

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

6

A Comparative Study of Simulated Annealing and

Genetic Algorithm for Solving the Travelling

Salesman Problem

Adewole A.P.
Department of Computer

Science, University of Lagos,
Akoka, Nigeria

Otubamowo K.
Department of Computer

Science, University of Lagos,
Akoka, Nigeria

Egunjobi T.O.
Department of Computer

Science, University of Lagos,
Akoka, Nigeria

ABSTRACT
Metaheuristic algorithms have proved to be good solvers

for the traveling salesman problem (TSP). All

metaheuristics usually encounter problems on which they

perform poorly so the programmer must gain experience

on which optimizers work well in different classes of

problems. However due to the unique functionality of each

type of meta-heuristic, comparison of metaheuristics is in

many ways more difficult than other algorithmic

comparisons. In this paper, solution to the traveling

salesman problem was implemented using genetic

algorithm and simulated annealing. These algorithms were

compared based on performance and results using several

benchmarks. It was observed that Simulated Annealing

runs faster than Genetic Algorithm and runtime of Genetic

Algorithm increases exponentially with number of cities.

However, in terms of solution quality Genetic Algorithm is

better than Simulated Annealing.

General Terms
Metaheuristics and Algorithms

Keywords
Genetic Algorithm, simulated Annealing, Travelling

Salesman Problem, Candidate solution, Optimization

problem.

1. INTRODUCTION
In computer science, metaheuristic refers to a method of

computation that optimizes a problem by trying to improve

a candidate solution with regard to a given measure of

quality iteratively. Metaheuristics make few or no

assumptions about the problem being optimized and are

able to search very large spaces of candidate solutions.

Generally, metaheuristics do not guarantee that an optimal

solution is ever found, however deep knowledge of these

metaheuristics can help produce near optimal results.

The Travelling Salesman Problem is an optimization

problem which has various applications such as:

combinatorial data analysis, computer wiring, machine

sequencing, vehicle routing and scheduling, planning and

logistics. These optimization problems can be effectively

solved using various approaches that have been created.

This paper examines simulated annealing algorithm and

genetic algorithm as they are being used to solve the

traveling salesman problem (TSP), which is a widely

known combinatorial optimization problem in operations

research and theoretical computer science. The concept of

the traveling salesman problem is to seeking a tour of a

specified number of cities (visiting each city exactly once

and returning to the starting point) where the length of the

tour is minimized [8]. The traveling salesman problem has

many applications, from VLSI chip fabrication [4] to X-

ray crystallography [14].

An optimization problem consists: an objective function

and a set of constraints on variables. The task is to find the

values of the variables that give an optimum value for the

objective function, while satisfying all the constraints. The

objective function may be a linear function in the variables

or a nonlinear function in the variables and it may be to

find the minimum value for the objective function. If for

instance, the objective function represents the cost of or to

find the maximum value of a profit function. The resources

shared by the products and their manufacturing process are

usually in limited supply or have some other restrictions on

their availability. This consideration leads to the

specification of constraints for the problem.

Each constraint usually takes the form of an equation or an

inequality. The left side of such an equation or an

inequality is an expression in the variables for the problem,

and the right is a constant. The constraints may be linear or

nonlinear depending on whether the expression on the left

is a linear function or nonlinear function of the variables.

A linear programming problem is an optimization problem

with a linear objective function as well as a set of linear

constraints. An integer linear programming is a linear

programming problem where the variables are required to

have integer values. A nonlinear optimization problem has

one or more constraints and/or the objective function is

nonlinear.

Simulated Annealing is a probabilistic method used for

obtaining the overall minimum of a function that may

possess several local minima [3]. It is a Monte-Carlo

maximization or minimization technique used for complex

problems with many parameters and constraints. It mimics

the process of annealing, which starts with a high

temperature mix of metal and slowly cools the mix,

allowing optimal structures to form as the material cools.

The Simulated Annealing procedure randomly generates a

large number of possible solutions, keeping both good and

bad solutions. As the simulation progresses, the

requirements for replacing an existing solution or staying

in the pool becomes stricter and stricter, mimicking the

slow cooling of metallic annealing. Eventually, the process

yields a small set of optimal solutions. Simulated

Annealing's advantage over other methods is its ability to

obviate being trapped in local minima. This means that the

algorithm does not always reject changes that decrease the

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Optimization_(mathematics)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

7

objective function or changes that increase the objective

function according to its probability function:

 𝑝 = exp⁡(
−∆𝑓

𝑇
)

Where T is the control parameter (analogy to temperature)

and ∆f is the variation in the objective function. The

probability function is a derivative of the Boltzmann

probability distribution function [1].

Genetic Algorithm is a technique used for estimating

computer models based on methods adapted from the field

of genetics in biology. To use this technique, one encodes

possible model behaviors into ''genes". After each

generation, the current models are rated and allowed to

mate and breed based on their fitness. In the process of

mating, the genes are exchanged, and crossovers and

mutations can occur. The current population is discarded

and its offspring forms the next generation. Also, Genetic

Algorithm describes a variety of modeling or optimization

techniques that claim to mimic some aspect of biological

modeling in choosing an optimum. Typically, the object

being modeled is represented in a fashion that is easy to

modify automatically. Then a large number of candidate

models are generated and tested against the current data.

Each model is scored and the "best" models are retained

for the next generation. The retention can be deterministic

(choose the best k models) or random (choose the k

models with probability proportional to the score.) These

models are then randomly perturbed (as in asexual

reproduction) and the process repeated until it converges.

If the model is constructed so that they have "genes," the

winners can "mate" to produce the next generation.

2. TRAVELLING SALESMAN

PROBLEM
The TSP is an NP complete problem, it is probably the

most widely studied combinatorial optimization problem.

It is a conceptually simple problem which is useful for

solving several real life optimization problems [2]. A

Classical Traveling Salesman Problem (TSP) can be

defined as a problem where starting from a node it is

required to visit every other node only once in a way that

the total distance covered is minimized. This can be

mathematically stated as follows:

Min: cij
i,j

xij 1

 s. t: xij = 1; ∀ i ≠ j 2
j

 xij = 1; ∀ j ≠ i 3
i

 ui = 1 4

 2 ≤ ui ≤ n; ∀ i ≠ 1 5

ui – uj + 1 ≤

 n − 1 1 − xij

∀ i ≠ j, ∀j ≠ i

 6

 ui ≥ 0; ∀i 7

 xij ∈ 0,1 ; ∀i, j (8)

Constraints set (4), (5), (6) and (7), are used to eliminate

any sub tour in the solution. Without the additional

constraints for sub tour elimination, the problem reduces to

a simple assignment problem, which can be solved as an

L.P. (Linear Programming) without binary constraints on

xij and will still result in binary solution for xij.

Introduction of additional constraints for sub tour

elimination, however, makes the problem an M.I.P.

(Mixed Integer Problem) with n2 integer variables for a

problem of size n, which may become very difficult to

solve for a moderate size of problem [17].

3. METHODOLOGY

Comparison of the algorithms is based on dataset, solution

quality, parameters and runtime.

3.1 Data Set/Test Bed
One of the most important parts of a comparison among

heuristics is the test bed on which the heuristics are tested.

Consequently, the test bed should be first considered when

comparing two metaheuristics [12]. Existing test beds from

previous papers will be used alongside some other new

testbeds.

Various test beds are used, a new geometric city was

constructed, a distance matrix of some major Nigerian

cities was gotten from www.bosng.org, some were fetched

from data used in previous works and the others are

generated randomly by the program.

3.2 Parameters
Parameters are the configurable components of an

algorithm that can be changed to alter the performance of

the algorithm. They can either be set statically (for

instance, creating a genetic algorithm with a population

size of 50) or based on the problem instance (for instance,

creating a genetic algorithm with a population size of 5 𝑛,

where n is the number of nodes in the problem instance)

[12]. In either of these cases, the algorithm designer

predetermines the function of the problem instance

attributes used to generate the parameter or the constant

value of the parameter.

A number of parameters must be set for each major type of

metaheuristic before algorithm execution. These guidelines

represent the minimum number of parameters typical in

different types of algorithms. However, most

metaheuristics have more parameters in practice. Table 1

below shows the parameters used for each of the two

algorithms being compared.

Table 1. Parameters used for Simulated Annealing and

Genetic Algorithm.

Genetic

Algorithm

Simulated

Annealing

Population Temperature

Mutation Rate Cooling Rate

Cut Length Absolute

Temperature

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

8

3.3 Run Time
While it is important that a metaheuristic demonstrate

good solution quality in order to be considered viable,

having a fast runtime is also of utmost necessity. If the

runtime of metaheuristics is not fast, it would not be

justifiable to choose them over exact algorithms. Also,

runtime comparisons are some of the most difficult

comparisons to make. This is because of the difficulties in

comparing runtimes of algorithms that are compiled with

different compilers and executed on different computers,

potentially on different testbeds [12].

3.4 Solution Quality
Although it is essential collect a meaningful testbed and to

juxtapose the metaheuristics in terms of simplicity by

considering their number of parameters, equally more

important among the comparisons is the solution quality.

Meta-heuristics give solutions of good quality in runtimes

better than those of exact approaches. The amount of

permissible deviation from the optimal solution varies

according to the application. For example, in many long-

term planning applications or applications critical to an

organisation‟s business plan the amount of error allowed is

much lower than in optimization problems used for short-

term planning or for which the solution is tangential to an

organisation‟s business plans. Also, when considering the

same problem, the amount of error allowed can differ

dramatically. For example, a parcel company planning its

daily routes to be used for the next year using the

capacitated vehicle routing problem would likely have

much less error tolerance than a planning committee using

the capacitated vehicle routing problem to plan the

distribution of voting materials in the week leading up to

Election Day.

Consequently, determining a target solution quality for a

combinatorial optimization problem is often

difficult/impossible. Thus, it is not sufficient to determine

if each heuristic meets a required solution quality threshold

when comparing metaheuristics; comparison among the

heuristics is required [12].

4. IMPLEMENTATION
4.1 Simulated Annealing Program Details
A TSP class was created which has 4 methods and 15

instance variables. The methods and their functions are

explained below.

4.1.1 Openfile()
This method initializes currentOrder and nextOrder and

then displays a JFileChooser that lets you browse for the

text folder that contains the distances matrix. It also reads

the file and sets disances[i][j] according to the text folder.

4.1.2 GetTotalDistance()
Calculates the cost of a tour which is input as a parameter

in form of a list.

4.1.3 GetNextArrangement()
Finds a new tour that does not exist previously by

randomization

4.1.4 Anneal()
The iterations are carried out here, new tours are generated

continuously based on previous tours until no more visible

exist in the new tours created.

In the interface the button „load‟ triggers the method

openFile and also causes the distances matrix to be

displayed on the JTextArea labeled input. The other button

on the form which is the „solve‟ button calls the method

Anneal() which solves the problem loaded previously and

displays the result on the second JTextArea labeled output.

4.2 Genetic Algorithm Program Details
In genetic algorithm, class “Chromosome” is needed. The

Chromosome class generates random tours and makes

them population members when its object is instantiated in

the TSP class. The TSP class uses the Chromosomes

“mate” method to reproduce new offspring from favoured

Population of the previous generations. The TSP class in

this case has two methods that use methods in

Chromosome, the two methods are described below.

4.2.1 Start()
This method initializes the cities and creates new

chromosomes by creating an array of Chromosome

objects, it also sorts the chromosomes by calling the

method sortChromosomes() in Chromosomes then it sets

the generation to 0

4.2.2 Run()
Gets the favoured population from all the chromosomes

created and mates them using mate() after this it sorts the

chromosomes and then calculates the cost of the tour of the

best chromosome. It repeats this this procedure until the

cost of the best tour can‟t be further improved.

5. RESULTS AND DISCUSSIONS
The result of each trial is stored in a text area so as to keep

track of results. There is a tab for each algorithm, the

screen shots below shows the experimental results of

Simulated Annealing and genetic algorithm respectively.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

9

.

 Figure 1: Experimental results for Simulated Annealing

 Figure 2: Experimental results for Genetic Algorithm

The application keeps track of results for analysis by

storing the result of each problem and the parameters set

for each run. The screen shots above (figure 1 and 2)

display the result of random combination of parameters to

get the parameters with best performance (table 2). This

was done for Genetic Algorithm and Simulated Annealing.

Random experiments on the 31 Nigerian cities have been

used to determine the best set of parameters for both

algorithms.

Table 2. Parameters with best performance.

Simulated Annealing Genetic Algorithm

Temperature: 10000 Population: 1000

Cooling Rate: 0.9999 Mutation Rate: 0.1

Absolute Temperature:

0.0001

Cut Length: 0.2

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

10

 Table 3 Results obtained using the parameters above for different test beds.

The results obtained are discussed below,

0

1000

2000

3000

4000

5000

6000

10 15 20 25 31 40 50 60 100

R
u

n
ti

m
e

No. of Cities

Graph 1: Plot of Runtime against No. of Cities

Genetic Algorithm

Runtime

Simulated Annealing

Runtime

0

1000

2000

3000

4000

5000

6000

7000

10 15 20 25 31 40 50 60 100

D
is

ta
n

ce

No. of Cities

Graph 2: Bar Chrart Showing distance gainst No. of Cities

Genetic Algorithm
Distance

Simulated Annealing
Distance

No. of Genetic Algorithm Simulated Annealing
Cities Runtime Distance Individuals Runtime Distance Iterations

10 385 118.0 148000 373 116.0 184197
15 653 163.0 174000 523 199.0 184197
20 871 233.0 256000 580 236.0 184197
25 799 351.0 278000 765 330.0 184197
31 893 5818.0 177000 967 6189.0 184197
40 1014 423.0 334000 982 444.0 184197
50 1867 530.0 329000 1405 543.0 184197
60 2105 572.0 366000 1698 589.0 184197

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

11

5.1 Runtime
From graph 1 above (which was plotted from the values in

table 3), the line representing Genetic algorithm shows that

time complexity increases exponentially with increasing

number of cities. For fifty cities and above, the algorithm

takes a lot of time to complete (about 20000ms or more).

In Simulated Annealing increase in number of cities

increases the runtime but the increments are not

exponential as is the case in genetic algorithm. The

runtime is also affected by the set of parameters used. In

genetic algorithm, small sized population can greatly

improve the runtime but the solution quality is likely

reduced depending on the number of cities. Therefore from

the above assertions, if runtime is the basis of comparison

of both algorithms, Simulated Annealing has proven to be

a faster TSP solver. This is due to the discovery by [8]

that: the simulated annealing algorithm is run for a total of

106 iterations on each trial while the genetic algorithm is

run for a total of 105 iterations per trial. The variance in

the number of trials is due to the fact that one iteration of

genetic algorithm takes approximately 10 times longer

than one iteration of simulated annealing.

5.2 Solution Quality
Again, the set of parameters used and their values is a very

crucial factor that affects solution quality. In simulated

annealing a moderately high temperature and cooling rate

very close to 1 say 0.9999 produces near optimal if not

optimal result. On the other hand a population that is

greater than the number of cities divided mutation rate can

produce very good results. Generally larger population

provides better solution but the run time is greatly

increased in Genetic Algorithm. In the long run genetic

algorithm tends to produce better results for large number

of cities if the run time is not an issue because from the

result above and according to [8], genetic algorithm takes

time to perform its iterations which greatly improves the

quality of its solution; a major reason why it is slower

compared with simulated annealing.

5.3 Test Beds
The test bed on which the heuristics are tested is important.

The same testbeds must be used on for each method.

Existing testbeds from previous researches were used in

this research alongside some other new testbeds. A new

geometric city was constructed because there are no

sufficient existing testbeds comprising major Nigerian

cities, a distance matrix of some major Nigerian cities was

also gotten from www.bosng.org and the others are

generated randomly by the program. This allowed for large

problem instances to be tested. The solution of small

problem instances runs in reasonable runtimes with the

assurance of a guaranteed optimal solution but it is

important that metaheuristic testing occurs on large

problems for which optimal solutions could not be

calculated in reasonable runtimes.

5.4 Parameters
The set of parameters used is very crucial to the

performance of the algorithms. For genetic algorithm,

when the population size is set to 1000, the mutation rate

set to 0.1 and the cut rate at 0.2 yields an optimal solution

for the TSP.

For simulated annealing, a temperature of 10000, cooling

rate of 0.9999 and absolute temperature of 0.0001 work

best to solve the TSP problem optimally. Different classes

of problems require unique set of parameters that provides

results which have a good balance of runtime and solution.

6. CONCLUSION
In this paper the Travelling Salesman problem was

extensively discussed with the aim of finding out which of

the two algoriths being compared would yield an optimal

solution. The travelling salesman problem cannot be

effectively solved with exact algorithms hence the need for

metaheuristics which have shown to be good TSP solvers.

Examples of metaheuristics are Ant Colony Optimization,

Tabu Search, Genetic Algorithms, Simulated Annealing

and so on. This study implemented the genetic algorithm

and the simulated annealing algorithm and also to gain

experience on how to use them by observing their

performance on different test beds. Experiments have

shown that Simulated Annealing has a faster runtime.

Simulated Annealing can solve up to 350 cities with a

2.16GHz processor within a reasonable amount of time.

Genetic Algorithms however can provide quality solutions

if a large enough population is set, but large population

greatly increases its run time. Powerful systems with

parallel computing capability can however be of help here

and can be used to run these algorithms for very large no

of cities.

To a great extent, both algorithms are very good solvers

and can provide optimal solutions if the right set of

parameters are set. If solution quality is important, cooling

rate that is very close to one should be set for simulated

annealing but this increases the no of iterations the

algorithm will perform. For a tour of less than 500, an

Absolute temperature of 10000 is recommended. For

Genetic Algorithm the larger the population the higher the

possibility of getting an optimal solution but run time

increases exponentially. Generally there exists a broad

trade-off between runtime and solution quality.

7. FUTURE STUDY
The techniques of comparison discussed in this study are:

testbeds, parameters, solution quality and runtime. It was

discovered that the runtime technique depended on

invariants such as: compiler choice, programmer skill and

power of computation platform [12]. This made the

determination of a target solution quality for a

combinatorial optimization problem difficult.

Consequently, other forms of comparison that do not rely

on the invariants above are desired. One alternative form

as discussed by [1] is counting the number of

representative operation that the algorithm uses. In this

form, the numbers of a selected set of bottleneck

operations are compared with disregard for the total

execution time of algorithms being compared. This

technique and others can be sought to use as a basis for

comparison. The observations made from these new

techniques of comparison can then be compared with

results of comparison from this study to determine how

they influence getting an optimal result for the TSP and

checking whether they yield better outputs compared to the

ones yielded in this study. It must however be stated that

every comparison technique has its strengths and

weaknesses.

http://www.bosng.org/

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.4, October 2012 – www.ijais.org

12

8. REFERENCES
[1] Ahuja, R., Orlin, J. 1993. Use of representative

operation counts in computational testing of

algorithms. INFORMS Journal on Computing 8(3),

318-330

[2] Ali Hamdar 2008. Simulated Annealing-Solving the

Travelling Salesman Problem.

[3] Anthony Ralston and Edwin D. Reilly 1993.

Encyclopedia of Computer Science, Chapman & Hall.

[4] Aybars U., Serdar K., Ali C., Muhammed C. and Ali

A 2009. Genetic Algorithm Based Solution of TSP on

a Sphere, Mathematical and Computational

Applications, Vol. 14, No. 3, pp. 219-228.

[5] Bertsimas D. and Tsitsiklis J. 1993. “Simlated

Annealing”, Journal of Statistical Science, Vol. 8, No

1, 10-15.

[6] Bland, R. G. and Shallcross, D. F. 1989. Large

Traveling Salesman Problems Arising from

Experiments in X-ray Crystallography: A preliminary

report on computation, Operations Research. Letter.

pg.125-128.

[7] Dorigo M., Vittorio M. and Alberto C. 1996. The Ant

System: Optimization by a colony of cooperating

agents, IEEE Transactions on Systems, MAN, and

cybernetic, vol. 26, No. 1.

[8] Fan Yang 2010. Solving Traveling Salesman Problem

Using Parallel Genetic Algorithm and Simulated

Annealing.

 [9] Hiroaki Sengoku and Ikuo Yoshihara 1993, A

Fast TSP solver using GA on JAVA.

[10] Holland, J. H. 1992, Adaptation in Natural and

Artificial systems, Cambridge, MA, USA: MIT Press.

[11] John Silberholz and Bruce Golden 2010, Comparison

of Metaheuristics.

[12] Kirkpatrick, S., Gelatt, Jr. C.D. and Vecchi, M.P.

1983. “Optimization by Simulated Annealing”,

Journal of Mathematical Sciences, Vol. 220: pg. 109-

120.

[13] Korte, B. 1988. Applications of Combinatorial

Optimization, talk at the 13th International

Mathematical Programming Symposium, Tokyo.

[14] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G.,

and Shmoys, D. B. 1985. The Traveling Salesman

Problem, John Wiley & Sons, Chichester.

[15] Mark Dorigo and Thomas Stutzle(2009), Ant Colony

Optimization.

[16] Nazif, H. and Lee, L.S. 2010. “Optimized Crossover

Genetic Algorithm for Vehicle Routing Problem with

Time Windows, American”, Journal of Applied

Sciences 7 (1): pg. 95-101.

[17] Roland Braune, Stefan Wagner and Michael

Affenzeller 2005, Applying Genetic Algorithms to the

Optimization of Production Planning in a real world

Manufacturing Environment, Institute of Systems

Theory and Simulation Johannes Kepler University.

[18] Sachin Jayaswal 2004. A Comparative study of Tabu

Search and Simulated Annealing for Travelling

Salesman problem.

[19] TSP2010. http://www.tsp.gatech.edu/history/tspinfo

[20] Wikipedia 2010. The Free Encyclopedia,

http://en.wikipedia.org/wiki/Main_Page.

[21] Zuhaimy Ismail, Wan Rohaizad and Wan Ibrahim

2008. “Travelling Salesman problem for solving

Petrol Distribution using Simulated-Annealing”,

American Journal of Applied Sciences 5(11): 1543-

1546.

http://www.tsp.gatech.edu/history/tspinfo
http://en.wikipedia.org/wiki/Main_Page

