tr(s2) And CStr(s0)<CStr(s4) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

End If

End If

'a case of sensors 5 and 0

If CStr(s5)>0 And CStr(s0)>0 Then

If CStr(s5)<CStr(s0) Then

161

r_circum=CS8tr(s5)
r_circum5=CStr(s5)

Elself CStr(s5)>CStr(s0) Then
r_circum=CStr(s0)
r_circum0=CStr(s0)

End If

End If

' a case of sensors 5 and 1

If CStr(s5)>0 And CStr(s1)>0 Then
If CStr(s5)<CStr(s1) Then
r_circum=CStr(s5)
r_circum5=CStr(s5)

Elself CStr(s5)>CStr(s1) Then
r_circum=CStr(s1)
r_circum1=CStr(sl)

End If

End If

"a case of sensors 5 and 2

If CStr(s5)>0 And CStr(s2)>0 Then
If CStr(s5)<CStr(s2) Then
r_circum=C8tr(s5)
r_circum5=CStr(s5)

Elself CStr(s5)>CStr(s2) Then
r_circum=CsStr(s2)
r_circum2=CStr(s2)

End If

End If

"a case of sensors 5,1 and 0

If CStr(s5)>0 And CStr(s0)>0 And CStr(s1)>0 Then
If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s1) Then

r_circum=CS8tr(s5)

162

r_circum5=CStr(s5)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s5) Then
r_circum=CStr(s0}

r_circum0=CStr(s0)

Elself CStr(s1)<CStr(s0) And CStr(s1)<CStr(s5) Then
r_circum=CStr(s1)

r_circuml=CStr(sl)

End If

End If

"a case of sensors 5,2 and 0

If CStr(s5)>0 And CStr(s0)>0 And CStr(s2)>0 Then
If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s2) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s0)<CSir(s2) And CStr(s0)<CStr(sS) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s2)<CStr(s0) And CStr(s2)<CStr(s5) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

' a case of sensors 5,1 and 2

If CStr(s5)>0 And CStr(s1 >0 And CStr(s2)>0 Then
If CStr(s5)<CStr(s1) And CStr(sS5)<CStr(s2) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s5) Then
r_circum=CStr(s1)

T_circum1=CStr(s1)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s5) Then

163

r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

* a case of sensors 5,1,2 and 0

If CStr(s5)>0 And CStr(s0)>0 And CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s0) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s5) And CStr(s1)<CStr(s0) Then
r_circum=CStr(s1)

r_circum1=CStr(s1)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s0) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s2) And CStr(s0)<CStr(s5) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

End If

End If

' a case of sensors 3,5 and 0

If CStr(s3)>0 And CStr(s5)>0 And CStr(s0)>0 Then

If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s3) Then

r_circum=CSir(s5)

r_circum5=CStr(s5)

Elself CStr(s3)<CStr(s0) And CStr(s3)<CStr(s5) Then

r_circum=CSir(s3)

r_circum3=CStr(s3)

Elself CStr(s0)<CStr(s5) And CStr(s0)<CStr(s3) Then

r_circurn=CStr(s0)

r_circum0=CStr(s0)

164

End If

End If

"a case of sensors 3,5 and 1

If CStr(s3)>0 And CStr(s5)>0 And CStr(s1)>0 Then
If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s3) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s3)<CStr(s1) And CStr(s3)<CStr(s5) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s1)<CStr(sS) And CStr(s1)<C8tr(s3) Then
r_circum=CStr(s1)

r_circum1=CStr(sl)

End If

End If

"a case of sensors 3,5 and 2

If CStr(s3)>0 And CStr(s5)>0 And CStr(s2)>0 Then
If CStr(s5)<CStr(s2) And CStr(s5)<CStr(s3) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s3)<CStr(s2) And CStr(s3)<CStr(s5) Then
r_circum=CStr(s3)

r_circum3=CSir(s3)

Elself CStr(s2)<CStr(s5) And CStr(s2)<CStr(s3) Then
r_circum=C8tr(s2)

r_circum2=CStr(s2)

End If

End If

"a case of sensors 3,5,1 and 0

If CStr(s3)>0 And CStr(s5)>0 And CStr(s0)>0 And CStr(s1)>0 Then
If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s1) And CStr(s5)<CStr(s3)Then

165

r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s5) And CStr(s0)<CStr(s3) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s1)<CStr(s0) And CStr(s1)<CStr(s5) And CStr(s1)<CStr(s3) Then
r_circum=CStr(s1)

r_circum=CStr(s1)

Elself CStr(s3)<CStr(s0) And CStr(s3)<CStr(s5) And CStr(s3)<CStr(s1) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

" a case of sensors 3,5,2 and 0

If CStr(s3)>0 And CStr(s5)>0 And CStr(s0)>0 And CStr(s2)>0 Then

If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s2} And CStr(s5)<CStr(s3)Then
r_circum=CStr(s5)

r_circumS=CStr(s5)

Eiself CStr(s0)<CStr(s2) And CStr(s0)<CStr(s5) And CStr(s0)<CStr(s3) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s2)<CStr(s0) And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s3) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s3)<CStr(s0) And CStr(s3)<CStr(s5) And CStr(s3)<CStr(s2) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

' a case of sensors 3,5,1 and 2

If CStr(s3)>0 And CStr(s5)>0 And CStr(s1)>0 And CStr(s2)>0 Then

166

If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s3)Then

r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(sS) And CStr(s1)<CStr(s3) Then

r_circum=CStr(s1)

r_circum1=CStr(s1})

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s3) Then

r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s3)<CStr(s1) And CStr(s3)<CStr(s5) And CStr(s3)<CStr(s2) Then

r_circum=CStr(s3)
r_circum3=CSir(s3)
End If

End If

' a case of sensors 3,5,0,1 and 2
If CStr(s3)>0 And CStr(s5)>0 And CStr(s1)>0 And CStr(s2)>0 And CStr(s0)>0Then
If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s3) And CStr(s5)<CStr(s0)

Then

r_circum=CStr(s5)
r_circumS5=CStr(s5)
Elself CStr(s1)<CStr(s2)
CSitr(s1)<CStr(s0)Then
r_circum=CStr(s1)
r_circum]1=CStr(sl})

Elself CStr(s2)<CStr(s1)
CStr(s2)<CStr(s0) Then
r_circum=CStr(s2)
r_circum2=CStr(s2)
Elself CStr(s3)<CStr(sl)
CStr(s3)<CStr(s0) Then

r_circum=CStr(s3)

And CStr(s1)<CStr(sS) And CStr(s1)<CStr(s3) And

And CStr(s2)<CStr(sS) And CStr(s2)<CStr(s3) And

And CStr(s3)<CStr(sS) And CStr(s3)<CStr(s2) And

167

r_circum3=CStr(s3)

End If

End If

"a case of sensors 4,5 and 0

If CStr(s4)>0 And CStr(s5)>0 And CStr(s0)>0 Then
If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s4) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s4)<CStr(s0) And CStr(s4)<CStr(s5) Then
r circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s0)<CStr(s5) And CStr(s0)<CStr(s4) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

End If

End If

" a case of sensors 4,5 and 1

If CStr(s4)>0 And CStr(s5)>0 And CStr(s1)>0 Then
If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s4) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s4)<CStr(s1) And CStr(s4)<CStr(s5) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s1)<CStr(s5) And CStr(s1)<CStr(s4) Then
r_circum=CStr(s1)

r_circum1=CStr(sl)

End If

End If

"a case of sensors 4,5 and 2

If CStr(s4)>0 And CStr(s5)>0 And CStr(s2)>0 Then

168

\-

If CStr(s5)<CStr(s2) And CStr(s5)<CStr(s4) Then

r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s4)<CStr(s2) And CStr(s4)<CStr(s5) Then

r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s2)<CStr(s5) And CStr(s2)<CStr(s4) Then

r_circum=CStr(s2)

t_circum2=CStr(s2)

End If

End If

"a case of sensors 4,5,1 and 0

If CStr(s4)>0 And CStr(s5)>0 And CStr(s0)>0 And CStr(s1)>0 Then

If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s1) And CStr(s5)<CStr(s4)Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(sS) And CStr(s0)<CStr(s4) Then
r_circum=CStr(s0}

r_circum0=CStr(s0)

Elself CStr(s1)<CStr(s0) And CStr(s1)<CStr(s5) And CStr(s1)}<CStr(s4) Then
r_circum=CStr(s1)

r_circum1=CStr(s1)

Elself CStr(s4)<CStr{s0) And CStr(s4)<CStr(s5) And CStr(s4)<CStr(s1) Then
r_circum=CStr(s4)

tr_circum4=CStr(s4)

End If

End If

"a case of sensors 4,5,2 and 0

If CStr(s4)>0 And CStr(s5)>0 And CStr(s0)>0 And CStr(s2)>0 Then

If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s4)Then

r_circum=CStr(s5)

169

r_circeum5=CStr(s5)

Elself CStr(s0)<CStr(s2) And CStr(s0)<CStr(s5) And CStr(s0)<CStr(s4) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s2)<CStr(s0) And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s4) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s4)<CStr(s0) And CStr(s4)<CStr(s5) And CStr(s4)<CStr(s2) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

End If

End If

"a case of sensors 4,5,1 and 2

If CStr(s4)>0 And CStr(s5)>0 And CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s4)Then
1_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s5) And CStr(s1)<CStr(s4) Then
r_circum=CStr(s1)

r_circum1=CStr(s1)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s4) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s4)<CStr(s1) And CStr(s4)<CStr(s5) And CStr(s4)<CStr(s2) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

End If

End If

' a case of sensors 4,5,0,1 and 2
If CStr(s4)>0 And CStr(s5)>0 And CStr(s1)>0 And CStr(s2)>0 And CStr(s0)>0Then

170

If CStr(s5)<CStr(s!) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s0)

Then

r_circum=CStr(s5)
r_circum5=CStr(s5)
Elself CStr(s1)<CStr(s2)
CStr(s1)<CStr(s0)Then
t_circum=CStr(s1)
r_circum1=CStr(s1)

Elself CStr(s2)<CStr(s1)
CStr(s2)<CStr(s0) Then
r_circum=CStr(s2)
r_circum2=CStr(s2)
Elself CStr(s4)<CStr(sl)
CStr(s4)<CStr(s0) Then
r_circum=CSir(s4)
r_circum4=CStr(s4)

End If

End If

'a case of sensors 3,4 and 0

And CStr(s1)<CStr(s5)

And CStr(s2)<CStr(s5)

And CStr(s4)<CStr(s5)

If CStr(s3)>0 And CStr(s4)>0 And CStr(s0)>0 Then
If CStr(s4)<CStr(s0) And CStr(s4)<CStr(s3) Then

r_circum=CStr(s4)
r_circum4=CStr(s4)

Elself CStr(s3)<CStr(s0) And CStr(s3)<CStr(s4) Then

r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s0)<CStr(s4) And CStr(s0)<CStr(s3) Then

r_circum=C8Str(s0)

r_circum0=CStr(s0)

End If

End If

'a case of sensors 3,4 and 1

171

And CStr(s1)<CStr(s4) And
And CSir(s2)<CStr{(s4) And
And CStr(s4)<CStr(s2) And

-}/

If CStr(s3)>0 And CStr(s4)>0 And CStr(s1)>0 Then
If CStr(s4)<CStr(s1) And CStr(s4)<CStr(s3) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s3)<CStr(s1) And CStr(s3)<CStr(s4) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s1)<CStr(s4) And CStr(s1)<CStr(s3) Then
r circum=CStr(s1)

r_circum1=CStr(s])

End If

End If

"a case of sensors 3,4 and 2

If CStr(s3)>0 And CStr(s4)>0 And CStr(s2)>0 Then
If CStr(s4)<CStr(s2) And CStr(s4)<CStr(s3) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

EIseIfCStr(s3)<CStr(32) And CStr(s3)<CStr(s4) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s2)<CStr(s4) And CStr(s2)<CStr(s3) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

End If

End If

"a case of sensors 3,4,1 and 0

If CStr(s3)>0 And CStr(s4)>0 And CStr(s0)>0 And CStr(s1)>0 Then
If CStr(s4)<CStr(s0) And CStr(s4)<CStr(s1) And CStr(s4)<CStr(33jThen
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s0)<CStr(s1) And CStr(s0)<CStr(s4) And CStr(s0)<CStr(s3) Then

172

?_f

r_circum=CStr(s0)

r_circum0=CStr(s0)

Elself CStr(s1)<CStr(s0) And CStr(s1)<CS8tr(s4) And CStr(s1)<CStr(s3) Then
r_circum=CStr(s1}

r_circum1=CStr{s1)

Elself CStr(s3)<CStr(s0) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s1) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

'a case of sensors 3,4,2 and 0

If CStr(s3)>0 And CStr(s4)>0 And CStr(s0)>0 And CStr(s2)>0 Then

If CStr(s4)<CStr(s0) And CStr(s4)<CStr(s2) And CStr(s4)<CStr(s3)Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s0)<CStr(s2) And CStr(s0)<CStr(s4) And CStr(s0)<CStr(s3) Then
r_circum=CStr(s0)

r_circum{0=CStr(s0)

Elself CStr(s2)<CStr(s0) And CStr(s2)<CStr(s4) And CStr(s2)<CStr(s3) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s3)<CStr(s0) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s2) Then
r_circum=CStr(s3)

r_circum3=CSir(s3)

End If

End If

"a case of sensors 3,4,1 and 2

If CStr(s3)>0 And CStr(s4)>0 And CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s4)<CStr(s1) And CStr(s4)<CStr(s2) And CStr(s4)<CStr(s3)Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

173

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s4) And CStr(s1)<CStr(s3) Then

r_circum=CStr(s])

r_circum]=CStr(s1)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CStr(s4) And CStr(s2)<CStr(s3) Then

r_circum=CStr(s2)
r_circum2=CStr(s2)

Elself CStr(s3)<CStr(s1) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s2) Then

r_circum=CStr(s3)
r_circum3=CStr(s3)
End If

End If

'a case of sensors 3,4,0,1 and 2
If CStr(s3)>0 And CStr(s4)>0 And CStr(s1)>0 And CStr(s2)>0 And CStr(s0)>0 Then
If CStr(s4)<CStr(s1) And CStr(s4)<CStr(s2) And CStr(s4)<CStr(s3) And CStr(s4)<CStr(s0)

Then

r_circum=CStr(s4)
r_circum4=CStr(s4)
ElselIf CSir(s1)<CStr(s2)
CStr(s1)<CStr(s0)Then
r_circum=CStr(s1)
r_circum1=CStr(sl)

Elself CStr(s2)<CStr(sl)
CStr(s2)<CStr(s0) Then
r_circum=CStr(s2)
r_circum2=CStr(s2)
Elself CStr(s3)<CStr(s1)
CStr(s3)<CStr(s0) Then
r_circum=CStr(s3)
r_ctreum3=CStr(s3)
Elself CStr(s0)<CStr(sl)
CStr(s0)<CStr(s3) Then

And

And

And

And

CStr(s1)<CStr(s4)

CStr(s2)<CStr(s4)

' CStr(s3)<CStr(s4)

CStr(s0)<CStr(s4)

174

And

And

And

And

CStr(s1)<CStr(s3)

CStr(s2)<CStr(s3)

CStr(s3)<CStr(s2)

CStr(s0)<CStr(s2)

And

And

And

And

r_circum=CStr(s0}

r_circum0=CStr(s0)

End If

End If

"a case of sensors 3,4,5 and 0

If CStr(s4)>0 And CStr(s5)>0 And CStr(s3)>0 And CStr(s0)>0 Then

If CStr(s5)<CStr(s0) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s3) Then
r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s4)<CStr(s0) And CStr(s4)<CStr(s5) And CStr(s4)<CStr(s3) Then
r_circum=CS8tr(s4)

r_circum4=CStr(s4)

Elself CStr(s0)<CStr(s5) And CStr(s0)<CStr(s4) And CStr(s0)<CStr(s3) Then
r_circum=CStr(s0)

r_circumn{=CStr(s0)

Elself CStr(s3)<CStr(s5) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s0) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

"a case of sensors 3,4,5 and 1

If CStr{s4)>0 And CStr(s5)>0 And CStr(s1)>0 And CStr(s3)>0 Then

If CStr(s5)<CStr(s1) And CStr(sS)<CStr(s4)And CStr(s5)<CStr(s3) Then
r_circum=CSti(55)

r_circum5=CStr(s5)

Elself CStr(s4)<CStr(s1) And CStr(s4)<CStr(s5)And CStr(s4)<CStr(s3) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s1)<CStr(s5) And CStr(s1)<CStr(s4) And CStr(s1)<CStr(s3)Then
r_circum=CStr(s1)

r_circum=CStr(s1)

175

Elself CStr(s3)<CStr(s5) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s1) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

' a case of sensors 3,4,5 and 2

If CStr(s4)>0 And CStr(s5)>0 And CStr(s2)>0 And CStr(s3)>0 Then

If CStr(s5)<CStr(s2) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s3) Then
r_circum=CSir(s5)

r_circum5=CStr(s5)

Elself CStr(s4)<CStr(s2) And CStr(s4)<CStr(s5) And CStr(s4)<CStr(s3) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s2)<CStr(s5) And CStr(s2)<CStr(s4) And CStr(s2)<CStr(s3) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s3)<CStr(s5) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s2) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

' a case of sensors 3,4,5,1 and 0

If CStr(s4)>0 And CStr(s5)>0 And CStr(s0)>0 And CStr(s1)>0 And CStr(s3)>0 Then
If CStr(s5)<CStr(s0) And CStr(s5)<CStr(sl) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s3)
Then

r_circum=CStr(s5)

r_circum5=CStr(s5)

ElseIf CStr(s0)<CStr(s1) And CStr(s0)<CStr(s5) And CStr(s0)<CStr(s4) And
CStr(s0)<CStr(s3) Then

r_circum=CStr(s0)

r_circumQ0=CStr(s0)

176

Elself CStr(s1)<CStr(s0) And CStr(s1)<CStr(s5) And CStr(s1)<CStr(s4)And
CStr(s1)<CStr(s3) Then

r_circum=CStr(s1)

r_circum1=CStr(s1)

Elself CStr(s4)<CStr(s0) And CStr(s4)<CStr(s5}) And CStr(s4)<CStr(sl}) And
CStr(s4)<CStr(s3) Then

r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s3)<CStr(s5) And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s0) And
CStr(s3)<CStr(sl) Then

r circum=CStr(s3)

r_circum3=CStr(s3)

End If

End If

'a case of sensors 3,4,5,2 and 0

If CStr(s4)>0 And CStr(s5)>0 And CStr(s0)>0 And CStr(s2)>0 And CStr(s3)>0 Then

If CStr(s5)<CStr(s0) And CStr(s5)<CS8tr(s2) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s3)
Then

r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s0)<CStr(s2) And CStr(s0)<CStr(s5) And CStr(s0)<CStr(s4) And
CStr(s0)<CStr(s3) Then

r_circum=CStr(s0)

r_circum0=CStr(s0)

ElseIf CStr(s2)<CStr(s0) And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s4)And
CStr(s2)<CStr(s3) Then

r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s4)<CStr(s0) And CStr(s4)<CStr(s5) And CStr(s4)<CStr(s2) And
CStr(s4)<CStr(s3) Then

r_circum=CStr(s4)

177

r_circum4=CStr(s4)

Elself CStr(s3)<CStr(s5)
CStr(s3)<CStr(s2) Then
r_circum=CStr(s3)
r_circum3=CStr(s3)

End If

End If

And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s0) And

' a case of sensors 3,4,5,1 and 2
If CStr(s4)>0 And CStr(s5)>0 And CStr(s2)>0 And CStr(s1)>0 And CStr(s3)>0 Then
If CStr(s5)<CStr(s2) And CStr(s5)<CStr(s1) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s3)

Then

r_circum=CStr(s5)
r_circum5=CSitr(s5)

Elself CStr(s2)<CStr(sl)
CStr(s2)<CStr(s3) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s1)<CStr(s2)

CStr(s1)<CStr(s3) Then
r_circum=CStr(s1)
r_circum1=CStr(sl)

Elself CStr(s4)<CStr(s2)
CStr(s4)<CStr(s3) Then
r_circum=CStr(s4)
r_circum4=CStr(s4)

Elself CStr(s3)<CStr(s5)
CStr(s3)<CStr(s1) Then
r_circum=CStr(s3)
r_circum=CStr(s3)

End If

End If

And CStr(s2)<CStr(s5) And CStr(s2)<CStr(s4) And

And CStr(s1)<CStr(s5) And CStr(s1)<CStr(s4)And

And CStr(s#)<CStr(s5) And CStr(s4)<CStr(s1) And

And CStr(s3)<CStr(s4) And CStr(s3)<CStr(s2) And

178

"a case of sensors 3,4,5,0,1 and 2

If CStr(s4)>0 And CStr(s5)>0 And CStr(s1)>0 And CStr(s2)>0 And CStr(s0)>0 And

CStr(s3)>0 Then

If CStr(s5)<CStr(s1) And CStr(s5)<CStr(s2) And CStr(s5)<CStr(s4) And CStr(s5)<CStr(s0)

And CStr(s5)<CStr(s3) Then

r_circum=CStr(s5)

r_circum5=CStr(s5)

Elself CStr(s1)<CStr(s2) And CStr(s1)<CStr(s5)
CStr(s1)<CStr(s0} And CStr(s1)<CStr(s3)Then
r_circum=CStr(sl)

r_circum1=CStr(sl)

Elself CStr(s2)<CStr(s1) And CStr(s2)<CSir(s3)
CStr(s2)<CStr(s0) And CStr(s2)<CStr(s3) Then
r_circum=CStr(s2)

r_circum2=CStr(s2)

Elself CStr(s4)<CStr(s1) And CStr(s4)<CStr(s5)
CStr(s4)<CStr(s0) And CStr(s4)<CStr(s3) Then
r_circum=CStr(s4)

r_circum4=CStr(s4)

Elself CStr(s3)<CStr(s5) And CS8tr(s3)<CStr(s4)
CStr(s3)<CStr(s1) And CStr(s3)<CStr(s2) Then
r_circum=CStr(s3)

r_circum3=CStr(s3)

Elself CStr(s0)<CStr(s5) And CStr(s0)<CStr(s4)
CStr(s0)<CStr(s1) And CStr(s0)<CStr(s2) Then
r_circum=CStr(s0)

r_circum0=CStr(s0)

End If

End If

And

And

And

And

And

CStr(s1)<CStr(s4)

CStr(s2)<CStr(s4)

CStr(s4)<CStr(s2)

CStr(s3)<CStr(s0)

CStr(s0)<CStr(s3)

'Assuming more than one sensor activates from just one side of the robot.

"a case of sensors 3,4 and 5

179

And

And

And

And

And

If CStr(s4)>0 And CStr(s5)>0 And CStr(s3)>0 Then
If CStr(s5)<CStr(s4) And CStr(s5)<CStr(s3) Then
r_circum=CStr(s5)

Elself CStr(s4)<CStr(s3) And CStr(s4)<CStr(s5) Then
r_circum=CStr(s4)

Elself CStr(s3)<CStr(s4) And CStr(s3)<CStr(s5) Then
r_circum=CStr(s3)

End If

End If

' a case of sensors 3,4

If CStr(s4)>0 And CStr(s3)>0 Then

If CStr(s4)<CStr(s3) Then

r_circum=CStr(s4)

Elself CStr(s3)<CStr(s4) Then

r_circum=CStr(s3)

End If

End If

' a case of sensors 3,5

If CStr(s5)>0 And CStr(s3)>0 Then

If CStr(s5)<CStr(s3) Then

r_circum=CStr(s5)

Elself CStr(s3)<CStr(s5) Then

r_circum=CStr(s3)

End If

End If

' a case of sensors 4,5

If CStr(s5)>0 And CStr(s4)>0 Then

If CStr(s5)<CStr(s4) Then

r_circum=CStr(s5)

Elself CStr(s4)<CStr(s5) Then

r_circum=CStr(s4)

180

End If

End If

'Assuming more than one sensor activates from just one side of the robot.
"a case of sensors 0,1 and 2

If CStr(s0)>0 And CStr(s1)>0 And CStr(s2)>0 Then
If CStr(s0)<CStr(s!) And CStr(s0)<CStr(s2) Then
r_circum=CStr(s0)

Elself CStr(s1)<CStr(s0) And. CStr(s1)<CStr(s2) Then
r_circum=CSir(s1)

Elself CStr{s2)<CStr(s0) And CStr(s2)<CStr(s1) Then
r_circum=CSir(s2)

End If

End If

' a case of sensors 0,1

If CStr(s0)>0 And CStr(s1)>0 Then

If CStr(s0)<CStr(s1) Then

r_circum=CStr(s0)

ElseIf CStr(s1)<CStr(s0) Then

r_circum=CStr(s1)

End If

End If

*a case of sensors 1,2

If CStr(s1)>0 And CStr(s2)>0 Then

If CStr(s1)<CStr(s2) Then

r_circum=CStr(s1)

Elself CStr(s2)<CStr(s1) Then

r_circum=CStr(s2)

End If

End If

' a case of sensors 0,2

If CStr(s0)>0 And CStr(s2)>0 Then

181

If CStr(s0)<CStr(s2) Then

r_circum=CStr(s0)

Elself CStr(s2)<CStr(s0) Then
t_circum=CStr(s2)

End If

End If
robot_angle_first_obstacle=GetMobotTheta(0)

vk dokk dok R Rk Rk £ x4 D ASE THREE**
ok

sk x4 NAVIGATION TOWARDS DETECTING LOCAL MINIMA SITUATION**#+

%

Do

x=GetMobotX(()

y=GetMobotY (0)

x1=GetMobotX(1)

y1=GetMobotY(1)

x2=GetMobotX (2}

y2=GetMobotY(2)

x3=GetMobotX(3)

y3=GetMobotY(3)

x4=GetMobotX(4)

y4=GetMobotY(4)
dis_targ=Sqr((X-X_target)"2+(Y-Y _target)"2)
dis_x1_targ=Sqr((x1-x_target)"2+(y1-y_target)"2)
dis_x2_targ=Sqr((x2-x_target)"2+(y2-y_target)"2)
dis x3_targ=Sqr((x3-x_target)"2+(y3-y_target)"2)
dis x4 _targ=Sqr((x4-x_target)"2+(y4-y_target)"2)
dis_x1_robot=Sqr((x1-x)"2+(y1-y)"2)
dis_x2_robot=8qr{(x2-x)"2+(y2-y)"2)
dis_x3_robot=Sqr((x3-x)"2+(y3-y)"2)

182

dis_x4 robot=Sqr((x4-x)"2+(y4-y)"2)

dis_targ_x1 robot=dis_x1_robot+dis_x1_targ
dis_targ_x2_robot=dis_x2_robot+dis_x2_targ

dis_targ_x3 robot=dis_x3_robot+dis_x3_targ

dis_targ x4 _robot=dis_x4_robot+dis_x4_targ
robot_new_angle=GetMobotTheta(0)

rot=RotationalDiff(1,X1 target,Y1_target)
s0=MeasureRange(0,0,3)

s1=MeasureRange(0,1,3)

s2=MeasureRange(0,2,3)

s3=MeasureRange(0,3,3)

s4=MeasureRange(0,4,3)

s5=MeasureRange(0,5,3)
dis_x1_robot=Sqr((x1-x)"2+(y1-y)"2)
dis_x2_robot=Sqr((x2-x)}"2+(y2-y)"2)
dis_x3_robot=Sqr((x3-x)"2+(y3-y)"2)
dis_x4_robot=Sqr((x4-x)"2+(y4-y)"2)

If dis_targ1>0 And X1<X1_target And Y1<Y1_target Then
StepForward

Elself dis_targ1>0 And X1>X1_target And Y1>Y1_target Then
StepForward

Elself dis_targ1>0 And X1>X1_target And Y1<Y1_target Then
StepForward

Elself dis_targ!>0 And X1<X1_target And Y1>Y1_target Then
StepForward

Elself dis_targ1>0 And X1<X1_target And Y1=Y1_target Then
StepForward

Elself dis_targl>0 And X1>X1_target And Y1=Y1_target Then
StepForward

Elself dis_targ1>0 And X1=X1_target And Y1<Y1_target Then
StepForward

183

Elself dis_targi>0 And X1=X1 target And Y1>Y1_target Then
StepForward
End If
If dis_targl<=0.1 And dis_targ<=0.1 Then Exit Do
" main Start main loop
X=GetMobotX(0) 'Present mobot coordinates (in meters)
Y=GetMobotY (0)
X _grid=CoordToGrid(0,X) ' indexes of cells where the
Y grid=CoordToGrid(0,Y) 'mobot center is
' Perform a range scan and update
' the Certainty Grid (max. cell value=3)
rel_angle=Abs(GetSensorAngle(0,sen,1))
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)
For i=Abs(X_grid-10) To X_grid+10
For j=Abs(Y grid-10) To Y_grid+10
C=GetCell(0,i,)}
If C<0 Then
If s0<.3 Or s1<.3 Or s2<.3 Or s3<.3 Or s4<.3 Or s5<.3 Then
d=Sqr((X_grid-i)"2-+(Y_grid-j}*2)
If d<0 Then
Fer=3*rel_angle/d"2
Frx=Frx+Fcr/3*C/d"2*(X_grid-i)/d
Fry=Fry+Fer/3*C/A"2*(Y_grid-j)/d
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)
StepForward
SetSteering(0,0,180)
Fort=1To 5
StepForward
Next

184

SetSteering(0,0.1,Rnd*30-15)

End If

End If

End If

End If

Next

Next

' The target generates a constant-magnitud attracting force
Fex=(X_target-X)/dis_targ
Fey=(Y target-Y)/dis_targ
Rx=Frx+Fcx 'Resultant Force Vector
Ry=Fry+Fcy
rot=Rotational Diff(0,X+Rx,Y+Ry) 'shortest rotational difference between
'current direction of travel and direction of vector R
SetSteering(0,robotspeed,rot*3) 'mobot turns into the direction of R
'at constant speed and steering rate
'proportional to the rotational difference

StepForward ' Dynamics simulation progresses one time step

If dis_targ <=.2 And dd-r_sum>=.01 Then

frx=0

fry=0

End If

'Capturing the robot's angle along the initial line of sight

If dis_targ<.05 Then Exit All ,

If Abs(robot_angle-robot_new_angle)>=160 And Abs(robot_angle-robot_new_angle)<=200

Then Exit Do

Debug.Print d

Debug.Print d

Loop

185

A EEERR KRR E AR ARAQTAGE FOURF*HHHF R bkt kb bk R kk ok Ak ko bk k

**********VIRTUAL GOAL POSITIONI’I\IG********************#****
coute:

X_Nnew=x

y_new=y
vx1=x_new+r_circum
vyl=y new
VvX2=x_new-r_circum
If vx2<0 Then

vx2=0

End If

vy2¥yﬂnew
vx3=X_new

vy3=y new+r_circum
vx4=x_new
vy4=y_new-r_circum
If vy4<0 Then

vy4=()

End If
vx5=x_new-+r_circum
vyS=y new-r_circum
If vy5<0 Then

vy5=(

End If
vx6=x_new+r_circum
vy6=y new+tr _circum
VX7=X_new-r_circum
If vx7<0 Then

vx7=0

End If

vy7=y_new+r_circum

186

vx8=x_new-r_circum

If vx8<0 Then

vx8=0

End If

vy8=y new-r_circum

If vy8<0 Then

vy8=0

End If

dis_target vi=Sqr((X_target-vx1)"2+(y_target-vyl)"2)

dis_target v2=Sqr((X_target-vx2)"2-+(y_target-vy2)"2)
dis_target_v3=Sqr((X_target-vx3)’\2+(y_target-vy3)"2)

dis_target v4=Sqr((X_target-vx4)"2+(y_target-vy4)"2)

dis_target v5=Sqr((X_target-vx5)"2+(y_target-vy5)"2)

dis_target v6=Sqr((X_target-vx6)"2+(y_target-vy6)"2)
disﬂtarget_v7=Sqr((X_target-vx7)"2+(y_target-vy7)"‘2)
dis_ta.rget_vS=Sqr((X_target-vx8)A2+(y_target-vy8)’\2)

If dis_target_v1>dis_targ And dis_target_v2>dis_targ And dis_target vl<dis_target_v3 And
dis_target vl<dis_target_v6 And dis_target_vl1<dis_target v7 Then

If dis_target_v1>dis_targ And dis_target_v2>dis_targ And dis_target v2<dis_target_v3 And
dis_target_v2<dis_target v6 And dis_target_v2<dis_target v7 Then

GoTo coutla

End If

End If

If dis_target vi>dis_targ And dis_target_v2>dis_targ And dis_target vl<dis_target v3 And
dis_target vl<dis target_v6 And dis_target_v1<dis_target v7 Then

If dis_target v1>dis_targ And dis_target v2>dis_targ And dis_target v2<dis_target_v3 And
dis_target v2<dis_target_v6 And dis_target v2<dis_target_v7 Then

GoTo coutla

End If

End If

187

-

ok kkkk ke rk ok CHECKING EDGES FOR VIRTUAL GOAL POSITIONING
Ak Rk kR Rk k% AT GORITHM TO POSITION VIRTUAL GOAL**#### %kt krhddrsk ¥+

%%

coutla:
HxCHOOSING BETWEEN POSITIONS #1 and #2 FOR VIRTUAL GOAL POSITIONING

ok ke

wxrk A CASE WHERE ACTIVATED SENSOR(S) ARE FROM ONLY ONE SIDE****##*
If r_circum0 >0 Orr_circuml > 0 Or r_circum2 > 0 And r_circum3 <0 Andr_circumé4 <0
And r _circum5 < 0 Then

GoTo coutlb
Elself r_circum3 >0 Or r_circum4 > 0 Or r_circum5 > 0 And r_circum0 <0 And r_circum]

<0 Andr_circum2 <0 Then

GoTo coutlc

End If

*+CHOOSING BETWEEN POSITIONS #1 and #2 FOR VIRTUAL GOAL
POSITIONING**

'A CASE WHERE ACTIVATED SENSOR(S) ARE FROM EITHER SIDES OF THE
ROBOT

'A CASE OF SENSORS 3 AND 0

If r circum0>0 Andr_circum3 > 0 Then
If r_circum0<r_circum3 Then

GoTo coutlb

Elself r_circum0> r_circum3 Then

GoTo coutlc

End If

End If

'A CASE OF SENSORS 3 AND 1
Ifr_circuml >0 Andr_circum3 > 0 Then
If r_circuml<r_circum3 Then

GoTo coutlb

Elselfr circuml>r_circum3 Then

188

GoTo coutle
End If
End If

'A CASE OF SENSORS 3 AND 2

Ifr circum2 >0 Andr_circum3 > 0 Then

If r_circum2<r_circum3 Then

GoTo coutlb

Elselfr circum2>r_circum3 Then

GoTo coutlc

End If

End If

'A CASE OF SENSORS 3,1 AND 0

Ifr_circum3 >0 And r_circum] > 0 And r_circum0 > 0 Then
Ifr circum3<r_circum! And r_circum0 Then

GoTo coutle

Elself r_circum0 Or r_circumi<r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,2 AND 0

Ifr_circum3 >0 Andr_circum2 > 0 And r_citcum0 > 0 Then
Ifr circum3<r_circum2 And r_circum@ Then

GoTo coutlc

Elselfr _circum0 Or r_circum2<r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,1 AND 2

Ifr_circum3 >0 Andr _circum2 >0 And r_circumi > 0 Then

Ifr_circum3<r_circum2 And r_circum0 Then

189

GoTo coutlc

Elselfr circuml Or r_circum2<r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,1, 2 AND O

If r_circum3 >0 Andr_circum2 >0 And r_circuml > 0 And r_circum(> 0 Then
Ifr_circum3<r_circum2 And r_circum0 And r_circum! Then
GoTo coutlc

Elself r_circum] Or r_circum2 Or r_circum0 <r_circum3 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 4 AND 0

Ifr circum4 >0 Andr_circum0 > O Then

If r_circumd4<r_circumO Then

GoTo coutlc

Elselfr_circum0 <r_circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4 AND 1

Ifr circum4 >0 Andr_circum! > 0 Then

If r_circum4<r_circuml Then

GoTo coutlc

Elselfr circuml <r_circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4 AND 2

Ifr_circum4 >0 Andr_circum2 > 0 Then

190

Ifr circum4<r_circum? Then

GoTo coutlc

Elselft_circum2 <r_circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,1 AND 0

Ifr circum4 >0 Andr_circum0 > 0 And r_circuml > 0 Then
Ifr_circum4<r_circuml Andr_circum0 Then
GoTo coutlc

Elself r_circuml Orr_circum0 < r_circum4 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,2 AND 0

Ifr circum4 >0 Andr circum0 > 0 And r_circum2 > 0 Then
Ifr_circum4<r _circum2 And r_circumQ Then
GoTo coutlc

Elselfr circum2 Orr_circum0 <r circum4 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,2 AND 1

If r_circum4 >0 Andr_circuml > 0 And r_circum2 > 0O Then
If r_circum4<r_circum2 And r_circum] Then
GoTo coutlc

Elselfr circum2 Or r_circum] <r_circum4 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,2,1 AND 0

191

Ifr_circum4 > 0 And r_circuml > 0 And r_circum?2 > 0 Then
If r_circum4<r_circum?2 And r_circuml And r_circumQ Then
GoTo coutlc

Elselfr_circum2 Or r_circum] Or r_circum0 <r_circum4 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 5 AND 0
Ifr_circum5 >0 Andr_circum0 > 0 Then
If r_circum5<r_circum0 Then

GoTo coutle

Elselfr circum@ <r_circum5 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 5 AND 1
Ifr_circum5 >0 Andr_circuml > 0 Then
If r_circum5<r_circuml Then

GoTo coutlc

Elself r_circum! <r_circum5 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 5 AND 2
Ifr_circum5>0 Andr_circum2 > 0 Then
If r_circum5<rt_circum2 Then

GoTo coutlc

Elselfr_circum2 <r_circum5 Then

GoTo coutlb

End If

End If

192

X

'A CASE OF SENSORS 5,1 AND 0

Ifr_circum5 >0 And r_circum0 > 0 And r_circuml > 0 Then
If r_circum5<r_circuml Andr_circum0 Then

GoTo coutlc

ElseIfr circuml Orr_circumO <r_circum$ Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,2 AND 0

If r circum5 >0 Andr_circum0 > 0 And r_circum2 > 0 Then
Ifr circum5<r_circum2 And r_circum0 Then

GoTo coutlc

Elselfr circum?2 Or r_circum0 <r_circum5 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,2 AND 1

Ifr circum5 >0 Andr_circuml >0 And r_circum2 > 0 Then
If r_circeum5<r_circum2 And r_circuml Then

GoTo coutlc

Elselfr_circum2 Or r_circum] <r_circum$ Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,2,1 AND 0

Ifr_circum5 > 0 And r_circum0 >0 And r_circuml > 0 And r_circum2 > 0 Then

If r circum5<r_circum2 And r_circum] And r_circumO Then

GoTo coutlc

Elselfr_circum2 Or r_circum] Or r_circum0 <r_circum5 Then
GoTo coutlb
End If

193

End If

‘A CASE OF SENSORS 3,5 AND 0

If r_circum5 > 0 And r_circum3>0 And r_circum0 > O Then
If r circumS5 Or r_circum3 <r1_circum0 Then

GoTo coutlc

Elself r_circum0 <r_circumS5 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,5 AND 1

Ifr_circum5 >0 And r_circum3 >0 And r_circuml1 > 0 Then
If r_circum5 Orr_circum3<r circuml Then

GoTo coutlc

Elselfr_circum] <r_circum5 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,5 AND 2

Ifr_circum5 > 0 And r_circum3 >0 And r_circum2 > 0 Then
If r_circum5 Or r_circum3<r_circum2 Then

GoTo coutlc

Elselfr_circum2 <r_circum5 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,5,1 AND 0

Ifr_ctrcum5 >0 And r_circum3 > 0 And r_circum0 > 0 And r_circum] > 0 Then
If r_circum5 Orr_circum3 <r_circuml And r_circum0 Then
GoTo coutlc

Elselfr_circum]1 Or r_circum(<r_circum5 And r_circum3 Then

GoTo coutlb

194

End If

End If

'A CASE OF SENSORS 3,5,2 AND 0

Ifr_circum5 >0 Andr_circum3 > 0 And r_circum0 > 0 And r_circum2 > 0 Then
Ifr circum5 Orr_circum3 <r_circum2 And r_circum0 Then

GoTo coutlc

Elselfr_circum2 Or r_circumO <r_circum5 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,5,2 AND 1

If r_circum5 >0 Andr_circum3 > 0 And r_circuml > 0 And r_circum2 > 0 Then
If r_circum5 Orr_circum3<r_circum2 And r_circuml Then

GoTo coutlc

Elselfr_circum?2 Or r_circum1 <r_circum5 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,5,2,1 AND 0

Ifr_circum5 >0 Andr_circuml > 0 And r_ctreum0 > 0 And r_circum3 >0 And r_circum?2 >
0 Then

Ifr circum5 Orr_circum3 <r_circum2 And r_circuml And r_circumO Then
GoTo coutlc

Elselfr circum2 Orr_circuml Orr_circumO <r_circum5 And r_circum3 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,5 AND 0

Ifr circum5 > 0 And r_circum4>0 And r_circum0 > 0 Then

If r circum$5 Or r_circumd <r_circum(Then

GoTo coutle

195

Elselfr_circum0 <r_circum5 And r_circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,5 AND |

Ifr_circum5 > 0 And r_circumd4 >0 And r_circum]l > 0 Then

If r_circum5 Orr_circum4<r_circum! Then

GoTo coutlc

Elselfr circum] <r_circum5 And r_circum4 Then

GoTo coutlb

End If

End If

‘A CASE OF SENSORS 4,5 AND 2

If r_circum5 > 0 And r_circum4 >0 And r_circum2 > 0 Then
Ifr_circum5 Orr_circumd4<r_circum2 Then

GoTo coutle

Elselfr_circum2 <r_circum5 And r _circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,5,1 AND 0

Ifr_circum5 >0 Andr_circum4 > 0 And r_circum0 > 0 And r_circum1 > 0 Then
If r_circum5 Or r_circum4 <r_circum1 And r_circum0 Then
GoTo coutlc

Elselfr_circum1 Or r_circum0 <r_circum$5 And r_circum4 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,52 AND 0

If r_circum5 >0 And r_circum4 > 0 And r_circum0 > 0 And r_circum2 > (Then

If r_circumS5 Or r_circum4 <r_circum2 And r_circum0 Then

196

GoTo coutle

Elselfr circum2 Or r_circumO <r_circum5 And r_circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,5,2 AND 1

Ifr circum5 >0 Andr circum4 > 0 And r_circuml > 0 And r_circum2 > 0 Then
If r_circum5 Orr_circum4<r_circum2 And r_circuml Then

GoTo coutle

Elselfr_circum2 Or r_circuml <r_circum5 And r_circum4 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 4,5,2,1 AND 0

Ifr circum5 >0 Andr circuml > 0 And r_circum0 > 0 And r_circum4 > 0 And r_circum2 >
0 Then

Ifr_circum5 Orr_circum4 <r_circum2 And r_circum!l And r_circum0 Then
GoTo coutlc

Elself r circum2 Or r_circum] Orr_circum0 <r_circum5 And r_circum4 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,4 AND 0

Ifr_circum4 > 0 And r_circum3>0 And r_circum0 > 0 Then

If r_circum4 Or r_circum3 <r_circumQ Then

GoTo coutlc

Elselfr_circum0 <r_circum4 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,4 AND 1

197

Ifr circum4 >0 And r_circum3 >0 And r_circum] > 0 Then

Ifr circum4 Orr_circum3<r_circum! Then

GoTo coutlc

Elselfr circuml <r_circum4 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,4 AND 2

If r circum4 >0 And r_circum3 >0 And r_circum2 > 0 Then

If r_circum4 Orr_circum3<r_circum2 Then

GoTo coutlc

Elselfr circum2 <r_circum4 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3.,4,1 AND 0

Ifr_circum4 >0 Andr_circum3 > 0 And r_circum0 > 0 And r_circum] > 0 Then
Ifr circum4 Orr_circum3 <r_circuml And r_circum0 Then
GoTo coutlc

Elselfr_circuml Or r_circum0 <r_circum4 And r_circum3 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,4,2 AND 0

Ifr_circum4 >0 And r_circum3 > 0 And r_circum0 > 0 And r_circum2 > 0 Then
Ifr_circum4 Or r_circum3 <r_circum2 And r_circum0 Then
GoTo coutle

Elself r_circum?2 Or r_circum0 <r_circum4 And r_circum3 Then
GoTo coutlb

End If

End If

198

'A CASE OF SENSORS 3,42 AND 1

If r_circum4 >0 And r_circum3 > 0 And r_circum! > 0 And t_circum2 > 0 Then
Ifr_circum4 Or r_circum3<r_circum2 And r_circum] Then

GoTo coutlc

Elselfr_circum2 Or r_circum] <r_circum4 And r_circum3 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 3,4,2,1 AND O

Ifr circum4 >0 Andr_circuml > 0 And r_circum0 > 0 And r_circum3 > 0 And r_circum2 >

0 Then

Ifr_circumd Orr_circum3 <r1_circum2 And r_circum! And r_circum0 Then
GoTo coutle

Elself r_circum2 Or r_circum] Or r_circum0 <r_circum4 Andr_circum3 Then
GoTo coutib

End If

End If

'A CASE OF SENSORS 5,3,4 AND 0

Ifr_circum5 >0 Andr_circum4 >0 And r_circum3 > 0 And r_circumO > Q Then
If r_circum4 Or r_circum3 Or r_circum$ <r_circum(Then

GoTo coutle

Elselfr_circum0 <r_circum4 And r_circum3 And r_circum5 Then

GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,3,4 AND 1

Ifr_circumS5 >0 And r_circum4 >0 And r_circum3 >0 And r_circum} >0 Then
If r_circum5 Or r_circum4 Or r_circum3<r_circuml Then

GoTo coutlc

Elselfr_circuml <r_circum5 And r_circum4 And r_circum3 Then

GoTo coutlb

199

End If

End If

'A CASE OF SENSORS 5,3,4 AND 2

Ifr_circum$ >0 And r_circum4 > 0 And r_circum3 >0 And r_circum2 > 0 Then
If r_circumd4 Or r_circum3 Or r_circumS <t_circum2 Then

GoTo coutlc

Elselfr_circum2 <r_circum4 And r_circum3 And r_circum5 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,3.4,1 AND 0

If r_circum5 >0 And r_circum4 >0 And r_circum3 > 0 And r_circum0 > 0 And r_circuml

> () Then

Ifr_circum4 Orr_circum5 Or r_circum3 <r_circuml And r_circum0 Then

GoTo coutlc

Elselfr_circuml Or r_circum0 < r_circum4 And r_circum3 And r_circum3 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,3,4,2 AND 0

If r_circum5 >0 Andr_circum4 >0 And r_circum3 > 0 And r_circum0 > 0 And r_circum?2

> () Then

Ifr_circum4 Or r_circum3 Or r_circum5 <r_circum2 And r_circumd Then

GoTo coutlc

Elselfr_circum?2 Or r_circum0 < r_circum4 And r_circum3 And r_circum3 Then
GoTo coutlb

End If

End If

'A CASE OF SENSORS 5,3,4,2 AND 1

If r_circum5 > 0 And r_circum4 > 0 And r_circum3 > 0 And r_circum} > 0 And r circum2

>0 Then

200

If r_circum5 Orr_circum4 Or r_circum3<r_circum?2 And r_circum] Then
GoTo coutlc
Elselfr_circum2 Or r_circuml <r_circum4 And r_circum3 And r_circum3 Then
GoTo coutlb
End If
End If
'A CASE OF SENSORS 3,4,5,2,1 AND 0
If r circum5 >0 Andr circum4 >0 Andr_circuml > 0 And r_circum0 > 0 And r_circum3
>0 And r_circum2 > 0 Then
Ifr_circum5 Orr_circum4 Or r_circum3 <r_circum2 And r_circum] And r_circum0 Then
GoTo coutlc
Elself r_circum?2 Or r_circum! Or r_circum0 < r_circurn4 And r_circum3 And r_circumS
Then
GoTo coutlb
End If
End If
coutlb:
vx1=Abs(x+r_circum)
vyl=Abs(y)
Do
SetSensorRange(0,.05,.3)
SetMarkPosition(0,vx1,vyl)
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y grid=CoordToGrid(0,Y) 'mobot center is
' Perform a range scan and update
' the Certainty Grid (max. cell value=3)
s0=MeasureRange(0,0,3)
s1=MeasureRange(0,1,3)
s2=MeasureRange(0,2,3)

201

s3=MeasureRange(0,3,3)
s4=MeasureRange(0,4,3)
s5=MeasureRange(0,5,3)
rel_angle=Abs(GetSensorAngle(0,sen,1))
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component})
dis_targ=Sqr((X-vx1)"2+(Y-vy1)"2)
' Each occupied cell inside the windows applies a repulsive force to the mobot.
For i=Abs(X_grid-10) To X grid+10
For j=Abs(Y grid-10) To Y grid+10
C=GetCell(0,i,))
X target=GetMarkX(0) 'Target coordinates (mark 0)
Y target=GetMarkY(0)
robot_new_angle=GetMobotTheta(0)
If C<>0 Then
If s0<.3 Or s1<.3 Or s2<.3 Or §3<.3 Or s4<.3 Or s5<.3 Then
d=Sqr((X_grid-i)"2+(Y_grid-j)"2)
If <0 Then
Fer=3*rel_angle/d"2
Frx=Frx+Fcr/3*C/d"2*(X_grid-1)/d
Fry=Fry+Fcr/3*C/d"2*(Y_grid-j)/d
If GetCollisionAngle(0)<=180 Then
SetSteering(0,0.1,0)
StepForward
SetSteering(0,0,180)
Fort=1 To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
End If
End If

202

End If
End If
Next
Next
' The target generates a constant-magnitude attracting force
Fex=Fct*(vx1-X)/dis_targ
Fcy=Fct*(vyl-Y)/dis_targ
Rx=Frx+Fcx ' Resultant Force Vector
Ry=Fry+Fcy
rot=RotationalDiff(0,X+Rx,Y+Ry) 'shortest rotational difference between
‘current direction of travel and direction of vector R
SetSteering(0,robotspeed,rot*3) 'mobot turns into the direction of R
'at constant speed and steering rate proportional to the
rotational difference
StepForward ' Dynamics simulation progresses one time step
sim_time=GetSimulationTime
Debug.Print frx
Debug.Print fry
If dis_targ<.05 Then

GoTo couta
Elself Abs(robot_angle-robot_new_angle)>=155 And Abs(robot_angle-

robot_new_angle)<=205 Then
GoTo coutw

End If

Loop

coutw:

x=GetMobotX(0)
y=GetMobotY(0)
1_circum=r_circum

GoTo coutlb

ok s ok o ok ok o ok ok o ok o ok ook o ok ok o ok ok ok ok

203

- e

coutlc:
vx2=Abs{x-r_circum)
vy2=Abs(y)
Do
SetSensorRange(0,.05,.3)
SetMarkPosition(0,vx2,vy2)
dis_radius_robot=Sqr({(x_new-x)"2+(y_new-y)"2)
robot_new_angle=GetMobotTheta(0)
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y grid=CoordToGrid(0,Y) 'mobot center is
' Perform a range scan and update
' the Certainty Grid (max. cell value=3)
s0=MeasureRange(0,0,3)
s1=MeasureRange(0,1,3)
s2=MeasureRange(0,2,3)
s3=MeasureRange(0,3,3)
s4=MeasureRange(0,4,3)
s5=MeasureRange(0,5,3)
rel_angle=Abs(GetSensorAngle(0,sen,1))
Frx=0 'Repulsive Force (x component)
Fry=0 'Repulsive Force (y component)
dis_targ=Sqr((X-vx2)"2+(Y-vy2)"2)

" Each occupied cell inside the windows applies a repulsive force to the mobot.

For i=Abs(X_grid-10) To X_grid+10
For j=Abs(Y grid-10) To Y_grid+10
C=GetCell(0,1,j)
If C<>0 And dis_targ>0 Then
X _target=GetMarkX(0) 'Target coordinates (mark 0)
Y target=GetMark Y(0)

204

-t

If s0<.3 Ors1<.3 Or s2<.3 Or s3<.3 Ors4<.3 Or $5<.3 Then
d=Sqr((X_grid-i)"2+(Y_grid-})"2)

If d<>0 Then

Fer=3*rel_angle/d"2

Frx=Frx+Fer/3*C/d"2*(X_grid-i)/d
Fry=Fry+Fcr/3*C/d"2*(y_grid-j)/d

If GetCollisionAngle(0)<=180 Then !
SetSteering(0,-0.1,0)

StepForward
SetSteering(0,0,180)

Fort=1To 5

StepForward

Next

SetSteering(0,0.1,Rnd*30-15)

End If
EndIf
End If
End If
Next
Next

' The target generates a constant-magnitude attracting force

Fex=(vx2-x)/dis_targ

Fey=(vy2-y)/dis_targ

Rx=Frx+Fcx 'Resultant Force Vector

Ry=Fry+Fcy

rot=Reotational Diff{(0,X+Rx,Y-+Ry) 'shortest rotational difference between
'current direction of travel and direction of vector R

SetSteering(0,robotspeed,rot*3) ‘mobot turns into the direction of R

'at constant speed and steering rate
'proportional to the rotational difference

StepForward ' Dynamics simulation progresses one time step

205

sim_time=GetSimulationTime
Debug.Print frx
Debug.Print fry
If dis_targ<.05 Then
GoTo couta
Elself Abs(robot_angle-robot_new_angle)>=155 And Abs(robot_angle-
robot_new_angle)<=210 Then
GoTo coutwe
End If
Loop
coutwc:
x=GetMobotX(0)
y=GetMobotY(0)
r_circum=r_circum+.002
GoTo coutlc
couta:
xnewa=GetMobotX(()
ynewa=GetMobotY(0)
Do
SetMarkPosition(0,a,b)
X=GetMobotX(0) ' Present mobot coordinates (in meters)
Y=GetMobotY(0)
X_grid=CoordToGrid(0,X) ' indexes of cells where the
Y_grid=CoordToGrid(0,Y) 'mobot center is

' Perform a range scan and update

' the Certainty Grid (max. cell value=3)

s0=MeasureRange(0,0,3)
s1=MeasureRange(0,1,3)
s2=MeasureRange(0,2,3)
s3=MeasureRange(0,3,3)
s4=MeasureRange(0,4,3)

206

sS5=MeasureRange(0,5,3)
robot_new_angle=GetMobotTheta(0)
obstacle_new_angle=GetMobotTheta(1)
rel angle=Abs(GetSensorAngle(0,sen,1))
Frx=0 ' Repulsive Force (x component)
Fry=0 ' Repulsive Force (y component)
dis_targ=Sqr((X-a)"2+(Y-b)"2)
' Each occupied cell inside the windows applies a repulsive force to the mobot.
For i=Abs(X grid-10) To X_grid+10
For j=Abs(Y grid-10) To Y_grid+10
C=GetCell(0,1,))
If C<>0 And dis_targ>0 Then
X target=GetMarkX(0) 'Target coordinates (mark 0}
Y _target=GetMarkY(0)
If s0<.3 Or s1<.3 Or 52<.3 Or s3<.3 Or s4<.3 Or s5<.3 Then
d=Sqr((X_grid-i)"2+(Y_grid-j)*2)
If d<0 Then
Fcer=3*rel angle/d"2
Frx=Frx+Fcr/3*C/d"2*(X_grid-i)/d
Fry=Fry+Fcr/3*C/d"2*(Y _grid-j)/d
If GetCollisionAngle(0)<=180 Then
SetSteering(0,-0.1,0)
StepForward
SetSteering(0,0,180)
Fort=1To 5
StepForward
Next
SetSteering(0,0.1,Rnd*30-15)
End If
End If
End If

207

End If
Next
Next
If dis_targ <=2 And dd-r_sum<=.2 Then
frx=0
fry=0
End If
dis_targ_a=Sgr((x-xnewa)"2+(y-ynewa)"2}
' The target generates a constant-magnitude attracting force
Fex=Fct*(a-X)/dis_targ
Fcy=Fct*(b-Y)/dis_targ
Rx=Frx+Fcx 'Resultant Force Vector
Ry=Fry+Fcy
rot=Rotational Diff(0,X+Rx, Y+Ry) 'shortest rotational difference between
‘current direction of travel and
'direction of vector R
SetSteering(0,robotspeed,rot*3) 'mobot turns into the direction of R
‘at constant speed and steering rate
‘proportional to the rotational difference
StepForward ' Dynamics simulation progresses one time step
sim_time=GetSimulationTime
If theta x1=360 Then
If x<x1 Or x<x2 Or x<x3 Or x<x4 Then
robotspeed=robotspeed|
End If
End If
If dis_targ<=.05 Then Exit Do
Debug.Print d
If Abs(robot_angle-robot_new_angle)<=20 And dis_targ_a>=4 Then
If Abs(robot_angle-robot_new angle)>=155 And Abs(robot_angle-robot new_angle)<=210
Then

208

GoTo coutr
End If

End If
Loop

End Sub

209

APPENDIX IV

PROGRAMME FOR THE REAL ROBOT

Option Explicit

public const pi as single=3.14159

public hour as byte

public minute as byte

public second as single

const anl 3 as byte=13 \\\leftsen

const anl5 as byte=15 \Wefisen

const anl7 as byte=17 \\leftsen

const anl 8 as byte=18 "\\leftsen

const an19 as byte=19 "Wleftsen

dim analogoutput13 as integer

dim analogoutput15 as integer

dim analogoutput17 as integer

dim analogoutput18 as integer

dim analogoutput19 as integer

dim serialoutput as byte

dim pwoutput as byte

dim avaluel3 as integer

dim avaluel5 as integer

dim avaluel7 as integer

dim avaluel8 as integer

dim avaluel9 as integer

dim i1 as single,theta as single, numr_steps as single, rad as single,alphal as single,alpha2deg
as single length13 15 as single,length13_17 as single,length13_18 as single
dim gamma as single,beta as single,alpha as single,dis_targ as single,rot_diff as

single,length13 19 as single,length15_13 as single,length15_17 as single

210

I
dim dis_targ] as single, new_theta as single,L_new as single,L_total as single,rho as single.e

as single,length15_18 as single,length15_19 as single,length17_13 as single

dim xnew_robot as single, ynew_robot as single, L as single, counter as single,L3 as single,
L2 as single,cone_length17 as single,length17_15 as single,lengthl7_18 as single

dim fex as single, fey as single, fix as single, fry as single, rx as single, ry as single, |
cone_length13 as single,length17_19 as single,length18_13 as single,length18_15 as single
dim frx13 as single, fry13 as single, frx15 as single, fry15 as single,stp as single,c as
single,cone_lengthl5 as single,length18_17 as single,length18_19 as single,lengthl9l]3 as
single

dim al3 as single, al5 as single, frx17 as single, fry17 as single, al7 as single,al8 as |
single,cone_length18 as single,lengthl19_15 as single,lengthl19_17 as single,length19_18 as
single

dim frx18 as single, frx19 as single,divisor as single, denominator as single, numerator as
single, fry19 as single,cone_length19 as single,cone_length as single

dim dis_targAB as single, dis_targOA as single, dis_targOB as single

const degperstepl as single=1.0

const degperstepr as single=1.0

const min_sen_range as single=10.0

const length _per_step as single=0.24

const rad2deg as single= 57.2958 |

'************initial rObOt Coordinate******************

public const x_robot as single=0.0

public const y_robot as single=0.0

MR RARRRR R R R it target point*****************H*H**

public const x_target as single=10.0

public const y_target as single=10.0

211

Public Sub Main()

call delay(1.0)

const Iws14 as single=0.00157986 'left wheel speed quad 1 and 4
const rws14 as single=0.00157986 'right whee! speed quad 1 and 4
const Iws23 as single=0.00157986 'left wheel speed quad 2 and 3
const rws23 as single=0.00157986 'right wheel speed quad 2 and 3
call delay(0.0)

'QUADRANT ONE ORIENTATION

if x_target > x_robot then

if y_target > y_robot then

rad= atn(x_target/y_target) ' angle orientated by robot in rad
theta=rad2deg*rad ' angle orientated by robot in degree
numr_steps=theta/degperstepr 'conversion of theta to orientation steps: right rotation
alpha=90.0-theta ‘current robot orientation on the quadrant system |
i1=0.0

end if

end if

do until i1>=numr_steps |
call delay(0.02) |
call pulseout (5,0.001583,1) !
call pulseout (6,0.001528,1)

i1=i1+1.0

loop

'QUADRANT TWO ORIENTATION
if x_target <x_robot then

if y_target > y_robot then

numr_steps=theta/degperstepr 'conversion of theta to orientation steps: right rotation|

rad= atn(abs(x_target)/y_target) ' angle orientated by robot in rad

theta=rad2deg*rad ' angle orientated by robot in degree

212

alpha=90.0+theta 'current robot orientation on the quadrant system
i1=0.0

end if

end if

do until i1>=pumr_steps

call delay(0.02)

call pulseout (5,0.001483,1)

call pulseout (6,0.001483,1)

i1=i1+1.0

loop

'QUADRANT THREE ORIENTATION

if x_target <x_robot then

if y target <y robot then

rad= atn(abs(y_target)/abs(x_target)) ' angle orientated by robot in rad +
theta=rad2deg*rad ' angle orientated by robot in degree |
theta=90.0+theta |
numr_steps=theta/degperstepr 'conversion of theta to orientation steps: right rotation -
alpha=90.0-theta 'current robot orientation on the quadrant system |
i1=0.0 ‘
end if

end if

do until i1>=numr_steps

call delay(0.02)

call pulseout (5,0.001483,1)

call pulseout (6,0.001483,1)

il=i1+1.0

loop

'QUADRANT FOUR ORIENTATION

if x_target > x_robot then

213

if y_target <y_robot then

rad= atn(abs(y_target)/abs(x_target)) ' angle orientated by robot in rad
theta=rad2deg*rad ' angle orientated by robot in degree

theta=90.0+theta

numr_steps=theta/degperstepr 'conversion of theta to orientation steps: right rotation
alpha=90.0-theta 'current robot orientation on the quadrant system
i1=0.0

end if

end if

do until i1>=numr_steps

call delay(0.02)

call pulseout (5,0.001583,1)

call pulseout (6,0.001528,1)

i1=i1+1.0

loop
call translation()

end sub

'translation and orientation within quadrant one
sub translation()

xnew_robot=0.0

ynew_robot=0.0

counter=0.0

do

analogoutput13= rangeal 3 'get the range
analogoutputl 5= rangeal 5 'get the range
analogoutput17=rangeal? 'get the range
analogoutputi 8= rangeal 8 'get the range
analogoutputl 9= rangeal9 'get the range
L=length_per_step*counter 'one translation step to distance

xnew_robot=L*sin(theta)

214

L

ynew_robot=L*cos(theta)
dis_targ=sqr((xnew_robot-x_target)"2+(ynew robot-y_ target)"2)
call delay(0.02)
call pulseout(5,0.002,1)'forward left wheel
call pulseout(6,0.001,1) forward right wheel
counter=counter+1.0
if analogoutputl3 <6 then
call vff()
end if
if analogoutputl5 <6 then
call vif()
end if

if analogoutput17 <6 then
call vff()
end if

if analogoutput] 8 <6 then
call vff()
end if

if analogoutput19 <6 then
call vif()

end if

loop

end sub

‘***********fo************
sub vif()
xnew_robot=0.0

ynew_robot=0.0

215

i

counter=0.0

L=0.0
dis_targ=sqr((xnew_robot-x_target)"2+(ynew_robot-y_target}"2})
fex=x_target-xnew_robot/dis_targ

fcy=y target-ynew robot/dis_targ

fix13=(xnew_robot-x_target)*((1.0/csng(analogoutput13))-(1.0/min_sen_range))
frx15=(xnew_robot-x_target)*((1.0/csng(analogoutput15))-(1.0/min_sen_range))
frx17=(xnew_robot-x_target)*((1.0/csng(analogoutput17))-(1.0/min_sen_range)) i
frx18=(xnew _robot-x_target)*((1.0/csng(analogoutputl 8))-(1.0/min_sen_range)) |
frx19=(xnew_robot-x_target)*((1.0/csng(analogoutput19))-(1.0/min_sen_range))
rx=fcx+rx

ry=fcy+iry

Xnew_robot=xnew_robot+rx

ynew_robot=ynew_robot+ry

end sub

'***********Sensor detecting functions***********tf****

function rangeal 3() as integer

dim avaluel3 as integer
avaluel3=getADC(anl3)
RANGEA13=(AVALUE13\2)
end function

function rangeal 5() as integer

dim avaluel$ as integer

avaluel 5=getADC(anl3) ‘
RANGEAI5S=(AVALUEI15\2)

end function

function rangeal 7() as integer

dim avaluel7 as integer

216 |

avaluel 7=getADC(anl7)
RANGEA17=(AVALUE17\2)

end function

function rangeal 8() as integer
dim avaluel8 as integer
avaluel8=getADC(an18)
RANGEA18=(AVALUE18\2)

end function

function rangeal9() as integer
dim avaluel9 as integer
avaluel9=getADC(an19)
RANGEA19=(AVALUE19\2)

end function

217

