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Abstract 

The objective was to assess the performance of the AutoRegressive Integrated Moving Average (ARIMA) 

models when occasional level shifts occur in the time series under study. The secondary data on the University 

of Lagos’ undergraduates’ admissions (1962–2016) were collected and analysed. It is predicted that universities 

in Nigeria and elsewhere could forecast their enrolment figures and student population growth rate based on the 

ARIMA models. The Box–Jenkins (B–J) approach provided the theoretical framework for the statistical 

analysis. The study used the Kalman Filter (KF) algorithm to develop a method using an ARIMA model to 

overcome and resolve the three main problems of the B–J methodology. The KF estimated the states for 

dynamic systems in state-variable formulations.  

Forecasting university admissions is necessary if student population must match the infrastructural provisions on 

campuses. The best ARIMA models have been selected by using criteria such as Akaike’s Information Criterion 

(AIC), Schwarz’s Bayesian Criterion (SBC), Absolute Mean Error (AME), Root Mean Square Error (RMSE) 

and Mean Absolute Percent Error (MAPE). To select the best ARIMA model, the data was split into two 

periods: estimation period and validation period. The results clearly showed a continual increase in the demand 

for university education in the University of Lagos and, by extension, other universities in Nigeria.  

 

Keywords: AutoCorrelation Functions (ACF), forecast, Kalman Filter, stationarity  
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Introduction 

There is often an increase in the population of 

Nigerian universities after a matriculation exercise. 

The influx of students is such that there could be 

insufficient seats in many lecture rooms, shortage of 

hostel accommodations and traffic congestion, etc. in 

every academic session. This necessitates the need to 

model the number of undergraduate admissions in the 

University of Lagos so as to streamline students’ 

population in line with the available facilities. 

 

In this paper, the AutoRegressive Integrated Moving 

Average (ARIMA) model is the stochastic model used 

as a forecasting tool. An ARIMA model predicts a 

value in a response time series as a linear combination 

of its own past values, past errors (also called shocks 

or innovations), and current and past values of other 

time series. The ARIMA model for forecasting is 

justified because ARIMA is a forecasting technique 

that projects the future values of a series based 

entirely on its own inertia. Its main application is in 

the area of short term forecasting requiring at least 40 

historical data points. It works best when the data 

exhibits a stable or consistent pattern over time with a 

minimum amount of outliers. The ARIMA procedure 

provides a comprehensive set of tools for univariate 

time series model identification, parameter estimation 

and forecasting. It offers great flexibility in the kinds 

of ARIMA models that can be analysed (Hoff, 1983). 

The ARIMA procedure supports seasonal, subset and 

factored ARIMA models; intervention or interrupted 

time series models; multiple regression analysis with 

ARIMA errors and rational transfer function models 

of any complexity.  

 

Many scholarly works on time series include the 

Kalman Filter and state-space models such as Khashei 

et al. (2012), Lee and Ho (2011), Tsay (2010), Javier 

et al. (2003), Hamilton (1994) and Harvey (1989). A 

vast class of ARIMA models captures short memory 

processes. The prediction and the effects of shocks in 

a time series data are very different for long and short 

memory processes. Stationary ARIMA models can 

represent series that homogeneously fluctuate around 

a constant level and non-stationary (Box et al., 1994). 

The structure of the series may change occasionally 

and the time periods of structural changes are 

determined by a stochastic process. Modelling the 

nature of the changing behaviour or outlying 

observations and deriving methods according to the 

proposed models have found ways in the works of 
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Box and Tiao (1968) and Yao (1984). The random-

effect formulation is intuitively appealing because 

economic and environmental time series are affected 

by many unusual events; the occurrence and impact of 

which may be described by probability laws. ARIMA 

and other statistical models (regression method, 

exponential smoothing, generalised autoregressive 

conditional heteroskedasticity (GARCH)) are robust 

and efficient in time series forecasting especially in 

short-term predictions (Onyeka-Ubaka and Abass, 

2013). 

 

Consider the univariate time series    satisfying: 

                                 
                               (1) 

 

                              
                               (2) 

 

where {  } and {  } are two independent Gaussian 

white noises at          . The initial value    is 

either given or follows a known distribution, and it is 

independent of {  } and {  } for    . Here,    is a 

pure random walk with initial    and    is an 

observed version of    with added noise   . In the 

Literature,    is referred to as the trend of the series, 

which is not directly observable, and    is the 

observed data with observational noise   . The 

dynamic dependence of    is governed by that of    

because {  } is not serially correlated. If there is no 

measurement error in (1), i.e.,     , then      , 

which is an ARIMA (0, 1, 0) model. If     , i.e., 

there exist measurement errors, then    is an ARIMA 

(0, 1, 1) satisfying 

                                                               (3) 

where    is a Gaussian white noise with mean zero 

and variance   
 . The values of   and    are 

determined by    and   . This result can be derived as 

follows: 

From (2), we have 

                or        
 

   
          

Using this result, (1) can be written as 

     
 

   
                                                                  (4) 

Multiplying (4) by (1 – B) gives 

                                    (5) 

 

In representing the ARIMA model in the state space 

form, the ARIMA (p, q) model is 

                                        

                                                                                (6) 

written in the usual lag operator notation as  

       =         where             .  
 

The possibility that      has roots inside or on the 

unit circle and that the model is non-stationary 

(ARIMA) is not excluded. 

The general state space form is 

ttttt GZy                            (5) 

ntttttt ,,1,1              (6) 

where εt   (0, σ
2
I), α1 (a1, σ

2
P1) and the εt and α1 are 

mutually uncorrelated. The system matrices Zt, Tt, Gt 

and Ht are non-random, typically depend on hyper-

parameters and, as the notation indicates, may vary 

over time. For a univariate model with an s x 1 state 

vector αt and m x 1 vector of errors εt, the matrices Zt, 

Tt, Gt and Ht are 1 x s, s x s, 1 x m and s x m, 

respectively. Pearlman (1980) puts forward the 

following ARIMA state space representation as well 

known for t =1,  , n, Zt = Z = (1, 0,  , 0), Gt = G =1 
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where m = max(p, q). However, Pearlman gives no 

references for this form and it does not appear to be 

dealt with in the Literature. We shall refer to it as the 

max(p, q)  representation. In this representation εt in 

(5) and (6) is the same as εt in the original ARIMA 

model. Note that     
   , implying correlated 

measurement and state noise. 

 

In the Literature (Box, Jenkins and Reinsel, 1994), the 

max(p, q) representation has been overlooked in 

favour of one in which the state vector is of length m 

= max(p, q + 1). In this version, Z and T are as above 

but G = 0 and H = (1,   ,        ). The prevalence 

of this form may be explained by the fact that the 

measurement and state noise are uncorrelated; there is 

no measurement noise. Uncorrelated measurement 

and state noise fits in with the more usual state space 

form where     
    (Anderson and Moore, 1979). 

 

Using the Kalman filter, the observations yt are 

transformed to innovations νt. In general, for t=1, , n 

tttttttttt GGZZFaZyv  ,          

  1 ttttttt FGZK  

ttttttttttt JLvKaa   11 ,               (7) 

where Lt = Tt – KtZt and Jt = Ht – KtGt. The slight 

simplification of (7) made possible by the max(p, 

q+1) representation must be balanced against 

desirable features of the max(p, q) form. It is our 

contention that the arguments in favour of the max(p, 

q) version are compelling. First, when q   p, the state 

vector is shorter providing a slight computational 

advantage. Second, the converged quantities in the 

Application of the ARIMA Models…                                               78 
 

J. Sci. Res. Dev. 2017, 17(1): 80-90                     81 



 

max(p, q) representation take on convenient and 

readily interpretable forms. 

 

Most importantly, the convergence of the Kalman 

filtering is established using the properties of the 

underlying ARIMA model.  

Put                        , the linear space 

spanned by the entire past of the series. If the series is 

a pure AR(p) then, for minimum mean square error 

linear prediction,       can be replaced by        
      whenever t   p. By appropriate choice of c, an 

invertible ARIMA (p, q) model can be approximated, 

to any degree of accuracy, by an AR(c) process. Thus 

with an invertible ARIMA (p, q), we can find c so 

that, for purposes of prediction,       can be replaced 

by    whenever t > c. The size of c depends on how 

close the roots of the MA polynomial      are to the 

unit disc, that is, the closeness of the model to non-

invertibility. 

 

Consider the max(p, q) representation. Let αj,t denote 

component j of αt for j = 1, …, n.  

From (5), α1,t = yt – εt. Using the state equation (6), for 

j = 1, …, m, 
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provided the linear combination in (8) does not extend 

back to the presample period, that is, provided t   m. 

Thus, if the model is invertible, αt+1          for t > m 

and so, for t   c, we can assume αt+1      . By 

definition of the filter               ) so, for t > c 

we have       . This implies that, once the filter has 

converged, Pt =     var(     ) = 0 and hence Ft = 

1, Kt = H, Jt = 0 and Lt has the same form as T  but 

with   
   replacing the   

  . Thus, for t > c, the 

Kalman filter collapses to the prediction error 

computation 

                               

                                        = 
    

    
              (9) 

which is conceptually and computationally 

convenient. Kalman filtering implicitly inverts the 

moving average polynomial and this inversion is 

achieved recursively without assumptions about 

presample values. 

 

With the max(p, q+1) representation and     yt = 

    εt–1. Hence εe                   and, for t > c, 

                      . Thus for t > c, Pt = HH′, Ft 

= 1, Kt = ( 1, 
…

,  m)′, Lt is the same as T except for 

the top left entry where it is 0, Jt = H while vt =      

and             . Thus, with the max(p, q+1) 

representation, the state estimate does not converge to 

the state and the interpretation of filtered quantities is 

awkward. 

 

Considering the convergence properties for Kalman 

filter smoothing, smoothing quantities under the 

max(p, q) representation also converge to convenient 

and readily interpretable constructs. The smoothing 

filter, corresponding to the general state space 

representation takes the following form.  
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The smoothations ut contain information about 

departures from the model of De Jong and Penzer 

(2000) and have the interpolation characterization  
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where ],,,,,[ 111 yyyy ttn
t
n   , the punctured 

space (the striking period in the university). An 

appealing expression for the smoothations is readily 

derived using the max(p, q) representation.  

First note that αt                   hence for t = c + 

1,  , n,           ).  

Similarly,  t                 implying for t = c + 

1,  , n,   

ttttttntt ruruG  )( ,  

where the second equality follows from Koopman 

(1993). Thus, ut = εt – H′rt and iterating this identity 

using rt--1 = Z′ut + T′rt yields 
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where    and    are interpreted as zero if t > n. This 

expression is exact provided that the Kalman filter has 

converged so the result only requires invertibility. The 

expression (10) mirrors the infinite sample Wiener-

Kolmogorov interpolation formula, Whittle (1984). 

The Kalman filter smoothing computes exact finite 

sample interpolation errors. Provided Kalman filter 

converges, these interpolation errors coincide with the 

infinite sample interpolation errors for t   n – m. 

There is no requirement for smoothing filter 

convergence or stationarity. 

 

Methods 

Statistical models are built to explain phenomena that 

involve uncertainty. The choice of suitable models 

usually depends on the purpose of the practitioners. 

The design of ARIMA adapted closely follows the 

Box–Jenkins strategy for time series modelling with 
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features for the identification, estimation, diagnostic 

checking and forecasting steps of the Box–Jenkins 

method.  The diagnostic check is applied to see if time 

series data satisfy stationary conditions and fit (see 

Shim et al., 1994 and Fuller, 1976).   

 

The first step in applying ARIMA methodology is to 

check for stationarity. "Stationarity" implies that the 

series remains at a fairly constant level over time. 

Without these stationarity conditions being met, many 

of the calculations associated with the process cannot 

be computed. At the identification stage, we specify 

the response series and identify candidate ARIMA 

models for it. If a graphical plot of the data indicates 

non-stationarity then the "difference" technique 

should be applied to the series. Differencing is an 

excellent way of transforming a nonstationary series 

to a stationary one. This is done by subtracting the 

observation in the current period from the previous 

one. If this transformation is done only once to a 

series, we say that the data has been "first 

differenced". This process essentially eliminates the 

trend if the series is growing at a fairly constant rate. 

If it is growing at an increasing rate, we can apply the 

same procedure and difference the data again. The 

data would then be "second differenced". That is, the 

non-stationary trending behaviour of the data is 

achieved by transformation, possibly differencing 

them, and computes auto-correlations, inverse auto-

correlations, partial auto-correlations and cross- 

correlations.  

 
At the estimation and diagnostic checking stage, we 

use the estimate statement to specify the ARIMA 

model to fit to the variable and to estimate the 

parameters of that model. The estimate statement also 

produces diagnostic statistics to help us judge the 

adequacy of the model. Significance tests for 

parameter estimates indicate whether some terms in 

the model may be unnecessary. Goodness-of-fit 

statistics aid in comparing this model to others. Tests 

for white noise residuals indicate whether the residual 

series contains additional information that might be 

utilised by a more complex model. If the diagnostic 

tests indicate problems with the model, the rule of 

thumb demand that we try another model, then repeat 

the estimation and diagnostic checking stage. At the 

forecasting stage, we use the forecast statement to 

forecast future values of the time series and to 

generate confidence intervals for these forecasts from 

the ARIMA model produced by the preceding 

estimate statement. 

 
The Box–Jenkins methodology of time series analysis 

being currently one of the most accurate of the 

historical approaches to forecasting imposes some 

important limitations to the procedure: (i) it requires 

an extensive amount of past observations in order to 

develop an acceptable model, (ii) the model 

identification process requires a great deal of time and 

expertise and (iii) the model selected is a constant 

model; there is no convenient way to modify the 

coefficients with new observations. The research 

reported here uses the Kalman filter algorithm to 

develop a method using an autoregressive moving 

average model to overcome the three problems 

mentioned above. 

 

ARIMA model parameters are often estimated using 

normal based maximum likelihood. With the max(p, 

q) representation the log-likelihood takes the form, 

ignoring constants, 
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Initial conditions are handled exactly and there is no 

need for such tools as backcasting (Box, Jenkins and 

Reinsel, 1994). Maximising the log-likelihood with 

respect to  2
 yields 
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Substituting back gives the concentrated log-

likelihood, which is maximised by minimising 




c

t
tFn

1

2 logˆlog  

with respect to the remaining parameters. This is least 

squares provided that we can ignore the determinental 

term  ∑      
 
   . Kalman filtering is required only for 

the initial c observations. These expressions are the 

similar to those for the max(p, q+1) representation, 

except that in the max(p, q+1) parametrisation the 

computation of the converged quantities is less 

convenient. 

 

Properties of Forecast Error 

Specifically, given the parameter estimates, we use 

the Kalman filter to obtain the 1-step-ahead forecast 

error {νt}, which is useful in many applications. 

Given the initial values      and     , which are 

independent of yt, the Kalman filter enables us to 

compute νt recursively as a linear function of {y1, 
…

, 

yt}. Specifically, by repeated substitutions, 
 

            

                       (        ) 

                      (       )                   ) 
 

The transformation can be written in matrix form as 

       
   

  )           (11) 
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where v = (v1, …, vT)’, y = (y1, …, yT)’, IT is the T-

dimensional vector of ones and K is a lower triangular 

matrix defined as 
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and j = 1, …, i – 2. It should be noted that from the 

definition, the Kalman gain KT does not depend on 

     or the data {y1, 
…

, yt}; it depends on      and   
  

and   
 .  

 

The transformation in (11) has several important 

implications: (i) {νt} is mutually independent under 

the normality assumption. 
  

Proof 

Consider the joint probability density function (pdf) of 

the data 
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to νt has a unit Jacobian so that p(ν) = p(y). 
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joint pdf of v is 

P(v) = P(y) =  




)()( 1

2
1 jj

j
Fyy )()(

2
1 j

j
vv 




)(

1
j

j
v




 

This shows that {νt} are mutually independent. 

 

(ii) The Kalman filter provides a Cholesky 

decomposition of the covariance matrix of y. 
 

Proof 

Let   = Cov(y).  

Equation (11) shows that Cov(v) =     . On the 

other hand, {νt} is mutually independent with Var(νt) 

= Vt. Therefore,                   , which is 

precisely a  Cholesky decomposition of  . 

 

To see the estimation error of the state variable   , 

define              as the forecast error of the 

state variable    given data     . The variance, 

                    .  
 

From the Kalman filter,  
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Consequently, for the state errors, we have 

  ,,1,, 1 teKxLxexv ttttttttt         (12) 

where           .  
 

Equation (12) is in the form of a time-varying state-

space model with xt being the state variable and νt the 

observation (Tsay, 2010). 

 

Results and Discussion 

Let us assume that y1, y2, …, yT follows the general 

ARIMA (p, d, q) model that can be written in terms of 

a linear combination of past values and past errors, εt: 
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If no differencing is done (d = 0), the models are 

usually referred to as ARIMA (p, q) models. The 

future value      is generated by model (13).  

Thus                                  

where      , the ℓ-step ahead forecast of      made 

at origin T. The optimal forecast of      is the 

conditional expectation of      given the information 

set denoted by E[     |YT]. The term optimal is used 

in the sense that minimises the mean squared error 

(MSE). If the process is normal, the minimum MSE 

forecast (MMSE) is linear. Therefore, the optimal 

forecast ℓ-step ahead is 
 

                                     
                                                 
                                         

 

Since past values     , for     , are known and 

future value of      , for     have zero expectation. 

The ℓ-step ahead forecast error is a linear combination 

of the future shocks entering the system after time T: 

                                      

                                                         

Since              , the forecast       is unbiased 

with MSE given as  

                (     )     
      

      
    

Given these results, if the process is normal, the (1–α) 

forecast interval is 
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For ℓ = 1, the one-step ahead forecast error is 
                       , therefore   

  can be 

interpreted as the one-step ahead prediction error 

variance. 
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In computing forecasts, ARIMA (p, d, q) model can 

be written as 

tdpdptdp LLLLyL  )()(1()( 221    (14) 

where d
pdp LLL )1)(()(  .  

Thus the future value of      generated by (14) is

     dpdp yyy 11
 

   
qq      11  

and the MMSE forecast is given by the expectation 

conditional to the information set: 

        11)( yyy   

   
   







qq

dpdp y





 



11

The forecast       is computed substituting past 

expectations for known values and future expectations 

by forecast values, that is, 
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The behaviour of the forecast function beyond the 

reach of the starting values can be characterised in 

terms of the roots of the autoregressive operator. It 

may be assumed that none of the roots of α(L) = 0 lie 

inside the unit circle; for if there were roots inside the 

circle then the process would be radically unstable. If 

all of the roots are less than unity, then  ̂t+ℓ will 

converge to zero as ℓ increases. If one of the roots of 

α(L) = 0 is unity, then we have an ARIMA (p, 1, q) 

model and the general solution of the homogeneous 

equation will include a constant term, which 

represents the product of the unit root with a 

coefficient, which is determined by the starting 

values. Hence, the forecast will tend to a non-zero 

constant. If two of the roots are unity, then the general 

solution will embody a linear time trend, which is the 

asymptote to which the forecasts will tend. In general, 

if d of the roots is unity, then the general solution will 

comprise a polynomial in t of order d – 1. 

 

The data on the University of Lagos undergraduates’ 

admission were collected for the forty-two year period 

(1962–2016) with 1966 and 2004 excluded due to the 

onset at that time of the Nigerian Civil War and 

incessant strikes by the Academic Staff Union of 

Universities (ASUU), respectively. To illustrate the 

above ARIMA model as explicated, the Box–Jenkins 

methodology of step-by-step approach was used to fit 

a stochastic model to the undergraduates’ enrolment 

in the University of Lagos, Nigeria. 

 

Figure 1 details a plot of the undergraduate students’ 

enrolment at the University of Lagos for the sampling 

period of 1962 to 2016. The data plotted displays a 

non-stationary pattern with an upward trending 

behaviour. To select a suitable stochastic model, we 

followed the three iterative steps of identification, 

estimation and diagnostic checking, recommended by 

Box and Jenkins (1976). However, at the 

identification stage, we utilised the autocorrelation 

functions (ACF) and partial autocorrelation function 

(PACF).   

 

 
 

Figure 1: Undergraduates’ enrolment in the University of Lagos 

 

"Autocorrelations" are numerical values that indicate 

how a data series is related to itself over time. More 

precisely, it measures how strongly data values at a 

specified number of periods apart are correlated to 

each other over time. The number of periods apart is 

usually called the "lag". The sample ACF and the 

PACF for the original series are presented in Figures 2 

and 3 to check whether the enrolment series is 

stationary. The plots show that both the ACF and 

PACF are decreasing slowly indicating that the series 

is non-stationary. The white noise hypothesis is also 

rejected very strongly, which is expected since the 

series is non-stationary. The p value for the test of the 

first six autocorrelations is printed as < 0.0001, which 

means the p value is less than 0.0001. 

 

Since the series is non-stationary, the next step is to 

transform it to a stationary series by differencing. That 

is, instead of modelling the undergraduates’ enrolment 

series itself, we model the change in undergraduates’ 

enrolment from one period to the next. The functions 

have been plotted for        
 , that is, the series 

with square root transformation and the degree of 

differencing d = 1. (see Box and Cox, 1964; Dickey 

and Pantula, 1987). The graph in Figure 4 shows a 

series that moves around a constant mean with 

approximately constant variance. 
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Figure 2: ACF of undergraduates’ enrolment data 
 

 
 

Figure 3: PACF of undergraduates’ enrolment data 
 

 
 

Figure 4: First difference (1–B)^1 of undergraduates’ 

enrolment in University of Lagos, Nigeria 

 

The ACF and PACF of differenced series are shown 

in Figures 5 and 6. Figure 5 shows that the 

autocorrelations decrease rapidly, indicating that the 

change in undergraduates’ enrolment is a stationary 

time series. The sample ACF shows that the 

population ACF (r1) is significantly different from 

zero. Hence, the model is the first order moving 

average type or MA(1). The partial and inverse 

autocorrelation function plots are also useful aids in 

identifying appropriate ARIMA models for the series. 

Looking at the sample PACF (r1), it shows that it is 

significantly different from zero. The first differenced 

series is also of the first order autoregressive type or 

AR(1). But given that the first coefficients show some 

decreasing structure and  ̂66 is statistically significant, 

perhaps an ARIMA (1, 1) model should be tried as 

well. In the Box–Jenkins approach to ARIMA 

modelling, the sample autocorrelation function, 

inverse autocorrelation function and partial 

autocorrelation function are compared with the 

theoretical correlation functions expected from 

different kinds of ARIMA models. This matching of 

theoretical autocorrelation functions of different 

ARIMA models to the sample autocorrelation 

functions computed from the response series is the 

heart of the identification stage of the Box–Jenkins 

modelling.     

                                       

 
 

Figure 5: ACF of differenced data with square root 

transfomation 
 

 
Figure 6: ACF and PACF of differenced data with 

square root transformation 
 

The estimation was done using JMPin computer 

software and the results were presented in Table 1. 
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Inverse Autocorrelations 

Lag  Correlation  -1    9    8   7   6   5   4   3   2   1   0   1   2   3   4   5   6   7   8   9   1 

1  -0.73867   |    * * * * * * * * * * * * * * *   |         .                                        | 

2   0.36801    |                   .         | * * * * * * *                                 | 

3  -0.17538   |                  * * * * |         .                     | 

4   0.11431   |                 .          | * *     .                                       | 

5  -0.15561   |                 .   * * * |         .                                        | 

6   0.18899    |                 .          | * * * *                                        | 

7  -0.15342   |                                         .  * * *  |          .                                       | 

8    0.05952                |                                            .           | *        .                                            |   

 

         Figure 7:  Inverse Autocorrelation Function plot for change in undergraduates’ enrolment 

 
Table 1: Model Comparison and Validation 

 

Model DF AIC SBC AME RMSE MAPE RSquare 

ARIMA (1, 1, 0)   49 646.29109 649.71823 0.000963 0.000305 0.000028 0.892 

ARIMA (0, 1, 1) 49 651.49256 654.52314 0.001191 0.003592 0.003472 0.880 

ARIMA (1, 0, 1) 48 649.33765 653.47821 0.001041 0.003864 0.000329 0.905 

ARIMA (1, 1, 1)   48 638.30428 643.44499 0.001472 0.004655 0.000457 0.914 

 
Table 2:  Parameter Estimates 

 

Term Lag Estimate Std Error t value Prob>|t| 

ARI 

Intercept 

1 

0 

-0.3610442 

510.915058 

0.1441658 

284.02189 

-2.50 

1.80 

0.0166 

0.0798 

IMA 

Intercept 

1 

0 

-0.3204135 

629.831074 

0.1493262 

294.101347 

-2.25 

1.67 

0.0169 

0.0856 

ARMA 

Intercept 

2 

0 

0.1792053 

533.279061 

0.1453790 

289.135742 

-1.87 

0.99 

0.0187 

0.6521 

ARIMA 

Intercept 

2 

0 

-0.1698421 

506.230165 

0.1423195 

283.095317 

-1.79 

1.23 

0.0155 

0.0684 

 

The standard goodness of fit criterion in Statistics is 

the coefficient of determination: 

      
 ̂ 

 

 ̂ 
   where   ̂ 

  ∑   ̂
   .  

Therefore, maximising R
2
 is equivalent to minimising 

the sum of squared residuals. This measure presents 

some problems as a criterion for model selection. 

Firstly, the R
2
 cannot decrease when more variables 

are added to a model and typically it will fall 

continuously. Besides, economic time series usually 

presents strong trends and/or seasonalities and any 

model that captures this fact to some extent will have 

a very large R
2
. Modifications were proposed to this 

coefficient by Harvey (1989) to solve this problem.  

 

Due to the limitations of the R
2
 coefficient, a number 

of criteria have been proposed in the Literature to 

evaluate the fit of the model versus the number of 

parameters (see Postcher and Srinivasan, 1994). These 

criteria were developed for pure AR models but have 

been extended for ARIMA models. The more applied 

model selection criteria are the Akaike Information 

Criterion (AIC) (Akaike, 1974) and the Schwarz 

Information Criterion (SIC) (Schwarz, 1978) given by 

,
2

)ˆln( 2

N

k
AIC  

    

)ln()ˆln( 2 N
N

k
SIC    

where k is the number of the estimated ARIMA 

parameters (p+q) and N is the number of observations 

used for estimation.  

 

These criteria come down to minimise (in-sample) 

one-step-ahead forecast errors, with a penalty for over 

fitting (Qu et al., 2006). Both criteria are based on the 

estimated variance  ̂ 
  plus a penalty adjustment 

depending on the number of estimated parameters but 

it is in the extent of this penalty that these criteria 

differ. The penalty proposed by SIC is larger than 

AIC's since ln(N) > 2 for N   8. Therefore, the 

difference between both criteria can be very large if N 

is large; SIC tends to select simpler models than those 

chosen by AIC. In practical work, both criteria are 

usually examined. If they do not select the same 

model, many authors tend to recommend the use of 

the more parsimonious model selected by SIC (Moral 

and González, 2003). The parameter estimates for the 

models and key statistics for diagnostic testing are 

summarised in Table 2. 

J. Sci. Res. Dev. 2017, 17(1): 80-90                     87 



 

The criteria used for testing the validity of the models 

by comparing the three periods: estimation, validation 

and total periods are (i) absolute mean error (AME), 

(ii) root mean square error (RMSE) and (iii) mean 

absolute percent error (MAPE). The mean of the 

absolute deviation of the predicted and observed 

values is called absolute mean error and is defined as 

 


 




1t

predobs yy
 

 

The square root of the sum of square of the deviation 

of the predicted values from the observed values 

divided by their number of observations is known as 

the root mean square error, defined as 

  








1

21

t
predobs yySR  

 

The mean of the sum of absolute deviation of the 

predicted and observed values divided by the 

observed value is called the mean absolute error.  

For comparison, we have multiplied by 100; which is 

called mean absolute percent error and defined as 

 100
1

1





 



t obs

predobs

y

yy
 

 

Our study suggests that the smaller the error, the 

better the forecasting performance of the observed 

variables and if the model variable performs well so 

will the whole model. 

 

The ARIMA (1, 1, 0) model is given as 

                    ttAL   )1(  

Substituting the estimated values, we have  

ttt a  9151.510)))(3610442.0(1( 1    

                     (–2.50)                       (1.80)   (t statistics) 

tttt a  21 3610.0639.0915.510  

 

An ARIMA (1, 1, 0) model predicts the change in 

undergraduates’ enrolment as an average change plus 

some fraction of the previous change plus a random 

error plus some fraction of the random error in the 

preceeding period.  

An ARIMA (1, 1, 0) model for the change in 

undergraduates’ enrolment is the same as an ARIMA 

(1, 1, 1) model for the level of undergraduates’ 

enrolment. The estimated ARIMA (1, 1, 1) model is  

   tt a















1

1

1

1
1




  

That is,   tt a













3610442.01

3204135.01
230651.5061  

Several checks need to be made on the adequacy of 

the models. The problem arises in the time series 

analysis because the disturbances, which are a 

summary of a large number of theoretically irrelevant 

(and supposedly random) factors that enter into the 

relationship under study, are likely to be carried over 

into subsequent time periods.  

 

To substantiate the assertion, Lee and Ho (2011) 

declared that “virtually all works in time series 

analysis assumes that a first-order autoregressive 

process is generating the disturbances”. As shown 

under parameter estimates, all two models appear to 

have statistical strengths in terms of large t-values. 

The models pass the residual diagnostics with very 

similar results: the zero mean hypotheses for the 

residuals are not rejected and the correlograms 

indicate that the residuals behave as white noise 

processes. However, the parameters of the ARIMA (1, 

1, 1) model are not statistically significant.  

 

Given the fact that including an MA term does not 

seem to improve the results (see the AIC, SIC and R
2
 

values under model comparison in Table 1), we 

submit that the Autoregressive Integrated (ARIMA 1, 

1, 0) model is ideal for modelling undergraduates’ 

university admission in the University of Lagos and, 

by extension, other universities in Nigeria. Hence, it is 

used for our forecasting.  

 

Since the model diagnostic tests show that all the 

parameter estimates are significant and that the 

residual series is white noise, the estimation and 

diagnostic checking stage is complete. We can now 

proceed to forecasting the undergraduates’ admission 

enrolment series with the ARIMA (1, 1, 0) model for 

the period 2017–2040, with the assumptions of 

normally distributed errors, a 95% prediction interval 

for     , the future value of the series at time     is  

 



 

1

0

22ˆ96.1



i

i
t
ty   

 

Table 3 presents the forecast for this period. Estimates 

of students’ enrolment from year to year are close to 

one another. Confidence intervals for forecast values 

have widths of 0.10 or 0.16 in all the years, showing 

the remarkable precision of the forecast.  

 

For a stationary series and model, the forecasts of 

future values will eventually converge to the mean 

and then stay there. For the purpose of this study, the 

applied ARIMA models remain the most suitable 

statistical tool since the data they are applied to are 

not volatile as obtainable with high frequency data, 

such as financial data. These stylised volatile data are 
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captured with autoregressive conditional hetero-

skedasticity (ARCH) models, proposed by Engle 

(1982). The ARIMA models (being a crucial 

forecasting tool) are equally adopted in identifying 

parameter orders in the generalised autoregressive 

conditional heteroskedasticity (GARCH) models (p, 

q) used in empirical applications of financial data. See 

Bollerslev (1986) and Onyeka-Ubaka et al. (2014).    

 
Table 3: Forecast of Enrolment (2017–2040) using 

ARIMA (1, 1, 0) 
 

Year t Approximate 

Forecast 

Value 

95% C. I. 

Lower 

Limit 

95% C. I. 

Upper 

Limit 

2017 53 26260 19570 28951 

2018 54 26823 19846 29801 

2019 55 27386 20138 30636 

2020 56 27950 20443 31457 

2021 57 28513 20759 32269 

2022 58 28076 21086 33067 

2023 59 28640 21422 33858 

2024 60 28203 21766 34641 

2025 61 28766 22117 35416 

2026 62 29330 22475 36185 

2027 63 29893 22838 36948 

2028 64 30456 23208 37706 

2029 65 31020 23582 38458 

2030 66 31583 23961 39206 

2031 67 32146 24344 39949 

2032 68 32710 24731 40688 

2033 69 33273 25123 41424 

2034 70 33836 25517 42156 

2035 71 34400 25915 42884 

2036 72 34963 26316 43610 

2037 73 35203 26657 44205 

2038 74 35675 26982 45176 

2039 75 36304 27405 45478 

2040 76 36567 27861 45892 
 

 

Conclusion 

The results show that the Kalman filter collapses, after 

the processing of an initial stretch of the data, to 

computing the exact moving average errors, 

       tt y
)(

)(








 .  

Collapsing is analogous to the augmented Kalman 

filtering reducing to the ordinary Kalman filtering in 

the nonstationary case and emphasises that 

uncollapsed forms deal with the tedium of exact 

initialisation. The findings also show the remarkable 

degree of robustness of the ARIMA (1, 1, 0) model 

for forecasting future observations.  

 

This study endeavoured to develop the best ARIMA 

model to efficiently forecast the undergraduates’ 

admission into the University of Lagos because if it is 

possible to provide a better model for admission 

modalities, which can enable the University of Lagos, 

and by extension other Nigerian universities, to 

predict the number of students in advance, it would 

help the university management as well as the 

stability of the university’s environment. Our 

empirical results show that the population of students 

keeps increasing annually without a corresponding 

increase in the provision of infrastructure. 

  

Consequently, the management of the University of 

Lagos and the government of Nigeria are expected to 

provide adequate infrastructure, such as classroom 

blocks, hostels, health facilities, vehicular parking 

spaces and water distribution points to satisfy the 

needs of the ever-growing student population. They 

are also expected to stabilise power supply and ensure 

the maximum utilisation of facilities for effective and 

efficient teaching, learning and research. 
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