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Abstract: The development of vaccines revolutionized the methods of controlling infectious diseases and 
has saved many lives. In this work, an SEIR epidemic model was designed to demonstrate the impact of 
vaccination on the control of epidemic diseases. The model was shown to possess positive solutions. The 
disease-free equilibrium and the endemic equilibrium of the model were derived and the stability 
properties of the two equilibriums were examined via stability theory of nonlinear differential equation. 
An important epidemic-controlled parameter, the reproduction number, was derived for the model and 
computed via simulation using parameter values from published data. The result of the simulation showed 
that vaccination was capable of inhibiting the outbreak of epidemic diseases whenever the numerical 
values for reproduction number are less than unity. 
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1.  Introduction 
Infectious diseases pose a serious threat to human existence because every unprotected individual can 
contract a disease. Besides, the frequent emergence and reemergence of infectious diseases are a source of 
worry globally. However, adequate understanding of mode of spread of infectious diseases induced by the 
existing and new pathogens may enhance development of prevention strategies. Prevention strategies 
against transmissions, including drugs and vaccines, are to be designed at a parallel rate to that of 
pathogens. Infectious diseases are transmitted by different microbes. Few of these pathogens are visible 
by naked eyes. The commonest pathogens are viruses, bacteria, fungi and protozoa. These pathogens are 
responsible for various diseases which are regarded as “infectious” because those pathogens can be 
transmitted from an infected individual to a non-infected individual [8]. The well-known example of 
infectious diseases could be influenza which is transmitted by certain species of viruses. Measles, mumps, 
rubella, HIV, and malaria are also infectious diseases which have responsible for thousands of deaths 
globally. [7,11]. A good number of these diseases are prevalent both at local and global scales and 
undermine public health [14]. 

Infectious diseases can propagate in various ways and microbes trigger infections by various 
means. Some infections may occur through direct contacts while other may occur through indirect 
contacts. Disease spread can also occur through carriers or vectors. For examples, west Nile, filariasis, 
malaria, chikungunya, dengue and some others are spread through mosquitoes [22]. Diseases transmission 
through air and sex are particularly serious. Many diseases, e.g. SARS, influenza are airborne diseases 
and can be spread through air. The airborne infection is transmitted from an infected individual to an 
uninfected individual through cough, sneeze and even through laugh [16]. 
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On the other hand, a considerable number of diseases are sexually transmitted diseases (STDs) 
and they are also spread through contaminated semen and blood, breastfeeding, or during childbirth [27]. 
HIV is the most death causing STDs. Other STDs includes herpes, gonorrhea, syphilis, trichomoniasis 
and Chlamydia also trigger significant infection and mortality [28]. Of the infectious diseases, STDs are 
the most worrisome to public health management, as many of them, such as Herpes and AIDS, have no 
cure but last for whole life. This poses severe economic and social threat. Due to longer infectious period, 
infected persons with STDs may responsible for high number of infections thus remain a major obstacle 
in prevention of diseases [20].  

Another feature of STDs is that the infected individual may not show any symptom and spread 
the disease unknowingly.  Drug resistance is another challenge to fighting STDs globally [15]. All these 
issues are reflected in HIV. About 37 million of the world population lives with HIV infection at the 
moment and the disease has claimed nearly 34 million lives globally since its emergence [2]. HIV 
statistics indicates that about 1.2 million people died of AIDS-related cases and almost 2.0 million people 
were infected with the disease in 2014 [27]. HIV and AIDS exist worldwide. However, it is rampant in 
Sub-Saharan African countries. The region harbors 25.8 million HIV-infected individuals which accounts 
for about 70% of the global HIV infection [1].  

Reproduction number is a non-dimensional quantity that measures the average number of 
susceptible individuals which an infectious person is able to infect when he gets into the population of 
completely susceptible individuals. Diekmann et al. [10] defines reproduction number as the average 
number of secondary infections triggered by a typical infectious individual during the period of his 
infectiousness. It is a threshold for the outbreak or otherwise of a disease. If the numerical value of the 
reproduction number is greater than one then the outbreak of the disease will take off otherwise the 
outbreak will be inhibited [3]. Generally, health institutions are set up to prevent outbreak of diseases but 
when there are outbreaks, they do everything to curtail the outbreaks by bringing the reproduction number 
below unity.  

One of the best methods to contain infections is to limit contacts. However, in the modern day 
with growing interactions among individuals, the method is not easy to come by. Since social distance is 
difficult to maintain, vaccines become prevention tools that are widely used to control diseases and reduce 
transmissions. A vaccine is applied to enhance immune system against specific microbes. A vaccine 
contains substances which have related properties to those of a microbe. Generally, a vaccine can be 
regarded as a fake pathogen which has no power to replicate and to trigger infections. It can be produced 
to weak or eradicate pathogens. As vaccine is similar to pathogenic microorganism, it can stimulate the 
immune system and build up antibodies against the microbes to identify them as foreigners. Thus, 
whenever a microorganism is come upon, the immune system terminates it. This phenomenon is termed 
immunity. Thus, the availability of a vaccine for a disease is an ideal way of protecting a population from 
the disease [17].  

After Edward Jenner’s cowpox vaccines, regarded as the first vaccine in history, several 
successful campaigns had been launched against numerous infectious diseases [24]. In fact, millions of 
lives have been saved by vaccines. Before the introduction of the first vaccine for measles in 1963, nearly 
400 000 measles cases used to be recorded in the US every year [18]. Polio, mumps, rubella and other 
childhood diseases used to trigger significant morbidity and mortality before the invention of vaccines. 
With the introduction of vaccines, these diseases and infections are no longer epidemic [25]. Vaccine has 
also had a successful record against the spread of influenza, the most notable infectious disease in the 
world. Before the implementation of flu vaccines, curtailing an influenza pandemic was a serious task. It 
was recorded that around 20-50 million people died globally in the Spanish flu outbreak of 1918-19. The 
global death toll after a century for the 2009-10 flu pandemic was around 300 000 [22]. The remarkable 
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reduction in the casualty rate was attributed to the implementation of vaccines. Influenza vaccination has 
now become a routine program. It is now recommended that an individual receives an updated flu-vaccine 
before flu-season advances with fresh strains of flu viruses. 
  Mathematical models have been applied to examine the dynamics of epidemic diseases for years. 
The applications of mathematics in epidemiology have grown tremendously in recent years. By 
estimating model variables, reproduction number, transmission rate and other parameters, a model can 
forecast whether a disease will die out or spread through the population. A model can also estimate the 
effect of an intervention and provide necessary guidelines to public health administrators for further 
efforts needed to eradicate diseases. It is on this note that we formulate a mathematical model to study the 
effect of vaccination on the reproduction number of an epidemic model. 
2. Model Formulation 

The SEIR is partitioned into compartments S(t), E(t), I(t) and R(t) where S(t) is used to represent the 
population of individuals who have not been infected with the disease at time t but are capable of being 
infected; E(t) denotes the population of the exposed which stands for the population of individuals who 
have been infected with the disease but do not still have any disease symptoms; I(t) denotes the 
population of individuals who have not only been infected with the disease but are infectious; R(t) is the 
compartment used for those individuals who are either temporarily immune to the disease due to 
vaccination or have been cured of the infection. 
 In the model, 𝜋𝜋 is the recruitment rate into the S(t) which was as a result of birth or loss of 
acquired immunity, 𝜐𝜐 is the rate of  vaccination, 𝜌𝜌 is the rate of death from disease related cases while 𝜇𝜇 is 
the rate of death from causes unrelated to the infection, β is the rate of transmission of the disease, 𝜎𝜎 is the 
rate of moving from exposed stage to infectious stage though death due to the disease during the latent 
stage is neglected. 𝛾𝛾 is the recovery rate which is due to treatment via vaccination (treatment may be in 
form of vaccination) while ω is the rate of losing immunity which is the rate at which recovered 
individuals becomes susceptible again. The flow between the compartments is depicted in Figure 1 

 

 

 

 

 

 

 

 
 

 
Figure 1: Dynamics of the disease between the compartments 

 

The flow chart showed that those who were successfully vaccinated would receive immunity and moved 
straight to the recovered class though some of them would die naturally. Besides, some of those who were 
not vaccinated or not successfully vaccinated would also die naturally. The remaining people who were 
not vaccinated or not successfully vaccinated would contract the disease and become exposed. As a result 
of the fact that the exposed individuals were totally ignorant of their status, some of them would die 
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naturally while the remaining people would become infectious. Some of the infectious individuals would 
die either naturally or as a result of the infection while the remaining individuals would be cured of the 
disease and moved to the recovered class at a rate 𝛾𝛾. Some of those who recovered from the disease 
would die naturally while the remaining people would become susceptible again and the flow would go 
like that.    
 Going by the above assumptions and transfer diagram, the following set of first order ordinary 
differential equations is obtained. 

��
��

= 𝜋𝜋 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜇𝜇𝜇𝜇 − 𝜐𝜐𝜐𝜐 + 𝜔𝜔𝜔𝜔         (1) 
��
��

= 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜎𝜎𝜎𝜎 − 𝜇𝜇𝜇𝜇                      (2) 
��
��

= 𝜎𝜎𝜎𝜎 − 𝜇𝜇𝜇𝜇 − 𝜌𝜌𝜌𝜌 − 𝛾𝛾𝛾𝛾          (3) 
��
��

= 𝜐𝜐𝜐𝜐 + 𝛾𝛾𝛾𝛾 − 𝜔𝜔𝜔𝜔 − 𝜇𝜇𝜇𝜇         (4) 
 
The numerical values assigned to the parameters to conduct the simulations are presented in Table 1. 
 Table 1: Parameters Description and Values 

Parameter Interpretation Value Source 
𝛽𝛽 Transmission rate 0.091 [4] 
𝜎𝜎 Latent period 0.125 [3] 
𝜇𝜇 Natural death rate 0.005 [3] 
𝜋𝜋 Recruitment rate 0.45 [3] 
𝜔𝜔 Rate of losing immunity 0.36 [3] 
𝜌𝜌 Disease induced death 0.009 [3] 
𝛾𝛾 Recovery rate 0.6 [3] 
𝜈𝜈 Rate of vaccination 0.02 Assumed 

 
The region of feasibility for the model can be established. Let 𝑁𝑁(𝑡𝑡) denotes the total population at time 𝑡𝑡 
then 𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) +  𝐼𝐼(𝑡𝑡) +  𝑅𝑅(𝑡𝑡) so that 
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��
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��

     = 𝜋𝜋 − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜌𝜌𝜌𝜌 

       ≤ 𝜋𝜋 − 𝜇𝜇𝜇𝜇(𝑡𝑡). 

Following [30], 𝑁𝑁(𝑡𝑡) ≤ �
�

+ �𝑁𝑁(0) − �
�

� 𝑒𝑒���. 

𝑁𝑁(0) ⇒ 𝑁𝑁(𝑡𝑡) = 𝑁𝑁(0) at 𝑡𝑡 = 0. 
Therefore, 𝑁𝑁(𝑡𝑡) → �

�
 as 𝑡𝑡 → ∞. Hence, 𝑁𝑁(𝑡𝑡) is bounded as 0 ≤ 𝑁𝑁(𝑡𝑡) ≤ �

�
. Therefore, the invariant region 

or the region of feasibility Ω for the model is defined as  Ω = �(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) ∈ ℝ�
� : 𝑁𝑁(𝑡𝑡) ≤ �

�
�. 

2.1 Positivity of solutions 

Since epidemic models monitor human and animal populations, it is assumed that the solutions to the 
models are positive. We shall therefore verify whether our model preserves positive solutions before it is 
used to conduct the study. 
Suppose {𝑆𝑆(𝑡𝑡), 𝐸𝐸(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑅𝑅(𝑡𝑡)} are the solutions to the model for all 𝑡𝑡 ≥ 0 with positive initial 
conditions{𝑆𝑆(0) > 0, 𝐸𝐸(0) ≥ 0, 𝐼𝐼(0) ≥ 0, 𝑅𝑅(0) ≥ 0}. Then, from equation (1), 
��
��

≥ −𝜇𝜇𝜇𝜇.              (5)  

⟹ ln 𝑆𝑆 ≥ 𝜇𝜇𝜇𝜇 + 𝑘𝑘,           (6) 
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⟹ S(t) ≥ 𝑆𝑆(0)𝑒𝑒��� > 0.             (7)    
Following the same process, 
⟹ E(t) ≥ 𝐸𝐸(0)𝑒𝑒�(���)� > 0,           (8) 
⟹ I(t) ≥ 𝐼𝐼(0)𝑒𝑒�(�����)� > 0 ,         (9) 
⟹ R(t) ≥ 𝑅𝑅(0)𝑒𝑒�(���)� > 0.            (10)  

Hence, the solutions of the model remain positive as long as the initial conditions of the state 
variables are positive because 𝑒𝑒� is positive for all real values of p. Since the model preserves positive 
solutions then it is suitable to conduct the study. 
3.    Model Analysis 

The equilibrium and stability analyses shall be discussed in this section. Also, the reproduction number of 
the model shall be derived. 
3.1    Equilibria and reproduction number 
Emphasis shall be placed on two equilibria – infection-free equilibrium (DFE) and the endemic 
equilibrium. Infection-free equilibrium exists when infection agents are virtually non-existence in the 
population such that nobody is exposed, infected or recovered, i.e., E = I = R = 0. Hence, the infection-
free equilibrium (DFE) for the system is given as 

 0 0 0 0 0, , , ,0,0,0E S E I R 
 

 
    

        (11) 

In epidemiology, the reproduction number is a non-dimensional quantity that measures the 
average number of secondary infection produced when an infectious agent gets into the population of 
completely susceptible individuals. The quantity is usually denoted by 0R . If 0 1R  then the infectious 
agent is able to infect at least one susceptible individual who will cause the disease to spread in the 
population but if 0 1R  then the infectious agent is unable to infect a single individual and the outbreak 
will not take off in the population. Following the approach in [26], the reproduction number for our model 
is obtained as 

    0R 
      


   

        (12) 

At the endemic equilibrium, there exist infection agents in the population such that all the 
compartments co-exist for the solution of the model. Denoting the endemic state for the state variables as 

*S , *E , *I , *R , equating the RHS of equation (1) – equation (4) to zero and solving for the state variables 
to obtain 

2 3
*

a aS


            (13) 

3 4 2 3 1 2 3 4
*

2 3 4

a a a a a a a aE
a a a
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     (14) 
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


        (15) 
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  
  

  
           (16) 

Where,  

1a    , 2a    , 3a      , and 4a     
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��

+ ��
��

     = 𝜋𝜋 − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜌𝜌𝜌𝜌 

       ≤ 𝜋𝜋 − 𝜇𝜇𝜇𝜇(𝑡𝑡). 

Following [30], 𝑁𝑁(𝑡𝑡) ≤ �
�

+ �𝑁𝑁(0) − �
�

� 𝑒𝑒���. 

𝑁𝑁(0) ⇒ 𝑁𝑁(𝑡𝑡) = 𝑁𝑁(0) at 𝑡𝑡 = 0. 
Therefore, 𝑁𝑁(𝑡𝑡) → �

�
 as 𝑡𝑡 → ∞. Hence, 𝑁𝑁(𝑡𝑡) is bounded as 0 ≤ 𝑁𝑁(𝑡𝑡) ≤ �

�
. Therefore, the invariant region 

or the region of feasibility Ω for the model is defined as  Ω = �(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) ∈ ℝ�
� : 𝑁𝑁(𝑡𝑡) ≤ �

�
�. 

2.1 Positivity of solutions 

Since epidemic models monitor human and animal populations, it is assumed that the solutions to the 
models are positive. We shall therefore verify whether our model preserves positive solutions before it is 
used to conduct the study. 
Suppose {𝑆𝑆(𝑡𝑡), 𝐸𝐸(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑅𝑅(𝑡𝑡)} are the solutions to the model for all 𝑡𝑡 ≥ 0 with positive initial 
conditions{𝑆𝑆(0) > 0, 𝐸𝐸(0) ≥ 0, 𝐼𝐼(0) ≥ 0, 𝑅𝑅(0) ≥ 0}. Then, from equation (1), 
��
��

≥ −𝜇𝜇𝜇𝜇.              (5)  

⟹ ln 𝑆𝑆 ≥ 𝜇𝜇𝜇𝜇 + 𝑘𝑘,           (6) 
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⟹ S(t) ≥ 𝑆𝑆(0)𝑒𝑒��� > 0.             (7)    
Following the same process, 
⟹ E(t) ≥ 𝐸𝐸(0)𝑒𝑒�(���)� > 0,           (8) 
⟹ I(t) ≥ 𝐼𝐼(0)𝑒𝑒�(�����)� > 0 ,         (9) 
⟹ R(t) ≥ 𝑅𝑅(0)𝑒𝑒�(���)� > 0.            (10)  

Hence, the solutions of the model remain positive as long as the initial conditions of the state 
variables are positive because 𝑒𝑒� is positive for all real values of p. Since the model preserves positive 
solutions then it is suitable to conduct the study. 
3.    Model Analysis 

The equilibrium and stability analyses shall be discussed in this section. Also, the reproduction number of 
the model shall be derived. 
3.1    Equilibria and reproduction number 
Emphasis shall be placed on two equilibria – infection-free equilibrium (DFE) and the endemic 
equilibrium. Infection-free equilibrium exists when infection agents are virtually non-existence in the 
population such that nobody is exposed, infected or recovered, i.e., E = I = R = 0. Hence, the infection-
free equilibrium (DFE) for the system is given as 

 0 0 0 0 0, , , ,0,0,0E S E I R 
 

 
    

        (11) 

In epidemiology, the reproduction number is a non-dimensional quantity that measures the 
average number of secondary infection produced when an infectious agent gets into the population of 
completely susceptible individuals. The quantity is usually denoted by 0R . If 0 1R  then the infectious 
agent is able to infect at least one susceptible individual who will cause the disease to spread in the 
population but if 0 1R  then the infectious agent is unable to infect a single individual and the outbreak 
will not take off in the population. Following the approach in [26], the reproduction number for our model 
is obtained as 

    0R 
      


   

        (12) 

At the endemic equilibrium, there exist infection agents in the population such that all the 
compartments co-exist for the solution of the model. Denoting the endemic state for the state variables as 

*S , *E , *I , *R , equating the RHS of equation (1) – equation (4) to zero and solving for the state variables 
to obtain 

2 3
*

a aS


            (13) 

3 4 2 3 1 2 3 4
*

2 3 4

a a a a a a a aE
a a a

 
 

  
      

     (14) 

4 2 3 1 2 3 4
*

2 3 4

a a a a a a aI
a a a

 
 
 




        (15) 

2 3 4 1 3 1 2 3 4
*

4 4 2 3 4

a a a a a a a a aR
a a a a a

  
  

  
           (16) 

Where,  

1a    , 2a    , 3a      , and 4a     
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3.2    Stability of Equilibria 
To verify the stability property of the model at the infection-free equilibrium state 0E , the variational 
matrix of the model is derived as  

 

1

2
0

3

4

( I ) 0
0 0
0 0

0

a S
a S

J E
a

a

  



 

   
  
 
 

      

    (17) 

Since there is no transmission of infection at the infection-free equilibrium then the transmission 
parameter   is reduced to zero in equation (17) and equation. (17) becomes 

 
        

       (18) 
 
 

The infection-free equilibrium of the model is stable if all the eigen values of equation (18) are negative. 
To prove the theorem, the characteristic equation of equation (18) is obtained by software maple as 
𝑏𝑏�𝜆𝜆� + 𝑏𝑏�𝜆𝜆� + 𝑏𝑏�𝜆𝜆� + 𝑏𝑏�𝜆𝜆 + 𝑏𝑏� = 0        (19) 
where 

 

𝑏𝑏� = 1,
𝑏𝑏� = 𝑎𝑎� + 𝑎𝑎� + 𝑎𝑎� + 𝑎𝑎�,

𝑏𝑏� = 𝑎𝑎�𝑎𝑎� + (𝑎𝑎� + 𝑎𝑎�)(𝑎𝑎� + 𝑎𝑎�) + 𝑎𝑎�𝑎𝑎� − 𝜔𝜔𝜔𝜔,
𝑏𝑏� = 𝑎𝑎�𝑎𝑎�(𝑎𝑎� + 𝑎𝑎�) + 𝑎𝑎�𝑎𝑎�(𝑎𝑎� + 𝑎𝑎�) − 𝜔𝜔𝜔𝜔(𝑎𝑎� + 𝑎𝑎�),

𝑏𝑏� = 𝑎𝑎�𝑎𝑎�(𝑎𝑎�𝑎𝑎� − 𝜔𝜔𝜔𝜔). ⎭
⎪
⎬

⎪
⎫

     (20) 

Following Routh-Hurtwitz stability criteria in [19,5], the eigen values of equation (19) are all less than 
zero if  

1 3 40, 0, 0b b b      and    2 2
1 2 3 3 1 4b b b b b b         (21) 

Therefore, the DFE  is stable if inequalities (21)  are satisfied. The implication of stable DFE is that given 
a population described by our model, the emergence of an infectious individual in the population would 
not instigate disease outbreak if the initial size of the population is in the basin of attraction of 𝐸𝐸�. 
To examine the stability property of the endemic equilibrium, the variational matrix of the model is also 
obtained but at the endemic equilibrium state as 

 

 * 1 *

* 2 *
*

3

4

0
0

0 0
0

I a S
I a S

J E
a

a

  
 


 

   
   
 
   

       (22) 

As in DFE, the endemic equilibrium of the model is stable if all the eigen values of equation (22) have 
negative real parts. The condition is satisfied if det *( ) 0J E  whenever tr *(E ) 0J  [21]. In 

equation (22), 
|𝐽𝐽(𝐸𝐸∗)| = 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗ + 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� + 𝛽𝛽𝛽𝛽∗𝜔𝜔𝜔𝜔𝜔𝜔 − 𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗𝜎𝜎 − 𝛽𝛽𝛽𝛽∗𝛾𝛾𝛾𝛾𝛾𝛾 − 𝑎𝑎�𝑎𝑎�𝜔𝜔𝜔𝜔   (23) 

The trace of matrix in equation (22) is already negative hence, the condition tr *(E ) 0J   is satisfied. 

This is only the necessary condition for the endemic equilibrium of the model to be stable. The sufficient 

 

1

2
0

3

4

0 0
0 0 0
0 0

0

a
a

J E
a

a




 

 
  
 
 

 
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condition is for 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗ + 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� + 𝛽𝛽𝛽𝛽∗𝜔𝜔𝜔𝜔𝜔𝜔 − 𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗𝜎𝜎 − 𝛽𝛽𝛽𝛽∗𝛾𝛾𝛾𝛾𝛾𝛾 − 𝑎𝑎�𝑎𝑎�𝜔𝜔𝜔𝜔 in equation (23) to 
be greater than zero. Hence, the endemic equilibrium of the model is stable if 
 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗ + 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� + 𝛽𝛽𝛽𝛽∗𝜔𝜔𝜔𝜔𝜔𝜔 − 𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗𝜎𝜎 − 𝛽𝛽𝛽𝛽∗𝛾𝛾𝛾𝛾𝛾𝛾 − 𝑎𝑎�𝑎𝑎�𝜔𝜔𝜔𝜔 > 0 . 
 

4.  Results and Discussion 

The theoretical results for stability of equilibria in section 3 can be discussed in terms of the numerical 
values of the reproduction number 𝑅𝑅�. If 0 1R  then the infection-free equilibrium of the model is stable 

whereas it is the endemic equilibrium of the model that is stable if 0 1R  . It implies that if 10 R , the 
introduction of vaccines is yielding results and the outbreak of disease is either prevented or eradicated 
but if 10 R , the application of vaccines is not having any effect on disease prevention or eradication. To 

come about the numerical values for 0R , the parameter values in Table 1 are used to evaluate equation 

(12) and the result of 0R in serial number one of Table 2 is achieved. The values of some the parameters 

are then varied to come about other results for 0R in Table 2. The result in Table 2 is then illustrated 
graphically in Figure 2 – Figure 5 to show the trend of the susceptible, the exposed, the infected and the 
recovered populations. The plots in Figure 2 – Figure 5 are achieved by using the parameter values in 
Table 1. 
 

Table 2: Numerical Simulation of the Reproduction Number (𝑅𝑅�) 
S/No 𝜋𝜋 𝛽𝛽 𝜎𝜎 𝜇𝜇 𝛾𝛾 𝑣𝑣 𝜌𝜌 𝑅𝑅� Remark 

1 0.45 0.091 0.125 0.005 0.60 0.02 0.009 2.565 Unstable 
2 0.45 0.090 0.125 0.005 0.61 0.03 0.008 1.786 Unstable 
3 0.45 0.080 0.125 0.005 0.62 0.04 0.007 1.217 Unstable 
4 0.45 0.070 0.125 0.005 0.63 0.05 0.006 0.859 Stable 
5 0.45 0.060 0.125 0.005 0.64 0.06 0.005 0.614 Stable 
6 0.45 0.050 0.125 0.005 0.65 0.07 0.004 0.438 Stable 
7 0.45 0.040 0.125 0.005 0.66 0.08 0.003 0.305 Stable 
8 0.45 0.092 0.125 0.005 0.59 0.015 0.0091 3.295 Unstable 
9 0.45 0.093 0.125 0.005 0.58 0.010 0.0092 4.515 Unstable 

  

Figure 2 : Trend of susceptible population Figure 3: Trend of exposed population 
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3.2    Stability of Equilibria 
To verify the stability property of the model at the infection-free equilibrium state 0E , the variational 
matrix of the model is derived as  

 

1

2
0

3

4

( I ) 0
0 0
0 0

0

a S
a S

J E
a

a

  



 

   
  
 
 

      

    (17) 

Since there is no transmission of infection at the infection-free equilibrium then the transmission 
parameter   is reduced to zero in equation (17) and equation. (17) becomes 

 
        

       (18) 
 
 

The infection-free equilibrium of the model is stable if all the eigen values of equation (18) are negative. 
To prove the theorem, the characteristic equation of equation (18) is obtained by software maple as 
𝑏𝑏�𝜆𝜆� + 𝑏𝑏�𝜆𝜆� + 𝑏𝑏�𝜆𝜆� + 𝑏𝑏�𝜆𝜆 + 𝑏𝑏� = 0        (19) 
where 

 

𝑏𝑏� = 1,
𝑏𝑏� = 𝑎𝑎� + 𝑎𝑎� + 𝑎𝑎� + 𝑎𝑎�,

𝑏𝑏� = 𝑎𝑎�𝑎𝑎� + (𝑎𝑎� + 𝑎𝑎�)(𝑎𝑎� + 𝑎𝑎�) + 𝑎𝑎�𝑎𝑎� − 𝜔𝜔𝜔𝜔,
𝑏𝑏� = 𝑎𝑎�𝑎𝑎�(𝑎𝑎� + 𝑎𝑎�) + 𝑎𝑎�𝑎𝑎�(𝑎𝑎� + 𝑎𝑎�) − 𝜔𝜔𝜔𝜔(𝑎𝑎� + 𝑎𝑎�),

𝑏𝑏� = 𝑎𝑎�𝑎𝑎�(𝑎𝑎�𝑎𝑎� − 𝜔𝜔𝜔𝜔). ⎭
⎪
⎬

⎪
⎫

     (20) 

Following Routh-Hurtwitz stability criteria in [19,5], the eigen values of equation (19) are all less than 
zero if  

1 3 40, 0, 0b b b      and    2 2
1 2 3 3 1 4b b b b b b         (21) 

Therefore, the DFE  is stable if inequalities (21)  are satisfied. The implication of stable DFE is that given 
a population described by our model, the emergence of an infectious individual in the population would 
not instigate disease outbreak if the initial size of the population is in the basin of attraction of 𝐸𝐸�. 
To examine the stability property of the endemic equilibrium, the variational matrix of the model is also 
obtained but at the endemic equilibrium state as 

 

 * 1 *

* 2 *
*

3

4

0
0

0 0
0

I a S
I a S

J E
a

a

  
 


 

   
   
 
   

       (22) 

As in DFE, the endemic equilibrium of the model is stable if all the eigen values of equation (22) have 
negative real parts. The condition is satisfied if det *( ) 0J E  whenever tr *(E ) 0J  [21]. In 

equation (22), 
|𝐽𝐽(𝐸𝐸∗)| = 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗ + 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� + 𝛽𝛽𝛽𝛽∗𝜔𝜔𝜔𝜔𝜔𝜔 − 𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗𝜎𝜎 − 𝛽𝛽𝛽𝛽∗𝛾𝛾𝛾𝛾𝛾𝛾 − 𝑎𝑎�𝑎𝑎�𝜔𝜔𝜔𝜔   (23) 

The trace of matrix in equation (22) is already negative hence, the condition tr *(E ) 0J   is satisfied. 

This is only the necessary condition for the endemic equilibrium of the model to be stable. The sufficient 

 

1

2
0

3

4

0 0
0 0 0
0 0

0

a
a

J E
a

a




 

 
  
 
 

 

Nepal Journal of Mathematical Sciences (NJMS), Vol.4 ,No. 1, 2023 (February): 1-10 
 

7 
 

condition is for 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗ + 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� + 𝛽𝛽𝛽𝛽∗𝜔𝜔𝜔𝜔𝜔𝜔 − 𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗𝜎𝜎 − 𝛽𝛽𝛽𝛽∗𝛾𝛾𝛾𝛾𝛾𝛾 − 𝑎𝑎�𝑎𝑎�𝜔𝜔𝜔𝜔 in equation (23) to 
be greater than zero. Hence, the endemic equilibrium of the model is stable if 
 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗ + 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� + 𝛽𝛽𝛽𝛽∗𝜔𝜔𝜔𝜔𝜔𝜔 − 𝑎𝑎�𝑎𝑎�𝛽𝛽𝛽𝛽∗𝜎𝜎 − 𝛽𝛽𝛽𝛽∗𝛾𝛾𝛾𝛾𝛾𝛾 − 𝑎𝑎�𝑎𝑎�𝜔𝜔𝜔𝜔 > 0 . 
 

4.  Results and Discussion 

The theoretical results for stability of equilibria in section 3 can be discussed in terms of the numerical 
values of the reproduction number 𝑅𝑅�. If 0 1R  then the infection-free equilibrium of the model is stable 

whereas it is the endemic equilibrium of the model that is stable if 0 1R  . It implies that if 10 R , the 
introduction of vaccines is yielding results and the outbreak of disease is either prevented or eradicated 
but if 10 R , the application of vaccines is not having any effect on disease prevention or eradication. To 

come about the numerical values for 0R , the parameter values in Table 1 are used to evaluate equation 

(12) and the result of 0R in serial number one of Table 2 is achieved. The values of some the parameters 

are then varied to come about other results for 0R in Table 2. The result in Table 2 is then illustrated 
graphically in Figure 2 – Figure 5 to show the trend of the susceptible, the exposed, the infected and the 
recovered populations. The plots in Figure 2 – Figure 5 are achieved by using the parameter values in 
Table 1. 
 

Table 2: Numerical Simulation of the Reproduction Number (𝑅𝑅�) 
S/No 𝜋𝜋 𝛽𝛽 𝜎𝜎 𝜇𝜇 𝛾𝛾 𝑣𝑣 𝜌𝜌 𝑅𝑅� Remark 

1 0.45 0.091 0.125 0.005 0.60 0.02 0.009 2.565 Unstable 
2 0.45 0.090 0.125 0.005 0.61 0.03 0.008 1.786 Unstable 
3 0.45 0.080 0.125 0.005 0.62 0.04 0.007 1.217 Unstable 
4 0.45 0.070 0.125 0.005 0.63 0.05 0.006 0.859 Stable 
5 0.45 0.060 0.125 0.005 0.64 0.06 0.005 0.614 Stable 
6 0.45 0.050 0.125 0.005 0.65 0.07 0.004 0.438 Stable 
7 0.45 0.040 0.125 0.005 0.66 0.08 0.003 0.305 Stable 
8 0.45 0.092 0.125 0.005 0.59 0.015 0.0091 3.295 Unstable 
9 0.45 0.093 0.125 0.005 0.58 0.010 0.0092 4.515 Unstable 

  

Figure 2 : Trend of susceptible population Figure 3: Trend of exposed population 
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Figure 4: Trend of infectious population Figure 5: Trend of recovered population 
 
Generally, an increase in vaccination rate as a form of disease prevention and control will increase 
recovery rate but reduce both disease transmission rate and disease-induced death rate. From the 
simulation Table 2, it is observed that an increase in vaccination rate up to serial number three leads to 
increase in the recovery rate   but decrease in both disease transmission rate   and disease-induced 
death rate  . The infection-free equilibrium in this region is unstable as 0 1R  (S/No 1 – S/No 3 in 
Table 2). The instability of the infection-free equilibrium implies disease persistence in the population 
which is as a result of low coverage of vaccination. On the other hand, the infection-free equilibrium 
becomes stable in the region where the increase in vaccination rate attains 0.05 upwards as 0 1R  (S/No 4 
– S/No 7 in Table 2). The stability of the infection-free equilibrium implies disease eradication in the 
population and it is achieved when vaccination coverage is sufficient. However, the infection-free 
equilibrium maintains instability with decrease in vaccination rate which reduces the recovery rate but 
increases both disease transmission rate and disease-induced death rate as 0 1R  (S/No 8 – S/No 9 in 
Table 2). The implication of the result in Table 2 is that to eradicate an infectious disease through 
vaccination, the rate of vaccination must exceed certain critical level. Vaccination as a tool to fight 
against the propagation of infectious diseases will not yield a desirable result if the coverage is low.  

The result in Table 2 is corroborated in Figure 2 – Figure 5. The number of susceptible 
individuals falls continuously and tends to zero after first year due to the presence prevention parameter 
vaccination which is introduced to equation (1). However, the populations of both the exposed and the 
infected individuals firstly rise but begin to fall at a point in Figure 3 and Figure 4. The reason is that no 
control measure is introduced to equation (2) and equation (3) but in reality, when the symptom of a 
disease is manifested in an individual, treatment is inevitable. Besides, some of the exposed individuals 
may be aware of their status through medical checkup, get themselves treated and recovered from the 
illness even at the exposed stage. These possibilities account for the falling trends in Figure 3 and Figure 
4. In Figure 5, the population of the recovered individuals increases continuously due to the influx from 
the susceptible and the infectious compartments as a result of immunity induced by prophylaxis 
vaccination and treatment respectively.     
5.   Conclusion 

Vaccination is a well-known and an indispensable tool to prevent and check the menace of infectious 
diseases. The invention of vaccines has been beneficial to mankind for it has brought about the 
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eradication smallpox in 1979, two years after the last case in Somalia. It has also instigated the 
eradication of some other diseases like rinderpest. In this work, attempts have been made to analyze the 
effect of vaccination on the spread and propagation of infectious diseases. Going by the theory of 
reproduction number due to [10], we were able to establish the regions of eradication and persistence for 
infectious diseases in terms of the application of vaccination. Based on the results of the study, 
vaccination of the population before the outbreak of epidemic known as pre-exposure prophylaxis is 
capable of reducing transmission rate (  ) if an infectious individual eventually gets into the population 
of susceptible individuals while vaccination of the population after the outbreak of the epidemic known as 
post-exposure prophylaxis is capable of increasing recovery rate ( ) which affirms some recent results 
[4,9,29,12]. The ongoing COVID-19 pandemic was able to spread like the harmattan fire and claimed 
many lives at onset due to unavailability of pre-exposure prophylaxis [13,6,31,32].  The world was able to 
subdue the spread and fatality of COVID-19 when the COVID-19 vaccines were developed. Therefore, 
since prevention is better than cure, adequate pre-exposure prophylaxis is recommended in an area where 
a particular infectious disease is endemic. A good example is periodic administration of Shanchol in 
cholera hotspots to forestall frequent outbreak of the disease.      
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Abstract: The hypergeometric functions are one of the most important and special functions in 
mathematics. They are the generalization of the exponential functions. Particularly the ordinary 
hypergeometric function );;,(12 zcbaF is represented by hypergeometric series and is a solution to a 
second order differential equation. Similarly, Laplace transform is a form of integral transform that 
converts linear differential equations to algebraic equations. This paper aims to study the convergence of 
hypergeometric function and Laplace transform of some hypergeometric functions. Moreover, some 
relationships between Laplace transformation and hypergeometric functions is established in the 
concluding section of this paper. 

Keywords: Hypergeometric function, Laplace transformation, Gamma function 

1. Introduction 

Hypergeometric functions are one of the oldest transcendental functions. Normally exponential functions 
are generalized in terms of hypergeometric functions. They can be manipulated analytically as well 
[1].The hypergeometric series plays a significant role in the number system, partition theory, graph 
theory, Lie algebra, etc. [10].  According to Rao [9], John Wallis (1616-1703) extended the ordinary 
geometric series  

....1 65432  xxxxx        (1) 
The above expression can be expressed in the Hommer’s series[9] of the form  

...)))1(1(1(1  xxxx )       (2) 

to the hypergeometric series of the form  

....)3)(2)(()2)(()(1  bababaababaabaaa      (3) 

Whose nth term is given by 

....)3)(2)(()2)(()(1)( 0  bababaababaabaaaa    (4) 

At b =1, the representation (4) can be written in the form 


