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Abstract: 
The capability of fuzzy sets to express gradual transition from membership to non-membership and vice 
versa has broad utility.  The overlap between two or more adjoining fuzzy sets create very important 
fuzzy “patch” that deserves special attention. In the existing literature, Zadeh, Mamdani and Tagaki-
Sugeno have established that the Min- and Max- operators can effectively be used for fuzzy interpolative 
inference. But what has not been done is to define an explicit expression for determining membership 
function in the overlap region. This paper addresses that concern, as it proposes an alternative approach to 
determination of membership function based on the Fourier series representation of the envelope of the 
fuzzy “patch”.  
 
Key-Words:  Membership functions, Fourier series, Fuzzy overlap, Triangular pulses, Polygonal 
waveform. 
 
1 Introduction 
 
George Cantor, the founder of set theory, used the 
comprehension principle to create sets [1]. In line 
with Cantor’s claim, the objects that form the set 
are definite and distinct from each other.  Clearly, 
this is an application of the law of the Excluded 
Middle. Fuzzy concepts cannot be rigidly 
described by Cantor’s notion of sets or indeed by 
the binary bivalent logic of “True/False”, which 
are regarded as logical values and which can be 
respectively denoted as 1 and 0.  Fuzzy set theory 
was introduced by Zadeh in his seminal work 
Fuzzy Sets [2], in order to represent and manipulate 
data and information possessing non-statistical 
uncertainties.  The notion of an infinite-valued 
logic was also introduced by Zadeh in [3], where 
he described the mathematics of fuzzy set theory, 
and by extension, fuzzy logic.  This theory 
proposed making the membership functions (or the 
values F and T) operate over the range of real 
numbers [0.0, 1.0].  The construction of fuzzy sets 
generally depends on two things namely: the 
identification of suitable universe of discourse and 

the specification of an appropriate membership 
function.  However, the specification of 
membership functions is, necessarily, somewhat 
subjective, as different persons may specify the 
membership functions for the same concept in 
different terms.  Such subjectivity comes from 
individual differences in expressing abstract 
concepts and has little to do with randomness. To 
be sure, the subjectivity and non-randomness of 
fuzzy sets constitute the primary difference 
between it and probability theory which is 
concerned with objective treatment of random 
phenomena. 
 
 
2 Fuzzy Set Universe 
 
A fuzzy set A on the given universe U implies that, 
for any u ∈ U, there is a real number μA(u) ∈ [0,1]  
corresponding to u where μA(u)  is called the grade 
of membership of u belonging to A. That is, there 
is a mapping: 
 
μ        [0,1]  , u   μA(u)          (1) 
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and this mapping is called the membership 
function of A.  If the range of μA admits only two 
values, 0 and 1, then μA degenerates into a usual 
set characteristics function. 
 
 A = {u ∈ U | μA(u)  = 1}        (2) 
 
Using the above interpretations, Cantor sets can be 
described as special cases of fuzzy sets.  Mamdani 
[4,5] suggested that any control scheme that can be 
carried out by an operator could be implemented 
by fuzzy logic after having translated the 
operator’s experience into qualitative linguistic 
terms.  Mamdani also introduced a fuzzification, 
Inference, and defuzzication scheme and 
developed an inference strategy that is generally 
known as the Min-Max method. Mamdani’s 
method is currently effectively applied to process 
control, robotics and other expert systems. It has in 
fact been successfully used in the control of 
industrial plants, including chemical, cement and 
steel plants [6]. Starting with Zadeh's fuzzy sets 
theory [7], several studies have been carried out to 
demonstrate the success of fuzzy sets and logic in 
both theory and application. Specifically, research 
efforts have focused on development of 
mathematical formulations for different aspects of 
fuzzy set theory and application, especially within 
the industrial setting. Takagi-Sugeno [8] proposed 
a control methodology that limits the use of fuzzy 
sets only for the input variables and thereby avoids 
the need for any defuzzification stage. Following 
his earlier work, Zadeh [9,10] also contributed 
several techniques for the application of fuzzy sets, 
including the development of the calculus of fuzzy 
If/Then rules.  Pearson [11] investigated a property 
of linear differential equation where the initial state 
is described by a vector of fuzzy numbers. Kosko 
and Isaka in [12] suggested that fuzzy systems 
could approximate any continuous mathematical 
function; in fact, they proved a uniform 
convergence theorem by showing that enough 
small fuzzy patches are able to sufficiently cover 
the fuzzy graph of any function or input/output 
relation.  In his contribution, Finn [13] presented 
an algorithm for developing fuzzy rules from a 
collection of data and mapping input antecedents 
to output consequents.  In such a case, the input 
and output spaces, are first divided into a grid of 
cells and primitive if/then rules formulated with 
each occupied input cell playing the role of an 
antecedent, while the associated output cells play 
the role of the consequent within the context of a 

fuzzy set composite rule. Lakshmikanthan and 
Mohapatra [14] in turn developed comparison 
principles and showed the existence and 
uniqueness of solutions for fuzzy differential 
equations under a more general condition than that 
of Lipschitz.  The study also established both the 
continuity and global existence of the solution 
assuming local existence.  Esogbue and Murrell 
[15] had, in fact, earlier proposed a fuzzy adaptive 
controller using reinforcement learning neural 
networks and demonstrated its basic capability to 
learn effective control for a simple dynamic 
system. Tao and Taur [16] also developed a 
methodology of analyzing the characteristics of the 
fuzzy if/then rules, and the extracted features were 
utilized to reduce the complexity of the fuzzy 
controller. Thus instead of partitioning each of the 
individual input variables of fuzzy controllers into 
fuzzy sets, the entire space of input variables was 
partitioned into fuzzy sets so as to ultimately 
reduce the number of fuzzy if/then rules. Castellani 
and Pham [17] later discussed issues of action 
aggregation and defuzzification in Mamdani-type 
fuzzy systems.  Their work highlighted the 
shortcomings of the defuzzification techniques 
associated with the customary interpretation of the 
sentence connective "and" by means of the set 
union operation whereas going by the Zadeh 
definition of fuzzy intersection and union, the 
minimum and the maximum functions are defined, 
respectively, as follows: 
Intersection: Min (μA(A) , μB(B)) 
Union:  Max (μA(A) , μB(B))           (3) 
 
In current literature, researchers generally treat the 
overlap region as intersection or union of two or 
more fuzzy sets and have invoked the Min and 
Max Operators, respectively, as needed.  Badiru 
and Arif [18], for example, treated the fuzzy 
overlap as an intersection of two adjoining sets viz: 
“Low” and “not Low” and invoked the Min 
Operator to generate output. Olunloyo, Ajofoyinbo 
and Badiru, in an earlier paper [19], also proposed 
another algorithm for the treatment of overlap of 
adjoining fuzzy sets based on partitioned grids.  In 
view of the importance of this fuzzy overlap 
region, especially where there is need to monitor 
and ensure smooth transition between the adjoining 
fuzzy sets in relation to the design of mission 
critical applications, we now propose a 
methodology for determination of the membership 
function in this region.  This method is expected to 
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provide a more robust way to design intelligent and 
fault-tolerant engineering systems. 
 
 
2 Problem Definition 
 
The membership function of fuzzy set can be 
defined as a curve that defines how each point in 
universe of discourse maps to a membership value 
(or degree of membership) between 0 and 1.  To be 
sure, a fuzzy set is fully defined by its membership 
function but for most fuzzy logic control problems, 
the assumption is that the membership functions 
are piecewise linear and usually triangular in 
shape. This means that the values to be determined 
are the parameters defining the triangles; the 
parameters, in turn, are usually based on the 
control engineer’s experience.   However, for 
many applications, especially where linguistic 
terms are involved, triangular membership 
functions are not the most appropriate, as they do 
not represent accurately the linguistic terms being 
modeled. In such applications, the Gaussian and 
exponential membership functions provide better 
representations.  In this paper, we shall formulate 
explicit expressions for dynamic determination of 
membership function in the overlap and non-
overlap regions. 
 
 
3 Determination of  

  Membership Functions 
 

According to Watanabe [20], the determination of 
membership function can be either manual or 
automatic.  Manual statistical techniques for 
determining membership functions fall into two 
broad categories:  use of frequencies and direct 
estimation.  However, the manual techniques can 
be deficient since they usually rely on subjective 
interpretation of words, are subject to the 
inadequacies of human experts, and generally 
suffer from other documented problems associated 
with the knowledge-acquisition process. The 
automatic generation of membership function 
differs significantly from the manual methods in 
that either the expert is completely removed from 
the process, or the membership functions are ‘fine-
tuned’ based on an initial guess by the expert.  The 
emphasis in this case is on the use of Genetic 
Algorithm (GA) and Artificial Neural Networks 
(ANN). Takagi and Hayashi [21] first pointed out 
that fuzzy reasoning presents two specific 

challenges, namely (1) the lack of a definite 
method for determining the membership function, 
and (2) the lack of a learning function.  Takagi and 
Hayashi then went ahead to describe an approach 
for using ANNs to overcome these problems.  The 
method investigates if/then rules by using neural 
networks to determine the membership functions 
of the antecedent and then determine the 
consequent component at the output for each rule.  
The approach used is to take a raw data (say, in a 
control problem), apply a conventional clustering 
algorithm to group the data into clusters, and 
thereafter apply an ANN to this clustered data to 
determine the membership of a pattern within a 
particular fuzzy set.   Wang [22] in an alternative 
approach builds on the information provided by an 
expert and uses ANNs to fine-tune the membership 
function.  In other words, the pairs (x, y) that 
describes the relationship between X and Y is 
presented to the neural network, which fits a 
function to the points. In an interesting 
contribution, Meredith et al [23] applied GA to the 
fine-tuning of membership functions in a fuzzy 
logic controller for a helicopter.  An initial guess 
for the membership function is made by the 
Control Engineer, and then the GAs adjust the 
parameters that define the functions by using them 
to minimize the movement of a hovering 
helicopter.  For this case, triangular membership 
functions were used.  Karr [24] also applied GA to 
the design of Fuzzy Logic Controller for the “Cart 
Pole” problem.  The membership function used 
here is Gaussian in nature, and the objective is to 
minimize an objective function that minimizes the 
squared difference between a Cart and the centre of 
the track that the Cart is on, while keeping the pole 
balanced at the same time.  Lee and Takagi [25] 
also tackled the Cart problem, adopting a holistic 
approach by using GA to design the whole system 
(i.e. determine the optimal number of rules as well 
as the membership functions).  Ross [26] reported 
on six popular methods for developing 
membership functions namely: Intuition, Inference, 
Rank Ordering, Neural Networks, Genetic 
Algorithms and Inductive Reasoning.  Olunloyo 
and Ajofoyinbo have, in a set of recent papers 
[27][28][29], suggested an alternative approach for 
treatment of union and intersection of fuzzy sets 
based on Fourier series representation of the 
membership functions. 
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4 Fourier series Representation 
 
Both techniques (manual and automatic) for 
determining membership functions as described 
above are non-systematic and suffer from certain 
deficiencies. On one hand, the automatic 
techniques are heuristic in nature, which implies 
that different values can be obtained for same input 
values presented at different times.   On the other 
hand, the manual techniques suffer from the 
deficiency that they rely on very subjective 
interpretation of words and the peculiarities of the 
engaged human expert.  In this study, we shall 
model the union and intersection of fuzzy sets as 
polygonal waves and triangular pulses, 
respectively, and then formulate an explicit Fourier 
series representation for determining grade of 
membership of fuzzy sets in both the overlap and 
non-overlap regions.  To be sure, Trigonometric 
series of the form 

( )∑
∞

=

++=
1

0

2
)(

k
kk SinkwtbCoskwta

a
tf         (4) 

where kk ba , are coefficients and the period 

w
p π2
= , are encountered in the treatment of many 

physical problems. One fundamental feature of the 
series is that it has a period of π2  spanning over 
the range ππ ≤≤− t  or π20 ≤≤ t , while 
outside this interval, f(t) is determined by the 
periodicity condition viz: ).()2( απα ff =+    
Traditionally, the universe of discourse in a fuzzy 
plane consists of one or more data points.   
However, each of the data points in a given 
universe of discourse has some form of data 
distribution around it in the form of some shape, 
whether Gaussian, exponential, cosine, triangular 
or another. Since all data points in the universe of 
discourse would have same form of data 
distribution around every data point, we could 
therefore derive an explicit Fourier series 
expression for the envelope of the fuzzy patch 
since we can be assured of the repetition of the 
distribution pattern around each data point. 
 
5 Assumptions 
 
The membership function of fuzzy sets can take on 
any shape.  A literature survey indicates that the 
following shapes of fuzzy membership functions 
are commonly used: Triangular, Trapezoidal, 
Exponential, Gaussian, and Cosine [30].  Although 

various functional profiles of membership 
functions could be used, the triangular and 
trapezoidal give approximations of the other forms 
and will thus receive further consideration in this 
work.  The trapezoidal form can also be 
approximated by the triangular forms since the 
end-points of the tolerance interval have the same 
grade of membership and could therefore be 
assigned a point value that represents the peak of 
the triangular profile.  In any case, our 
methodology can also be adopted for other 
functional forms; as will be shown in a future 
paper.  In general, we assume that the fuzzy sets 
are triangular and symmetric. In particular, the 
overlap domains are triangular and symmetric. For 
purposes of modeling, we adopted the following 
relations:  The grade of membership function of 
fuzzy set X, µx, is mapped to )(xf , and the data 
values (i.e. the universe of discourse) are mapped 
to x for the intersection and union as illustrated in 
Fig. 1 and Fig. 2, respectively, below: 
 

)(xf  
                                                         

D      γ0 
 
 
 
                                                                                
                   
           
        
                                            
                                                                                                            
5.1. Intersection of Fuzzy Sets 
 
Here we introduce the cross labeling as follows: 

43

210

;
;;

αα
ααα

==
===

UU

LL

FB
mFB              (5) 

Since the period of this Fourier series is π2 , we 
assign values to the parameters in Equation (5) for 
the first period as follows: 

παπα

παπαα

2;
2

3

;
2

;0

43

210

==

===                   (6) 

The values of the parameters in Equation (6) can 
also be extended to the second period as follows: 

παπα

παπα

4;
2

7

3;
2

5

87

65

==

==                                     (7) 

Fig. 1:   Triangular Pulses 
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5.2 Union of Fuzzy Sets 
 
According to the Zadeh proposition, the 
membership function of the union of the two fuzzy 
sets B and F with membership functions Bμ  and 

Fμ , respectively, is defined as the maximum of 
the two individual membership functions. This is 
the maximum criterion:  

),( FBFB Max μμμ =∪           (8) 
 
Conversely, the membership of the intersection of 
the two fuzzy sets B and F with membership 
function Bμ  and Fμ , respectively, is defined as 
the minimum of the two individual membership 
functions.  This is called the minimum criterion: 

),( FBFB Min μμμ =∩         (9) 

 
The use of Min and Max operators is based on the 
fact that grade of membership of data values in the 
fuzzy set is presumed as known and specified.  
That is, the grade of membership that corresponds 
to each data value is pre-determined and specified.  
In practice, data values are generated dynamically 
by systems during operation and often vary with 
time.  In such cases, there is need to continuously 
generate grade of membership for every data value 
in the fuzzy sets (or universe of discourse).   Thus 
if we can generate corresponding expressions for 
the triangular pulse illustrated in Fig. 1 and the 
polygonal waveform in Fig. 2 and normalize them 
appropriately, we will then have developed a 
methodology to dynamically generate membership 
function in the overlap and non-overlap domains 
and associate same with the corresponding 
linguistic variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 Problem Formulation 
 
For the purpose of this work and in compliance 
with the requirement of membership function, we 
normalize f(x) by writing 

1)(.;1)()(
max0

=== xfeixfxf
γ

           (10) 

The intersection of the normalized fuzzy sets is 
described by the function )(xf , where 
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(11) 

In writing the above expression, we have taken 
advantage of the periodicity condition of our 
Fourier series representation to pick any 
convenient cycle of our choice; for this example 
we have chosen as our period the interval 

ππ 3≤≤ x    i.e.  )( 62 αα ≤≤ x .  Of course, if 
we had elected to use the interval )( 40 αα ≤≤ x , 
our results from the Fourier series would have been 
the same.  Similarly, we define the union of the 
fuzzy sets as represented by the function 

)(xG where 
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(12) 

  
but for this case we have used the interval 

)20( π≤≤ x i.e., )( 40 αα ≤≤ x . 
 
 
7 Fourier Series Representation 
 
The Fourier representations are obtained as 
follows: 
 
7.1 Fuzzy Set Intersection 
Lower Boundary Value : πα =2  
Upper Boundary Value : πα 36 =  
Number of terms in truncated Fourier series: N 
Normalisation of Input Values: 

αo           α1      α2        α3           α4           α5       α6      α7       α8 

Fig. 2: Union of Fuzzy Sets 

)()( xGxU →
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where ix  is any data value in the universe of 
discourse.  The Fourier series representation for the 
normalized fuzzy set intersection )(xf of the 
triangular pulse described by Equation (11) is 
given by: 
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while  
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On plugging in the values for 
2

0a
’ ka  and kb  we 

obtain the Fourier series expression as follows: 
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Where, for the case k odd 
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and for the case k even 
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7.2 Fuzzy Sets Union 
 
Lower Boundary Value :   00 =α  
Upper Boundary Value :   πα 24 =  
Number of terms in truncated Fourier series:  N 
Normalisation of Input Values: 
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⎛
−
−

= ix
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where ix  is any data value in the universe of 
discourse.  The Fourier series representation for the 
union of the normalized fuzzy sets )(xG  of the 

polygonal waveform described by Equation (12) is 
given by: 
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where 
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  while 

⎩
⎨
⎧

=
evenk
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bk ;0
;0

        (25) 

Upon plugging in the values for 
2

0a
’ ka  and kb  

we obtain the Fourier expression as follows: 
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which can be simplified, for the case k odd, as 
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 while, for the case k even 
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8 Application of the proposed  
 Technique  
 
To test the efficacy of the proposed techniques, we 
applied the techniques to data obtained from a 
natural gas distribution company in Nigeria.  
 
8.1 Algorithm for adopting the new 

Approach. 
 
Step 1: Map out boundary points of the fuzzy sets  
Step 2: Ensure the fuzzy sets overlap 
Step 3: For this case, fuzzy set is approximated as  
             triangular in shape. 
Step 4: Fuzzy plane can comprise of many  
              overlapping fuzzy sets 
Step 5: Invoke the derived Fourier series  
            representation for the union and  
            intersection of fuzzy sets. 
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Step 6: Membership functions are determined by  
             providing data value, xi; (Note: the xi are  
             normalized with respect to the period of  
             the Fourier series representation (i.e. π2 )) 

 
8.2 Pre-Processing of Data 
 
For our sample problem, the raw data from the gas 
distribution company represent mole percentage of 
Methane in the natural gas stream.  For this case, 
the normal mole percentage of methane in the 
natural gas stream as per technical specification of 
the plants is in the range 82–94 %.  We 
consequently took 76% as the lower bound of the 
universe of discourse and 100% as the upper 
bound.  We normalize input value as follows: 

π2*⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

BoundLowerBoundUpper
BoundLowerx

x i            (29) 

where ix  are data values within the universe of 
discourse.    
 
8.3 Sample Output 
 
As a demonstration of the capability of our 
approach, the results of sample input (mole % of 
methane) are presented in Tables 2 and 3, which 
are listed in the expanded version of the Paper.  
The full code for the Simulation (which was 
implemented in MATLAB) can also be provided 
on request. 
 
8.4    Advantages of the proposed 
         Methodology 
 
One of the many advantages of this method is that 
it treats membership grade as a continuous 
function over the problem domain rather than as a 
discontinuous function. With respect to design of 
embedded fuzzy controllers in engineering 
systems, this approach will: 

a) significantly reduce number of if/then 
production rules and thereby simplify the 
design of dedicated and general purpose 
fuzzy controllers; 

b) facilitate the design of embedded fuzzy 
controllers in engineering systems; 

c) reduce the cost of fuzzy controllers with 
respect to the processing subsystems; and 

d) ultimately reduce the complexity and 
volume of implementation codes of fuzzy 
logic systems.    

We may however emphasise that this 
methodology is not limited to the piecewise 
linear, polygonal and triangular 
representations; the advantages of the method 
are in fact more noticeable when dealing with 
the Gaussian membership function, which is 
commonly used in engineering problems 
involving measurements, as it gives actual 
representation at every point.  In terms of 
hardware implementation of fuzzy controllers, 
this approach forms a basis for design of 
robust fuzzy controllers as the Fourier series 
representation can be codified in Assembly or 
C Language. 

 
 
9 Discussion and Conclusion  
Errors arising from vagueness or imprecision are 
often associated with measurements in 
engineering, just as they are with many other 
human endeavours. The capability of fuzzy sets to 
express a seamless transition from membership to 
non-membership and vice-versa has broad utility, 
especially for codifying the types of inaccuracies 
identified in this paper. Hence, there is a need to 
organize such pattern of measurements in sets that 
are fuzzy. The use of the Min and Max operators is 
based on the fact that grades of membership of 
data values are presumed as known and specified.  
In practice however, data values are generated 
dynamically by systems during operations and 
often vary with time.  In such cases, there is a need 
to continuously generate the membership grade 
corresponding to every data value in a fuzzy set. 
Over the years, the Min and Max operators have 
effectively been used for fuzzy interpolative 
inference. But what has not been done is to define 
an explicit expression for determining membership 
function in the overlap region (the intersection) 
and the “unified” fuzzy sets (the union). In this 
work, we have modeled the union and intersection 
of fuzzy sets as polygonal waveform and triangular 
pulses respectively; we have then proceeded to 
formulate Fourier series representation for 
determining consistent grade of membership in the 
corresponding patches of the fuzzy sets. We have 
also tested and validated the formulated Fourier 
representation using data from process plants in 
Nigeria, and the results show that our methodology 
can effectively be used to generate grade of 
membership of fuzzy sets. The proposed 
methodology thus provides a basis for the design 
of robust fuzzy controller and, by extension, design 
of robust intelligent engineering systems. 

7th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08),
University of Cambridge, UK, Feb 20-22, 2008

ISSN: 1790-5109 Page 307 ISBN: 978-960-6766-41-1



 

 

References: 
[1]. L. Hongxing, P. Chen, and H-P. Huang, Fuzzy 

Neural Intelligent Systems, CRC Press 
[2]. L.A. Zadeh, Fuzzy Sets, Information and Control, 

8(3), 1965, pp. 338 - 353. 
[3]. L. A. Zadeh, Fuzzy Algorithms, Information and 

Control, Vol. 12, 1968, pp 94 - 102. 
[4]. E.H. Mamdani, Application of Fuzzy Algorithms 

for Control of Simple Dynamic Plants”, Proceeding 
of the IEEE, Vol. 121, 1974, pp 1585-1588. 

[5]. E.H. Mamdani, Application of Fuzzy Logic to 
Approximate Reasoning Using Linguistic 
Synthesis, IEEE Transaction on Computer, Vol. 26, 
1977, pp 1182-1191. 

[6]. E.H. Mamdani, Development in Fuzzy Logic 
Control, Proceeding of 23rd Conference on Decision 
and Control,1984., pp 888-893 

[7]. L.A. Zadeh, Fuzzy Sets as a Basis for a Theory of 
Possibility, Fuzzy sets and Systems, Vol. 1, 1978, 
pp. 3-28 

[8]. T. Takagi and M. Sugeno, Fuzzy Identification of 
Systems and Its Application to Modelling and 
Control, IEEE Transactions on Systems, Man & 
Cybernetics,Vol.20, No.2,1985, pp 116-132 

[9]. L.A. Zadeh, The Calculus of fuzzy If/Then rules, 
AI Expert, 1992, pp. 23 - 27 

[10]. L.A. Zadeh, Fuzzy logic and the Calculi of Fuzzy 
Rules and Fuzzy Graphs, International Journal of 
Multi-Valued Logic, Vol 1, 1996,  pp 1-39 

[11]. D.W. Pearson, A property of Linear Fuzzy 
Differential Equations, Applied Mathematics, 
Elsevier Science, Vol. 10, No. 3, 1997, pp 99 - 103  

[12]. B. Kosko and S. Isaka, Fuzzy Logic, Scientific 
American, 1993, pp 76 - 81 

[13]. G.D. Finn, Learning Fuzzy Rules from Data, 
Neural Computing and Appl, Vol. 8,1999, pp. 9-24 

[14]. V. Lakshmikanthan and R.N. Mohapatra, Basic 
Properties of Solution of Fuzzy Differential 
Equations, Nonlinear Studies, Vol. 8, No 1, 2001, 
pp 113-124 

[15]. A.O. Esogbue and J.A. Murrell; A Fuzzy 
       Adaptive Controller Using Reinforcement     
       Learning Neural Networks, 2nd IEEE  
       International Conference on Fuzzy Systems,  
       1993, pp 178-183. 
[16]. C.W. Tao and J.S. Taur, Fuzzy Adaptive   
       Approach to Fuzzy Controllers with Spacial  
       Model, Fuzzy Sets and Systems, 125, 2002,  
        pp 61-77 
[17]. M. Castellani and D.T. Pham, An Aggregate and 

Defuzzication in Mamdani-type Fuzzy Systems, 
Proceeding of Institute of Mechanical Engineers: 
Vol. 216, 2002. Part C- Journal Mechanical         
Engineering Science. 

[18]. A.B. Badiru and A. Arif, FLEXPERT: Facility 
Layout Expert System Using Fuzzy Linguistic 
Relationship Codes, IIE Transaction, Vol. 28, 1996, 
pp. 295-308 

 

[19]. V.O.S. Olunloyo, A.M Ajofoyinbo, and A.B.  
       Badiru, Neurofuzzy Mathematical Model for  
       Monitoring Flow Parameters of Natural Gas,  
      Applied Mathematics and Computation, Elsevier  
      Science, Vol. 149, 2004,  pp. 747-770  
[20]. N. Watanabe, Statistical Methods for  
      estimating membership functions, Japanese  
      Journal of Fuzzy Theory and Systems, 5(4),  
      1979 
[21]. H. Takagi and I. Hayashi, Neural Networks –  
      Driven Fuzzy Reasoning, International 
      Journal of Approximate Reasoning, Vol. 5,  
      1991, pp 191 – 212 
[22]. S. Wang, Generating Fuzzy Membership 
      Function And Their Acquisition, Fuzzy  
      Sets Systems, Vol. 61, 1994, pp. 71-81 
[23]. L. Meredith, C.L. Karr and K. Krishna Kamur,  

The Use of Genetic Algorithms In The Design of 
Fuzzy Logic Controllers, 3rd Workshop on Neural 
Networks WNN ’92, 1992, pp 549 – 545 

[24]. C. Karr, Design of an Adaptive Fuzzy Logic 
Controller using a Genetic Algorithm, Proceeding 
of 4th  International Conference on Genetic 
Algorithms, 1991, pp 450-457 

[25]. M.A. Lee and H. Takagi, Integrating Design 
Stages of Fuzzy Systems, Using Genetic 
Algorithms, 2nd IEEE International Conference on 
Fuzzy Systems, Vol. 1, 1993, pp 612–617 

[26]. T. J. Ross, Fuzzy Logic with Engineering 
Applications, John Wiley & Sons Ltd, 2007 

[27]. V.O.S Olunloyo and A. M Ajofoyinbo,  
      Fuzzy-Stochastic Maintenance Model:  
      A Tool for Maintenance Optimization, 
      International Conference on Stochastic  

  Models in Reliability, Safety, Security and  
  Logistics, Beer Sheva, 2005, Feb 15-17 

[28]. V.O.S Olunloyo and A.M. Ajofoyinbo, 
      A New Approach for Treating Fuzzy Sets’  
      Intersection and Union: A basis for design of 
      Intelligent machines, 5th International  
      Conference on Intelligent Processing and 
      Manufacturing of Materials (IPMM’05),  
      2005, July 19-23. 
[29]. V.O.S. Olunloyo, and A.M. Ajofoyinbo, 
      Fuzzy-Stochastic Maintenance Model:  
      Economic Health Index as a Measure of  
      Engineering Performance, Special Issue of  
      the Communication of Dependability and  
      Quality Management: An International  
        Journal, Vol  9, No 1, 2006, pp. 30-37.  
[30]. Badiru, Adedeji B. and John Cheung, Fuzzy  
       Engineering Expert Systems with Neural  
       Network Applications, John Wiley & Sons,  
       New York, 2002 
 

7th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08),
University of Cambridge, UK, Feb 20-22, 2008

ISSN: 1790-5109 Page 308 ISBN: 978-960-6766-41-1


