BACTERIAL DIVERSITY STUDIES AND PROBIOTIC FUNCTIONS OF BACILLUS SPECIES IN FERMENTED LOCUST BEAN SEEDS (PARKIA BIGLOBOSA JACQ. BENTH)

BY

ADEWUMI, GBENGA ADEDEJI

B.Sc. (Hons.) Food Science and Technology (Abeokuta)

M.Sc. Microbiology (Ibadan)

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, UNIVERSITY OF LAGOS, NIGERIA FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D.) IN MICROBIOLOGY

JANUARY, 2016

CERTIFICATION

DEDICATION

For

Providence Ademidun

Fortune Adebola

Heritage Adedamola

Olufunmilola Rebecca Adewumi (nee Osinowo)

Papa J.I. and Mama C.O. Osinowo

Late Papa J.A. and Mama R.M. Adewumi

ACKNOWLEDGEMENTS

I acknowledge God Almighty for His mercies, loving kindness, guidance and provisions over my life. He has made it possible for me to be alive to witness this day, to Him be all the glory. I am most grateful to my supervisor, Dr. F.A. Oguntoyinbo, who not only initiated this research work, but also took time to guide, mentor and saw it to a successful completion. I equally appreciate Prof. O.O. Omidiji, my co-supervisor, for his advice and guidance during the course of this work. I acknowledge the significant contributions of my postgraduate teachers during the course of this programme; worthy of mention are Professors M.O. Ilori and E.O. Ugoji. I wish to also thank Prof. O.O. Amund for his fatherly interest, and for providing useful materials during my thesis write-up.

The take-off funding for this project was provided by Society for Applied Microbiology (SfAM), Brighton, United Kingdom, through the award of a New Lecturer grant to Dr. F.A. Oguntoyinbo. Government of India provided two postgraduate fellowships, namely DBT-TWAS and INSA JRD-TATA, which enabled my research visits to Institute of Bioresources and Sustainable Development (IBSD), Imphal and National Dairy Research Institute (NDRI), Karnal, India. My utmost appreciation to my hosts, Dr. K. Jeyaram and Dr. S. Grover of IBSD and NDRI respectively, for their special interests in my Ph.D. research. I wish to appreciate my laboratory mates, Wahengbam Romi, Thangjam Anand Singh, Khunjamayum Romapati Devi, Santosh Keisam, Namita Rokana, Hogarehalli Mallapa Rashmi, Rajbir Singh and Dipak Chaudhari, who assisted greatly during my research stay at IBSD and NDRI.

I sincerely acknowledge my employer, University of Lagos, for the award of a doctoral assistance grant, and short-term study leave that facilitated my collaboration with NDRI. At this juncture, I would like to thank the Head, Department of Microbiology, Prof. I.A. Adeleye, for recommending me for this grant. My profound gratitude goes to Bells

iv

University of Technology, Ota, for providing my first teaching employment, and the leave of absence granted during my research visit at IBSD.

To my siblings and numerous friends, especially Dr. C.G. Alimba, I cherish all your counsel and encouragements. Finally, I thank my wife, for her invaluable and outstanding support, my children, for their immeasurable understanding during my long absence from home.

TABLE OF CONTENTS

CONTENTS	PAGES
Title Page	i
Certification	ii
Dedication	iii
Acknowledgements	iv
Table of Contents	vi
List of Tables	xii
List of Figures	xiii
List of Plates	xvi
List of Appendices	xvii
Abstract	xviii
CHAPTER ONE	1
1.0 Introduction	1
1.1 Background to the Study	2
1.2 Statement of the Problem	5
1.3 Aim and Objectives	6
1.3.1 Aim	6
1.3.2 Specific Objectives	6
1.4 Significance of the Study	6
1.5 Operational Definition of Terms	7
CHAPTER TWO	9
2.0 Literature Review	9
2.1 Fermented foods	10
2.2 Fermented vegetable protein seeds of Africa and Asia	10

2.3 Nutritional values of <i>iru</i> and biochemical changes during production	12
2.4 Microorganisms associated with fermented condiments	13
2.5 Microbiological methods for assessment of microbiota in fermented foods	13
2.5.1 Traditional culture-dependent methods	13
2.5.2 Culture-dependent molecular techniques	14
2.5.3 Culture-independent molecular analyses	18
2.6 Bacillus cereus phylogeny: characteristics and identification	25
2.7 Probiotics	32
2.7.1 History and definitions of probiotics	32
2.7.2 Criteria for selecting good probiotic strains	32
2.7.3 Mechanisms of actions of probiotic microorganisms	35
2.7.4 Significant benefits of probiotics	35
CHAPTER THREE	41
3.0 Materials and Methods	41
3.1 Description of samples collection	42
3.2 Bacterial community profiling of <i>iru</i> samples	45
3.2.1 Culture-independent molecular analysis of bacterial community	45
structure in <i>iru</i> samples	
3.2.1.1 DNA extraction of <i>iru</i> samples	45
3.2.1.2 PCR-DGGE amplification of variable V3 region of	47
16S rRNA gene	
3.2.1.3 DGGE analysis of bacterial community of <i>iru</i> samples	48
3.2.1.4 PCR-DGGE gel images analysis	49
3.2.1.5 Excision of DGGE bands and sequencing of amplicons	
3.3 Genomic characterization and sub-typing of autochthonous Bacillus species	50

3.3.1 Culture-dependent microbiological analysis of bacterial species in	50
<i>iru</i> samples	
3.3.1.1 Isolation of microorganisms	50
3.3.1.2 Determination of Hydrogen ion concentration (pH) of <i>iru</i>	51
samples	
3.3.1.3 Phenotypic characterization of bacterial species isolated	51
from <i>iru</i> samples	
3.3.1.3.1 Cultural/colonial/macroscopic characteristics	51
3.3.1.3.2 Gram's staining	51
3.3.1.3.3 Endospore staining	52
3.3.1.3.4 Phase contrast microscopy	52
3.3.1.3.5 Catalase test	52
3.3.1.3.6 Starch hydrolysis	53
3.3.1.3.7 Casein hydrolysis	53
3.3.1.3.8 Lipid hydrolysis	54
3.3.1.3.9 Anaerobic growth	54
3.3.1.3.10 API 50 CHB carbohydrates fermentation	54
profiles and identification system of	
Bacillus strains	
3.3.2 Culture-dependent molecular assessment of bacterial species in <i>iru</i>	55
samples	
3.3.2.1 Bacterial genomic DNA extraction, quantification and	55
purity determination	

3.3.2.2 PCR amplification of 16S rRNA gene56

3.3.2.3 Amplified ribosomal DNA restriction analysis (ARDRA)) 57
3.3.2.4 16S-23S rRNA gene internal transcribed spacer (ITS)	58
PCR amplification	
3.3.2.5 16S-23S rRNA internal transcribed spacer-restriction	59
fragment length polymorphism (ITS-PCR-RFLP)	
3.3.2.6 Randomly amplified polymorphic DNA PCR	59
(RAPD-PCR)	
3.3.2.7 Multilocus sequence analysis (MLSA)	61
3.3.2.8 Phylogenetic construction of 16S rRNA and	61
housekeeping genes sequences	
3.4 Probiotic examinations of <i>Bacillus</i> strains	64
3.4.1 Resistance of <i>Bacillus</i> strains to acidic pH and bile salts tolerance	64
3.4.2 Antimicrobial activity of Bacillus strains against food-borne	64
pathogens	
3.4.3 Bacterial cell surface hydrophobicity (BCSH)	66
3.4.4 Autoaggregation assay	67
3.4.5 Coaggregation assay	67
3.4.6 Cell culture studies	68
3.4.6.1 HT-29 cell lines propagation and maintenance	68
3.4.6.2 In vitro adhesion assay of Bacillus strains	69
3.4.6.3 Bacilli inhibition of <i>S. enterica</i> serovar Typhimurium	70
MBU 1047 adherence to HT-29 cell lines	
3.4.7 Safety assessment of Bacillus strains	72
3.4.7.1 Haemolysis on blood agar	72
3.4.7.2 Antibiotic susceptibility testing	72

3.4.7.3 Mucin degradation by Petri-dish assay	73
3.5 Statistical analysis	74
CHAPTER FOUR	75
4.0 Results	75
4.1 Analysis of bacterial communities and diversity of <i>iru</i> using PCR-DGGE	76
4.2 Identification of major bacterial PCR-DGGE bands	81
4.3 Bacterial counts and pH of <i>iru</i> samples	84
4.4 Phenotypic characterization and identification of bacterial species isolated	87
from <i>iru</i>	
4.5 Bacillus genomic characterization and strains sub-typing using polyphasic	90
approaches	
4.6 Phylogenetic analysis	102
4.7 MLSA for sub-typing Bacillus cereus sensu lato	104
4.8 Probiotic functional properties of Bacillus strains	108
4.8.1 Acid resistance and bile salts tolerance	108
4.8.2 In vitro antagonistic potentials of Bacillus strains against	110
food-borne pathogens	
4.8.3 Bacterial hydrophobicity	113
4.8.4 Autoaggregation	115
4.8.5 Coaggregation	115
4.8.6 Adhesion of <i>Bacillus</i> strains to HT-29 cell lines	117
4.8.7 Inhibitory effects of Bacillus strains on adhesion to HT-29	117
cell lines by S. enterica serovar Typhimurium MBU 1047	
4.9 In vitro safety evaluation of Bacillus strains	120
4.9.1 Haemolytic activity	120

4.9.2 Antibiotic susceptibility pattern	120
4.9.3 Degradation of porcine mucin by plate assay	122
CHAPTER FIVE	124
5.0 Discussion	124
5.1 Summary of Findings	151
5.2 Conclusion	152
5.3 Contributions to Knowledge	153
References	154
Appendices	215

LIST OF TABLES

Tables	Pages
2.1 Selection criteria for probiotic strains	34
3.1 Coordinate descriptions of <i>iru</i> sampled at different locations in Nigeria	44
3.2 List of PCR primers for <i>Bacillus</i> species characterization and identification	63
using culture-dependent molecular techniques	
4.1 Bacterial species richness estimates (R) and Shannon's index of diversity	80
(H) of DGGE profiles of <i>iru</i> samples obtained from various geographical	
locations in Nigeria	
4.2 Identities of major bacterial bands excised from PCR-DGGE gels of <i>iru</i>	82
samples	
4.3 Identities of major bacterial bands excised from PCR-DGGE gels of <i>iru</i>	89
samples	
4.4 Genomic characterization and sub-typing of Bacillus species isolated from	92
iru, traditional fermented Parkia biglobosa seeds	
4.5 Antagonistic activities of <i>B. subtilis</i> strains isolated from <i>iru</i> and reference	111
probiotic B. clausii UBBC-07 against eleven indicator bacteria strains	
4.6 Antibiotic sensitivity profiles of <i>B. subtilis</i> strains isolated from <i>iru</i> and	121
reference probiotic <i>B. clausii</i> UBBC-07	

LIST OF FIGURES

Figures Pag	ges
3.1 Map showing sampling locations of <i>iru</i> obtained from different manufacturers 43	
and retail markets in South-West and North-Central Nigeria	
4.1 PCR amplification of variable V3 (~ 240 bp) region of bacterial 16S rRNA	78
gene in different <i>iru</i> samples, based on two genomic DNA extraction protocols-	
enzymatic (1) and chemical (2)	
4.2 Principal component of non-metric multidimensional scaling analysis of	79
DGGE data	
4.3 DGGE profiles of PCR-amplified 16S rRNA gene fragments of sixteen (16) iru 8	33
samples (alphabets A-P) showing major bacterial amplicons	
4.4 Population counts of bacterial colonies in <i>iru</i> samples obtained from Oyo	85
(OYO), Abeokuta (ABK), Kaduna (KAD), Ado-Ekiti (ADK), Lagos (LAG),	
Ibadan (IBA) and Ilorin (ILO)	
4.5 pH values of <i>iru</i> samples obtained from Oyo (OYO), Abeokuta (ABK),	86
Kaduna (KAD), Ado-Ekiti (ADK), Lagos (LAG), Ibadan (IBA) and	
Ilorin (ILO)	
4.6 Phase contrast microscope of Bacillus species endospores	88
4.7 ARDRA gel profiles based on (a) HaeIII (b) CfoI (c) HinfI (d) DdeI (e) TaqI	93
(f) RsaI showing differentiation of Bacillus species into phylogeny of B.	
subtilis and B. cereus	
4.8 ARDRA gel profile based on RsaI showing differentiation among B. subtilis	94
phylogeny	
4.9 ARDRA gel profile based on CfoI showing differentiation of B. subtilis and	94
B. licheniformis	

4.10 ITS-PCR gel profile of different B. licheniformis strains	95
4.11 ITS-PCR-RFLP gel profile showing strain diversity within <i>B. subtilis</i> ,	95
B. pumilus and B. amyloliquefaciens, also differentiating B. pumilus	
from B. amyloliquefaciens	
4.12 Dendrogram based on UPGMA clustering of Jaccard similarity coefficient	96
(S_j) of normalized combined ARDRA, ITS-PCR and ITS-PCR-RFLP	
fingerprints of Bacillus species isolated from iru and reference strains	
4.13 RAPD-PCR (OPA 18 primer) of <i>B. subtilis</i> strains from <i>iru</i>	97
4.14 RAPD-PCR (OPA 18 primer) of <i>B. amyloliquefaciens</i> strains from <i>iru</i>	97
4.15 Dendrogram based on UPGMA clustering of Jaccard similarity coefficient	98
(S _j) of normalized OPA 18 RAPD-PCR fingerprints of dominant <i>B. subtilis</i>	
and B. amyloliquefaciens strains from iru and reference strains	
4.16 RAPD-PCR (M13 primer) of B. subtilis strains from iru	99
4.17 RAPD-PCR (M13 primer) of <i>B. amyloliquefaciens</i> strains from <i>iru</i>	99
4.18 Dendrogram based on UPGMA clustering of Jaccard similarity coefficient	100
(S _j) of normalized M13 RAPD-PCR fingerprints of dominant B. subtilis	
strains	
4.19 Dendrogram based on UPGMA clustering of Jaccard similarity coefficient	101
(S_j) of normalized M13 RAPD-PCR fingerprints of dominant <i>B</i> .	
amyloliquefaciens strains	
4.20 Phylogenetic tree showing multiple sequence alignment of 16S rRNA gene	103
sequences of Bacillus species isolated in Africa from iru or daddawa;	
hawaijar, cheonggukjang, kinema, douchi, thua nao in Asia; referenced	
and typed strains	
4.21 RAPD-PCR (M13 primer) of representative B. cereus strains from iru	105

- 4.22 PCR amplicons of housekeeping genes (*rpoA*, *gyrB*, *pheS*, *glpF* and *gmk*)105 of *B. cereus* group from *iru* based on RAPD-PCR M13 grouping
- 4.23 Phylogenetic relationship of pairwise and multiple alignments of (a) gyrB 107
 (b) glpF (c) gmk genes sequences of *B. cereus* phylotype obtained from *iru*, and other food and environmental samples, including referenced and typed strains
- 4.24 Growth kinetic and viability of *Bacillus* strains under simulated gastric juice 109 and intestinal bile conditions
- 4.25 Cell surface adhesion of *B. subtilis* U170B and *B. subtilis* U146A from *iru*and reference probiotic *B. clausii* UBB-07 to *n*-hexadecane, toluene andchloroform
- 4.26 Time-course of (a) autoaggregation and (b) coaggregation characteristics of 116 *B. subtilis* U170B and *B. subtilis* U146A from *iru* and reference probiotic *B. clausii* UBB-07 for a period of 4 h incubation at 37°C
- 4.27 Percentage adhesion of *B. subtilis* strains U170B, U146A and *B. clausii*UBB-07 that bound to undifferentiated and differentiated cultured
 HT-29 cells
- 4.28 Inhibition of adhesion of *S. enterica* serovar Typhimurium MBU 1047
 during exclusion, competition and displacement assays in the presence
 of *B. subtilis* strains, U170B, U146A and *B. clausii* UBB-07

LIST OF PLATES

Plates	Pages
4.1 Petri dish containing cell-free extract of B. clausii UBBC-07 showing	112
inhibitory activity against <i>B. cereus</i> MBU 1011 by agar well diffusion	
method on BHI agar	
4.2 Mucin degradation assay in agarose Petri dish without glucose	123

LIST OF APPENDICES

Appendices	Pages
Ι	215
П	216