
1

Editors – Prof. Amos DAVID & Prof. Charles UWADIA

Arts

Technology

Faith Science

Transition from Observation to Knowledge to

Intelligence

25-26 August 2016

University of Lagos, Nigeria

Editors

Prof. Amos DAVID

Prof. Charles UWADIA

301

Cross Cutter Design Pattern for implementing

Separation of Concerns in a Distributed System

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA

Charles Onuwa

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA

Charles Onuwa

Department of Computer Sciences

University of Lagos, Akoka, Lagos, Nigeria

Abstract: Achieving a better separation of concerns has been the preoccupation of the

software engineering research community. The main goal includes the attainment of

modularity and reasoning about software systems amongst others. Many paradigms

(aspect oriented programming inclusive) had been proposed to actualize the separation

of concerns. Aspect Oriented Programming is characterized by its twin attributes of

obliviousness and quantification. It also solves the twin problems of scattering and

tangling of codes. However, these attributes according to a section of the research

community, sacrifice program understanding and modularity. In this paper we present

the Cross Cutter design pattern, based on the existing object-oriented programming

technology, as an approach at separating the concerns that crosscut software systems.

The pattern was implemented on a distributed system. The two approaches were

evaluated using standard paradigm-independent metrics. The metrics used are the

separation of concern (SoC) metrics of Concern Diffusion over Components (CDC),

Concern Diffusion over Operations (CDO), and Concern Diffusion over Length of

Codes (CDLOC). The results obtained suggest that CCDP offers a better separation of

concern than the Aspect-Oriented Programming paradigm. The pattern preserves the

notion of modularity and a concise way of reasoning about the software amongst other

attributes.

Keywords: obliviousness, quantification, scattering, tangling, design patterns, aspect

oriented programming.

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

302

1. Introduction

Cross cutting concerns are aspects of a program which crosscuts

other concerns (Kiczales et al. 1997). Kiczales et al. (1997) in their

inspirational work, proposed the Aspect Oriented Programming

paradigm to solve crosscutting concerns in software system. It is based

on the construction of aspects as a new mechanism for the

compartmentalization of crosscutting concerns. However, while AOP

provides lexical separation of concerns (Przybylek, 2010) that solves

the twin problems of scattering and tangling of codes, it is fraught with

the problems of quantification and obliviousness. These problems

actually break the encapsulation principle that is pivotal to separation

of concerns. This work is motivated by the views of Steimann (2006)

and Przybylek (2010). To illustrate the effect of quantification and

obliviousness we consider the logging aspect below as suggested by

Laddad (2003).

1 public aspect TraceAspectV1 {

2 pointcut traceMethods()

3 : (execution(* *.*(..))

4 || execution(*.new(..))) && !within(TraceAspectV1);

5 before() : traceMethods() {

6 Signature sig = thisJoinPointStaticPart.getSignature();

7 System.out.println("Entering ["

8 + sig.getDeclaringType().getName() + "."

9 + sig.getName() + "]");

10 }

11 }

The aspect is made up of the pointcut descriptor, lines 2 to 4 and the

advice, lines 5 to 11.The traceMethods() pointcut captures the calls to

all methods in the system. The signature (* *.*(..) of the execution

pointcut type quantifies all the methods of the system. This typically

takes the control over the modules from the programmer. It is equally

impossible to determine by code inspection where aspect codes will

execute on the base codes. In this paper we intend to achieve the

following:

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

303

 The construction of a new design pattern for solving the

problem of crosscutting concerns within the framework of

the existing object-oriented programming paradigm. This

pattern removes the issues of quantification and

obliviousness that characterizes the aspect oriented

programming technology (Section 2).

 The evaluation of the Cross Cutter Design Pattern and

Aspect Oriented Programming implementation of a

distributed system using well known software engineering

metrics (Section 3).

2. The Proposed Cross Cutter Design Pattern

This paper proposed a new design pattern called Cross Cutter

Design Pattern(CCDP). The Cross Cutter Design pattern is a structural

pattern. Structural patterns are focused on the organization of the

program. The methodology for actualizing the CCDP includes the use

of the Formal Concept Analysis (FCA) to assist in the detection of

common concerns in software. The concerns are then isolated. The FCA

allows the discovering of common concerns on the basis of a rough

description of the class. Second, an appropriate class diagram for the

domain is constructed. Third, the problem is implemented using the

proposed Cross-Cutter Design Pattern (CCDP). The Cross Cutter

Design Pattern encapsulates these concerns without the attendant loss

in program understanding and modularity. The pattern can be used for

logging, tracing, security and other applications.

Gamma et al. (1995) in their seminal work opined that a design

pattern should possess four essential elements viz:

1. A name that is meaningful to the pattern.

2. A description of the problem area that explains when the

pattern may be applied.

3. A solution description of the parts of the design solution,

their relationships and their responsibilities.

4. The statement of the consequences of applying the pattern.

Based on these elements, the Cross-Cutter Design Pattern is

presented below:

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

304

Pattern name: Cross-Cutter

Description: It comprises of the CrossCutterDaemon class that

aggregates crosscutters into a list and adds crosscutter objects to the list

of crosscutters. It possesses interfaces that connect to the

concreteContexts.

Problem description: Many applications are fraught with the

presence of concerns that crosscut many modules which often leads to

the scattering and tangling of codes in various modules. Several

attempts have been made in solving this problem. The most common is

the AOP technology which is characterised with the notion of

quantification and obliviousness. The notions have been shown to

impair modularity and program understanding. The Cross-Cutter

design pattern is based on the OOP technology and preserves the

notions of modularity and program understanding.

Solution description: The class diagram in Figure 1 shows the UML

(Unified Modelling Language) model of the Cross-Cutter design

pattern. The pattern is made up of the crosscutter class,

crosscutterDaemon and interfaces: ICrossCutterable, ICrossCutter and

ICrossCutterData.. The interface ICrossCuttable is realized by Ticks

class. The interface ICrossCutterData is realized by the class

ConcreteContext. The interface ICrossCutter realized the class

CrossCutter. The ConcreteContext class is a subclass of the

CrossCutter class. The CrossCutter class depends on the

ICrossCuttable interface and the CrossCutterDaemon class depends on

the ICrossCutter interface

Consequences: The pattern promotes reuse by hiding

implementation. It provides for modularity thus allows developers to

reason about their applications. However, it is verbose for some

applications.

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

305

+getRaw() : Object
+setRaw(in raw : Object)

«interface»
ICrossCutterData

+crossCut(in crossCutterData : ICrossCuttable) : void
+getData() : ICrossCutterData
+getName() : string

«interface»
ICrossCutter

CrossCutter

+getCrossCutter(in name : string) : ICrossCutter
+add(in crossCutter : ICrossCutter)
+getCrossCutterID(in crossCutterName : string) : int

-listOfCrossCutters : List<ICrossCutter>

CrossCutterDaemon

«datatype»
List<ICrossCutter>

+getData() : ICrossCutterData
+getID() : int
+setID(in crossCutterName : string)

«interface»
ICrossCuttable

«datatype»
Object

+getLogs() : string

ConcreteContext

-End1

*

-End2

*

+run()

Ticks

+clone() : Object

ContcreteData

1

*

Figure 1. The Generic Class Diagram for the Cross Cutter Design Pattern

2.1. Experimentation

 The experimentation is carried out as follows: Given a problem, the

first task is to identify the crosscutting concerns in a domain of various

concerns. The FCA helps in this regard. Second, an appropriate class

diagram for the domain is constructed. Third, the problem is

implemented using the proposed Cross-Cutter Design Pattern and the

AOP technology for comparison using software engineering attributes

of separation of Concerns (SoC), coupling, cohesion and size metrics.

2.2. Cross Cutter Design Pattern on Distributed System

In distributed environment it is desirable to invoke methods on

remote objects. The Remote Method Invocation (RMI) provides a

platform-independent means of invoking methods on remote objects.

With RMI the networking details required by explicit programming of

streams and sockets is done away with the fact that an object located

remotely is almost transparent to the programmer (Graba, 2007). Once

a reference to the remote object has been obtained, the methods of that

objects may be invoked in exactly the same way as those of local

objects. We illustrate, the use of the Cross-Cutter Design Pattern in a

distributed environment using a motivating example. We consider a

distributed application that calculates the final value of an investment

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

306

from remote machines (clients).Each user is logged on the environment

for each transaction. Implementing the RMI is made up of the interface

definitions for the remote services; implementation of the remote

services; stub and skeleton files; a server to host the remote services; a

RMI naming service that allows clients to find the remote services and

a client program that needs the remote serves.

2.2.1 The RMI server process and the Cross-Cutter Design Pattern

The class diagram in Figure 2 below shows that, the package ccdp

is made up of the crosscutter class, crosscutterDaemon and interfaces:

ICrossCutterable, ICrossCutter and ICrossCutterData.. The interface

ICrossCutterable is realized by the classes Server and Ticks.

Figure 2: Class Diagram for the server process of The RMI

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

307

The interface Datahandler is realized by the class Server, the

interface ICrossCutterData is realized by the class Log. The interface

ICrossCutter realized the class CrossCutter. The Logger class is a

subclass of the CrossCutter class. The CrossCutter class depends on the

ICrossCuttabke interface and the CrosCutterDaemon class depends on

the ICrossCutter interface.

This interface should import package java.rmi and must extend

interface Remote. The interface definition for this example must include

the signature for the methods adduser and calculate, which are made

available to clients.

The RMI client process and the Cross-Cutter Design Pattern

The client obtains a reference to the remote object from the registry.

This is done by the use of method lookup of the class Naming. This

supplies as argument to the method the same URL that the server did

when binding the object reference to the object’s name in the registry.

Figure 3: The Class diagram for the client program

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

308

2.2.3 The Aspect Oriented Programming Implementation

The AOP implementation of cross cutting concerns is characterised

by the localization of those concerns in an AOP construct called the

aspect.

2.2.3.1 Server process

The class diagram below depicts the relationship between aspect and

the server. The listing below shows the aspect called Logging that logs

user’s transactions. The pointcut logg() captures executions to method

adduser() in the Server class. Once the aspect is compiled along with

the Server class, a log message will print to System.out after the method

is executed.

Figure 4: Class diagram for the Server aspect

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

309

Listing 1: The logging aspect

Package rmiapplication;

Public aspect Logging {

 pointcut logg(): execution(void adduser(String));

 after(): logg(){

 System.out.println("\nmachine " + Server.newuser

 + " has connected \n");

 }}

2.2.3.2 Client process

The class diagram below depicts the relationship between aspect and

the server. The listing below shows the aspect called Hoster that

provides hostname. The pointcut hosting () captures executions to main

in the Finalvalue class. Once we compile the aspect along with the

Finalvalue class, a dialogue box for the hostname is displayed before

the method is executed.

Figure 5: The class diagram for the client

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

310

3. 3. Evaluation of the CCDP and AOP approaches for a

Distributed System

In the study, Chidamber and Kemerer, (1994) (CK) metrics for

separation of concerns was selected to evaluate the (CCDP)

implementation and the AOP implementation. These metrics have been

used in several studies to measure software. The metrics chosen are

paradigm-independent, thus allowing the comparison between the

CCDP and AOP implementations. The separation of concerns metrics

measure the degree to which a single concern in the software system

maps to the design components at varying levels of granularity and the

line of codes (Gracia et al., 2005). The concern measures of interest are

defined by Sant’Anna et al. (2003) are three concern measures which

quantify the diffusion of a concern over components, operations, and

line of code. Concern Diffusion over Components (CDC) and Concern

Diffusion over Operations (CDO) measure the degree of concern

scattering at different levels of granularity. The CDC counts the number

of classes and aspects related to a concern while CDO counts the

number of methods and advices (Figueiredo et al., 2008).

The Concern Diffusion over Lines of Code (CDLOC) measures the

degree of concern tangling. This metric counts the number of concern

switches for each concern through the lines of code. The table below

shows the values of the various CK metrics obtained by code

inspection. In the distributed/parallel application the server and the

client side were considered.
Table 1 CK metrics for distributed/parallel application.

Metric CDC CDO CDLOC CBC

CCDP 6 8 4 4

AOP 4 17 4 6

Metric DIT LCOM WOC

CCDP 2 0 4

AOP 0 0 1

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

311

The logging concern in both the CCDP and AOP implementation were

evaluated. In the SoC metrics the CCDP provided a better result with a

lower CDO metrics, which indicates a lower degree of concern

scattering at the level of internal component members. However, the

AOP presents a better result with the CDC metrics. It is noteworthy

here that the effect of quantification on other components by AOP is

not taken into consideration.

Figure 6: The CK metrics for the Distributed/Parallel application

Both technologies record a tie of 4 in the CDLOC metrics. In the

coupling metrics of CBC the AOP provides a better result than the

CCDP. The DIT metrics reveals that the CCDP outperforms the AOP.

This is a tradeoff scenario in which a higher DIT provides a greater

potential for reuse on the one hand, while it constitutes a greater design

complexity on the other. The LCOM for both the CCDP and AOP is

zero; this indicates that both technologies are cohesive. The AOP gives

a better for the WOC metrics.

The results so far reaffirm the CCDP superiority over the AOP in

the separation of concerns in distributed/parallel applications.

0

2

4

6

8

10

12

14

16

18

C
C

D
P

A
O

P

C
C

D
P

A
O

P

C
C

D
P

A
O

P

C
C

D
P

A
O

P

C
C

D
P

A
O

P

C
C

D
P

A
O

P

C
C

D
P

A
O

P
CDC CDO CDLOC CBC DIT LCOM WOC

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

312

4. Related Work

 Kiczales et al. (1997) first proposed the AOP paradigm to solve

crosscutting concerns in software system. It is based on the construction

of aspects as a new mechanism for the compartmentalization of

crosscutting concerns. Filman and Friedman (2000) gave an exposition

on AOP being equal to quantification and obliviousness. The study

concluded that AOP allows programming by making programming

assertions over programs written by programmers oblivious to such

assertion. In Kizcales et al. (2001), AspectJ -a new extension to the OO

java for encapsulating crosscutting concern – was proposed. It solves

the problem of tangling and scattering of codes in software systems.

Grisworld et al. (2006) introduced crosscutting programming

interfaces (XPIs) which help insulate aspects from the details of code

they advice and constrain that code to expose behaviors in specified

ways. Although to design XPIs no explicit reference to aspects is

required, however the problem of quantification and obliviousness

persists. There have been several critics of the AOP paradigm; chief

among the critics is Steimann (2006) who concludes that the success of

AOP is paradoxical.

Various instances where OOP can achieve AOP objectives were

itemed, however no example was shown to demonstrate the assertions

made. Forster and Steimann (2006) came up with a simple language

extension that equips aspectJ with static type check. This leads to the

prevention of infinite recursion and nonsensical expressions. However,

it possesses the general AOP weaknesses of obliviousness and

quantification. Przybylek (2010) opined that AOP provides lexical SoC

both does not make software modular.

Przybylek (2011) found that programming abstractions proposed by

AOP actually harm software modularity, instead of improving it. Cacho

et al. (2014) shows that the blending of design patterns results depends

on the patterns involved, the composition intricacies, and the

application requirements. A key drawback of this approach is that

blending of the patterns leads to tangling.

Panunzio and Vardanega (2014) proposed a component –based

process with separation of concerns for the development of embedded

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

313

real-time systems. The separation of concerns is achieved with the

allocation of distinct concerns to software entities of the approach. The

strength of this study lies in the fact that the component model supports

the separation of concern between functional and non-functional

concerns. However, the major drawback is the low level of adoption of

the approach. The aim of our work is to separate cross cutting concerns

using the OOP technology.

5. Conclusion and Future Work

The first goal of the paper is to design a novel structural design

pattern to resolve structural cross-cutting concerns like business rules,

logging, information security and so on, in distributed system. The

second goal of the paper is on evaluating the design pattern with the

view of establishing that it removes obliviousness and quantification by

using the CK metrics. These two goals are largely achieved. Our

findings suggest that CCDP offers a better separation of concern than

the Aspect-Oriented Programming paradigm. The pattern preserves the

notion of modularity and a concise way of reasoning about the software

amongst other attributes. The future work includes the use of the design

pattern in web services, CORBA (Common Object Request Broker

Architecture), and Map Reduce platforms.

List of references

Cacho, N., Sant’Anna, C., Figueirodo, E., Dantas, F., Gracia, A., and

Batista, T (2014) Blending design patterns with aspects: A

quantitative study. The Journal of Systems and Software.

Chidamber, S.R. and Kemerer, C.F., (1994). A Metrics Suite for Object

Oriented Design.IEEE Transactions on Software Engineering, Vol .

20, No. 6.pp.476-492.

Figueiredo, E.,Silva, B., Sant’Anna,C., Gracia, A.,Whittle,J. and

Nunes , D. (2008). Crosscutting Patterns and Design Stability: An

Exploring Analysis.

Filman, R.E. and Friedman,D.P.(2000) Aspect Oriented Programming

is Quantification and Obliviousness. NASA, USA.

Cross Cutter Design Pattern for implementing Separation of Concerns in a

Distributed System

314

Forster, F. and Steimann, F., (2006). AOP and the Antimony of the Liar.

FOAL, Bonn, Germany.

Gamma, E, Helm, R, Johnson R & Vlissides, J (1995), Design patterns:

elements of reusable object oriented software. Addison-Wesley,

New York, NY

Graba, J. (2007), An introduction to network programming with Java.

Addison-Wesley, New York, NY.

Gracia,A., Sant’Anna, C., Figueirido,E,Kulesza, U., Lucana, C., and

von Staa , A.(2005) Modularizing Design Patterns with Aspects: A

Quantitative Study. SEL, PUC-Rio.

Griswold,W.G. (2006), Modular software design with crosscutting

interfaces. IEEE Software.

Kiczales, G, Lamping, J, Mendhekar, A, Maeda, C, Lopes, CV,

Loingtier, J & Irwin, J (1997), ‘Aspect-oriented programming’,

Proc.European Conf. on Object-Oriented Programming (ECOOP),

Finland, Springer-Velag LNCS 1241.

Kiczales, G, Hilsdale, E , Hugunin, J , Kersten, M , Palm, J, &

Grisword, W (2001), ‘An overview of AspectJ’, In Knudsen, J.L. ,

editor, ECOOP 2001- Object-Oriented Programming 15th

European Conference, Budapest Hungary, volume 2072 of Lecture

Notes in Computer Science, pp.327-353. Springer-Verlag, Berlin.

Laddad, R (2003), AspectJ in action: practical aspect-oriented

programming. Greenwich: Manning Publications.

Panunzio, M. and Vardanega, T., (2014). A component-based process

with separation of concerns for the development of embedded real-

time software systems. Department of Mathematics, University of

Padova, via Trieste 63, 35121 Padova, Italy.

Przybylek, A (2010), What is wrong with AOP? In proc.International

joint conference on software technologies. Athens, Greece.

Przybylek, A (2011), Impact of aspect-oriented programming on

software modularity. CSMR.

Sant’Anna, C., Gracia, A., Chavez,C, Lucena, C and von Staa,A.(2003)

On the reuse and maintanence of aspect-oriented software: an

assessment framework. Technical reports PUC-Rio.

RUFAI Adewole Usman, FASINA Ebun Philip, UWADIA Charles Onuwa

315

Steimann, F (2006), ‘The paradoxical success of aspect oriented

language.’ Proc .OOPSLA, U.S.A.

Transition from Observation to Knowledge to Intelligence (TOKI) Conference is a
forum that allows researchers from the fields of Competitive Intelligence, Internet of
Things (IoT), Cloud Computing, Big Data and Territorial Intelligence to present their
novel research findings and results. Common to all these fields are the concepts of
information, information systems, knowledge, intelligence, decision-support systems,
ubiquities, etc. The relevance of research findings, results obtained, systems
developed and techniques adopted in these research fields for both the industries and
government cannot be overemphasized.

Therefore, the Conference welcomes contributions in the following areas:

 Smart Cities: With focus on Intelligent Transportation Systems, Observatory
Systems, Smart Electricity Grids, building automation, assisted living and e-
health management systems. Areas such as application of Geographical
Information Systems, Territorial Intelligence and Sensors are also considered.

 Big Data Analytics: This includes Big Data, Information Visualization, Data
Analysis and related applications.

 Semantic Web: Standardized formats and exchange protocols for web based
data.

 IoT Analytics: These center around innovative algorithms and data analysis
techniques for extracting meaning and value from the Internet of Things.

 Resource Management: This includes energy saving techniques, effective and
efficient utilization of resources, intelligent data processing, mining, fusion,
storage, and management, context awareness and ambient intelligence.

 IoT Enabling Technologies: These center around technologies that drive
pervasive / ubiquitous systems some of which include but not limited to IPv6,
NFC, RFID and Microprocessors.

 Interoperable and Adaptive Information Systems: These include but are not
limited to Decision Support Systems, collaborative and co-operative systems and
other forms of systems that support interfacing of multiple elements and
entities.

 Mobile IoT: Smart phone applications for generating and consuming data, crowd
sourced data, e-commerce, mobile advertising, B2B, B2C and C2C
connectedness.

Cloud Computing: Including security, storage and access to data stored in the cloud;

service provisioning and resource utilization; cloud communication protocols;

interoperability among users and devices with respect to linked data.

Editors
Prof. Amos DAVID & Prof. Charles UWADIA

9782954676036

	cover page.pdf
	cover page
	Pages de toki2016-proceedings-3

