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ABSTRACT 
Metaheuristic algorithms have proved to be good solvers 

for the traveling salesman problem (TSP). All 

metaheuristics usually encounter problems on which they 

perform poorly so the programmer must gain experience 

on which optimizers work well in different classes of 

problems. However due to the unique functionality of each 

type of   meta-heuristic, comparison of metaheuristics is in 

many ways more difficult than other algorithmic 

comparisons. In this paper, solution to the traveling 

salesman problem was implemented using genetic 

algorithm and simulated annealing. These algorithms were 

compared based on performance and results using several 

benchmarks. It was observed that Simulated Annealing 

runs faster than Genetic Algorithm and runtime of Genetic 

Algorithm increases exponentially with number of cities. 

However, in terms of solution quality Genetic Algorithm is 

better than Simulated Annealing. 

General Terms 
Metaheuristics and Algorithms 

Keywords 
Genetic Algorithm, simulated Annealing, Travelling 

Salesman Problem, Candidate solution, Optimization 

problem. 

1. INTRODUCTION 
In computer science, metaheuristic refers to a method of 

computation that optimizes a problem by trying to improve 

a candidate solution with regard to a given measure of 

quality iteratively. Metaheuristics make few or no 

assumptions about the problem being optimized and are 

able to search very large spaces of candidate solutions. 

Generally, metaheuristics do not guarantee that an optimal 

solution is ever found, however deep knowledge of these 

metaheuristics can help produce near optimal results.     

The Travelling Salesman Problem is an optimization 

problem which has various applications such as: 

combinatorial data analysis, computer wiring, machine 

sequencing, vehicle routing and scheduling, planning and 

logistics. These optimization problems can be effectively 

solved using various approaches that have been created. 

This paper examines simulated annealing algorithm and 

genetic algorithm as they are being used to solve the 

traveling salesman problem (TSP), which is a widely 

known combinatorial optimization problem in operations 

research and theoretical computer science. The concept of 

the traveling salesman problem is to seeking a tour of a 

specified number of cities (visiting each city exactly once 

and returning to the starting point) where the length of the 

tour is minimized [8]. The traveling salesman problem has 

many applications, from VLSI chip fabrication [4] to X-

ray crystallography [14]. 

An optimization problem consists: an objective function 

and a set of constraints on variables. The task is to find the 

values of the variables that give an optimum value for the 

objective function, while satisfying all the constraints. The 

objective function may be a linear function in the variables 

or a nonlinear function in the variables and it may be to 

find the minimum value for the objective function. If for 

instance, the objective function represents the cost of or to 

find the maximum value of a profit function. The resources 

shared by the products and their manufacturing process are 

usually in limited supply or have some other restrictions on 

their availability. This consideration leads to the 

specification of constraints for the problem. 

Each constraint usually takes the form of an equation or an 

inequality. The left side of such an equation or an 

inequality is an expression in the variables for the problem, 

and the right is a constant. The constraints may be linear or 

nonlinear depending on whether the expression on the left 

is a linear function or nonlinear function of the variables. 

A linear programming problem is an optimization problem 

with a linear objective function as well as a set of linear 

constraints. An integer linear programming is a linear 

programming problem where the variables are required to 

have integer values. A nonlinear optimization problem has 

one or more constraints and/or the objective function is 

nonlinear. 

Simulated Annealing is a probabilistic method used for 

obtaining the overall minimum of a function that may 

possess several local minima [3]. It is a Monte-Carlo 

maximization or minimization technique used for complex 

problems with many parameters and constraints. It mimics 

the process of annealing, which starts with a high 

temperature mix of metal and slowly cools the mix, 

allowing optimal structures to form as the material cools. 

The Simulated Annealing procedure randomly generates a 

large number of possible solutions, keeping both good and 

bad solutions. As the simulation progresses, the 

requirements for replacing an existing solution or staying 

in the pool becomes stricter and stricter, mimicking the 

slow cooling of metallic annealing. Eventually, the process 

yields a small set of optimal solutions. Simulated 

Annealing's advantage over other methods is its ability to 

obviate being trapped in local minima. This means that the 

algorithm does not always reject changes that decrease the 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Optimization_(mathematics)
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objective function or changes that increase the objective 

function according to its probability function: 

             𝑝 =  exp⁡(
−∆𝑓

𝑇
) 

Where T is the control parameter (analogy to temperature) 

and ∆f is the variation in the objective function. The 

probability function is a derivative of the Boltzmann 

probability distribution function [1]. 

Genetic Algorithm is a technique used for estimating 

computer models based on methods adapted from the field 

of genetics in biology. To use this technique, one encodes 

possible model behaviors into ''genes". After each 

generation, the current models are rated and allowed to 

mate and breed based on their fitness. In the process of 

mating, the genes are exchanged, and crossovers and 

mutations can occur. The current population is discarded 

and its offspring forms the next generation. Also, Genetic 

Algorithm describes a variety of modeling or optimization 

techniques that claim to mimic some aspect of biological 

modeling in choosing an optimum. Typically, the object 

being modeled is represented in a fashion that is easy to 

modify automatically. Then a large number of candidate 

models are generated and tested against the current data. 

Each model is scored and the "best" models are retained 

for the next generation. The retention can be deterministic 

(choose the best k models) or random (choose the k 

models with probability proportional to the score.) These 

models are then randomly perturbed (as in asexual 

reproduction) and the process repeated until it converges. 

If the model is constructed so that they have "genes," the 

winners can "mate" to produce the next generation. 

2. TRAVELLING SALESMAN 

PROBLEM 
The TSP is an NP complete problem, it is probably the 

most widely studied combinatorial optimization problem. 

It is a conceptually simple problem which is useful for 

solving several real life optimization problems [2]. A 

Classical Traveling Salesman Problem (TSP) can be 

defined as a problem where starting from a node it is 

required to visit every other node only once in a way that 

the total distance covered is minimized. This can be 

mathematically stated as follows:  

Min:           cij
i,j

xij                         1  

     s. t:         xij  = 1; ∀ i ≠ j      2 
j

 

                     xij  = 1; ∀ j ≠ i      3 
i

 

                      ui = 1                            4  

                   2 ≤ ui ≤ n; ∀ i ≠ 1     5  

                    

ui  – uj +  1 ≤

 n − 1  1 − xij 

∀ i ≠ j, ∀j ≠ i

        6  

                  ui ≥ 0; ∀i                         7  

                   xij ∈   0,1 ; ∀i, j            (8) 

Constraints set (4), (5), (6) and (7), are used to eliminate 

any sub tour in the solution. Without the additional 

constraints for sub tour elimination, the problem reduces to 

a simple assignment problem, which can be solved as an 

L.P. (Linear Programming) without binary constraints on 

xij and will still result in binary solution for xij. 

Introduction of additional constraints for sub tour 

elimination, however, makes the problem an M.I.P. 

(Mixed Integer Problem) with n2 integer variables for a 

problem of size n, which may become very difficult to 

solve for a moderate size of problem [17]. 

3. METHODOLOGY 

Comparison of the algorithms is based on dataset, solution 

quality, parameters and runtime.  

3.1 Data Set/Test Bed 
One of the most important parts of a comparison among 

heuristics is the test bed on which the heuristics are tested. 

Consequently, the test bed should be first considered when 

comparing two metaheuristics [12]. Existing test beds from 

previous papers will be used alongside some other new 

testbeds. 

Various test beds are used, a new geometric city was 

constructed, a distance matrix of some major Nigerian 

cities was gotten from www.bosng.org, some were fetched 

from data used in previous works and the others are 

generated randomly by the program.  

3.2 Parameters 
Parameters are the configurable components of an 

algorithm that can be changed to alter the performance of 

the algorithm.  They can either be set statically (for 

instance, creating a genetic algorithm with a population 

size of 50) or based on the problem instance (for instance, 

creating a genetic algorithm with a population size of 5 𝑛, 

where n is the number of nodes in the problem instance) 

[12]. In either of these cases, the algorithm designer 

predetermines the function of the problem instance 

attributes used to generate the parameter or the constant 

value of the parameter. 

A number of parameters must be set for each major type of 

metaheuristic before algorithm execution. These guidelines 

represent the minimum number of parameters typical in 

different types of algorithms. However, most 

metaheuristics have more parameters in practice. Table 1 

below shows the parameters used for each of the two 

algorithms being compared. 

 

Table 1.  Parameters used for Simulated Annealing and 

Genetic Algorithm. 
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3.3 Run Time 
While it is important that a metaheuristic demonstrate 

good solution quality in order to be considered viable, 

having a fast runtime is also of utmost necessity. If the 

runtime of metaheuristics is not fast, it would not be 

justifiable to choose them over exact algorithms. Also, 

runtime comparisons are some of the most difficult 

comparisons to make. This is because of the difficulties in 

comparing runtimes of algorithms that are compiled with 

different compilers and executed on different computers, 

potentially on different testbeds [12]. 

3.4 Solution Quality 
Although it is essential collect a meaningful testbed and to 

juxtapose the metaheuristics in terms of simplicity by 

considering their number of parameters, equally more 

important among the comparisons is the solution quality. 

Meta-heuristics give solutions of good quality in runtimes 

better than those of exact approaches. The amount of 

permissible deviation from the optimal solution varies 

according to the application. For example, in many long-

term planning applications or applications critical to an 

organisation‟s business plan the amount of error allowed is 

much lower than in optimization problems used for short-

term planning or for which the solution is tangential to an 

organisation‟s business plans. Also, when considering the 

same problem, the amount of error allowed can differ 

dramatically. For example, a parcel company planning its 

daily routes to be used for the next year using the 

capacitated vehicle routing problem would likely have 

much less error tolerance than a planning committee using 

the capacitated vehicle routing problem to plan the 

distribution of voting materials in the week leading up to 

Election Day.  

Consequently, determining a target solution quality for a 

combinatorial optimization problem is often 

difficult/impossible. Thus, it is not sufficient to determine 

if each heuristic meets a required solution quality threshold 

when comparing metaheuristics; comparison among the 

heuristics is required [12]. 

4. IMPLEMENTATION 
4.1 Simulated Annealing Program Details 
A TSP class was created which has 4 methods and 15 

instance variables. The methods and their functions are 

explained below. 

4.1.1 Openfile() 
This method initializes currentOrder and nextOrder and 

then displays a JFileChooser that lets you browse for the 

text folder that contains the distances matrix. It also reads 

the file and sets disances[i][j] according to the text folder. 

 

4.1.2 GetTotalDistance() 
Calculates the cost of a tour which is input as a parameter 

in form of a list. 

4.1.3 GetNextArrangement() 
Finds a new tour that does not exist previously by 

randomization 

4.1.4 Anneal() 
The iterations are carried out here, new tours are generated 

continuously based on previous tours until no more visible 

exist in the new tours created.  

In the interface the button „load‟ triggers the method 

openFile and also causes the distances matrix to be 

displayed on the JTextArea labeled input. The other button 

on the form which is the „solve‟ button calls the method 

Anneal() which solves the problem loaded previously and 

displays the result on the second JTextArea labeled output.  

4.2 Genetic Algorithm Program Details 
In genetic algorithm, class “Chromosome” is needed. The 

Chromosome class generates random tours and makes 

them population members when its object is instantiated in 

the TSP class. The TSP class uses the Chromosomes 

“mate” method to reproduce new offspring from favoured 

Population of the previous generations. The TSP class in 

this case has two methods that use methods in 

Chromosome, the two methods are described below. 

4.2.1 Start() 
This method initializes the cities and creates new 

chromosomes by creating an array of Chromosome 

objects, it also sorts the chromosomes by calling the 

method sortChromosomes() in Chromosomes then it sets 

the generation to 0 

4.2.2 Run() 
Gets the favoured population from all the chromosomes 

created and mates them using mate() after this it sorts the 

chromosomes and then calculates the cost of the tour of the 

best chromosome. It repeats this this procedure until the 

cost of the best tour can‟t be further improved. 

5. RESULTS AND DISCUSSIONS 
The result of each trial is stored in a text area so as to keep 

track of results. There is a tab for      each algorithm, the 

screen shots below shows the experimental results of 

Simulated Annealing and genetic algorithm respectively. 
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.  

 Figure 1: Experimental results for Simulated Annealing 

 

 Figure 2: Experimental results for Genetic Algorithm 

 

The application keeps track of results for analysis by 

storing the result of each problem and the parameters set 

for each run. The screen shots above (figure 1 and 2) 

display the result of random combination of parameters to 

get the parameters with best performance (table 2). This 

was done for Genetic Algorithm and Simulated Annealing. 

Random experiments on the 31 Nigerian cities have been 

used to determine the best set of parameters for both 

algorithms.  

Table 2.  Parameters with best performance. 

Simulated Annealing Genetic Algorithm 

Temperature: 10000 Population: 1000 

Cooling Rate: 0.9999 Mutation Rate: 0.1 

Absolute Temperature: 

0.0001 

Cut Length: 0.2 
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 Table 3 Results obtained using the parameters above for different test beds. 

 

 

 

 

 

 

 

 

The results obtained are discussed below, 
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Genetic Algorithm 
Distance

Simulated Annealing 
Distance

No. of                                          Genetic Algorithm                                          Simulated Annealing 
Cities Runtime Distance Individuals Runtime Distance Iterations 

10 385 118.0 148000 373 116.0 184197 
15 653 163.0 174000 523 199.0 184197 
20 871 233.0 256000 580 236.0 184197 
25 799 351.0 278000 765 330.0 184197 
31 893 5818.0 177000 967 6189.0 184197 
40 1014 423.0 334000 982 444.0 184197 
50 1867 530.0 329000 1405 543.0 184197 
60 2105 572.0 366000 1698 589.0 184197 
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5.1 Runtime 
From graph 1 above (which was plotted from the values in 

table 3), the line representing Genetic algorithm shows that 

time complexity increases exponentially with increasing 

number of cities. For fifty cities and above, the algorithm 

takes a lot of time to complete (about 20000ms or more).  

In Simulated Annealing increase in number of cities 

increases the runtime but the increments are not 

exponential as is the case in genetic algorithm. The 

runtime is also affected by the set of parameters used. In 

genetic algorithm, small sized population can greatly 

improve the runtime but the solution quality is likely 

reduced depending on the number of cities. Therefore from 

the above assertions, if runtime is the basis of comparison 

of both algorithms, Simulated Annealing has proven to be 

a faster TSP solver. This is due to the discovery by [8] 

that: the simulated annealing algorithm is run for a total of 

106 iterations on each trial while the genetic algorithm is 

run for a total of 105 iterations per trial. The variance in 

the number of trials is due to the fact that one iteration of 

genetic algorithm takes approximately 10 times longer 

than one iteration of simulated annealing.  

5.2 Solution Quality 
Again, the set of parameters used and their values is a very 

crucial factor that affects solution quality. In simulated 

annealing a moderately high temperature and cooling rate 

very close to 1 say 0.9999 produces near optimal if not 

optimal result. On the other hand a population that is 

greater than the number of cities divided mutation rate can 

produce very good results. Generally larger population 

provides better solution but the run time is greatly 

increased in Genetic Algorithm. In the long run genetic 

algorithm tends to produce better results for large number 

of cities if the run time is not an issue because from the 

result above and according to [8], genetic algorithm takes 

time to perform its iterations which greatly improves the 

quality of its solution; a major reason why it is slower 

compared with simulated annealing. 

5.3 Test Beds 
The test bed on which the heuristics are tested is important. 

The same testbeds must be used on for each method. 

Existing testbeds from previous researches were used in 

this research alongside some other new testbeds. A new 

geometric city was constructed because there are no 

sufficient existing testbeds comprising major Nigerian 

cities, a distance matrix of some major Nigerian cities was 

also gotten from www.bosng.org and the others are 

generated randomly by the program. This allowed for large 

problem instances to be tested. The solution of small 

problem instances runs in reasonable runtimes with the 

assurance of a guaranteed optimal solution but it is 

important that metaheuristic testing occurs on large 

problems for which optimal solutions could not be 

calculated in reasonable runtimes. 

5.4 Parameters 
The set of parameters used is very crucial to the 

performance of the algorithms. For genetic algorithm, 

when the population size is set to 1000, the mutation rate 

set to 0.1 and the cut rate at 0.2 yields an optimal solution 

for the TSP. 

For simulated annealing, a temperature of 10000, cooling 

rate of 0.9999 and absolute temperature of 0.0001 work 

best to solve the TSP problem optimally. Different classes 

of problems require unique set of parameters that provides 

results which have a good balance of runtime and solution. 

6. CONCLUSION 
In this paper the Travelling Salesman problem was 

extensively discussed with the aim of finding out which of 

the two algoriths being compared would yield an optimal 

solution. The travelling salesman problem cannot be 

effectively solved with exact algorithms hence the need for 

metaheuristics which have shown to be good TSP solvers. 

Examples of metaheuristics are Ant Colony Optimization, 

Tabu Search, Genetic Algorithms, Simulated Annealing 

and so on. This study implemented the genetic algorithm 

and the simulated annealing algorithm and also to gain 

experience on how to use them by observing their 

performance on different test beds. Experiments have 

shown that Simulated Annealing has a faster runtime. 

Simulated Annealing can solve up to 350 cities with a 

2.16GHz processor within a reasonable amount of time.  

Genetic Algorithms however can provide quality solutions 

if a large enough population is set, but large population 

greatly increases its run time. Powerful systems with 

parallel computing capability can however be of help here 

and can be used to run these algorithms for very large no 

of cities.  

To a great extent, both algorithms are very good solvers 

and can provide optimal solutions if the right set of 

parameters are set. If solution quality is important, cooling 

rate that is very close to one should be set for simulated 

annealing but this increases the no of iterations the 

algorithm will perform. For a tour of less than 500, an 

Absolute temperature of 10000 is recommended. For 

Genetic Algorithm the larger the population the higher the 

possibility of getting an optimal solution but run time 

increases exponentially. Generally there exists a broad 

trade-off between runtime and solution quality.  

7. FUTURE STUDY 
The techniques of comparison discussed in this study are: 

testbeds, parameters, solution quality and runtime. It was 

discovered that the runtime technique depended on 

invariants such as: compiler choice, programmer skill and 

power of computation platform [12]. This  made the 

determination of a target solution quality for a 

combinatorial optimization problem difficult. 

Consequently, other forms of comparison that do not rely 

on the invariants above are desired. One alternative form 

as discussed by [1] is counting the number of 

representative operation that the algorithm uses. In this 

form, the numbers of a selected set of bottleneck 

operations are compared with disregard for the total 

execution time of algorithms being compared. This 

technique and others can be sought to use as a basis for 

comparison. The observations made from these new 

techniques of comparison can then be compared with 

results of comparison from this study to determine how 

they influence getting an optimal result for the TSP and 

checking whether they yield better outputs compared to the 

ones yielded in this study. It must however be stated that 

every comparison technique has its strengths and 

weaknesses.  
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