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A STUDY OF BOX GIRDER BEHAVIOUR BASED ON

EXTENSIONAL AND BENDING PLATE THEORIES

ABSTRACT:
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The thesis deals with the study of box girder behaviour under
load and egamines the deflexion and membréne stresses which arise as
a consequence of ;oading. An extensive survey of the existing methods
of analyses is carfie& out and two of them are outlinéd.

A composite concrete - steel box girder was used for the

laboratory investigation.

-

A method of deriving'the equation for transverse deflexion of
a plate with its edges supported in any manner is outlined. This
method does not seem to have been previously recorded in any text on
plate bending theory.

The analysis of a closed trapezoidal (cross-sec¢tion) box girder,
employing both membrane and plate bending theories is then fully
discussed. A computer programme is used to solve the resulting system
of equations and the results obtained finally seem té agree with
physical conjecture.
are compared with existiﬁg recommendations for box girder bridges._
The validity or otherwise of using effective width concept for the

design of box girders is also discussed in the light of theoretical

results. An in-depth study of the effect of side inclination of the

box section is undertaken.

~

Effective width factors obtained from the analysi

s
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CHAPTER I

INTRODUCTION : —

1-1  General In4roduction and History of Box Girders ‘

The analysis of thin-walled boxes subjected to the action of applied
loads is important in the design and construction of such structural
members as aircraft wing sections, deep-sea vessel coﬁpartments, box
girders used in bridges, modern cargo containers, and various other
types of structural boxes which are subjected to either internal or
external loads.

Cne of the first recorded attempts on’ the appligation of box girder
configuration to bridges is the construction of the Brittania and Conway
tubular bridges around 1849, This application posed!some rather unusual
problems and prompted extensive research, particularly with respect to
the buckling of thin plates subjected to combined she;r and bending
moment. ‘

In the wake of the large scale destruction of bridges in World
War II, bridge building experienced a renaissance in post-war Europe.
Many of the new bridges were of steel box girder construction. In
recent years this form of bridgelconstruction, either in steel or in
concrete as pre-stressed beams, has gained popularity all over the
world. - 5

The cross-section of a box girder bridge may be of a variety of
shapes (Fig. 1-1). It may consist of a single-cell, two separate but

interconnected cells each supporting a roadway, multiple cells, or two

deep inter-connected plate girders. These are only a few of the many
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SINGLE CELL TWO SEPARATE CELL

possible configurations which can be, and have been, used.

’

MULTIPLE CELL DEEP BOX PLATE GIR’DERS.

¥

FIG 1-1

Box girder construction lends itself to various\forms of

'prefabrication. In steel, large sections are rivettedior welded on
a shop floor before transportation.and assembly on site, thereby
reducing the aﬁount of in-situ welding or rivetting. In concrete,
short lengths of the box section are cast in a yard and transported'
to construction site where they are assembled, joined ahd made
monelithic by pre-stressing, again reducing the amount of?in—situ
concreting.

The deck of the box girders may be concrete as in a concrete box

- .

girder section or as a concrete element acting compositely with the thin
steel plated box section, or it may be an orthotropic steel deck. In
most cases, steel box girders are fa%ricated by welding from relatively

thin plates, and details include stiffeners of a variety of shapes to
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minimise the risk of buckling of the fhin plates wgeﬁ fhe structure
is subjected to normal loading.

An advantage of the box girder construction besides ény structural
merit is the fact that theé space within fhe section (i.e. space within

the box or boxes) can and is often used to accommodate various services.

A%
3%
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1-2 Previous Methods of Analysis:

The types of loading encountered in box girder bridges can

generally be represented as shown below:

1

(a)

I
—= -
~¥
-3

+

1

{b)

FIG 1-2
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Fig. (1-2) (a) represents'distributed load such as the

dead load of the deck.

Fig. (1-2) (b) consists of localised forces su

vehicle wheel loads.
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A general loading as shown below has components which bend, twist

and deform the cross-section.

o
{
= +
GENERAL BENDING TORSIONAL
(a) (b) () ‘
L. F[G 1-3

Thin-walled closed section girders are so stiff and strong in
torsion that the torsional component of loa@ing (in Fig. 1-3) might
be assumed to have negligib;e effect on box gifder résponse i.e. that-
the section will twist veyy,little and deflect nearly uniformly
vertically. |

Now if the torsional component of the loading'iSjapplied as shears
on the plate elements the section is twisted without deformation of the

cross-section (Fig. 1-4) (b)

- & $ =X
-
TORSIONAL PURE TORSION DISTORSIONAL
(a} {b) {c)
O
FIG 1~ 4

v

The resulting longitudinal warping stresses are small and no
transverse flexural stresses are induced. But if the torsional loading
is applied as shown in Fig. (1-4) (a) then there exist forces which

also tend to deform the cross-section.

o
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The subdivision of box girder response into deck plate actidn

and girder action as well as the subdivision of the latter into
flekural, torsional and distortional response is vital for a desigier
who must understand the behaviour of the structure that he is tryi&g

to create and utilize. |

However, modern analytic methods do permit direct analysis of\

the total response for any arbitrary distribution of loading and can|

\

be valuable in checking a nearly completed design. ‘ \.

1-3 A Review of Analytical Tools Used in Solving Box Girder ProblemL:
The "Finite Element" method of analysis perﬁits consideration oﬁ
very realistic modeis of box girders; that is, it permits the treatmenk
of arbitrary loading, end support conditions and flexible interior
diaphragms.  This great advantage in flexibility of application is
achieved at the cost of substantial computing time on a very large
computer, in view of the large sizes of the matrices resulting from
the subdivision of the box girder into small elements.
A large number of adalytic procedures for box girders are based
on thin-walled beam theory. The "Plate Element”‘meth;d of analysis
and the "Generalised Coérdinate" methods are refined analysis which

have been developed, following basic concepts of thin-walled beam

" behaviour. (),
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.the accuracy of more flexible but exact analyses.

' |

The major assumptions of the theory are that plate shearsiand
moments in the longitudinal direction can be neglected and that
longitudinal stresses vary linearly betﬁeen joints of thelcross—Section.

Goldberg and Leve formulated a theoryiqpresented later in this
thesis, which considers the box girder configﬁration as an assemblage
of plates. It is an 'exact' solution but is limited in its applica-
bility to straight, prismatic box girders composed of isotropic plate
elements with no interior diaphragms but with s}mple end support ﬂ

- Al . .
conditions, i.e. there is no deformation of the cross-section and no

axial stresses at theé ends.

Goldberg's formulation for folded plates considers the simultaneous
plate bending and membrane actions of several plates joined together |to
form a folded plate system. The forces at the longitudinal edges of \

each plate are expressed as fixed-edge forces corrected or modified b;

the effect of displacement of the joints. |

Scordelis, Johnston and Mattock have applied this theory to the \
analysis of box girder bridges. The inability of this analysis to
account for effects of interior diaphragms and anisotropic plate elements

such as transversely stiffened web plates limits its application to

steel box girder but the theory may be found valuable for assessing !

.______.__,_‘——f—_"‘

Lacher applied thin-walled beam theory to box girders with

flexible or rigid interior diaphragms. The solution is limited to \

simple support conditions. "Scordelis and Lo used thin-walled beam

theory to develop a finite segment analysis for isotropic plate elements

and a use of transfer matrix solution that can treat flexible interior
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diaphragms and continuous girders.

A number of investigators have considered analysis of box ginders
as orthotropic plates. Massonét and Gandolfi explored this formulation
for box girders with contiguous cells and no interior diaphragms and
reported that an orthotropic plate theory accounting fof shearing
deformation is required to account for deformation of the cross-section.

If a box girder is subjected to fixed loads, diaphragms or cross
frames can be provided at all sections of load application. Deformation
of the cross—sgction is thereby reduced toc a negligible amount and the
distortional component of load need be considered only in design of
the diaphragms.

Although.not directly relevant to the formulation presented in
this work, mention must be made of the 'Beam on Elastic foundation

Analysis of Box Girders' by R. Robinson et al(l).

The remarks which \
preceed the analysis can be summarised as follows:
Analytical studies have shown that a box girder subjected to

transversely non-uniform loading undergoes deformation of the cross-

section. This behaviour usually gives rise to non-uniform warping i

and hence to longitudinal stresses as well as deformation of the \

cross-section which in turn gives rise to transveérse flexural stresses. \'
These stresses tend fo reduce the advantages anticipated from the high \
torsional stiffness of the box girder. \
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The authors madé an attempt to present a simplified analytical‘

|

procedure for box girders that accounts for the important characteri%tics

]
of their behavicur. Their formulation resulted in a governing equation

for transverse deflexion, using some empirical relations obtained from

the AISC manual, and it was argued that this formulation was analogous

to the beam on elastic foundation theory. According to the authors the

BEF analogy provides an analytical procedure which accounts for
deformation of the crosgasection, for the effects of rigid or deforma%le
interior diaphragms, longitudinally and transversely stiffened plate l
elements, non-prismatic section, continuity over intermediate supportg,

and for arbitrary end support conditions. .

The authors' procedure however, suffers the limitation that it

is not easily understood as to be applied by non-specialists and does '
of classical elasticity in the solution of this class of problems. A |
brief outline of the analogy is now presented. &

BEF Analogy:

not make apparent the interaction between bending and membrane theorie%

v

When a box girder has a torsional load acting on it, deformation

of the cross-section occurs and this produces motions in the plane of l

the cross-section (see Fig. 1-5)..
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L Torsional load rﬁ '
|
P .

Distorsion stress from
Transverse flexure
{b) WARPING STRESS PATTERN

{al’ DEFORMATION OF CROSS SECTION

FG 1-5
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To develop an approximate fheory of the deformation of the

cross-section the authors borrowed one basic assumption regarding this \

in plane motion from the theory of thin-walled beams of open section.

It is assumed that the distortions are accompanied by sufficient warping
to annul the average shear strains in the plates which form the

cross~section.

L

In géneral, the warping displacements are not constant along the

axis of the box cell. Longitudinal stresses arise from constraint of

warping. If, in turn, these warping stresses vary along the girder,
shearing forces are required by consideration of longitudinal
equilibrium.

These shears in the planes of plates also change from
section to section, resulting in & net resistance to deformation of the

cross-section which adds to the resistance caused by the flexural

stiffness of the cross-section in its own plane.

The measure of distortion 'w' shown in Fig. 1-5 leads to warping

displacements proportional to the slope 'w'. Warping stresses depend

on the second derivatives of distortion w" and shears on the third
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derivayives of the distortion w'"!

The forces per unit length which have their oriigin in warping

and resist deformation are then proportional to w'"". These consideraty
suggested a governing differential equation for a w in the form

E de"“ + kw

= P e (1)
where :

Cy is a cross-sectional property related to warping, and \
apparently similar, at least dimensionally to a second \
moment of area, \

. i

k is a measure of the deformation stiffness of a unit

length of the box cell and similar to a foundation
modulus, whilst

P is the applied general distortional load per unit
length.
From this it was observed that the equation representing the

response of a box cell to a loading that causes deformation of the

!
cross-section was analogous to that for beams on elastic foundation

which 1s of the form: ' ) ' \
- ak 4
EI E—I'+ KY = q, or 9y + By = =
ax"

- 4o (2)



-

&y

[
A

}':‘

3

where

EI =

The analogy

BEF is summarised in Fig. 1-86..

lp

flexural rigidity of beam
deflexion of beam
modulus of subgrade reaction

intensity of lateral load

“ k¥ characteristic of the system.
LET

i

between the box cell subjected to torsional laoding and
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FIG 1-6
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BEF Deflection = Distortion Stress in Box Girder

BEF Moment = Warping Stress in Box Girder
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The resistance to torsional loading provided by the frame actioh

of the cross-section of box girder is analogous to the effect of the
foundation modulus k of the BEF.

In other words, the resistance of

the box girder cross-section to deformation corresponds to the- BET
L]
foundation modulus k.

-

The resistance to torsicnal load generated by restraint of warpin

in the box cell is related to the BEF moment of inertia I

b Transverse
diaphragms or cross-bracing of the box cell correspond to intermediate

supports for the BET.

Diaphragms or cross-braces in a box girder restrain deformation

of the cross-section just as intermediate supports restrain transverse

deflection of a beam on elastic foundation. The effect of diaphragm
flexibility on box girder behaviour is determined by evaluating the

corresponding support flexibility for the anaiogous BEF.

Experimental Verification:

There have been experimental studies of box girders and attempts

have always been made to see how much agreement there is between results

predicted by theory and actual experimental results.

One of the most
thorough experimental study is that of Mattock and Johnston on 1/4 and

1/5 scale models of simple-span steel box girder bridges. There were
no interior diaphragms and all plate elements were isotropic so that

the theory of Goldberg and Leve was applicable. Their r#sults indicate
that the Goldberg and Leve theory is reliable for box girders and they

suggest that the reliability of other theories can be evaluated by

comparison with the results predicted by this theory.
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Results of comparative analyses reported by DeFries-Skene and
i

|

Scordelis give a clear picture of the accuracy of thin-walled beam !
analyses. i

There. is a good agreement between results of Gbldberg and Leve "
and the thin-walled beam theory, except in the vicinity of concentratedI

loads where peak stresses, by thin-walled beam theorﬁ, are low by

about 25%,

I
|
However, this is also a characteristic of ordinary beam theory l
used for open section girders and should not inhibit engineering l

application of thin-walled beam theory for analysis of box girders.

Box Girder bridge cross-sections are more stream-lined and more

Economics Of The Box Girder: ' ‘

slender than other types and are often selected over other possible

solutions because of their pleasing appearance (aesthetics).

They are particularly adaptable to prefabrication and to the

. o —— e

standardisation of details. Relatively large segments-can be

prefabricated in the shop and transported and erected @ith relative

ease on site in a short time. The main economic restraint will be the

haulage distance from prefabrication shop floor to erection site and

the cost of maintenance.

Although economic studies of a limited nature show cost advantages
for box girders, it has been shown that in the comparative design of a

bridge for a specific location that the box configuration is now

e ——
et ———

necessarily the most economical.
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Maintenance:

It can be argued that a smaller percentage of the total box girder!

bridge is exposed to the elements of the atmosphere (some of which are

corrosive) than for other types of bridges, and thus maintenance costs

are reduced.

However, there are still unanswered questicns about the effect of

condensation moisture and leakage of water through concrete deck. It

is hoped that with welded construction, box girders can be fully sealed

and such bridges should be free of internal corrosion once the oxygen

is used up.
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CHAPTER 11 .

: |
SOME BASIC EQUATIONS OF ELASTICITY AND PLATE BENDING -

L

2-1  BASIC EQUATIONS OF PLATE BENDING THECRY: i

The figure belowshows the forces acting on a two*diamensiongl

plate element of thickness t with the coordinate system as shown ﬁn
. L
the diagram. ! '

Myxdx
Qydx .
ey N ,
_ ,fiwﬂ,/‘Mny; ]
v i — ll
)_ N A |
l
- ,q:*BGidx)dy i
.I'——_T(!MKY* b'_""_bxxxd_x)dy |
|
) ('Mx’q.g%xd_x)dy l
|
! i
SRR A S
My + 2V ydy}dx Myx + 3Myxdy ‘
r.
(9y + 38ydy)q - |
> ) x FIG 2-1 L

From the moment curvature relationship in pure bénding of plates, (Jg)

the moment and transverse deflexions are connected by the relations
given in 2.1 below.

\
S 2 2 7
Mxx D % 0w + 3w i N i
ax® 3y? k
= - 2 2
M D f v, A% % . 2.1 ‘
ay? ax? i . l
M= D(1-v) 3w _  -M P |
Xy %3y yx 1
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The magnitudes of the shearing forces per unit length, parallel to

the vy and x axes, are Qx and Qy' . The intensity of load per unit area
distributed over the upper surface is gq.

Projecting all the forces
acting on the element on to the z- axis, we obtain,

3Q

a3 .
X & -
ax.dxdy + ay.dydx + qdxdy = O
3Q aQ
__X _—-Y. =
ox * ay a ta 0

2.2a

Taking moments of all forces acting on the element with.respect to the

X- axis, we obtain the equation of equilibrium:

BMX aM
wg;z.dxdy -

y Q .dxdy = 0
3y Jdydx + Ty
oM ot
2 _ y =
ax 3y * Qy 0

2.2b

The moments due to load q and GQy are neglected since they are small

quantities of a higher order than those retained.

From 2.2b we deduce from a consideration of the moment equili-

brium of forces acting on element, with respect to y- axis,; the

corresponding relation:

BMyx + aMx _ Qx = 0 2.2¢c
dy %

Since there are no forces in the x and y directions, and no moments with

respect to the z- axis, the equations 2.2a to 2.2c completel} define the
equilibrium of the element.

e
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Eliminating Qy and Qx from equations 2.2a, 2.2b and 2.2¢c

we arrive at:

3%M M
x

%M o%M
. oYX ¥y Xy . _
ax? Ixdy ay? axdy
Since M = 'Mxy‘ the above equation can be written as
BZMX BiMy 2 BZMX .
' SR A 2.2d
ax? 3y? *oy e

Substituting equation 2.1 into equation 2.2d we have,

' + 2 3w

Pw . g 2.3
ax" 3x?ay? 3y D

The problem of the bending of a plate reduces to the integration

form:

£ = % 2.3?
2 azw 321.;
where A*w = AAw and Aw = "
3x?  3y?
From equations 2.2b and 2.2¢ the shears are expressible in
terms of w as:
- , 2 2 . |
Qx - ?M X ., aMx - -D-gl E LA E-E %
y o0x X ax? Byz
2.4
YOM Myl 2 (3w, %)
dy ox y | ax? Byz } ]

of this equation to obtain the solution of w and can be written in the

et

e ————
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Kirchoff showed that the twisting moment Mxy or Myx and the
shear force Qx or Qy can be combined at an edge to arrive at shear

forces Vxx or V., usually referred to as Kirchoff's shears.

vy
VX = { Qx - BMX )
oy
3 3 -
=E—B-—E+(2-V—a—-—-‘i:}}
ax? axdy? :
2.43
3 3
Likewise V = E E---E-+ {(2-v) 37w %
y ay? dyax?

2-2  BASIC EQUATIONS OF THE EXTENSIONAL THEORY:

Consider a two-dimensional element of a plate with the forces

acting as shown in figure 2.2

tw -
2 ?Gy)lg
(Txy)y ‘
f= } —7 . -
YA
3 /}_
( Txyn / 1
(6x)3 / { 6}}11
// , -
. ] . _ ‘txylz
_ 7
|/
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The problem in the theory of elasticity usually is to determine
the state of stress in a body subjected to the action of external
forces. It is only necessary to solve the derived differential

equations of equilibrium such that the solutions satisfy the associated

boundary conditions of a particular configuration.

In discussing the deformation of an elastic body, it is generally
assumed that there are enough ‘constraints to prevent the body moving

as a rigid body so that no displacements of particles of the body are

possible without a deformation of the body. The small displacements

of particles of a deformed body are usually resolved into components

u, v, w in the direction of thé certesian coordinate axes x, y, z
respectively.

Let h and k be the lengths of the sides of the element parallel

to the x and y directions respectively.

If X and Y denogg the components of body force intensity per

unit volume, the condition of equilibrium for forces in the x-
direction is:

(olek - (ox)ak + (Txy)zh - (Txy)uh + Xhk

= 0
a - (o T (T
(O 01 - (o0s G
k k
As h, k =+ o, this equation becomes, '
aox x
2+ L e x = 0 2.5a
Ix dy

— -
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Similarly we obtain for forces in the y- direction

s !
(e} aT_ :

4+ X 4y =z 0 2.5p .

dy ox ,

1

The stresses are connected with the displacement u through f

1

- . i

% T S s e 2 Yk O ) 2 a

where U is the shear modulus, §..

i3 the Kronecker delta, u = u, u =

v, and i and j are ranging over the values 1, 2 only. The usual

Einstein's summation convention over repeated indices is also implied.i

| !
A comma before a suffix denotes differentiation with respect to the

i
corresponding variable.

The substitution of equation 2.6 into equation
2.5 pives:

L
~ |
s t 1w o= 0, 2.7 \
>33 ooy Jedd |
which is the equilibrium equation in terms of the displacements,

assuming that X and Y are equal to zero

k
\
!
|

According to Papkovitch and Neuber, the complete general solution

of the above equation is of the form: 1
u. =
1 a—xl-( d)o 1 Xk.d)k) - 4(1-\))-¢i,

provided that:

Ao ,4.) = (0,0) 2.8
] 1

Written in full this equation yields the following expressions for

e ——— —————

plane strain deformation:

\

| . &

u = 9 (¢ +x¢ +yd ) - u(l-v)eé Yy . |
BX 1 2 2 ) . 1

) 2.9 |]

v = g% (¢0 + X ¢1 ty ¢2) - &(1-v) ¢2 ; - )

i
For plane stress deformation, the corresponding expre531ons are

obtalned by replacing V in equation 2.9 with :u X i
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2-3  DERIVATION OF HARMONIC COMPONENT OF A POINT .LOAD ACTING ON
A RECTANGULAR PLATE

.“ ._-y

2 FIG 2- 3 °3
Let the plate be simply supported and let the point load P act over
an infinitesimal interval ( £ - -e/z, £ + e/z )

f (x)

g for £ -~ €/, < x <E+ ©/, 2.10

= 0 for all others.

Since the plate is to be simply supported at x = o and , structural

consistence with support conditions suggests defining the load
functions, £ (x), in the form:

£ (x) = g- = D?l sin 3%5 AL 2.11

where An are as yet unknown superposition coefficients. Multiplying

both sides of equation 2.11 by sin E%E and integrating between the

limits o and & we have

L - . WX _ @ ., hmx . mx
{ f (%) sin —E—.dx = nEl { An sin —= sin -7 Ldx
The left hand side of the equation becomes ,
e
P € . MTX 1 P L mix }E+ /2
7 IEE /2 sin —E—udx = {"Em cos —p= ) é
E— /2 g-: /2
2P & . mm . mmE -
= gegesin £.sin Si 2.12

———



In the limit as € + 0,

. mm ., mme _ . I
P sin -E£ sin == = P sin 7
mne
[}

The right hand side of the equation takes the form

3 le A {E {cos %’5— {n-m) cos -T% (n+m) }.dx

—
.;i

L

s

A

£3

L
= 3 A % sin %; (n-m) sin %? (n+m) i
E %-(n-m)_ %—(n+m) %0
= 3 ¥ A { sin T (n-m) _ sin 7 (n+m) }
Bzl My m m } 2.13
{ E (n-m) _R"" (I'l""m) }

This expression is zero for all values of n and m except

2

. L
when n = m, when it becomes _"Am

From this solution of equation 2.11 we have

omt, _ &
P sin —IE = §.Am
or A = 2P g4 MO
- g sin =
and hence
f(x) = f 2P

F
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2-4 DERIVATION OF THE EQUATION FOR TRANSVERSE DEFLEXION OF A
PLATE WITH ALL ITS EDGES SIMPLY SUPPORTED

yl

FIG 2- &

b

The coordinate axes are as shown in Fig. (2-4).
Let the imaginary line o'p' divide the plate opgr into two

parts so that the plate opgr will now be considered as two plates

having the common interface o'p!'.

Let the deflexion field for plate (1) be given by the
equation

ey

n

=4 (D ch)\y+Bn(1)shAy+Cn(l) )

and that for plate (2) by

E. An(?) chi(b-y) + Bn(z) shi(b-y) + cn(” (b-y)chi(b-y)

+ bn(z) (b-y)sha(b-y)

2
where for brevity, the summation sign I has been ommitted.
. The boundary conditions are
1 - 2 ‘
Gy y =0 = W'y y = b = 0
[
2.
(H (2) i
{M = o = M =b = 0 E
M 1y M "1y

ych)y + Dn . yshly 2.15

.16

17

—_—— — —e—_—

o e
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v

At 'y = 0, SR 0, An(l) = 0
At y = b, W2 2 0, s 2 - o
/ n
Aty = o, K = o, p ) = o
Vi n
- (2) _ (2)
Aty = b, U = 0, D_ = 0

At the imaginary interface, the continuity conditions are as follows:

(i) { ')}

_ o taw'?))
{ oy }y=n { 9y }y=b"n
(i) w17y = {M (2) }
{ by=n (v }y=b-n
RN CP IS ()}
N S PR S PR
. { (2) } { (1) }
(iv) ¢ V Vv = P
{y }y:b'” {7y }y=n u

New, the equations 2.15 and 2.16 now reduce to:

LS N Wlgmy + ¢ (’)ychly 2-18
n n '
W£2) - Bn(?)shk(b-y) + cn(Z)(b-y) chA(b-y) 2.19

Applying the first of the common interface conditions we
obtain

B (Daehan + o (enan + anshAn) = -8 (2D chh (b-1)

- Cn(Z){chA(b-n) + A(b-n)shA(b-n)} 2-20.

R
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The second of the interface conditions relating to moments also

yield
' (1} (1) 2 _ (2) _
B shin + c, {AnchAn + E:;shhn} = ABn shi{b-n}
+ ¢ P m-menbn) + ZoshA(b-n) ) 2.21

whilst the interface deflexion continuity condition gives

(1) (2)

Bn(l) shi{b-n)} +

shAn + Cn nchin = Bn

Cn(z)(b-n)chk(b-n) 2.22

By suitable manipulation of equations 2.21 and 2.22 we obtain

(1)

C = C shin
" -7 sha(b-n) 2.23
Now, invoking the last of the interface conditions, namely‘Vy2 -
vV = P , we have,
y1 :
(l-v)ABn(z)chA(b—n) + Cn(Z) {(1-v)A(b-n)shA(b-n) -
(1+v)ehA(b-n)} + (1—v)ABn(‘)chAn + Cn(’){(l-v)knshkn -
Py
(1+v)chin } = —— 2,24
AZD
Eliminating Bil)and B;Z)from,equations 2.20 and 2.24 we obtain
: . P
- 2A%chA(b-n) cn(2) - 2A%chin cn(l) = 7; 2.25



Substituting for Cn(z) in equation 2.25 using the relation in 2.23

and using well known relations in hyperbolic functions we deduce
that

c (1) P

" -y .sh)\(b-ﬂ) ' 2.6
2A2D shAb

and similarly

p
n = -_ 4 shin 2.27
222D shib

Eliminating an from 2.20 and 2.22 we arrive at

Bn(l)kshlb + cn(l) {A\nehAb + chAnshA(b-n)}

- cn(z) {chA{b-n)shA(b-n) -i(b-n)}

Substituting for Cn(l) and Cn(z) in this relation we obtain
p (1) - R shA(b-n) fm;cotmb + 1 - A(b-n)cothA(b-n) { 2.28
23D, shib '
By back substitution into 2.20 or 2.22 we have
N
Bn(z) = —PuShAn % 1 + AbcothAb - Ancothin % 2,29
2X°D.shAb

- Hence the deflexion fields are given as

(1) P

W z g2
2)°%D

%-(1+Abcothlb) + A(b-n)cothA(b-n) +

} sha(b-n) shiy

Aycothky} " —13h 2.30a




- and

/ .

F W(Z) - PU. {

v . b =~ (142b cothib) + Ancothin + :

A 3y {

i@ 2)°D ) )

. _ _ shAnshA(b-y) '
A(b-y)cothA(b-y) } oh 2.30b :

N l

& . ;

u foring that By * Zlpsinax sinht, with

&

X mn '

. A= - We have |

I <0 Paz { ! ,

;i Wy = L - {(14AbcothAb) + A{b-n)cthAi({b-n)

. Nz1 3.3 { ; ‘

. m T D !
f + Aycthiy 1 shA(b-1)shAy.sinix sinAZ 2.31a
} ShAb | ,
y , :
‘ w, = n‘f Pa E - {(1+AbcthAb) + Ancthin ,

=1 msﬂSD v

+ A(b-y)cthA{b-y) % shknshX(b-y)sinhx.sinAE %

shib Z

f‘ 2.31b |,
! Although the solution desired. _ is known {m}, the method of

derivation employed here does mot appear to have been previously
. recorded in standard texts on plate bending.
2?5 The expression found in standard texts {13} for the deflexion of
a plate carrying a single load P at some given pointix =E,y =n, is

of the form:

2
| w = £ .mf }:l+Bmcotth ~ Bm yjicoth Bm y;
f mp ! b b’

- Bm coth 8m_} sh Bm_ sh Bm y; sin mm, sin mmx
X T " b = 3

m®shBm




in which Bm =

mTbh, y1 = b-y and y > n (figure 2-4}
a

In the case where y < n, the quantity y; must be replaced by

y and the gquantity n by m1 = b-n.
“~ T ' e
el
i
{4 b
A
x
[
a
' __
o Y FIG 2-5 &y

The case of y <1 corresponds to the region l_of the method
described in this work, whilst that of y 2 n corresponds to region 2.
Equation 2.32 is therefore identical with deflexion fields

defined by equations 2.Sia and 2.31b provided for region 2, when

y > n, y1 is replaced by b-y and for region 1, when y < n, y; is’
replaced by y and n by b-n.

This method will be used throughout this work for obtaining the

equations of the deflexion fields for a transversely loaded plate with

any desired boundary conditions.

b
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DERIVATION OF AN ALTERNATIVE FORM OF THE EQUATIONS FOR THE

2-5
' TRANSVERSE DEFLEXTON OF A PLATE WITH ALL ITS FOUR EDGES
SIMPLY SUPPORTED . _
v Y ‘ 7 7 "
fim s . ' n
; NN
_ \ 2
b L . \ \
0: — X
b
o ' . FIG 2-6
o -~

P ' :
Let the coordinate axes be as in figure 2-6 which shows the

plate o'nmp with all its four edges, mn, no', o'p and pm simply

supported.
Let w(l) be the deflekion equation of plate (1) and w2
of plate (2).

Let w(l) = A (l)chh(y+b) + Bn(l)

shA(y+b)

+ ¢V (gep)chAcy+b) + D D iyamrsmacy ) 2.33

w$2) 2 An(z)chk(b-y):+ Bn(Z)shl(b-y) +'cn(2)(b-y)chA(b—y)

+ Dn(z)(bey)shl(b—y) , 2.3u

The boundary conditions are:

w(l) = w(z) = Mx =Q0at ¥ =0 and %
(1) - (2) _
]y= = W | 5 - 0

and w

e

that
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CD] IR €5 ] F
My y=~b My y=b 0

The choice of a suitable eigenvalue will enable the firgt
set of conditions to be satisfied whilst our choice of the structure
of equations 2.33 and 2.34% ensures automatic satisfaction of the
second sets of conditions. |

At the interface, i.e. at y = n, the continuity conditions to

be satisfied are, as before:

(i) w(l') o w(?_)

(i1) éﬁ(l) = Bw (2)
ay oy
(i) w1 = yl2) ;
Yy yy !
(iv) IS D € 2
¥y ¥y u

Applying these conditions using equations 2.33 and 2.34 and

employing certain standard mathematical techniques we obtain explicitly

~

the values of the superposition coefficients as

A(z) = A (2) _ D(l) - D(z) o
n n n n
(1) _
n - Pu shA(b=n) 2.35
QAZD. sh2Ab e
(2) _
Cn - _Pu shA(b+n) 2.36
" sh2)b :

222D
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Bt = p
n u  shA(b-n) {A(b-n)ecthA(b-n) - (1+2Abcth2Ab)} 2.37,
o3ip Sh2Ab
B(z) p .
n u  shi(b+n) {A(b4n)cthA(b+n) ~ (1+2Abecth2ib)} 2.38,
2A3D‘ sh2Ab '

The deflexion fields now take the form

w(l) = P° shi(b-n) | {A(b-n)ethi(b-n) - {1+2Abcth2ib) }.shA(b+y)
3.  sh2ib - ' -

2A°D + A(b+y)chAi(b+y) ].sinAE.SinAx ©2.39 "
e shl(b+n)|_{A(b+n)cthk(b+n) - (1+2ibcth2Ab) }.shA(b-y)

QAED. sh2ib - . ; ‘
+ AMb-y)chA(b-y) ].sinli.sinhx 2.40

where :
A = nm and P° = 2P for a point load.P.

£ £



2-6  DERIVATION OF THE EQUATION OF TRANSVERSE DEFLEXION OF A
y4 RECTANGULAR PLATE WITH TWO OPPOSITE EDGESSIMPLY SUPPORTED

AND_THE OTHER TWO FIXED .
" 'nIJJJI//Illzjlljizjlfz/1 bbb b bt 2 M 'E
NSRS
+ - ' : / x
X
u_i___i. o FIG 2-7

y\*\\\\*iﬁ\\\\*\xii\\\i\\\w\\\¥\i\\\{\\i\ Y

il

Edges m'n' and o'p' are fixed whilst edges n'o' and p'm"are '
both simply supported.
Let the imaginary interface of the plate be élong k%.

We take the deflexion equation in the form:

W12 00 omagyn) 4 B, smA(yen) + ¢, () (ysmrcnacy )
+ 0 (pan)shA(yb) | 2.41
W2 - An("-)ch)\(b-y) + Bn(z)sh?\(b'y) + Cn(z)(b_y)cm(b_y)

+ Dn(z)(b~y)shl(b+y) ' 2,42

The boundary conditions are:

(i) {wly=b = {uly=-b = o0
2.43
(ii)  {ow} . {ow} _
{ay}y BRCILe =b = 0



x|

g
;
At the interface, the continuity conditions to be satisfied are:
(l) W(I) = W(Z)
h:
dy dy '
(3 w1 o oyl
i& Y yy
(u) v (1) _ v (2) - Pu
yy vy 5

As in the previous cases, these conditions are applied using
the equations 2.41 and 2.42, and employing certain standard

mathematical techniques, to obtain the superposition coefficients.
] .

(1)

A = A = 0
bt n
Bn(l) = -Cl. (K1-Hl)
. cn(’) = Cl.(-HL + K1)
nn(‘) - CL.(232b(b-N)shA(b4n) - A(b+n)shA(b-n)sh2Ab)
h{ p (20 - (GL - G2)
n
14
e (2) = ¢l (6L - @2)
n
ET Dn(z) = Cl.(22x%b(b+n)shi(b-n) - Alb-n)shAi(b+n)sh2ib)




L

where Cl

H1l

Gl

G2

Hence the complete expression for w
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' J

P ' .
u (sh%2xb - yx?p?)7?

242D

= A(b—ﬁ){shk(b+n) + 2AbehA(b+n}}

= shA(b-n)(sh2Ab + A(b+n)ch2)ib)

= shk(b+n)(§h2Ab + 2Abch2Ab)
= Abn}chA(b+n)sh2Ab # 2XbchA(b-n)}
(1) and w(Z) can be written

out by substituting into 2.42 and 2.43 the expressions for the

superposition coefficients.

—_— _ —— —— — m———— _ - [p—

For a superimposed load of intensity q onja plate simply supported

on all four edges the displacement field is as follows:

. TH U 1 - 2+ AbthAb o\ A shllsinlx

T TID Zehdb oY T T2chib |
6 29 3psech?) hA
y= 75 (Absech®Ab - tanhAb)
6 = -2 "9pceeny hAb)
y=-b = " "D sech®Ab - tanhAb

_ _ A g 2 3+V

Vlysh = Vyylysb 2(1-v)=4(Absech®Ab ;- T tanhib)

S
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CHAPTER 11|I

3-1  METHOD OF ANALYSIS OF BOX GIRLER . '

This analysis.is cf a closed box glrder w1th a 81ngle cell trape-

zoidal cross-section as shown in Flg\ (3-1). The plates are rigidly

connected along their common edges and closed off at.the ends by integral

diaphragms. This analysis considers both extensional and bending actions
. e .

i of the plates. o

! Eight continuity conditions are [written for each joint (there:

are four joints in this system). Therefore, there are 8n simultaneops

th equations to be solved, where n is the |number of ‘joints with unknown.
o~ ]

T - - P
v forces and displacements.

Essentially, the thirty-two resul ing equations of this analysis

are written in terms of superposition coefficients. After solving the

V%' set of equations, the thirty-two superposition coefficients are obtainled

of

cross-section using the appropriate expressions '

i and these are used to determine forces and displacements at any point
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- Figure (3-1) shows the system to be ana
¥

3-2 =

FIG 3-1

four plates ABCD, ABB'A', A'B'C'D' and
along AB, A'B', D'C' and DC. Each plat
systems are chosen as shown in Figure (

It is further assumed that:

AB = DC = A'B' = D'C' =¥ § = g
AD = BC = 2b

AA' = BB' = (CC' = DD' = 2c

D'A' -= C'B' = 24 i

DAA = ADD' = 2gn

pan

3-2).

S+

lysed. The system consists of
DCC'D' which are joined rigidly

e is rectangular and coordinate

(3.1)

(3.2)

(3.3)
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§r3 SYSTEM OF CO-ORDINATE AXES

i PL.1
. —~ Y, '
PL.3
‘yz
THE CO ORDINATE AXES
USED FOR THE ANALYSIS
FIG 3-2 -

The figure above shows the directions of the coordinate axes of the plates
which make up the box girder. 1In all cases, the x~direction is normal

to the paper.

At a first attempt at this analysis the coordinate axes, were takeﬁ as

shown in figure below



_ ) 2
9 _PL1 _ | \
- > \l - y‘
bﬁ _ i k q‘!;" :
- fL.2 '
L = \! =Y. ‘r
N ;
G PL.3 3
% )
- _
’ :
Lo FiIG 3-3 | :

Here it was discovered that although the results exhibited symmetry :

the signs of the longitudinal stresses did not con'form with those

anticipated from a physical conjecture. However, with this cyclic order
of orientation of the y-axes, the trend of the results would seem to

.k conform with physical conjecture. . !

The figufes below show the assumed directions of the\ forces and

i displacements of the system to be analysed.

ot
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Figure (3-4) Diagram showing directions of erces.
v,
14
N14?t4
\ %4

M3
a’l‘
~Ws3
i e — - -
L —. J - F -
Uzs Uz FIG 3-5 ,
Figure (3-5)

Diagram showing direction of displacements

-y



3-4.1  DERIVATION OF EQUATIONS !TO BE USED IN THE ANALYSIS

BENDING CONSIDERATIONS: |

> 4

The previously derived equation for the deflection surface of a
plate simply supported on all four edges with a concentrated load P

acting at x = £, y = n is given by:

Wo = LshAlb-m) I {A-mIcthAB=n) - {1+2Abcth(2ab) JshA(y +b)
22°D.sh(2Ab) - '

i + A(y+b)chA(y+b) ].sin(hx)sin(AE)
V7

which is valid for the range en>y>-b (3.4)
:‘ and Wo = -EshAlbn) L {l(b+n)cthk(b+n) - {1+2Abcth(2lb)ﬂéhh(b~y)
'g, 22°D.sh(2Xb)

!
+ A(b<y)chA(b~y) ].sin(kg)sin(kx)
which is valid for the range #n<y<b (3.5}

These equations can be written in thé form:

We

F1{GishA(y+b) + A(y+b)chA(y+b)}sin{Aix)

for an>y>-b (3.6)

Wo

Fo{GoshA(b-y) + A(b-y)chA(b-y)]lsin(ix)

for an<y<b (3.7)

- ' |

¥
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e

where
P, = P shA(b-n).sin(AE)
L o33p SP(2Xb)
G = {A(b-n)ethA(b-n) -~ (1+2hbcth(2Ab))}
Po= P . shA(b+n).sin(AE)
¢ 2A3D. Sh(le)
Go = {A(b+n)cthA(b+n) - (1+23bcth(2Ab)}}

At junction 1 of the box girder confﬁguration y = b.

Wo will take the form:

Wo = Fp{GpshA(b-y) + A(b-y)chA(b-y)lsin(Ax)

-D[-zxschx(b~y)rg + A%Fo(1-v)

+ chA(b-y)

3wy = =-AFe{GochA(b-y) + A(b-y)shAi(b-y) + chA(b-y)}sin(Ax)
3y
9%w
Now M = -D{VZwy- (1-v)2 2%
yyo - A
VZWD = 2kzshk(b—y).Fo
2
31122 = -AFo{GoshA(b=y) + A(b-y)chA(bty)}sin(ix)
X
s _4:2xzshx(b-y).Pu + Ade.{Gg(lfv)Shl(b—y?
N (l-v)k(bry)chk(b—y)}Jsin(lx) (3.8)
]
v = f‘Djl{ 2. . _ 32wy
yyo ] ay{v Wop t+ (l \)) axz

{Gochx(b-ﬁ)

+ A(b—y)shk(b-y)}Jsin(Ax) (3.9)
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At junction 4, y = -b
Wo = Fi{GyshA(y+b) + A{y+b)chA(y+b)}sin{Aix)
dwg = AF1{GichA(y+b) + chA(y+b) + A(y+b)shA(y+b)lsin(ix)
Ty o
3wy = =A2F1{GishA(y+b) + A(y+b)chk(y+b)}s;n(lx)
Ix?
Viwp = 2X\ZshA(y+b)F,
Myyo = -D [2kzshk(y+b).F1 + A2F1{Gi(l—v)shk(y+b)
+ (l-v)A{y+b)chl(y+b)}Jsin(Ax) * (3.10)
Vyyo = -D [2l3chl(y1b).F1 - 13(1—v)P1{G1chA(y+b) .-

chA(y+b) + A(y+b)shk(y+b)}]sin(kx): (3.11)

%

In this analysis, a superposition scheme for the deflection field will be
used. A deflection field denoted by w® will be superimposed on Wo (the
known deflection field) and from fhe resulting total deflection w = wo + wi

we will derive the 'slopes, moments and shears. >

Now; guided by the trigonometric dependence of wo, wé take w® in the form:

it =afa(d) (1), (i) (i)

N Lsh) + cl - Oy)shOy)}sin(ix)

(3.12)

ch(Ay) + B (Ay)ch(dy) + D

where superscripts in round brackets are used in reference to the plates.
It will be observed that w* satisfies the biharmonic equation

w + 2@:3 + 3w

: = 0 (3.13)
ax" ax%ay?  ay* '
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it = [ (l)sh(ky) + B( )ch(ky) + Cﬁi){ch(ﬁy) + (Ay)sh(xry)}
ay .
D;i){sh(ly) + (Ay)ch(Ay)}]sin(Ax) (3.14)
Viu = 2A3{é£i)5h(ky) + Dii)ch(ly)}sin(%x)
3w = {"fzjéh(xy) R B( )sh(ky) + c(l)(Ay)ch(Ay) + D(l)(1Y>Sh(*Y)}51“(Ax
ax? -
M = -D{V%w - (2-v) }
yy ax?
= -DA [ a1 (1-v)enny) + B‘l)(l -v)sh(Ay) + C(l){2sh(lv) + (- “)°h<ly)}
D;i){2ch(ly) + (1-v)(Ay)sh(Ay)} Isin(kx) (3.15)
Vo= _pdroa . eqouydiui
vy iD§§{Vw + (1 v?ax? i

- —DA“[—Aéi)(l—v)sh(ky) 2 P (1v)entay) + ¢! Dfacnry) - (1-v){chOry)

+ (Ay)sh(xyj} + 0 2sh0y) - (2-v){sh(ay) + (Ay)ch(xy)iﬂsin(xx
(3,16

Using the expressions for moment and shears in equations 3.10, 3.11, 3,15
and 3.16, the edge forces arising from consideration of bending only are

readily determined.
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3-4.2 IN-PLANE STRESS CONSIDERATIONS
The application of fourier transform together with the continuity
2% conditions for plane stress suggest that the stress functions applicable
to this problem should be constructed as follows:
I by = {Eil)sh(hy) + Eﬁl)ch(ly)}sin(lx)
o1 = 0 (3.17)
\
N _ (1) =(1) .
75 o2 = A{Eg sh(ly) + D ch(Ay)}sin(Ax) ] {
{ Where here and henceforth, a bar, placed over a quantity, is used to
e distinguish the extensional field from the deflexion field.
A"
From previous definition of U,
U = 3¢9 + yb2) = 3o d¢2
& a3z T Yax
o (3.18)
e Uy - 3¢0 _3% + (l'—QK)d)Z
Where k = 2/(1+V)
& (1) _ 4 L) (1) oo e |
o "o U =AA TshOy) + B, 'ch(Ay) + (Ay).C_"’sh(iy) + (Ay).D " ’ch{iy)}cos(ix)

(3.19)
U(i):
.g: y

)\[_1{1 deny) + _(l)sh(ly) + Er(ii){(ly)Ch(ly) + (1-2c)sh(y)}

t Eﬁi){(ky)sh(Ay) + (1—2K)ch(Ay)}]sin(xx) (3.20)

Wi
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( | —gE-IUK K 6"}

G TS T TE S oy L
a 4

5xi{¢° t xb) 1+v' i

O Po + x ¢ )‘—'2K¢

5x.: 0 KK i
1

¢O;i + (XK¢K):i - 2K¢i

¢o,i + XK¢K’i + xK,i¢K - 2,

¢Usi t+ x ¢ s T 6- ¢ - 2K¢i

Cbu,. + x 0

i Serg t (l-2|<)¢i

?g,ij + % ,.¢ s t X ¢

?3%1 ¥ Xebergy t (17200,

¢03-- + ¢-, + X ¢

i3 301 kBer i3 + (l-2K)¢i,j

¢0:ij + ¢°s + x ¢ ’5

123 Py + (l-?K)¢j,i

u{2¢o,ij + 2(1-a<)¢j,i + 2(1-s<)¢i,j

+ 2xm¢n’ij + 2(1—K)¢K,K6ij}

2u{¢o,ij + (l—?K)(¢i,j + ¢j,i) + x 6

KK*ij

+ (K—25¢K’K 8;5}

(3.21)

(3.22)
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32 3 d
Oy = 2u{44%; +y i + (k-2) ;2}
ax ox
2 2
o = Qu{a %0 y'3 bz _ Ki?z} . {3.23)
¥y ay2 8y2 ¥

cxy Bxay Y%
o = zuxz[-“( Jshny) - B en0y) + T {(-2)eb0y) - (ydshOy))
+ ﬁﬁi){(K—Q)sh(ly) - (Ay)ch(ly)}]sin(lx) (3.24)
o = 2ul [ (l)sh(Ay) + §{i)ch(ky) + E(i){(Ay)sh(Ay) - keh(iy)}
vy | “n n n
+ B Gydenay) - } lsin(Ax) (3.25)
N y)ech(Ay) - ksh(Ay)} fsin(hx .
0, T 2w [ (D) enay) + BV sn0y) + B {Oy)enO) + (1-0)shay))

. Eﬁi){(ly)sh(ky) + (1—K)ch(ly)}]cos(lx)
(3.26)

From these expressions we can obtain the edge forces

(y) _ (xy) _ ‘
N 11 - thyly:b s S 11 - tcxyly:b
(y) _ (xy) _
N3 = tcyy|y=-b » ST F tcxyly:—b etc.
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3-5  EQUILIBRIUM OF FORCES AND COMPATIBILITY OF DISPLACEMENTS AT JOINTS

The forces at each joint were resolved in the horizontal and vertical

directions. So also were the displacements. We will now proceed towrite
b . ;
out these resolutions at each joint. Taking junction 1 as an example,

FORCES AT JOINT 1 DISPLACEMENTS AT JOINT 1

g
S

Resolving the forces we have

1. Vip - Vzjcos2a - Npisin2a = O
2. N1+ t Vzisin2a - Nzjcos2a = O
Resolving the displacements we have,

3. Uiy + Uzjcos2o + Wzisin2a = O
b, Wi1 - Uzi1sin20 + Wpjcos2a = O



The first denotes

From henceforth two subscripts will be used

%
v
Note:
the plate number, the second the joint number.
i%
The other contlnulty conditions to be satisfied at the junction are
s, u | - = 0
XI; sz
i
- . 9113 - 82 = 0
, M / = 0
\ Yll Y21
N
A 8. N N =
.»;j; XY11 Xy21
] .
In the same manner, the continuity conditions at the other three junctions

it .
are written.

JUNCTION 2
1. ,ng + Vaacos20 + Npysin2a = 0
%%- 2, N3s + Npscos24 - Vagsin2a = 0
3. Uzz - Woasin2a - Uyscos2g = 0
4, W3z + Uszpsin2a - Wascos2a = O
N
5. u - U = 0 :
, Xz2 X32
6 / 622 - 032 = 0
7. M - M = 0
Y22 ¥z

tt

8’ N + N
Xyz22 Xyaz
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JUNCTION 3

1. Viz +

2. N3y +
3. Usgzy -~
Ll.. W33 -
5- U -

X3
6. 833 -
7. M -
Y33
8. N +
. Xy3s
I
JUNCTION Y4
1. Viy -
2. Niy -
3. Uy +
4, Wiy +
5. U -
. Xyy
SE euq -
7) M -
| Yuy
8.‘ +
XY uu

N
Xyiu

V;3c052a
Ny 3cos2a
Uy acos2a
Wyacos2o
Xug

Oys =
Yus

Xyy 2

Vyycos2a
Nyucos2a
Uy ycos2o
Wyycos2g
1)) =
Hiy

B1s =

Yiu

-+

+

Ny3sin2a

Vy3sinZa

Wy3sin2o

Uy 3sin2ct

Nyysin2a

Vyesin2a

Wynsin2Za

Uyssin2o
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We now proceed to satisfy the joint equations taking the joints

one by one. The equations are written out separately and explicitly in

i terms of the superposition coefficients.

[

K( ! )sh(?\b) + B

Vir - Vzicos2o - Nzi1cos20a = @O

(‘)Pu.Pashixb) + 1)
n n

A P4.P8.ch(Ab) - Cil){PS.Pach(Ab) -

P4 .P8. (Ab)sh(Ab)} —-Dil){PS.PS.sh(Xb) ~ P4.P8(AB)ch(Ab))

+ A;z)Pu.PB.sh(Ac)CQsc - Biz)Pu.PB.ch(lC)COSC + Ciz){PS-PB-Ch(RC) -

P, P8(Ac)sh(Ae)}cose - D;Z){PS.PSSh(lc) _ pu.p8(ie)eh(he) beose

+ EiZ)sh(Ac)sinc - §i2)ch(Ac)sinc - EiZ){(Ac)sh(Ac) + P2ch(ic)}sinc
+ 5ﬁ2){(lc)ch(kc) + P2sh(ie)}sine = Fo.A{P4.Gy, - PS5}
Ni: + Vzisin2a - Nzi1cos2a = O

(1)

( “en(b) + T 1{Ob)sh(Ab) + P2ch(Ab)) + 5. {(b)en(in)

+ P2sh(Ab)} + Eﬁz)sh(AC)COSC - E{Z)ch(kc)cosc - Eﬁz){(lc)sh(kc)

n H

+ P2ch(Ac)}lcosc + BﬁZ){(lc)ch(Ac) +'P23h(Ac)}cosc - A(Z)PH.PB.sh(Ac)Sinc

n

+ Biz?Pu.PB.ch(Ac)sinc - C£2){P5.P8.ch(lc) + P4.PB(Ac)sh(Ae) }sine
+ DéZ){PS.PB.sh(Ac) - P4.P8.Xc.ch(Ao)}sine = 0O
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U1 + Uzicos2a + Wzisin2a = 0

; deh(Ab) + ‘ﬁl)sh(zb) + C(l){(lb)ch(kb) + Plsh(Ab)} + D(l){(kb)sh(lb)

(2)

+ Plch(Ab)} + Kﬁ ch(kc)cosc - §£Z)Sh(lc)cosc - Eiz){(kc)chlq

+ Plsh(Ac)cosc +‘§i2){(Ac)sh(Ac) + Plch{lc)cosc + Aiz)

B(a)sh(lc)sinc - (Ac)C( 2) (2)
n bo!

ch{ic)sinc

ch(Ac)sine + D {(Ac)sh{Ac)sine = 0O

Wi; - UzisinZo + Wricos2a = O

Agl)ch(lb) + B{sn(ab) + c‘l)(xb)ch(xb) ' D(l)(lb)sh(lb)

(2) (2)

ch{Ac)cose - an sh{ic)cosc -uCn

(2)

(2) {Ac)ch{Ac)cosc + Dn

+ An (Ac)sh(ic)c

(2) (2)

- A *’ch(c)sine + Ehz sh(Ac)sinc + EﬁZ){(Ac)ch(Ac) + Plsh(ic)sinc

- Eﬁa){(kc)sh(Kc) + Plch(ic)}sine = 0

- U = 0]
i1 X21
=(1}

(1) =(1) 1)

sh{Ab) + B ch(Ab) + (Ab)C sh(lb) + D (AbJ)eh{Ab)

=(2) =(3)

sh{ic) - B'? sh(Ac) + (Ac)D ch(Ae) = 0

+ Eﬁz) ‘ﬁ ch(re) = ()T

011 - 621 = O

(1)

A(I)Ash(xb) + Bn

Ach(Ab) + c(l)l{ch(xb) + (Ab)sh(xb)}

(1) (2) (2)

A{sh{(Ab) + (Ab)ch()\b)} + A Ash(ic) - B Ach(Ac)
(Z)A{ch(xc) + (edshre)) + AD(Z){sh(Ac) + (he)en(re))

= Fe{l + Go}



g

v
“l

_ Ail)ch(hb) + Bil)sh(kb) + Cgl){PBSh(Ab) + (Ab)ch(Ab)}

+ 0L {pech(b) + (b)sh(b)} ~ A2 en(red + B{2 sn(re)

+ ¢S {pesh(Ae) + (Ae)eh(he)} - D (Peen(re) + (AedshOie)}

"
=

8. N + N =
Xy11 Xyz21

BV en0b) + B sn(b) + T 1 10b)eh(b) + P3sh(Ab))

* 5ﬁ1){(kb)sh(kb) + P3ch(Ab)} + Eiz)ch(xc) - Eﬁz)sh(lc)

h
o

- Eﬁz){(lc)ch(lc) + Pash(ie)} + 5ﬁ2){(lc)8h(lc) + P3chlde)}

JUNCTION 2:

1. Viz + Vizcos2a + N2zsin2a = 0

-Aﬁa)Pu.PS.sh(Kd) + B£3)PM.P8.ch(Ad) - c£3){-Pu.Pe(Ad)ch(Ad) -

+ P5.P8.ch(xd)} + Dia){-PH.PS.ch(ld) + P5.P8.sh(Ad)} + A(Z)PH.PS.sh(Ac>COF

n
(2)

n

+ B “'P4.P8.ch{Ac)cosc - CiZ){PS.PB.ch(Ac) -~ P4.P8.(Ac)sh(ic)}cosc

+

- D£2){PS.P8.sh(lc) - P4.P8.(Ac)ch(Ac)}cosc + 3£2)Sh(lc)51“°

+ Eiz)ch(lc)sinc +-Ei2){(lc)sh(kc) + P2ch(Ac)}.sinc
+ ﬁ£2){(lC)ch(Ac) + P2sh(Ac)}.sine = O
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N3z + Nizacos2a - Vyasin2a = 0
-Eﬁa)shcxd) + Eﬁa)ch(Ad) + Eis){(hd)sh(kd) + P2ch(Ad)}

p{3){(Ad)en(Ad) + P2sh(A)} + B2 sh(Ae)eose + BL2 en(heleose

+ EiZ){(hc)sh(Ac) + P2ch(Ac)}cose + 5ﬁ2){(lc)ch(kc) + PQSh(Acﬂbosc

- Aiz)Pu.PB.sh(Ad)sinc - B£2)PH.P8.ch(Ad)sinc + CiZ){PS.PS.ch(Ad)
- P4,P8(Xd)sh(Ad)}sinc + DiZ){PS.PB.sh(Ad) - Pu.pa(kd)ch(kd)sinc; = 0
Usz - Wagsin2e - Usscos?20 = O

( ) ( )

ch{Ad) - sh(id) - is){(ld)ch(kd) + Plsh()xd)}

+ Bis){(kd)Sh(Ad) + Plch(Ad)} - -{2)ch(lc)cosc - B( )sh(Ac)cosc

- E£2){(hc)chtlc) + Plsh(Xe)}cosc - 5£2){(lc)sh(kc) + Plch{Ac)}cosc

- A enesine -~ B2 sn0c)sine - ¢{2)(heden(re)sine
- 22 (e)shredsine = 0
W32 + Uzgsin2a - Wascos2o = O
a8 len0a) - B shra) - el arenad) + P Aarenra)
A en(rercose - B Psh(hercose - ¢ (he)eh( Aedeose- {2 hedsh(rereo
+ B Pen(Ae)sine + B2 sh(Ae)sine + T2?{(he)en(Ae) + PLsh(Ae)}sine

+ 5i2){(lc)sh(kc) + Plch{Ae)}sine = 0



T

ey

;\B.

- U = 0
X22 - X32

E£2)sh(lc) + Eiz)ch(lc) + Eiz)(lc)sh(Rc) + ﬁiZ)(lc)ch(lc)

+ E§3)sh(kd) ~ §ﬁ3)ch(ld) - (Ad)Eﬁa)sh(ld) + 3i3)(kd)ch(ld)

822 =632 = 0

Aiz)sh(lc) + Biz)ch(lc) + C;Z){ch(Ac) + (Aﬁ)sh(lc)}

+ Diz){sh(kc) + (Ae)ch(ie)} + Aia)sh(kd).- Bia)ch(kd)

- ¢ (en0a) + G@shA) + 08 (en0) + AddenA)) = o
M - M = o0
Y22 Y32

A20enhe) + 82 sh(0e) + e tpeshne) + (Ae)en(ie))

byl n
" Diz){Pﬁch(lc) + (Ae)sh(re)} - AS?)

(3)

ch{Ad) T Bn

sh(Ad)

+ ¢ {pesh(Aa) + (Aen(AD} - €2 (pBen(ra) + (A)sh(AD)} =

N + N = 0
Xyz2 Xys32

Aon0e) + B sn0e) + T2 0e)ehe) + Prshie)}

+ ﬁgz){(lc)sh(kc) + Plch(Ac)} + E¢3)

ch(Ad) - B¢ shind)
I n

- Eﬁ3){(ld)ch(ld) + Plsh(Ad)} + 5ﬁ3){(kd)sh(Ad) + Plch(Ad)}



JUNCTION 3:
1. Vaz + Vyjcos2a - Nyssin2a = 0O
Ag3)P4.P8.sh(ld) + Bia)Pu.PB.cH(Ad) - Cia){PS.PB.ch(kd)

\

- P4,P8.(Ad)sh{Ad)} - D;3){95.Pa.sh(kd)'- P4.P8(Ad)ch(ad)}

i Ai“)Pu.PB.sh(lC)COSC . Bi“)Pu.Pa.ch(Ac)cosc _ Ciu)tps,ps.ch(lc)

- Pu.PB(Ac)sh(Ac]ﬁosc + Di"){PS.PB.sh(Ac) --P4.P8(Ac)ch{dc) }ecosc

+ Eﬁ“)sh(kc)sinc - Ei")ch(lc)sinc - Eﬁ“)f(kc)sh(kc) + FZCh(kcﬂsinc
+ 5£“){(Aq)ch(Ac) + P2sh(kcﬂsinc = 0
2. N33z + Nyscos20 + Vyasin2ag = 0O

Kﬁ3)sh(xd) + §i3)ch(xd) + Eﬁa){(ld)sh(kd) + P2ch(Ad))

+ Eﬁa){(ld)ch(kd) + P2sh(Ad)} - Ei“)sh(lc)cosc + Eﬁ“)Ch(lc)cosc
+ Eﬁ“){(kc)sh(lc) + P2ch{Ac)}cose - ﬁﬁ“){(kc)ch(Ac) + P2sh{Ac)lcosc

- A;")Pu.Ps.sh(Ac)sinc + Bi“)PH.PB.ch(Ac)sinc - ci“){PS.PS-ch(Ac)

- P4.P8.(Ae)shOredsine + D" (ps.P8.sh(Ac) - Pu.PB(AC)ch(Ac)}sine =

3. Usg - Unscos20 + WyzsinZa = 0

enra) + gﬁa>sh(kd) + T3 {(Adden(rd) + PLsh(ra)}

+ 5§3){(Ad)sh(ld) + Plch(ic)} - Eﬁ“)ch(kc)cosc + Eﬁ“)sh(kc)cosc

+ Eﬁ"){(lc)ch(kc) + Plsh(Ac)}cose - ﬁﬁ"){(Ac)sh(lc) + Plch()c)}cose
(4)

n

+ Dé“)(kc)sh(hc)sinc = 0

+ A'*''ch.(c)sine - Bi“)sh(lc)sinc - Cﬁ“)(hc)ch(ACJSinc
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4, Wiz - Wezcos2a - Uyzsin2a = 0

A(3)ch(kd) + B(a)sh(kd) + ci3)(ld)ch(ld),+ DQBJ

N N (}d)sh(ld)

(4)

N (Ac)cﬁ(lc)cosc

ch(Ac)ecose + Bé")sh(kc)cosc + C

W
n

) ()

(Ac)sh{Ac)cosc - Eg =(4)

D'* ch(Ac)sine + B sh(Xe)sinc

(
+ T {(he)ehlhe) + PLsh(rc)}sine - B, {0e)sh(re)

+ Plch(Ac)l}sine - 0

5. U - U = 0
X33 ®y3 _
Eia)sh(*d) + §ﬁ3)ch(ld) + Eﬁa)(kd)sh(kd) + 5£3)(Ad)ch(kd)
+ Eﬁ“)sh(lc) - ﬁﬁ")ch(lc) - (Ac)Eﬁ“)sh(Ac) + Bﬁ“l(lc)ch(lc) = o0
6. O3z - B43 = 0

2 sn0a) + 80 0en0a) + ¢! enha) + Qa)shOD),

(u)

(H)Sh()\c) - B
n

n

+ Dia){shcld) + {Ad)ch(rd)} - a ch(Ae)

- Ci"){ch(kc) + (he)sh(de)} - Di“){sh(Ac) + Oc)en(he)} = o

7. M - M = 0
¥3s Yus3

Aga)ch(kd) + B sn(ad) + Cis){Pssh(Ad) + (\d)eh(Ad))

n
(W)

n

(&)

p{*){Pech(ra) + (Ad)sh(Ad)} - Al sh(he)

ch(Ad) + B

+ c{*){pesh(re) + (Aeden(ae)} - D (P6.ch(he) + (Ae)sh(Ae)} = O




C en -
8. ny33 + nyqa =

hi. R en0a) + BLsh0) + TROe(a) + P1shOa))

’ + BL{()sh(2a) + PLeh(Ad)} + K *den(he) - BL* shide)

5 £~, : - Eﬁ"){(lc)ch(kc) + Plsh(Ad)} + Bﬁ“){(kc)sh(hc) + pich(xc)} = 0

JUNCTION 4
1. - Vie -~ Vyycos2a0 + Nyysin2a = 0
%
- Ail)Pu.Ps.sh(Ab) + Bi")Pu.PB.ch(Ab) - Cé"){PS.PS.ch(Ab) -

Pu.PB(Ab).sH(Ab)} + Dgl){PS.PB.sh(Ab) - Pu.Ps.(Ab)ch(Ab)} !

Ai“)PH.P8.sh(Ac)cosc - B(h)

N Pu4.P8.ch{Xc)cosc + Ci“){PS.PB.ch(Ac)

P4.P8(Ac)sh{ic)}cosc + Dgf){PS.PB.sh(Ac) - P4.P8(Ac)ch{Ac)}cosc

T+ Eﬁ“)sh(kc)sinc + Eﬁ")ch(hc)sinc + Eﬁ“){(kc)sh(kc) + P2ch(lc)sind

H
L
1 1

+ 5iu){(kc)ch(lc) + P2sh(Ac)sinc -AF1{P4G; - P5}

2. Niy - Nyycos20 ~ Vyusin2a = O
- Kﬁ‘)sh(xb) + Eﬁl)ch(zb) + aﬁl){(xb)sh(xb) + P2ch(Ab)}
- 5§1){(Ab)ch(kb) + P2sh(Ab}} - iﬁ")qh(kc)cosc - Ei“)ch(lc)cosc

- Eﬁ“){(lc)sh(lc) + P2ch(Ac)}cosc - 5ﬁ“){(AC)ch(Ac) + P2sh()e) }eosc

()

n P4.P8.sh(Xc)sinc - Bi")PB.Pu.ch(lc)sinc + Cﬁ“){PS.PB.ch(Ac)

- A

- P4.P8(Xc)shlAc)sine + Di“){PS.PB.sh(Ac) ~ P4.P8(Ac)ch(Ae)}sine =

"
ey
o
b
>



-
T

A

3. Uiy + Uyycos20 - WyysinZe = 0

; - 89%h0m) -
> ‘ n

o a0
n

D(u)
n

( ) ( )

sh(Ab)

ch{Ac)eose - B;")

(Ab)eh(Ab) - p'?’
Tl

(Ab)sh(Ab)

sh(Ac)cosc - Ci“)

(Ac)sh(Ac)cose + Eﬁ")

(Ac)ch{Ac)cosc

ch(Ac)sine + Eﬁ”)

sh(Xe)sinc
4 + E;"){(Ac)ch(;\c) + Plsh(hc))sinc + 5;“){(Ac)sh(;\c>_

0

+ Plch(Ac)tsinc
I.
i, Wis + Wy4ecos20 + Uyysin2a = 0

'41)ch(kb) + B( )sh(kb) + c ){(Ab)ch(lb) + Pish(Ab)}

- + 5i1){(lb)sh(lb) + Plch(Ab)}} + Eﬁ“)ch(hc)cosc

+ Eﬁk)sh(kc)cosc + Eﬁh){(kc)ch(lc) + Plsh(ic)}cosc

F + Bi“){(kc)sh(lc) + Plch(Ac)}cosc + Ai“)ch(kc)sinc

- Bé“)sh(kc)sinc -C

i“)(lc)ch(lc)sinc + Di“)(kc)sh(lc)sinc(

5. 0 - U = 0
Xy y X14

R o]

-

Eﬁq)sh(ic) + Eiu)ch(kc) + E{“)(AC)sh(lc) + 5{d)6AC)Ch(AC)

*Kfal)sh(ﬁb) B Yenap) - ‘(l)ub)sh(xb)+‘(1)ub)chub) -



7

6.  Buy - 614z 0O
A sh(ab) + B( enn) + ¢ ALeh(ip) + (B)sh(AB)}
p{1 )\ {sh(hb) + (Ab)en(Ab)} - AL Ash(he) - B ach(re)

o B

a{ch(he) + (Ac)sh(kc)} A{sh(xc) + (Ac)eh(re)}

= -F1{1+G;}

7. M - M- = 0
Yuu V1

(1) (1)

ch(Ab) + B '’sh(Ab) + Cﬁ'){PB.sh(Ab) + (Ab)ch(Ab)}

(4)

Dil){PG.ch(lb) + (Ab)sh(Ab)} + Al Cy)

ch(Ac) + Bn sh(Ac)

+ L) P sn(he) + (heden(he)} + D(*){PB.ch(Ae) + (Ae)sh(he)} =

8. N + N =

X¥uy X¥y14

+ B en(ap) - BV en0b) - € {(Ab)eh(Ab) + PLsh(Ab)}

(s)

ch(Xc) + B
!

(H) Sh(AC)
n

+ B {(AD)Sh(AB) + PLeh(AB)} + A

+ Eﬁ“){(kc)ch(kc) + Plsh(Ac)} + ﬁi“){(lc)sh(lc) + Pleh(de)} = 0

In satisfying these joint continuity conditions, we arrive at thirty-two
equationg. The expressions for the non-zero elements;of the resulfing
matrix and the non-zero elements of the resulting rigﬁt-hand column
matrix are given in the Appendix.

These equations were written out in matrix form for computational
purposes on the IBM 370/145 computer at the University'of Lagos Computer
Centre. The method of solution and the computer programme used are

given in the Appendix.

0

k



3-8 THEORY OF GOLDBERG AND LEVE

The method of analysis due to Goldberg and Leve is now presented
because of the similarity of its theoretical basis Qith the formulation
presented in this work, namely extensional and bending theories of
h plates. ]

’? Goldberg'g formulation foerolded plates considers the
simultaneous plate bending and membrane action of several plates.' The
forces at the longitudinal edges of each plate are expressed as fixed-
edge forces corrected or modified by the effect of displacement of
the joints.‘ The displacements to be determined are visualised as

being four in number at each point of the joint, thus yielding a total

number of 4n simultaneous equations, 'n' being the number of joints.

In this thesis however, a uniformity of method is maintained

by using Papkovitch - Neuber poténtials for the extensional theory.

i\
r

Apart from completeness and familiarisation with the harmonic functions,
this approach has the added advantage of avoiding Goldberg's trial

substitution from which success can be expected only if one is

F sufficiently experienced on the solution of boundary-value problems

~

of elasticity.

Besides, the main advantage of Goldberg's formulation, namely
4

the reduction of the number of equations to be solved from 8n to U4,

e

where n is the number of joints, is achieved at the expense of
simplicity of approach in formulation. His general formulation does

not sufficiently reveal the physics of the problem, especially to the
!



uninitiated. In any event, with the existence of computers capable
of solving a large number of equations, particularly when the finite
’i difference or the finite element approach is used in solving this class
: of problems, little would appear to be gained from this reduction in

the number of equations, when it is realised that the complicated

\FS
form of the equations resulting from Goldberg's formulation may occasion
]
many human errors in a large system. {
r\ GOLDBERG and LEVE'S FORMULATION
/ The four displacements at an edge are as follows:

Two components of translation and a rotation all lying in the
pPlane normal to the joint i.e.,

(i) Translation of edges i and 3 ) "w" WNormal to slab

(ii) Rotation of edges i and i ; ngn

(1ii) Translations normal to edges i and j ) "' In plane of slab

(iv) Translation tangentlal to edges 1 and j) "u" In direction of
joint

et

4
/.._ plane normal to joint

4“’
|
|

-1

| (™~
I
!
i

‘ - plane of plate
along the joint

- - FIG 3-6 - ey

.
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EDGE DISPLACEMENTS AND EDGE FORCE RELATIONS

First a single slab is considered and formulae are developed
for the intgrnal forces resulting from the various generalised edge
displacements. These edge displacements are of two types:

Displacement normal to the slab, arising from plate bending,
and displacemgnt in the plane of the slab arising from membrane

stresses.

DISPLACEMENTS NORMAL TO THE SLAB

The displacement normal to the slab 'w' was taken in the form
suggested by Levy as
wix,y) = Iw (y)sin.mmx 3.27

a

The mth term must satisfy the homogeneous differential equation of

the form

2w N 29%w . tw

ax" ax?dy? ay*

3.28

For Wm to satisfy equation (3.26), Wm(y) must be of the form:

Wm = Aim.sinh.mmy + Azm.cosh.mTy + Azm.mmy,sinh.mmy
a a a a
+ Aum.mTy.cosh.mmy 3.29
a a _

The plate problem may now be resolved into the following two edge-

displacement cases for a typical slab i-j.
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CASE A ROTATIONS OF EDGES i and j
.Q ra :p
y =3
’0: - - pa . X
Y"z l

P | T ded?

Boundary conditions:

Bzwm
(Wm = 0 , = o) _

sz X=0,X=d

3.30
(Wm = 0) _, :
y=b, l

awm me) _
(=) ., = 8, ..Sin.m'nx,(— . = B. .sin.mmx 3.31
y y,-b/2 im — )9y /ly= b/2 jm —=

It can be seen that the expressions for W satisfies the boundary

conditions wm and Mx at x = o and % = a.
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The problem is further simplified by considering the plate edge
rotations in two parts:
(i) Symmetrical case in which the rotations of plate ij at its

edges 1 and j (i.e. y=i%0 are equal but oposite in sign.

8',. = -8'.. =9' .sin.mmx
im =

Since the rotation must be an odd function of y toachieve anti-symmetry

- in rotation at the plate edges, it follows that the form of W must

be an even function of y thereby making the superposition coefficients

A and A to assume zZero values.
Im 4m

Applying these stated edge conditions to the residual form of

W and satisfying the additional boundary condition w0 at y = t%,

we deduce that

. = -0 A, tanha where o = mnb
m m “m m m —a—‘
b 'e".m
Ay = .
m -
o (o secha + sinha )
m o m m m
and hence _
—' ) )
w o= b6 im [amy.shtamy) - amthamChtamy)‘
a (a secho  + sinha )| b b b
mom m i -

(ii)  Anti-symmetric case in which the rotations of plate ij at its
edges 1 and j are equal,

e"i'm = e"'im = ﬁhim.sin.mﬂx
] i =
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Since the edge rotations are the same, the form of displacement W
must be an odd function of y, thereby making A"m and A m to assume
zero values. Applying the edge conditions as stated under (ii) above
to the residual form of W and satisfying the condition of zero

transverse displacement at y = *b we establish that

Alm = -amAqmcotham
-bg"
A - im
im o (o _cschoy, - cha )
mom ™ m
and hence "
_nQn . MTX Q _ o o
w = bo im'Sln( a ? {—%szh(—%X) - amcthamsh(—gz)]
m o (@ _cscho, - cho )- -
mom m m

reaaan A 3.33
If it is assumed that a positive rotation occurs at the positive end

of our y- coordinate axis, i.e. at i, then

=l
n

. gr,. +60",, =0', +8",
ijm ijm ijm im im

and 9.. gr.. + 0., =B, + 8",
o Jam im im

from which we deduce that for the symmetrical part

B = -
0 im %(eim ejm)
th
i ~ th .. and 6.,
where Bijm and ejim are respectively the m~  term of the 913 51

half-range series and ’

for the anti-symmetric part

. 0.
im im Jm
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The complete solution for wo incorporating the odd and even parts

now takes the form

a o
_ b ., ,mmx .. -1 f_m{ _ my
weos 551n( = ) im{(amsechgm + 51nham) {%sh 5 } tanhamch(—g—)}
o
) _ 1 Fen(C™) il
(amcosecham cosha_) {%ch<ab _cotha sh( )}
b ) s nln)
- ejm{(amsecham + 31nham) h amy) - tana_ ch 5 )
Q
scha - -1 ,zfi _ m’
+ (o cosecha - cosha ) {%ch( ) - cotha sh( ) }
t
....... 3.34
CASE B TRANSLATION OF THE EDGES

The boundary conditions at the simply supported edges x = o
and X = a remain the same; the other edge conditions are

o -

The problem is treated in a manner similar to case A; that is

a division of the problem into

. . P . - + MR
(i) symmetric , in'which w.. = w.. = w'. sinhosy
i9m jim im a
- . . . . _ - ™ . X
and (ii) anti-symmetric , in which w.. = -w.. = W", sin—
- iim jim im a

. . i
The structure of W for the symmetric case is W [Azmcosh(—gz)

A (™Y ) 55 nh (Y )]si‘n(mx)
a d a

From the boundary conditions at the edges, we find

A = -A (lL+a cotha )
gm am m m
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and so

wm = A [—ﬂl 51nh(mﬂx)— (1 + o cotho, )cosﬂzﬂzﬂ51n~——

3

Noting that the displacement at the edges is W 51 ma

- W
then A = im
csch + cosh
OLm %m 0Lm

For the anti-symmetric case
/ . m LMK
(ot + 4, ™ oot 1ol
im a “m a a a

From which we deduce that

Alm

- A“m(l + amtanham)

Wi i
im

m-
¢ o _secho - sho
m m m

. Noting as in the previous case A that

W' = 1 -
Wim © 2(Wim wjm)

and WY = 3w, + w.
im im jm

then the complete form of Hm is given by
. - 1g: T . -y [ O )
W Ssim— wim((amcscham + cho J1§ Ey.sh my)

+ (1 + ¢ cothy dech —EX)} + (o_seche - sho ) 1!
m m b m m m

Vi .
{-(1 + qmtanham)shfig—) * g%{.ch(igz)ﬂ

mx
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: o oy oy
IR LU L
wjm((amcscham + cha ) { 5 sh‘ . ) + (;-+amcotham)ch( B )}

S S LA TRY
=1 - m it}
- (amsecham - sha ) {-(1 + amtanham)sh(—s—) +-S~ch‘—s~)£ﬁ (3.35)

The total displacement field in terms of the edge rotation and edge

displacements W can now be written in the form:

_ .ommx | _ .
Wm = Slnug-'[eim{YLmFl(y) YZmFZ(y)} ejm{YlmFl(y) + Yszz(y)}

- wim{YsmPa(y) - Y#mF“(Y)} + wjm}{yamFa(y) + Y“mF“(y)}J

_ b 1 -1
where Yom = E{amsecham t sha_)
Y = E(a cosecho, - chy ) !
2m 2°"m ", m m
= 1 y 1
Y.m 2(amcosecham + cham)
- 1 - v 1
Yom ° g(amsecham sham)
a o
= J e _T.y_ - _m.Z
Fi(y) b.51nh( T ) tanhamcosh( T )
v v ' o]
Faly) = b'COSh(_S_) - cotham51nh(—5—)
o o oy
F3(y) = —Bu.SInh(—S—)f- (1 + amcotham)cosh(~g—)
a a oy
Fu(y) = <—E—.cosh(-zrd - (1 + amtanham)51nh(—5—)

These expressions will be used later to determine moments and sheaps
at the edges of plates joined in such a way at their adjacent edges

to form a system of folded plate to any given geometrical form.
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In-plane displacements oy membrane forces

If we assume u and e to be the in-plane displacements in the
x and y directions respectively. It can be eaéily demonstrated that
the structures of u and u that satisfy the equilibrium egquations

in plane stress without body forces are

- R Y e
4, 0T A Ch{ ) t A, Sh{ b } A3m'_§rCh(—B_,
oy oy
m I
+ Aum.~irsh(~s—)ann( 5 )
i amy ) ~
4, Blmchf"fr * B, Shfb)+ Bam5 © h‘ )

+ B —-—-sh——)}s QULE
4m

where the Bim's are related to Aim's in the following manner:

3=V

- 3-v - -2
= A T b Bzm - ﬁ:m 1+v' Tem

Im 2m

s Aum ’ B = A

Case A Translation Normal to the edges i and j

Considering now the translations of the edges i and j of plate

ij in the direction of y only. If the solution is split into (i)

symmetrical case in which (uzm)y=b z -(u2m)y=—b and (ii) anti-symmetrica:
i i = i i ied boundar

case in which (uzm)y=b (u2m)y=~b and applying the 1mp11éd ou v

condition that uy = 0 at y = +b, the complete solutions using the

techniques of the earlier analysis are as follows:
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- 1 mi : _ 3-v 1 :
u . = Zcos— uzim{(ams?cham Tyshe ) amFl(y)
- (a_cosecha, + 2Yoha!yla Fa(y)}
J m m 1+v m m
o
- u {(a secha - Eigsha ) la Fi(y)
' 2im b T m m  1+vT  m m
& + (0 _cosecha + E:\—)chm fﬁ ] Fz(yﬂ
m m 1+v ™ m i
L~ q_. MNX _ 3-v o1
u.o F gsin uzim{(amsecham Troshe ) a Fs(y)
ﬂ-.
!5 B - '(o_cosecho,. + §:Esha ) a Fely)}
m m 1+v m m
- u . (o _secha - 2Vehg Jlg Fs(y)
F% o Tdimt Tm mo 1+ Tm m

3-v =1
+ (amcosecham + E?GCham) amFe(y)
oy . o
~ . _ [3-va- m
where TIs(y) = %ch(-g—) o om T tanham}sh(mg—)

amy cr3-V -1 i amy
%—sh(ﬁg—) - {I;G.mm_+ cotham}chﬁﬁ;-)

r . FS(Y)

Case B. Translations Tangential to the edges i and j

'Y

In this case translations take place in the direction of x whilst

at the edges 1 and j translations in the direction of y are completely
. restrained i.e. u = 0 for y = #b, .
"J 'l Y . . .¥
Again, following the procedure adopted in the preceding analysis
and noting that

- ™R ' - WX
(ul)y=b = qlimcosbjg—),(ul)y:_b = uljmcoa(-ErJ

-
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and further splitting the translations into

(i) symmetrical, in which (u1m)

y=b (ulm)yz-b

and. (ii) anti-symmetrical, in which (ulm)y=b = ﬁ(ulm)y:_b

we arrive at the following equations for uI and uz

- mmw _ _ 3=V 1
uo 2cos(~5—) 1 m{ (amcosechqm iischa )3 a F7(y)
+ ((1 sechcx + §——shot Yla Fa(y)}
1+v m !
-u {(a cosechn_ - 2V TR ¥la 7 (y)
pjmt T m m~ I+° ,
3-v
+ (amsecha + I?USha yla Fa(y)
u = 1sin(»nﬁi) u . {(o_secha + é——shcx Yla Fily)
2m 2 a ' rim'"m m 14V m
1
- (amcosecham l+v ER )y o Fz(y)}
{(a secho  + E——-—-shu yla Fi(y)
jm 1+v m
+ (& _cosecha_ - 3——cha Yla Fz(y)}
m S m 1+v
amy oy
where Fy{y) = %s (=) + {1+v cotham}ch( T
@ y- Q
Foly) = feh(5-) + 2V tanho, }sh(——)

1+ m
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The total in-plane displacement fields now become

R zcos(“mX u 1m{Bsz1(y) - Bszz(y)} - uzjm{BlmF1(y)‘+ Bszz(y)}
U i By F7(y) + B, Fe(¥)} - uljm{gamr,(ya + quFz(y)}—
.......... r(a.ae) _
= ~51n(ﬂﬂ§) U, imiBinEs(y) - B, Fe(y)) - uzjm{B Fs(y) + 8, Fe(y))
o B L Fily) - B, Fa(y)} - u %{maFI(y) t g, Faly)}
.......... (3.37)
where B % (qsecha - SVshg Yla
Bzm = (o _cosechq + %;;cha )1 o
_— (o cosecha - %I—cha )! a
B = (agsecha + Ja_—w«sha ) ! o

Having determined the transverse and in-plane displacement fields, it now
only remains to evaluate moments, shears and stress resultants needed for:
ensuring equilibrium at the junctions. These are Myy’ Vyy, Nyy and ny
at junctions i and j.

The expressions that define these moments and forces in terms of

displacements are as follows:

Bzwm 32w
M = -Dn( + y—=2)
Yy dy? ax? .
a3wm 3w .
Voy = =D + (2-v)—0)

3 .
dy w3y
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i _ Eh Bua aul
N y ox
o g2 L
ﬂ v . En (au] Buz)
xy  2(1#v)| 3y ox
3
where D = ~Eh \
12(1-v?)

Applying these relations to the equations of displacements already

derived we find that the edge forces are as follows: at end i
Lnd
. ' s s 3
'f M;; = b - sinmgx[cl A
4
12{1-v%) : N
. . 3 " —
vil oo BB e 408, -Cw. 40w
b yy 12(1_\)2) 4] 5 1im 6 Jm 7 1im 8 :}mJ
ij Eh . m'rrx.r
N = S1TH J=Cu ., u . - . +C .
¥y (1+v)? a | 9 21m 1g 2Jm 11 p1lm 12 1Jm]
ij | Eh cos™X | _ _ . - _ u
: Xy (1+v)2 Y a 13 2im 14 23m 15 1im 16 1jm
and at end j ~
. . 3
f it = BN MR 4ce. 4+Cw. -C
¥y lQ(l"Vz) a 1 Jm 2 1M 3 Jm 4 1m
) 3 | .
vt . _Eh ™ c9, -CH. - Cw. +Cuw,
yy 12(1_\)2) a L 5 Jm 6 int 7 Jm 8 im
Nt - ——Ehh—si alls; -Cu . _ . C .. - ¢C .
¥y (1+v)2 a g 2]m 10 21m Ir 1Jm 12 11m
= Nt = Eh o LIS u C vw. -C u. +¢ u.
X Xy (14v)?2 & | 13 2Jm 14 2]m 15 1Jm 16 1im

3.

39
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where

C
6

c
7

1]

o cosha
m m

sinha
™

b (o_secho,
m m

N

r

+ sinha_} (@ cosecha - cosha )
m m m n

o cosha sinha
Rl m " m
b|(a secho_ + sinha ) (o _cosecha - cosha )
m m m m ™ m
a o ,
m.2 cosha sinhoa
() m - - - (=)
(¢_cosecha_ + cosha ) (o _secha - sinha )
. m m m m m it}
a . .
m.2 coshy, 51nha
~{—) ™
(¢_cosecha + cosha ) (a secha - 31nha )
m m m m i
o 3 sinhg cosho
(=) | 7= & - -
b (o cosecha_ + cosha_) (& _sechn - sinho )
o {h m ™ m m |

¢ 3 sinha cosha
-{=m m
b (a_cosechy + coshg ) (a secha - s1nha )
i m m m
aﬁ cosha sinha ]
Bl -V ¥ 3
(umsecham - I}fslnha ) (a cscha + I:~cosha )J
o cosha sinham 1
- 3 * : 3-v
(amsechocm - 17351nha ) (amcscham + I:GCOSham)J
cosha sinha .
- + (1+v)

v
(amcscham - -——cosha )

1+v

(a secha + 3—251nha )

1+v
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am c:oshOtu_l sinhu.m
c-= ¢ = - + —
12 4 b {a cscho, - §:~cosha ) (o secha + E:Esinha )
m m 1+v m m m 1+v m” |
qm_ sinham cosho i
s ® B = e 3V
s - - .
o - ha ~——sinh
I { mcscham 179508 m) (amsecham t I am)_
o sinha ) cosha
_ m m m
Ce © B v M ‘ 3-v
1 - -V _,
o ¢scha - —-——cosha + —sinho
_( m m 1l+v m)‘ (amSECham 1+v m)

To these edges, forces given in equations3.38 & 39 must be added the
fixed edge forces arising from the initially loaded plates clamped at
their opposite edges y = b.

Since the direction of joint forces and joint displacements of
two slabs meétﬁng at a point do not in general have a common orientation,
it is convenient to refer these quantities to the same of axes through
a transformation process. The joint forces and joint displcements are
therefore transformed from the changing (y,z) directions at each edge

to fixed (&,Nn) directions.
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Using this technique the joint displacement transform to

v - - S . 4

wijm nimcos¢ij Eim51n¢ij

uzijm - _nimSlﬂ¢ij - Eimcos¢ij ’

Mibm T Min®0SPiy T &ipsindg, o
2’ -

Uitm T MieSindiy - Sypcostyy - 3.0

I

whilst the joint forces transform to:

Fnijm. = 'Vijmcoscbij - Nijmsin¢ij
FEijm = —Vijmsincbij -‘Nijmcos¢ij
Fitm = Vinn©©S%3n ; N S0P
lFEihm = -Vihmsin¢ih - Nihmcosqbih ‘ \ 3.4l

-

These being the relations a joint i of two slabs hi and ij joined at i.
The first set of equations, that is equétions 3.HO,hénsure the
satisfaction of compatibility of displacements at the joint whilst the
second set, equations 3.41, together with equations of moments and

~

membrane shears. are used to sdatisfy the quilibrium conditions of forces

at the joint thus:

LY Mijm T Mi‘}:nm =0 _ ' ‘
nijm Hihm =90 i
Feism * Teitm = © \ ‘
Sl]m + Sihm = 0
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A1l the transformed joint forces and moments at joint i are now
expressible in terms of the joint roations Bh, Gi and Bj, the joint
displacements Ny Ny nj; Eh’ Ei, £j, and Upe U g0 u1j°

It is immediately seen that there are four.unkown displacements
at each jéint which will completely define the state of shears in éhy
system of folded 'slab.
® When applied to a single cell box girder with four corners, there
will therefore be sixteen equations with sixteen unkown displacements.
The mean advantage of the method is the reduction in the number of
equations for a single cell box girder from thrity-two equaticns with

thirty-twe unknowns to one of sixteen by sixteen.

Goldberg derived the fixed edge forces which are given below:

— - anzr 2COSham - T omx
ijm _Mjim - o oscha ¥ cosha. L%
m3n3l m m m
) si oL
- - 8qa sinh m . MK
Vl'm * Vigm T (o cscho,  + cosha )" a
J ] m2m? m m m
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TABLE 1

2B/L (B) ANALYSIS | (B) MOFFATT
C.00 1.0 .1.00
0.10 0.95 0.80
0.20 0.88 0.67
0.40 0.71 0.49
0.60 . 0.59 0.38
0.80 0.50 0.30
1.00 0.43 0.28

Merrison's recommendations have been derived

from table given by Moffatt.
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3-7  DISCUSSIONS OF THEORETICAL RESULTS '

GENERAL COMMENTS:

The method of analysis presented lends itself to application
as a design tool and as a means of checking almost completed designs.
Although this work is limited to isotropic plates, the analysis for

an orthotropic plate system is not of a higher degree of complexity.

The choice of an isotropic plate system is deliberate in order to obtain

theoretical results which may be an aid in the design proposals for an
orthotropic system. As a desigﬁ tool the method is less cumbersome
for computer application than the finite element approach of
analysing this type .of structure. The displacement method of analysis
of folded plates due to Goldberg and Leve certainly has the merit of
solving fewer equations but, as has been observed elsewhere, it does,
not lend itself to ready application by the practitionér without the
involvement of a specialist. It also has the disadvantage of a large
number of back substitutions, with possible attendant computational
errors, whereas this method is more direct for obtaining stresses and
displacements iﬁ one operation. The resulting equations from a
consideration of equilibrium and compatibility of displacements at the
joints were solved using the Géuss-Jordan complete elimination method
for varieties of single cell box girder cross-secfional geometry.

(%%

DISPLACEMENTS

Attention was paid to deflexions as the dominant displacement
for transverse loading. The deflexions are in general small for the

transverse loading of 200KN adopted for purposes of computation,
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especially consideringthatoné of the sections considered was wide and
shallow, the depth to width ratio being one to four. The element of
the box section that suffers greatest in terms of deflexion is the

top compression flange to which the load is directly applied. This

is in accord with.St. Venant's principle. The conclusion drawn from
this is that the transition from a single cell.section to a double

or multiple cell section should be partly governed by a consideration
of limitation on deflexions. Tigure 38 shows the trend of éentral
deflexion with top and bottom box girder widths._ It should Be noted
that the deflexion of the bottom plate is upward,; that is, hogging.
How?rer, @ quantitative discussion of the deflexion cannot be done since
the section was not subjected to normal HA loading.

STRESSES

For symmetrical 1lcading the stresses exhibit shear lag phencmenon
in-both top and Bottom flanges. Effective widths based on an average
Stress equal to the maximum theoretical flange stress were computed
for a rectangular section and a symmetrical trapezoidal section.

Top and bottom. flanges of both the rectangular and the trapezoidal
box sections exhibit shear lag. . In the case of rectangular section,
where top and bottom flange widths are the same, shear-lag'effects are
about the same. In the trapezoidal hox section however, the bottom
flangg which is cogparatively smaller in width exhibits shear lag to a
lesser extent. It is therefore obvious that the aspect ratio is the

dominant factor in effective width variation in both top and bottom

flange plates regardless of the fact that one is in compréession and the
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other in tension. In a document titled "Criteria for Design of steel-
concrete composite box girder Highway Bridges' prepared by Mattock et al,
the recommendations in respect of shear lag reads as follows:

Tension Flanges

"In the case of simply supported spans, the bottom flange shall
%j@ : be considered completely effective in resisting bending if its width
does not exceed one-fifth of the span length. If the width exceeds
- one-fifth of the span, an amount equal to one-fifth of the span only
E}? shall be considered effective".

Compression Flanges

,‘ In respect of compression flanges no specific recommendations
Iy
L appeared to have been made with regard to shear lag, although considera-

i : tions of elastic stability were used in suggesting désign criteria of

/ these elements. Whichever methods are used in designing these elements,
%; there will be need to predict stresses and deflexions at some stages
of design. Shear lag consideration should therefore be applied to the
compression flange as well whether it is stiffened against buckling
J
g% or not.

The results of the analysis confirm the recommendations referred
to in respect of ténsion flanges, however, in respect of compression
flanges, the results show that shear lag effects are equally_manifest

- .
,VJ in these components and effective widths of compression flanges are

equally relevant in design. Figure 3.13A4shows the variation of effective

width factors with aspect ratio ranging from O to 1.0.

[



?

Effective width factors obtained from this analysis were
compared with values obtained by Moffatt and Dcwling(zs) and
those recommended in the Merrison(zk) report {Table 1). Values
of effective width factors recommended in the Merrison report
appear to be based on Moffatt and Dowling's works. There is some
appreciable divergence between the results of the present analysis
and the recommended values in the two works referred to. Although
the top deck of the rectangular box girder section considered by
Moffatt and Dowling is orthotropic as against the isotropic deck
assumed in this analysis, it is believed that the two results should
be comparable. Merrison's report gave a formula relating the
variation of longitudinal stress across a flange with the effective
width factor. This formula assumes a parabolic pfofile for the
distribution of longitudinal flange stresses. Moffatt and Dowling
on the other hand suggested a quartic variation of longitudinal
stress across the flange width, also relating. their own formula to
effective width factor. |

Based on these two formulae and applying thg minimum and maximum
longitudinal stresses obtained from this analysis, effective width

factors were computed and compared with those directly obtained from



this analysis. Values obtained on the basis of Merrison's formula
are only slightly lower than these analytical results, whilst k
Moffatt and Dowling's formula resulted in much lower values. In
addition, effective width values obtained from the Moffatt and
Dowling formula would appear not to tend to unity as aspect ratio
tends to zero, a general feature already confirmed by many earlier

authors of shear lag phenomenon(17’2").

The symmetrical pattern
of stress in the flanges of a box-girder obtained from analytical
results when dealing with a symmetrical loading in the transverse
direction tends to reinforce a belief in the concept of effective
width for box-girder design. However, an examination of the stress
patterns resulting from the lack of symmetry of transverse loading
for the cross-sectional configurations considered in this analysis

tends to raise some doubts about the validity of effective width

concepts when dealing with box-girders.

EFFECT OF ECCENTRICITY OF TRANSVERSE LOADING RELATIVE TO
THE CROSS-SECTIONAL VERTICAL AXIS:

When a symmetrical box section is subjected to an eccentric loading,

the resulting deformations are accompanied with distortion and warping of
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the cross-section; these in turn give rise to warping longitudinal
stresses which vary from tension to compression from one edge of a flange
to the other. These stresses are not easily predicted by the approxi-
mate method of Eransfdrmed section theory. An attempt to do this by
using a Beam on Elastic Foundation analogy has been referred to in the
introduction to this thesis. The B.E.F. analysis restricts itself to
assymmetric corner'loads on a box girder. For a single cell box girder
this represents the extreme or worst case of unsymmetrical loading and
should therefore predict the most severe longitudinal stresses

associated with warping. However, as hés been observed elsewhere in

this thesis, the method of analysis is complex and is certainly diffieult
to accept as avalid basis of estimating these stresses. The question
that must be answered is how important is the warping effect on
longitudinal stress magnitudes or in designing for the worst stressed
situation. Again reference must be made to "Criteria for Design of
steel-concrete'06mposite Box Girder Highway Bridges" prepared by Mattock
and others. In this document reference is made to warping stresses

under Secondary Bending Stresses as follows:

"If the inclination of the web plates to the vertical is not greater
than 1 to 4 (this corresponds to 20 = 75° $8')%, and the width of the
bottom flange is not greater than 20 percent of the span, the transverse
bending stresses resulting from distortion of the girder cross-section
and from vibrations of the bottom plate, need not be considered. For
structures in this category, transverse bending stresses due to

supplementary loadings, such as utilities, shall not exceed 5000 psim.

*the amplification in the bracket is inserted by the author of this thesi:
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"For structures exceeding these limits, a detailed evaluation of
the transverse bending stresses due te all causes shall be made. These
stresses shall be limited to a maximum stress or range of stress of
20,000 psi".

Figure 8.19 shows the results for a box-girder section with top
flange aspect ratio of 0.25 and bottom flange aspect ratio of 0.215
with side slopes of 2a = 80°. The rate of growth of maximum edge
stresses associated with warping effect with severity of load eccentricity
is shown in Figure 3.172. It is observed from this result that growth
of stress at flange plate edges has a. linear relationship with
eccentricity and that edge stresses under unsjmmetric loading could be

multiples of the maximum flange stresses for a symmetrical loading of

the same magnitude. The obvious conclusion is that secondary bending

"stresses arising from warping and distortion should be considered and,

depending on the possible mode of application of live load to a bridge
deck, should be the governing condition of attaining permissible stresses.
This result appears to suggest that effective width concept in design
consideration may be irrelevant to box-girder response, especially

where unsymmetrical loading of severe. eccentricities is likely. This
will most certainly be the case in respect of bridge structures where
more often than ﬁot the traffic lanes will not be equally loaded at

most times.

COMPARISON OF DISTORSION STRESSES WITH RESULTS~OF B.E.F. ANALOGY

The B.E.F. analogy of Abdel-Samad et al gives many equations to

be used in calculating displacements, warping and distortion stresses,

p&l
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shear stresses etc. A direct comparison between the results of the
analysis presented in this thesis and those from the B.E.F. analogy

is not possible because of differences in the geometry of the box
sections assﬁmed and the type of assymmetric loading applied in the

two analyses. However, the distortional stresses calculated using .
the B.E.F. analogy formulae for a box section with a 60° side slope angle,
one of the cross-sectional configurations used in this thesis, are
B7SKN/m® at one edge of the top plate and 894KN/m? at an edge of the
bottom plate. The corresponding results from the more direct analytical

method of this thesis are 1861KN/m* and 1082KN/m® respectively.

EFFECT OF BOX-GIRDER WEB SIDE SLOPE

Figure 3,20 shows the growth in longitudinél flange peak stress as
a ratio of the longitudinal peak stress for symmetrical leoading, with
decreasing web slope (to the vertical) for different eccentricities of
loading. . For the symmetric loading,that is, zero eccenfricity, web side
slope only has a slight effect on longitudinal flange peak stress growth. '
However, when eccentricity of loadiﬁg occurs, the lbngitudinal flange
peak stress growth pattern with side slope exhibits instability (i.e it
becomes oscillatory)} when the web side slope is greater than about 150
to the vertical. The increase in longitudinal peak stress values over
the corresponding longitudinal peak stress for symmetric loading being
up to 55% for the worst eccentricity consiaered. Associated with this
oscillatory variation of the peak longitudinal stress with side slope
are regions where the peak stress value passes through zero magnitude.
This would tend to suggest.that there are critical angles for web side

slope greater than 15° to the vertical where secondary bending effects

!
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are minimum. This will, of course, require further exhaustive

studies before any firm conclusion can be reached. If this trend

is confirmed in future studies, it would be ﬁossible to give a design
guide on practical side slopes of the web of box-girders. The
instability of the box-girder referred to in this section is generally
characterised by the non-reversal of longitudinal stress in the
box-girder webs.

ORTHOTROPY OF THE TOP AND BOTTOM FLANGES AND WEBS

The observations made in respect of effect of eccentricity of
loadihg on longitudinél stresses may necessitate some rethinkingr
about the arrangement of stiffeners in the iongitudinal directioé
of the thin-plated elements of a steel box-girder. Severe eccentricities
give rise to stress reversals in all the plate elements of a box-girder

~and cause increases of strass far greater than could be estimated from

the symmetrical loading case. This implies that any of the plate
element could be subjected to high edge stresses and therefore
stiffening by the incorporation of longitudinal stiffeners should not
be limited to the flanges alone. The arrangement of the stiffeners
should be such as to compensate for the severe peak stresses to which
these box-girder elements may be subjected due to severe eccentricities.
The spacing of the stiffeners, following this conjecture, will not be
uniform as recommended by Mattock and others but will vary in such a

way as to.give more stiffener influence at the corners of the box
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CHAPTER 1V ‘

EXPERIMENTAL PROGRAM ' ,

1. Introduction

2. Model Size and Material

3. Model Design and Fabrication

4. Test Set Up . "

5. Experimental Procedure.

4-1  INTRODUCTION:

The aim of the experiment is to examine the total resbonse i.e.
the gehera} behaviour of a single cell box girder bridge, to a
symmetric transverse loading. ’

The primary objectives are:-

(i) To study the deflexion profile of the 'box girder.

(ii) To study the stress patterns at various regions of the

box girder.

(iii) To reach some conclusions that will help a designer appreciate
the mode of response to transverse loading of the type of _
box girder tested, and also attempt some qualitative comparison

between experimental response and analytical response.
Experimental tests were performed on a single span box girder model
with its ends simply supported, under a two point symmetric loading

arrangement (see Fig. uy-1).
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4-2  MODEL SIZE AND MATERIAL

For an experimental investigation of this type, some of the:
considerations are, the ideal size for simulation of prototype behaviour
and for easy handling, materials of fabrication for ease of construction
of the model and scale effects.

The first two are usually dictated by the cost of manufacture and
available laboratory facilities for testing, whilst the last has a
bearing on the reliability of the model in simulating the response or
performance of the prototype. Some réported results on structural
scale model tests suggest that small scale models do simulate
satisfactorily prototype behaviour.

The model used in this experimental programme is made up of a
steel troughing supporting and interconnected to a reinforced concrete
deck. This arrangement was dictated by consideration of ease of
prefabrication. It is believed that the composite nature of the box
girder test-specimen will not drastically alter its basic general

response to transverse loading from that of a box girder, either wholly

in steel or wholly in concrete. One additional advantage of the
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predominant steel troughing of the box girder model is to enhance a
.,
Fﬁ degree of "elastic" behaviour under load.
The reinforced concrete deck is 4' 2" long by 1' 4" wide by 23"

thick and projects beyond the edges of the prefabricated supporting steel

troughing. Intermediate steel diaphragms were welded to the steel
troughing as shown in Fig. 4-2. The concrete mix used for the deck is
1:13:3 with a water cement ration of 0.5. Ordinary portland cement was

used for the concrete mix with fine sand and 3" aggregates.

4-3  MODEL DESIGN AND FABRICATION:
The model is strictly a composite box girder bridge.
it The steel portion of the box girder cross-section was prefabricated

by Messrs Dorman Long Nigeria Limited by welding the various steel plate ’

T T

components together (PI. 1)
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After delivery from th% shop floor, a single row of 1" high
studs (shear connectors) was welded on to each of thé top flanges of
the box girder at a spacing of 3" from centre to centre.

First, the positions of the strain gauges and rosettes were
marked. At the midspan cross-section, where pure bending is expected
to occur as a result of the loading mannér, three points were markedlon
each of the two side plates of fhe steel troughing. Three points wefe
marked on each of the two side plates of the steel treoughing. Thrgel
pointé were also marked on the bottom plate (see Fig.u—Se). These points
are the locations of the linear gauges. The markings were done inside
and outside the model}k At the quarter span cross-section from one end
of the test piece, where both bending and shearing would occur, threei
points each were marked on the inside and outside of a side plate.
The same was done at the quarter span cross-section from the other end
but here the markings were done on the second side plate (see Fig.4-3d).
These are the locations of the strain rossettes. The surface around the
marked points were then cleaned with emery cloth to remove scales and
rusts in order to achieve good bond between the gauges and the rest piece.
The gauges were ‘then stuck on by means of tensol cement. The tensol
cement was prepared by mixing together one part of component B (the
hardner) to twenf&-five (25) parts of A to obtain a quick setting and
good bonding material.

Thin insulated wires (of different colours) with little electrical
resistance were cut in equal lengths of about 5 feet for the electrical
connection of the gauges in a measuring bridge circuit. A dummy guage was

stuck on a steel plate to compensate for heat and temperature changes.
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One end of each twin wire was soldered on to the leads of a
strain gauge whilst the other end, after testing for electrical continuity
using an avometer to ensure that the soldering had been propérly done,
was connected to the Data Recording System.

The strain rossettes were generally more difficult and delicate
to handle and some of the strain gauge lead wires cut off after the
soldering had been completed. As a result, not all the strain gauges
functioned.

Manufacture of the Composite Box Girder -~ The concrete deck was

cast in two stages. First, a wooden formwork measuring 4' 2" x 82" x 1"
was made. In it was laid a wire mesh of 3" diameter as nominal reinforce-
ment. This formwork was used to cast a concrete slab which was later
used to cover the top opening of the steel trough as a permanent part of
the second stage shuttering. This was then left to cure for about four
days before the second stage. This was done in order to minimise the
problem of removal of the shuttering within the trough of the box girder.
For the second stage, a wooden formwérk for the complete deck
(47 2" » 1" 4 x 24") was constructed from 2" plywood. This was supportec
from the laboratory floor. The first slab, covering the top opening of
the steel troughing was then centrally placed in the new formwork

(see pl. 1) .




Two §" diameter mild steel bars were laid longitudinally at about

1" away from the shear connectors on top of the f

irst stage concrete

slab. 3" diameter steel rods were then laid across these two longitudinai

ones, at about 6" centre to centre. (Fig.4-4 pl.
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FIG 4-4

.

The concrete, after having been mixed in a Fredonis Wis Drum Mixer,

was poured into the formwork, covering the first stage smaller slab,
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embedding the shear connectors and the reinforcement. The wet concrete
was gently vibrated with an electrically operatéd vibrator and the
surface levelled. The cast concrete deck was left to cure for twenty
eight days. Th; curing was effected by means of wet sack cloths pl;ced
over the specimen. After fi?e days, the mould was struck off and the
sackings were kept wet by watering daily for the 28-day curing'period.
After the curing period the ends of the box girder model were then
supported on two short steel cqlumné resting on the laboratory floor.
Other instrumentations e.g. fixing of dial gauges, fixinglof demec points
etc., were then carried out and a frame for fixing dial gauges was
errected round the box girder. The free ends of the wires from the linear
strain gauges and strain rossettes were soldered on to blocks of multipin
connectors which connected the wires to the Data Recording System.

The test piece rests directly on a fixed roller bearing at one end
and a free roller bearing at the other. The base plate of each end
roller bearing rests on a load cell placed on its short steel supporting

column.

4-4  TEST SET UP:
The box girder model.was placed under the test frame (see pl2).
This frame is made of 2 - 8 feet high 8" x 4" rolled steel columns

bolted to the laboratory strong floor at & feet centres with a 8" x 8"

rolled steel joist cross-beam bolted to the steel columns. Fig. =5 shows

the set up of the last piece within the loading frame. The loading

jack was attached to the centre of the cross-beam as shown in Fig.lqﬁl.
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For the linear case for example,

LINY = Top linear gauge on the Inside on the North side
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RIN3a = Inside Rosette Gauge at the b

c
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PLATE 3
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A smaller frame made of dexion angles was used to hold all the v
measuring dial gduges. |

The frame was 5' 1" long by 2' 63" wide by 5' 0" high.-

Three sections of the test specimen carried the electrical
resistance strain (ERS).gauges.

The midspan section and two sections at the third span points.

The ERS gauges were the Romulus type, the dial gauges were the
John Bull type and the Data Recording System was the Transducer Meter
Type 061 (made by Sangamo Controls Limited).

End Supports - One end support consists of a steel plate

measuring 63" x 63" x 3" thick supporting a roller bearing system made
up of a 2" diameter cylindrical steel roller sandwiched between two
steel plates and seating within the two partcylindrical identations of

two 43" x 43" x 11" steel plates. See P1. 2.
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The other end is supported by means of an arrangement of three
steel plates measuring 63" x 63" x 3" thick and a 2" diameter cylindrical
steel roller. Two plates were ﬁlaced on top of a load cell which was "
placed on the short steel columﬁs whilst the other acted as a bearing

plate on the specimen with the roller sandwiched between them.

4-5  EXPERIMENTAL PROCEDURE:

Before the application of any load, the dial gauge readings were
taken, the initial readings of the linear ERS gauges and strain rossettes
were recgrded. The preééure gauges of the load cells were set to.the
zero mark. See Pl. 3.

The whole arrangement of the test specimen and the location of
points of application of the loads were carefully checked and adjusted
to ensure a symmetrical two point loading. After this, the load was
applied in an increasing manner by means of a hydrauliec jack in steps
of about 6001b.

At each stage of loading, all linear strain gauge, strain rossetfe

and dial gauge readings were recorded.
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L-6 DISCUSSICON OF EXPERIMENTAL RESULTS
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Figures 4~7 and 4-8 give the results of the experimental
programme. ‘Whilst deflexion results are reliable, strain gauge
readings are rather erratic. This was thought to be due largely
to drift in the strain gauges and to the instability of the strain
measuring device. For example the data recording system was not
precise, the needle of the bridge was always oscilliating. The
device for balancing the resistances in the bridge was manually
operated and it took some time betﬁeen zeroing, ioading and readigg,
probably causing qverhegting of the géuges. The results of the strain
gauges in the rossettee group. Notwithstanding these set-backs, some
attempts are made to interprete the linear gauge results.

DETLEXIONS

Figure 4-7 shows the deflexion characteristic of the testpiece
for the loading system applied. These results are related to the
theofetical deflexions that would be obtained using the transformed
section theory. It is obvious from Figure 4-7b that measured
deflexions are much smaller than would be exbected ffom the transformed
section theory. It should be noted that the plate elements of the
experimenta; tests piece are much thicker than would be required for
a linear scale model of a steel box-girder prototype; this is
dictated by the constraints of comstructing extremely thin plates
into a box section. On the whole the box section is shown to be much

more flexurally stiffer than would be supposed from simple beam bending
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TABLE 2 KN/1° | |
LOAD KN 1 LTt 1. LTe LT3 L4 LTS LT6 1 LT7 .LTS _ LT9 | LT10
5.0 | 2835 | 1554 | 1785 | 1339 987 | 19t1 | 2436 | 2583 | 2100 | 2638
8,00 2224 2142 2352 1612 924 2331 2381 1615 2121 1870
106 | 5355 | 4895 | 5754 | 352 2814 | 2250 | 3111 | 3421 | 4263 | 4683
1.3 | 6006 | 5124 | 4384 | 4282 2289 | 4641 | 4851 | 4v01 [ 4473 | se01 'é
5.9 | 6195 | a452 | 3216 | 3360 | 2793 | 4893 | 4187 | saaa | ases | 4a ,
18.5 | 6478 | 5271 | s061 | 464 2898 | 3754 | 4460 | 3780 | 4990 | 5570
21,0 1764 . 1318 | 1365 672 . 756 2331 2239 | 2126 2163 1722




TABLE 3 | xx/n?‘

LOAD KN . LONt LONZ LON3 LOB1 ~ LOB2 LOB3 081 .} 1082 LOS3
5.40 | 10,500 | 14,700 | 20,800 | 20,450 ‘18,779 22,970 | 7,970 | 10,876 | 12,070
8.00 | 14,700 | 25,200 { 30,920 | 50,820 | 36,330 | 44,730 | 12,030 | 16,030 { 30,600
10,6 | 42,000 | 49,140 | 57,720 | 67,200 | 54,390 | 63,420 | 42,120 ;5,000 65,000
13.3 | 15,200 | 22,460 | 27,650 | 29,850 | 27,650 | 28,150 | 17,540 | 22,340 | 24,600
15,9 | 24,070 | 34,860 | 43,860 | 47,250 | 45,150 | 50,190 | 21,700 | 34,490 | 41,49
18.5 | 35,100 | 42,610 | 59,560 | 60,140 | 61,320 | 63,420 | 23,7% | 38,220 | 65,520
21,0 | 48,300 | 58,120 | 63,630 | 61,530 | 52,710 67,200 | 27,280 | 49,770 | 61,740

o]}
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fheory. The none~linearity of most of the deflexion profiles with
load is thought to be due to the inelastic béhaviour of the concrete
deck. ‘

STRAINS

Figure 4-8 shows the strain behaviour aéross the top concrete
flange and over the cross-section. Althougﬁ the concrete strains as
measured by ERS gauges are tensile, they none-the-less demonstrate
the shear lag effect across the wide concrete flange. The 'elastic’
properties of the concrete used are not fully known. TFor example, the
Poisson's ratic for the concrete is not known. In the absence of an
obvious cause, the tensile nature of the extreme top fibre concrete
strains is thought to be due to the general erratic behaviour of the
measuring system. TFigure 4-8 shows the strain distribution across the
depth of the section at a locad of 5.4, KN The strain distribution is
linear across the steel section but not co-linear across the entire
section. None-co-linearity of strain over girder depth has been
recorded by various workers as a characteristic of composite beams where
there is interface discontinuity of materials and interaction is ensured
by means of some mechanical form of shear connection.' This tendency
is usuvally accompanied with interface slip. Although an attempt was

made to measure interface slip in this test, no measurable slip seemed

to have occured. ’ '
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CHAPTER V

GENERAL RECOMMENDATIONS

A careful study of the proposals put forward in the report
of the Committee of Inquiry into the Basis of Design and Method of
Erection of Steel Box Girder Bridges under Merrison reveals two
interesting features as follows:

1. Loads and forces to be considered in design are to be
estimated using appropriate partial load factors and strength
factors.

2. Recommendations on Global analysis of the super-structure
emphasised the use of elastic methods of analysis in estimating
relevant moments, shears and deflexions.

Because the behaviour of box girders is still not.fully under-
stood, it is not feasible to use a collapse method concept in their
designs; also theoretical sStudies of elasitc behaviour of this tyﬁe
of structure have shown that only the elastic method of analysis is
sufficiently understood to help unravel the complex behaviour of the
interacting plate assembly forming the box. Recommendations on method
of analysis as contained in the report seem to be based on three
procedures:

1. The use of the transformed section theory in ﬁredicting
iongitudinal stresses due to symmetrical loading allowing for shear

lag effects in the flanges of box girders.
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2. The estimation of longitudinal torsicnal warping stresses
in the vicinity of intermédiate éupports and at the loaded section
under the HB vehicle and knife edge load using the elastic relation
for torsional bending.

3. The estimation of additional longitudinal distorsicnal
warping stbesses of the section due to applied torque and employing
the results of the Beam on Elastic Foundation analogy referred to
earlier. In any design effort at least two of these three procedures
will have to be employed to predict total stresses due to applied
loading. From the results of the present analysis, the following
recommendations are suggested for adoption in the design of hox
girder bridges.

1. The loads, forces and permissible stresses to be considered
should be so factored as to correspond to assumed working loads and
stresses, since reliaﬁce is put on elastic methods in estimating the
response to loads of an assumed design section.

2. That unified approach to the analysis of bo£.girder bridges
be adopted instead of two or three combined approaches none of which
is exact or capable of giving global picture of response. The method

of analysis presented here and similar methods (e.g. Goldberg and

Leve's displacements method) are not too complex to employ in the design

of this complex structure. The HB vehicle and knife Edge Load are
representable in mathematical form, using Fourier expansion and the
sclution of "Edge-connected Composite Plates" subjected to bending

presented in the thesis.
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3. Effective width factors should only be used where torsicnal
- couples are small. Where torsional couples due to the HB vehicle and
&; Knife Edge load are large, the effective width concept‘is no longer

appropriate. A:torsional couple could be considered small if the

: additional longitudinal stress due to it is not more than 25% of the
'Ei— permissible stress.

4. Although the present analysis has not examined the influence
" of diaphragms, it is suggested that the full torsional effect of the

loads referred to in 3 above be allowed for in design.

5. Where effective width factors are relevant to design, the
recommendations in this thesis (Table 1) or those in the Merriéon
report may be quite adequate.

6. The side slope of the inclined webs of bog girders be not

greater than 15° to the vertical. Future studies may help in answering

A

& nagging questions about the instability of longitudinal stress values
with web side slope.

7. Longitudinal flange stiffeners may be evenly spaced where

!E torsional effects are minimal, for example, when the bridge deck is not
very wide and the loads are not likely to be at the extreme edges of
the top flange. However, where torsional effects are likely to be

E? pronounced, stiffeners should be provided in both flange and web with

such spacing as to ensure greater stiffener effect at the corners of

the box.




10 -

5]

8. These recommendations should be applied in conjuction

%ﬁﬁ

with recommendations in Codes of Practice as they relate to buckling

in steel plates, creep and shrinkage in concrete.

<

<3
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NOTATIONS ’
Ek 2b = Width of top plate of box girder
' 2c =, Length of slanting sides of box girder
24 = Width of bottom plate of box girder
.i} W = Transverse deflection in z- direction
Xy = Rectangular co-ordinate axes for plate
P = Applied Load
Li& E,H,V = Modulus of Elasticity, Shearing Modulus of Elasticity
) and Poisson's ratio.
x = Bending moment in the x- direction
*} Myy = Bending moment in y- direction
Mxy = Twisting moment about plane x-y.
Q = Shearing Force Per Unit Length parallel to the y axes
o XX
v ny = Shearing Force Per Unit Length parallel to the x axes
" = Kirchoff Shearing Stress normal to edge x- axis
L, \ = Kirchoff Shearing Stress normal to y~ axis
. yy
o
O x = Normal Stress in x~ direction
o&y = Normal Stress in y~ direction
o Oxy z Shearing Stress in the xy plane
u = Displacement in x direction for-any point in the
mid-plane of the plate.
v = Displacement in y- direction for any peint in the

mid-plane of the plate.
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Superposition coefficients with respect to the

bending field.

Superposition coefficients with respect to the

extensional field

N

Et?

Flexural Ridigidity of Plate = ————
12(1-v?)
Small increment in length

Distance of point load from the x- axis measured

in the y- direction

Distance of point load from the y- axis measured

in the x~ direction
Length of span
The angle which a slanting plate makes with the top plat

Internal plate force per unit length in the x

direction (Membrane Force)

Membrane force per unit length in the y- direction

Membrane shearing force in the plane x-y

Transverse deflection field due to the applied load
The superimposed transverse deflection field :

Stress function

Function of x
Function of y

Thickness of Plate -
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b
P1 = -(3~-v)/(1-v)
Ek p2 — - 2.0/{1+v)
pied
P3 = -(1-v)/(1+v)
P4 = t?2/12
?&;r PS5 = +2(14v)/12.(1-v)
P6 + = 2/(1-v)
P7 = - 2v/(1+v)
2 P8 = A2
-
P33 = (1+v)/{(1-v)
Plhy = 2/(1-v%).(31-v)
',' _ Harmenic U’Mrom-"‘t of
'? Pu = &i;ima%aALoad
n = Number of the harmonic or number of half-waves
in the x- direction.
X = Coefficient parameter
B = Effective width factor

o
. ]
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APPENDIX: COMPUTER PROGRAMME LISTING.

// J0B JC12G0 SOMOLU
// OPTION LINK
// EXEC FFORTRAN

IR

OO

11

13

14

FUNCTION SIMULINLsAAsX4FPSHINCIC,ARC)

IMPLICIT REAL*B(A-H,0-2)

REAL *8 AA, X, EPS,SIMUL _ ‘

DIMENS ION IROW(32),JCOL(32)yJORD{32) 4 Y(32) yAAINRCyNRC) 4X1{32)
MAX=N1 ‘
IFOINDIC.GELO)Y MAX=N1+1

IS5 N1 LAGER THAN 32

IF (N1.LEL32) GO T0O 5
HRITEL3,250)

SirMuL=0.

RETURN

BEGIN ELIMINATION PROCEDURE

DETER=1.
DO 18 K=1,N1
KMl=z=K-1

SEARCH FOR THE PIVOT ELEMENT
PIVOT=0.

DO 11 I=14N1

DO 11 J=1,N1

SCAN IROW AND JCOL ARRAYS FOR INVALID PIVGTY SUBSC&TPTS

TF(K.EQ.1) GO 7O §

DO 8 ISCAN = 1,KM]

DO 8 JSCAN =1,KM1
IF(1.EQ.IROW(ISCANY) GO TO 11
IF(J.FQ.JCOLUISCANIIGO TO 11
CONTINUE
TF(DARS{AALT,J)).LE.DABS(PIVOT)) GO 10O 11
PIVOT = AA(T,J)

IROW(K)=1

JCOLIK) = J

CONTINUE

INSURF THAT SELECTED PIVOYT 1S LARGFR THAN EPS

TF(DARS{PIVOT)ILGYL.FPSY GO TQ 12

SIMUL=0.,

RETURN '
UPCATE THE CETERMINANT VALUE

IROWK = JROW(K)}

JCOLK = JCnLik)

DETER = CETER®PIVOT

NORMAL IZE PIVOT ROW ELEMENTS -

DO 14 u=1, MAX
AA(TROWK.J) = AA[IROWK,J)/PIVET
CARRY QUT ELIMINATION AND DEVELOP INVERSE '
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17
18

20

22

24

26

27

28

29

30

250

ey

BA{ IROWK, JCOLK) = 1./PIVOT
DO 18 i=1.N1
AATJICK =aA{{,JCOLK)
TR{T .FEQ. TROWKK) GO TO 18
AAML T, JCOLK ) =—AATJCK/PIVOT
NO 17 J=1,MAX
TFIJLNELJCOLK) AA{T,J3=AA01,3)-AA1JCK*AA(IRGKK, 4}
CONTINUE o

URDER SOLUTION VALUES (IF ANY) AND CREATE JGRD ARKAY

ng 20 I=1,N1

IROWI=1ROW( I

JCOLT = JCOLLT)

JORDUIRDWI) = JCOLT

IF{INDICL.GEL.O} X(JCOLTI=AA{IRCOWI ¥AX)
ACJUST SIGN OF GETERMINANT

INTCH = @

NML = N1-1

DO 22 1=1,NM]

IP1 =1+1

DO 22 J=iP1,NI
IF(JORDEJIGELIJORDIT YY) GO TG 22
JTEMP=JORD{J)

JORO(J) = JORDLT)

JORD(OTY = JTEMP

INTCH =INTCH + 1

CONTINUE

IFUINTCH/2%2 NELINTCH) DBETER=-DETER
IF INDIC IS POSITIVE RETURN wWITH RESULTS
IFLINDIC.LELOY GO TO 26

SIMUL =DETER '

RETURN

LF INDIC {S NEGATIVE OR ZERD UNSCRAMBLE THE INVERSE FIRST BY RGMW!

DO 28 J=1,NI1
DO 27 f=1,N1

IROWI = [ROW(I)

JCOLT = JCoLt1)

Y(JCOLI) =AA(IROWI,J)

DO 28 I=1,Nl

AA(T,d) = Y(I)

THEN BY COLUMNS

D0 30 f=1,N1

60 29 J=1,N1

[ROWJ =[ROW(J)

JCOLY = JCOL(J)

YUIRGWJ) = AALT,JCOLY)

N0 30 J=1,N1,

AA[T4d) = Y(J)

RETURN FOR INDIC NEGATIVE OR ZERG
RETURN

FORMAT FGR OUTPUT STATEMENT
FORMAT{ 1OHON TGO BIG)

END

n
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IMPLICIT REAL%=8{A-H,0-2)

REAL *8B AA,X,FPS,SIMUL

DIMENSTON PSII( 101}, PSE2(1C)PSIZ(10) +PSI4L10) 4SHL{L1D),

ICHL{ 103, CCCTHICLIO0)4SH2{10)4CH2(1CY,SH3{10),CH3(1D)},

CSHEL 10} +CHA( 1O} CCCTHA(10)Y,F3L10) FlfIO’pGC{lG)fGl(lO"”B(3Zlv
3X{32),A8133,33),SINA(LIC)+BB(32,01)CCCTH2(1GC),55H4(10), SSH1(101},
GUCHITLO)SSHZ2U10),CCH2Z{1C) COCHAULIG) ,CHLIL{IC)SHI1{10),CH22(10),
5§H22(10i7CH33(10]:5H33{101|95i11(10’:DS]22[10)|p5133(10}y03112(1
6vSH12(10)vCH12(10‘181(10)'82(1C31011[103'02(1C)7S[NP(IOI

REAL MKYTl,MKYTlZ,MKYTD.MKYTQZ'WKYTQGNKY51uWKVSthVKYSGrMKYSZZf
IMKYSZ'MKYHZ,MKYBZZ,MKYBO,MKY832,MKYB3,MKYS3.MKYS32,NKYSOO.MKY542
ZMKYSQ,MYTI,MYT12;MYT01MYT42,MYTQ,FYSI,NYSlz1MYSG'HYS22,NYSZ.MYBZ
3MY822,MYBD,MY532yMYH3'MYS3.MY532'NYSDG.NYSQZ.MYS4
1L READ(1,100) N1, INGIC,EPS

KRETE (3,604)NL, INDIC,LEPS

604 FORMAT(10X,2{1245X),F14.9)

o

Al

-

. )
\ 4

L& )
bt i

CALCULATING AND PRINTING OF AUGMENTED MATRIX aA

Max =N1
IFCINDICLGELOIMAX=N]L+]
P=2.0E+2
SP=20.0
W=2.0%P/S5P

W=—w
PYE=3.141592654
EPS1=0.5%SP
£52210.0E+6
EC=21.0E+¢
PO1S=0.3

T=0.09

B=2.5
ALPHA= ]9 ,0%PYE/3¢e.0

DC 112 KC=1,7

ALPHA= ALPHA-({PYE/26.C)
SINC=DSINT{ALPHA)
COSC=DSRRT{ 1.0~-SINC*SINC)
C=1.0/SINC
Cl=8-(2.0%COSC/SINC}
COI=ES/{1.0-POTS*POIS)
D=C01%T*T*T/12,.C

ip=2

ETA=-1B/4.0

DO 111 K=1,5

ETA=ETA+8/4,0

IF{ETA-B)4, 11144
4 WK1=0.0

AVKSXT=0.0

AVKSXB=0.0

WKk1=0.0

WK12=0.,0

WK0=0.0
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WK&42=0.0
WK4=0.,0
WKS51=0.0
WKS12=0.0
WKS0=0.0
WK522=0.0
WKS$S2=0.0
WK2=0.0
WKB22=0,.0
WKBO=0.0
WKR32=0.0
WK3=0,0
WKS3=0.0
-WKS$32=0.0
NKSO{):0.0
WKS42=0,0
WK54=0.0
TKX1=0.0
TKX0=0.0
TKX42=0,0
TKX4=0.0
TKX12=0,0
SKX1=0.0
SKX1i2=0.0
SKX0=0.0
SKX22=0.0
SKX2=0.0
BKX2=0.0
BKX22=0.0
BRX0=0.0
BKx32=0.0
BXX3=0.0
SKX3=0,0
5KX32=0.0
SKX00=0.0
SKX42=0.0
SKX4=0.0
TKY1=0.0
TKY12=0.0
TKY42=0.0
TKY4=0.0
SKY1=0.0 -
SKY12=0.0
SKY0=0.0
5KY¥22=0.0
SKY2=0.0
BkYZ2=0.0
BKY;‘_’Z:OoO
BKY(=0.0
BKY32=0.0
BKY3=0.0
SKY3=0.0
SKY32=0.0
SKY00=0,0
SKY42=0.0
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EF SKY4=0.0
: MKYT1=0.0
MKYT12=0.0
MKYT0D=0.0 K )
MKYT42=0.0
MKYT4=0.0
MKYS1=0.0
MKYS12=0.0
MKYS0=0.0
MKYS$22=0.0
MKYS$2=0.0"
i MKYB2=0.0
ty', MKYB22=0.0
‘ MKYBO=0.0

MKYB32=0.0

MKYB3=0.0

MKYS$3=0.0
’H' MKYS$32=0.0

MKYSOC0=0.0
MKY542=0.0
MKYS4=0.0

| £=0.0 .
o EA=0.0 -
: DO 98 N=1,1P

EA=EA+1.0
E=2.0%EA-1.0

ANDA=E*PYE/SP

PSTL{N}=E+ANDA

~ PSI2(NI=C*ANDA

6 PSI3(N)I=DL*ANDA
AL=DEXP(PSILIN})

A2=DEXP({~-PST1{NI}
SHI{N)=0,5%(AL-42)
CHLINI=0.5%(AL+A2)

| AL=DEXP(PSI2(NI)

i A2=DEXP{-PST2(N})

v SH2IN)=0.5%(A1-A2)

CH2(N)=0.5%{ A1 +A2)

ALl=DEXP(PSI3IN))

A2=DEXP{-PSI3(N})
. SH3({N)=0.5%(AL-A2)

: CH3(N)=0.5%{A1+A2)
P1=-(3,0-POIS)/(1.0+POLS)

P2==2.0/(1.0+POIS) , f

P3=={1.0-POIS)/(1.0+P0IS)

P4=T*T/12.0

P5=T#T*(1.,04P01S)1/{12.0%(1.0-PG1S))

P6=2.0/(1.0-P0IS)

o P7==2.08PUIS/{1.0+PO1S)

R PE=ANGA®ANCA
P33=(1.2+P01S)/(1.,0-POIS)
P44=2,0/({1.0-PDISEPOIS)*(1.0-POTS))
PEB=ANDARANCA#ANDA
PEY=TET&T |
PT?==PFRARDRAG /{17, 0"HI 1 _ NaDRI V201 £ _DOTCY
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P742(1.0~POI1S}
P70=ES*ANDA*SINAIN}/(R&{1.0+PGIS))
PTI=ESEANDASSINA(NI /{OL%(1.0+PC1S))
AN=B-ETA
A1=DEXPLANDA%{ B-ETA))
A2=DEXP{~ANCA® (R-€TA))
SSHLIN}=0.5%(A1-42)
CCHI(N}=0.5%(A1+A2)
CCCTHI{NI=CCHLEN)/SSHLIN}
AN1=B+ETA
A1=DEXP{ANDA%{B+ETAY)
A2=DEXP{-ANCA® {B+ETA) )
SSH2IN}=0.5%(A1-A2)
CCH2(N)=0.5%(A1+A2)
CCCTHZ{N)=CCH2{N) /SSHZ{N)
PST4(N)=2,0%B*ANDA
AL=DEXP{PSI4IN))
A2=DEXP(-PSI4(N))
SSH4(N}=0.5¢(A1-A2)
CCH4(N)=C.5% (AL +A2)
CCCTHAINI=CCH4{N) /SSH4(N)
PSI12(N)=1.5¢B*ANCA
AL=DEXP(PSIL12(N)}
A2=DEXP({-PSIL2(N)}
SHI2(N)=0.5%(a1-A2!
CHL2{N)=0,5%(A1+42)
PSILI{N)=B*ANDA/2.0 .
PSI22(N)=C*ANDA/2.0
PSI33(NI=N1*ANGA/2.0
AL=DEXP{PSILLIN}}
82=DEXP{=PSILLIN})
SHILIN}=C.5%(AL-A2)
CHI1IN}=0.5%{A1+A2)
A1=DEXP{PSI22(N))
A2=DEXP{-PSI22(N}}
SH22(N)=0.5%({41-A2)
CH22{NI1=0.5%(A1+42)
Al=DEXP(PSI33{N))
A2=DEXP{~PSI33(N))
SH3I3{NI=0.5%(Aa1-42)
CH33(NJI=0.5%{A1+A2)
C1=CHL{N)
SI=SHI(N}
C2=CH2IN)
$2=SH2(N)
C3=CH3{N)
S3=SH3(N)
C11=CHILIN)
S11=SHLIL{N)
C22=CH22{N)
$22=SH22{N)
C33=CH33(N)
$33=SH33(N)
PLLL=PSTIL(N)
P122=PSI22(N)
P133=PST33U(N}
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P11=PSI1{N)

P12=PSI2{(N)

P13=PSI3(N}

S41=P4¥PBESHI(N)

Cal=P4¥PERCHI{N)

S42=P4%PEESH2(N)

C42=P4¥P8ECH2{N)

$43=P4%PBESHI{N}

C43=P4ePESCR3I(N)

S51=PSEPBESHLI(N)

C51=P5%P8E*CHI(N}

$52=PSEPAESK2(N)

C52=P5%PBECH2{N)

S53=P5%PE&SH3{N]

C53=P5*PRECHI(N} A
SINA(N)=DSIN{ANCA%EPS])
FLIN)=WESSHLIIN ) *SINAIN) /(2.0%ANDAXANDA®ANDALSSHG (N) #D)
FOINI=WESSH2(N)ASINAIN) /(2. 0% ANDAZXANDASANDAESSH4 (N} =D}
GlIN}=ANDAX(B—ETAISCCCTHI(N}I=(1.C+¢PSI4(N)SECCCTHAIN] )
GOUN)=ANDA*(B+ETA}SCCCTH2{N)-{1,C+PST4IN)FCCCTH4IN))
SET UP RIGHT HAND SIDE

FOR THE CASE (0OF TOTAL DISPLACEMENT  FIFLDS FGOR TOP PLAT

OO0

DO 200 NN = 1,32

200 BB(NN,1) =0.0
BB{Lly1)=ANDA%FOIN)®{P4EGO(N}~P5)
BBl6s 1)=FOIN)*{GOIN)+1.0)
BBI25,1)==ANGA%FLIN)Z(P4%*GLIN}~PS)
BBI30, 1) =—-FLINI*(1.0+GL(N)}

DO 300 NN=1,32
300 RBINN)}=AB(NN, 1)
DO 400 M=1,33
DN 500 MM=1,33
{ 500 AA{M,MM) = 0.0 ~
@‘ 400 CONTINUE

AA{l,11=541
AA{1,2)=C41
AA(Ll,3)=—{C51-S541%P11)
El AAl144)=={S51-C41%P 11}
AL{1,5)=542%C0SC
AA{1,+6)=-C42%COSC ;
AA{ L, 7)=(C52-542%P12)*C0OSC
AACLy8)=-(552-C42%P12)%CNSC
AATL,y213=S2%SINC
AA{1422)1=-C2%SINC

53 AA{1,423)=~{P12%S24P2%(C2)%SINC
T AA(1,24)=(P12%C24P2%S2)%SING
RA(2,5)=—S42¢SINC ,
AA(2,6)=C42%SiNC ‘ 7

AM{247)=-(C52~S42%P[2)%SINC
AAL2,8)1={S52-C42¢P12)%SINC :
AA(2,17)=51 ' "



AA(2,18)=C1
AA{2,19)=P1]1%S514P;6C]
AAL2,20)=P1i&Cl4P2%S]
AA(2,21)=52%C0SC
AA(2,223=-C2%C0SC
AAL2,23)=~({PE2%S2+P2%(C2)%CNSC
AA(2,2401=(P12¢C24P22S52)12COSE
AA{3,5)=C2%SINC
AA{3,6)==-S24SINC
AM{3,T)=-P12%C2*SINC
AA{3,B)=P12%SP#SINC
AAl3,;,17)=C1

AA13,181=51
AA(3,191=P11%C1+P|%S]
AM{3,20)=P11%S1+Pj%C1
AA{3,21)= (2*COSC
AAL3,22)=-52%C0SC
A&{3,23)=—(P1l2%C2+P1%S2}*COSC
AA{3,24)=(P12%S24P1%C2)%COSC
AAl4, L )=C1

AA{4,2)=5]

AA{4,3)=P1]1%(C1

AAL 4,y 4)=P11%S]
AB(4,5)=C2%C3SC
AA(4,6)=-52%COSC

AAL 4, T)=—P12%C22C0SC

AA[ Gy 8)=P128S22CNSE
AA(4,21)==C2%SINC

AA(4,22)= S2%SINC

AAl4,y23)= (PI12%C24P1%S2)%SINC
AA{4,24)==(P12%S2+4PL&C2)2SINC
AA[S,1T7)=51

AA(S5,18})=C1

AA{5,19)=P11%51
AA(5,20)=P1l1%C1

AA({5,21) = §2

AA(5,22)=-C?2

AA(S5,23)=—P12%S2

AA(S5,24) = P122C2

CAA[6,1)=S1%ANDA

AA[6,21=C1%ANDA
AA{643)={CL+P11%2S]}=ANDA
AA{G,4)=(SL+P112CI)I®ANDA
AL{BH,5)=¢52%ANECA
Al{b,6)=-C2%ANCA

AA{ GO, THI=—{C2+P 1 2% S2)1%ANDA
AB{ 6y RI=4{S240} 2202 )#ANDA
AL(T,123=Cl

AALT,2)=51

AAL T 3)={P6xS5|+P11%C1)
AA(T44)=(PO6ECL+Pl1%S1)
AA[T,5)==C2

AAL T,6})=52

AA( Ty T)=(P6EXS24PL7%(2)
AATTy8l=={PEEC2+P)2%52)
Aatg,17)=C1

125
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AAL8,18)=51
AA(B,19)=(P11%C14P3%S])
AALB,20)=(P11%S1+P3%C])
AA(8,21)=C2

AAL8,22) = -S2
" AA(8,23) = —{P12¢C2+P3%52)
- CAAL8,24)={P12%S2+4P3%C2)

AA{9,+5)= S42*%C0SC
AALG,6)=C42%COSC
i AA(9,T)=—(C52-5422P12}3C0SC
; AALG, 81=-{552-C42%P12}%COSC
3 AA(9,9}=-543
ol AA(9,10}1=C43
AA(9,11) = =((53-543%P13)
AA(9,12)={553-C43%P]3)
. AAL9,21)= +S2%SINC
] AA(G,22)= +C2%SINC
i AA(9,23)= {PL2BS2+P2%C2)1%STNC
AA{9,24)= +{PL2%C24P2%52)5SINC
AA{10,51=542%SINC
AA(10,612C42%SINC
AALLO, T)==(C52-542%P12) #SINC
AAL10,8)=—{S52-C42=P 12) *SINC
AA(10,21) = =$2%C0SC
AAL10,22)=-C22C0SC
AA{1C, 23)==(PL2%S2+P2%C2)%CDSC
AA{10,24)= —(P12%C2+P2252)*COSC
AAL10,25)=53
AA(10,26)=-C3
AA{10,27)=—(P13¢S24P22(C )
AA(10,28)=P13%C3+P2%53
AA(L1,5)==C2%S INC
AR(11,6)=-S2%SINC
AA{ 1L, T}==PL28C2%SINC
AA{11,8)=-PL2%S2%SINC
AA(11,21)==-C2%L0SC
A8{11,22)=-S2%CGSE
AA(11,23)=(P12%C24P 1352} %COSC
AA{11,243=~{P12%S2+P1%C2)1*C0SC
AAC11,25}=C3
AA(11,26)=-53
AA(LL,27)=-{P13%C34P 1553}
AA{11,28)=P13%S2+P12(3
AA{12,5)=-C2%COSC
AA(12,6)=-52%C0SC
AML12,T7)=-P12%C28C0OSC
AA(12,8)=-P12%S2%(0SC
AAl12,9)=C3
AA{12,10)=-5S3
AA(12,11)=-P13%(C2
AA(17,121=P13%S3
AAL12,21)= C2*SINC
AA{124220= S2%SINC
AA{12,23)= (PL2#C2+PL%S2}%SINC
AA{12,24)= (PL125S2+P12C2)%SINC
AA(L13,21) = +52
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AA{13,22)=C2
AA(13,23)=P12%52

AA({13,24) = P12%C2
. AAL13,25) = §3
AAL13,26)=-C3
5 AA(L13,27)==P13%53

4L AAT13,28) = PLl3¢(C3
AA(14,5)= S2%=ANCA
AA(14,6)= C2%ANDA
AAL 142 T)=(C2+P12%52)¥ANDA
AA(14,10)=-C3%aNDA
%& AAL L4y 11)=—{C3+P123%53)*ANDA
. AA{14,12)=4(S53+4P13%=C3)%ANDA
AAL15,5)=C2
AB(15,6)= S2

. AA(L1S,T)= (POE=S52+P12%C2)

. : AA(15,8)=(P6*C2+P 125521}
ot AA( 1545 = -C3
AA(15,10)= S3

AA{ LS, 111-(P6¢53+P13*C3)
AA(1S5, 12)=—1{POx(34P13%53)
. AALLI6,213=C2
AA(16422) = §2
AA(16423) = (P12%C2+P3%S52)
AAL 16,24 0=(P125S24P3%(2)
Ad(16,25)=C3
AA{16,26) = ~-S3
Ad{16,27} = =(P13*C3+P3%S53)
AA{16,28)=P13+S534P3%(C3
AA(17,9)= 543
AA(1T7,10)=C43
AA{L1T7y11)=—(C53~-543%P13)
AA(17,12)=—-{553-C43%P13)
AMLTy13)1=—5422C0SC
AALL17,14)=C42%C0SC
AA{1T, 15)=—{C52-542%P 12 )%(N5C
AALLT,16)= (552-C42%P12)*C0OSC
AA{L17,29)= S2%#SINC
ABA{1T7y30)==C2=SINC
AA(1T7,31)==(S2%P12+P2%C2)*SINC
AA(17432)= (C2%P12+P2%52)=SINC
AA{ 1By 13)= S42%SINC
AALLB, 14)=-C42%S5SINC
AALLIBy 15)=1C052-542%P12)*SINC
AAL1By160==(8552-C42%P12}Y+SINC
AA(18,25)=-53
AA{ 1By 263=-C3
AA(1B,27)=-(P13%S3+P22(C3)
AA(18,2B)=—{(P13*C2+P2%53}
AL(18,29)= 52%(0SC
AA{LB, 30)=-C2*C0OSC
AA(L8,31)==(P12%524P2%C2}*CTISC
AA(18B,32)= (PL12#C24+P22S52}%C0OSC
AA(LD,29)= C2%C0SC
AA[]19,30)==-52%C0OSC
AAL1Q, AN Y= [P ] 2% 24D 1 B2V EMNCr

g
-
¢
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2. AAL19,32)= (PL2%S24P12C2}%CNSC
AAL19, 13)=-C2#SINC
AA(19,24)= S2%SINC
. AAL19, 15)= PL2%C2%SINC
AA{19,16}=-P12%S2¢SINC
' AAL19,25)=-C3
AA(19,26)=~53
CAA(19,27)=-{P13%C3+¢P1%53}
AA{19,28)=-(P13%S3+P1%(3)
AA(20,9}=C3 '
AA{20,10)= S3
' AA(20,11)= P13%C3
o © AAL20,12)2P13%53
- AA(20,13)=-C22C0SC
AA(20,14)= S2%COSC
AAL20,15)= PL2%C2%C0OSC
AR{20,16)=-P12%522C05SC
AA(20,29)=-C2%SINC
AA(20,30)= S22SINC
AA{20431)= (PL2¥C24P1%S52}12SINC
AA(20,32)==(P122S24P1%C2}%SINC
AA(21,25) = +53
Aral21,261=C3
AA(Z21,27)=P13%S3
AA(21,28) = P13%C3
AA(21,29) = $2
AAL21,30)=-C2
ARL21,31)=Lp12es)
AA(21,32) = PL2%C2
: AAI22,9)= SI*ANDA
> 8A(22,10)= C3*ANGA
AA{22,11)=(C3+P132SA}*ANDA
AAL22,12)= (S3+4P138C3)#ANDA
AA(22,13)= +S2%ANDA
AA(22,14)= -C2%ANCA
AA(22+151=-(C24P12%S2)%ANDA
ABL22,16)= +(S24P12%C2) &ANDA
AL{23,9)=C3
AA{23,10)=+5%53
AA{23,11)= (P6%S3¢P134C3)
AA(23,12)={P6*C34P13¢53)
AA[23,13}=-C2
AA(23,14)= §2
AA{23,15)= (P6%S24P124C2)
AA(23, 16)1=-{PE*C2+P 12352}
AA(24,25)=C3
AA(24,26) = S3
AA{24y27) = {P12%(3+4P3%S3)
AA(24,28)=(P135S34p3%C3)
AM(24,29)=C2
AR{24,30) = -§2
AA{24,31) = —(P124C24P3252)
ABL24,32)=(Pl2%S24P3%(C2)
AAL25,1)==541
AA(25,2)=C4] .
AA{25,3)=—{C51-S41%P11)

oy

VK
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AAL25,4)={551-C41%P 11}
AA(25,13)=-5422C0OSC

AAL25,14) = =-(42%CNSC
AA(25,15)= (C52-5424P12)%CASC
AAL{25,16)=4{552-C42%¥P12)%C0SC
AA(25,29)= S2%SINC .
AA(25,30)= C2%SINC

AAL25,310= (PLl2%SZ4P2%C2)5SINC ..
AA(25432)= (PL12%C2+4P2%S2)%SINC
AAL 26, 131=54285 INC

AA(26418)= C42%SINC .
AA{26415)=-(C52-S42%P 12 )%SINC
AAL26416)==($52-C42%P12)%SINC
AA{26417)= S1

AM( 26, 18)=-C1
AA{26419)==(PL1%SL+P2%C1)
AM26,20)=4(PL1%C14+P22S])
AA[26,29)= S2%C0SC )
AA(26,300= C2%COSC

AA{26,310= [PL2%S2+P2%C2)%(C0SC
AA{26,32)}= (PL12%C2¢P25$2)¢CDSC
AA{ 2By 13)= C2%LOSC

AA(28,14)= S22C0OSC

AA(28,15)= P12%C2%COSC
AA(28,16)= PL2%S2¢COSC
AA{2842%)= C2%SINC

AA{28,30)= S2%SINC

AA(28,31)= {PL2%*C2+P1%S2)%2SINC
AA(28,32)= (P12%S2+P1%L2)2SINC
AA{27413)= C2%SINC

AA(2T74140= S2%SINC

AA(27,15)= P12%C2%SINC
AAL2T,16)= P12%S22SINC
AAL27,29)=-C2%C0OSC
AA(27,30)==S52%C0OSC
AA{27,31)=—(P124C2+4PL%*S2)1%COSC
AAL27,32)=—(P12%52+P1%C2)%C0OSC
AA(2T,17)=-C1

AM(2T,18)= $1

AA(27,19)= (PL1%C1+P1%S])
AA(27,20)==(PL1%S1+P1%C 1)
AA{28,1)=Cl
AA(28,2)==51
AA(28,3)=—PLl1%(1
AA(28,4)=P11%5]
AA{2G,17)=51
AM(29,18)=-C1
AA(29,19}=—P11%S]
AAL29,20)=P11%C]
AA(29,29) = S2
AA(29,30)=C2
AA{2G,31)=P12%§?
AA(29,32) = P12%(2
AA(30,1)=-S1®ANCA
AA{14,9)=+S2EANEA
An? Y
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AA{3043)=(CL+P11%S1)*ANCA
AA{3054)=-(SL+PL11%*CLI®ANDA
AA{30,13)==52%ANDA

AA{ 30, L4)==C2%ANDA"
AA(30,15)==(C2+P12%52)%ANDA
AA{30,16)=—{S2+P12&C2)%ANDA

AA({31,1) = =C]

AA(31,2) = SI

AA{31,3) = (P6%S1+P11%C])
AA(3144}) = —-(PEXCLI+P11%S]})
AA{31,13) = C2

AA{31,14) = S2

AQ{31415) = (PE&XS2+P12%C2)
AAL31,16) = (Pe*(C2+4P12%52)

AA{32,171=C1
AA(32,18)=-S1 ~
AA{32,19)=—(P11%C1+P3I%S])
AAL32,20)={P11%S1+P3%C1)
AA(32,29)=C2 :
AA(32,30) = S2 ,
AA(32,31) = (P12%(C2+4P3%S2)
AA(32,32)={P12%S2+4P3%(2)

DO 2112 121,32
AA(1,33}=B8(1,1)

CALL SIMUL -
DETER=SIMUL(32,AA,X,EPS,INDIC,33)

PRINTING UOF SOLUTIONS

IF{INCIC.GELOY GO TO 38

WRITE(3,202)DETER

WRITEL3440)((8801,3)4d=1,8}48=1,132)
WRITE(3,40)((AA{L,J)94=9,16),121,232)
WRITE(3,403{(AA014J)4J=1T7424)41=21,32)
WRITE{3,403{(aA{14J)4J=25,32),1=1,32)

GO TN 68 :

WRITE{3,203) DETER,N1

WRITE{3,208)(X(1}s1=1,8)

WRITEL13,20810{X{1),1=9,16}

WRITE(2,2083(X{1),! = 17,24)

WRITF{3,2081{Xx{1),1=25,22)
H012=F1(N3*lGl(N)*SHlZ‘Ni*pSllZ(N)*CH[Z(N)}*S!NA(NJ
ﬁ022=FUtNJ*(GG{Ni*SHll(NJ+PSI11{N)*CH11(N}J*SINA{K) .
NI=ANDA*IK(1)¢CH1{N)*X(Zl*SHl(N’*x(3)*pSII(NJ*CH1(Nl+XI4)*pSIliN3
ISHIIN) J2SINA(N) :
HTﬁZziiﬁNGA*fX‘l’*CHII(N}—X(23*SH11IN’“X(3]*PSIII(N1*CHII(N)+X(4’
IPSIll{NJ*SHllfN)}]*(FI(N]*(GIIN]*SHII(N)*PSIllfN?*CHilfNJJJ)*SINQ
2ZUN)
W712=ANDA*{X(l)*CHll(N)+X{ZJ*SHll(N3+X13)*pS]II{N]*(HII(N]+X(43*
IPSTLLINDI*SHILIN) JS=STNAIN)
WTO=((QNDA*K{l))*{Fl(NJ*(G[(N}*SPl{N)+PSII‘h)*CHl(N}i}i*SINQ(NJ
W4=ANDA*1X(1)”CH1{N!-X(Zl*SHI(NJ“x‘3)*DSl1(N)*CH1(N)*X(4)*pSil(Nl
ISHL{N})®SINAIN)
NSI=ANDA*‘X(5]*CF2(NJ+X(6J*SH2(NI+X{7)*PSIZ{N’*CHZ(N’*X(B)*PS12‘H

THCIIDIMM YV AC TRIAS ALY
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wSl2= ANDA*(X(%)*CHZZ(NI+Xl6)*‘Hc2IN)*XI7I*P51221h!*CHZZ(NI+X(83*
1PSI22(N)*SH22{N})=SINAIN)

WSO=ANCAXX{S5)*SINA{N)

r wS22= ANDA*(X(J)*CF?Z(N!-X(é!*SHZZ(N)*K(7)*PSIZZ{N)*CHZZ(NJ'&X{S)t

3}

IPST22{N)I*SH22{N))*SINAINI}
i} WS 2= ANDAR{X{S)#CH2INI-X{ 6)*SH2(NI-X{TI%PSIZ2(N)2CH2(N)+X(B)*PSI2{N
&f 1#SH2IN) } #SINAIN}
W2= ANOA*(X!?J*CFB(N)+X(lO}*SH’INI+X(11)*PS[BlAi*CH31h1+X(12}*9513
INJESHI{NIIEZSINA(N)
wB22= ANDD*{X(QJ*CF33{N)+K(IOJ*SH33(N)+X(11)*95!33(N)#CH33[N)+X{12
‘ LEPST33{NI*SHI3IN) I=SINA(N)
i WBO=ANDA®X(G)*SINA{N)
o WB3Z2=ANDAX{X{9)¢CrI3(N}-X(10)*SHIZ(N)-X(L1I*PSI33(NISCHII(NI+X{12
L#PSI33(N)*SHI3ZIN) )*SINA(IN) '
W3=ANDA®IX{G)I#CF3INI-X{ 1CI*SHAUN)~X (111 #PSTI3(NIFCHI(N}+X{12)%PSI3

INI#*SHIINDII®RSINA (N \ -
WS3=ANDAS(X( 13 )*CH2IN)I#X{ 1432 SHZ(N) +X{L1SISPSTI2IN)SCH2IN)+X{16}2PS
» 12(NY=ESH2{N) J&*SINA{N]

N$32= ANDA*(X(13)*CH221N}+K(lél*SH<2(NJ+X[ISl*PSIZZIh}#CHZZ(N)+X(1
PI#PST22(NI®SH22IN) I&SINAINY
o WSOO=ANDA=X{ L3 )*SINA(N)
WS42= ANDA*IX(13)*CH22(N)-X(14)*SH22(N)-¥(lS)*PSIZZ(h)¢CH22(NJ+X{1
LI®PSTI22(N)IESH22(N) I *SINAIN)
WSa= ANDA*lX(lS)*CPZ(N)*ﬁ(14)*<F7!AJ-X(lS)*PSlZ(h}*CH21h1+thb}*
IPSE2INIZSH2IN) JRESINATIN)
T10=0.5%¢
IF(ETA-T10) 11412412
11 WT12=WT12+4W022
GO TQ 10
12 WYL2=WT12+W012
10 CONTINUE X '
TSEXLI=ES*SINAIN)#PA&{-X{17)I&SHL{N)-X{18)$CHLIN)+X{1S}¢{PTECH]L (N}~
IPSTLINIESHLIIN) )X (20)%(PTRSHI(N)=PSTLIN)I®CHL(N)Y I} /(L. 0+POIS)
TSEX12=ESE*SINA(NI®PE*{=-X{ 1T} *SHLILIN)=X{LEB)*CHLIL(N}+X{19)#(PT*CHI]1
TUNI-PSTLLINI®SHLLIN) ) #X{ 20} &(PI*SHLLII{N)I-PSTILLINI2CHLLIN)))/ {1 .0¢
2P01S)
TSEXO=-ES*SINA(NI#PBEX(18)/(1.C+PCIS) ,
TSEX42=ES¢SINAINI®PEE(X{17)#SHLLIN)-X(18)*CHIL (N}+X{(L9)#(PT&CHLL(
Li-PSTLI{N)#SHLLIND) =X{20)#(PT7#SH11(N}-PSTLL(N)*CH11(N)})1/(1.0+PO1
2)
TSFEX4=ESESINAIN)®PEE{X{ 1 7)ESHLI{N)-X(LE}*CHLIN)#X{1G)}*(PT&¢CHL{N])~
LPSTLINI®SHLINY )=X(20)#{ PT*SHL{N)-PSTI(N)2CHLIN)}} /{1.0+POIS) -~
SSEX1=ES*SINAINI®PAR{-X{21)%SH2IN)-X{22)%CH2I{N) +X{23)&(PT#CH2{N)~
LPSI2(N)*SH2IN) J4X (24} #(PT#SH2 (N} -PSI2(N)*CH2(N}})/{1.0+P0OIS)
SSEX12=€S#*SINAIN}SPBE({-X{ 21 1% SH22(N)=XA22)#CH22{N)+X{23)%(PT=CH22
I(N!-PSIZZ{NI*SH27(NI}+X(24l*(P?*ShZZ(\I—P<122(h)*CHZZ[Nli)/(l 0+
2P01S)
SSEXQO=-ES*SINAINI#PEEX{22) /L1 .C+PCLS).
SSEX22=ES*SINA(NI*PBE(X(21)2SH22(N}~X{22)2CH22(N) +X{23)%{PT%CH22
1:N)-p5i22tNJ*SH22(NJr-xt24}#(P7¢5h22(N)~051221N1tCsztwa)3/11 O+
2P0IS)
SSEX2= ES*SlNA{Nl*PE*tX{21}*SHZ(h)-x(ZZ}*CHZ(hl+X(231#iP7*CH2tNJ-
IPSTZ2(N)IASH2{N) )=X {24} =(PTHSH2 (N)=PST2(N)#CH2 (N} )} /(1.0+P0OIS)
BSFX2=FES*SINAIN)I#PHE{ -X{25)2SHIIN)-X(26)%CHI(NI+X(2T)*{PTLCH3 (N}~
LPST3{N)=SHIINY J+X{283)%(PT&SHI(N)-PST3{NI*CHI(N})) /{1.0+POIS)
BSFXZ2=FSeS INA(NIZAPAR{ XA PSS ECHARINI=X{2ALACHAZ NI+ XYl 2T I R[(DTHIHY"
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l(N)*PQIBB(N]*SHBBIV)l*Xl28?*(P?*SF33(\1~P§133(N}*CH33(Nl)!I(l O+
2P0 1S}

BSEXO=-FS*SINAIN)2PEEX[26)/(1.C+PCIS)

BSEX32=ES*SINA(N)*PE* (X125)4SHIZ(N}=-X{26)¢LHII (NI +X(2T) % PTECH33
LAN}-PSTI33UIN)I*SH33INI)-X(28)%{PI*SHII(N)-PSI33(N)XCHIZ(N)))/{1.0+
2ZPO1S)

BSEX3=ES*SINA{NI#PBEIX{25)%SHIINI=-X{26)%CHAINI+X{2T7)2[PT2CH3(N)-
IPSTI3INI®SHI(N) I =-X{2B8)*(PT*SHI{NI-PSIZIN)ELHI{N))I/(1.0+PAIS)

SSFX3=FS%SINAINI*PE¥(-X{2GI=SH2(N}=-X{3C)*CHZ{N)¢X({31)I#{PT2CH2(N}
LPSTZ2INI®SHZIN} I+ X1 32)%(PT*SHZIN)I=PSI2(N)*CH2IN})I /(L. 0+POIS) .

SSEX3I2=ES®SINA{NI*PB¥{-~X(29)%Sh22 (N)=~X{30)#CH22(N)+X{31) & {PT#H2,
l(N)-PSIZZIN)*SHZZKN}l+X(32)*(P?*SH22(NI—PSIZZ(RJ*CHZZ(NII)/(l O+
2P0IS)

SSEXQO0=-ES*SINA(NI®*PB2X(30)/(1.C+FCOIS)

SSEXA2=E3%SINAINI#*PBF (X{29)%SH22(NI-X (30} ®CH22{N)+X{31) (P74 CH2?2
LIN)=PSIZ22(N)*SH22{N))~X(32)%(PIHSH22(N}~PSI22(N)*CH22(NI)I )/ (1. 0+
2P0IS)

SSEX4=ES¥SINAIN)#PEE(X(29)%¢SHZIN)=X(3CI*CH2{NI+X{31)*(PTHCH2(N)~
IPSI2{N)I®RSH2IN) )~-X{32}2(PT&SH2(N}~PSI2{NI*CH2{NY)) /(1. 0+POIS) )

TSEYL1=FSASINAINI#*PB*(XI LT)*SHLIN)+X{18)#CHL{N}*X{19)%(P11#SHL (N)-
IP2ECHLIN) J4X(20)%(PLLI%C14P2%S1))/(1.0+PCIS)

TSEY12=ES®SINAINI#PS* (XL ITI*S11+X(18}%CIL+X(19)%(P1112SL1+P2%C11
16X{20)1%{PL11%C11+P2%S11})/(1.C+PCISH

TSEYO=ES*SINA(N}IEPB*(X(18) +X{191%P2)/{1.04P0OTS)

TSFY42= ES*SINA(N]*PB*(—XIl?)*Sll+Xl|8)¢Cl1+X119)¢(P111*Sll+°?*C1
1-X(20)%(PLLI%CL1+P2%511))/{1.C+PTILS)

T TSEY4= ES*SIN&(N)*PB*(—X(173¢SI+X(18)*C1+X(19}*(P11*31+92¢C11—X(2(
1={PL1*CL+P2*51))1/(1.04P0ILS)

SSEYl= ES*SiNA(N)#PS*(X(21)*S2+X(?2I*CZ*X{23)*(91?*S?+F2¢C2)+K(24
1{PL2¥C2+4P2%S2) 1 /(1.0+P0OTS)

SSEYLZ2=ES*SINACNI*PIE(X(21)%S22+4X{22)#C224X{23)%(P12225224P2%(C22
1IX{24)%(P122%C22+P2%S22))/7(1.04PCIS)

SSEYO=ES*SINA{IN)*PB&{X({22)+X{23)%P2}/(1.0+PGIS)

SSEY22=ES®SINAIN)I¥PE* (=X Z21)€S22+4Xx{22)%C22+X{23)¢{pPl22%S22+P2%(C2;
1-X{24)2{P122%022+4P2%S522))1/11.G+PCIS}

SSEYZ=ES*SINA{N)&=PB&(~ X(21l*Sz+X(22)*62+X(23)*(P12*52+P2*52}~X(21
1¥(PL25C2+P2%S52))/(1.04P0IS) ;

BSEYZ2=ES*SINAIN}I*PB*(X{25)%S3+X(26)*C3+X{27)#{P13%534P25C3)+X{28]
1#(P13%L3+4P2%53})3/{(1.0+4P0OIS)

BSEy22= ES*SINA!N)*PB*(X(25)*5’3+X(26l¢C33+X(2?)*l9133*533+P2*C331
L+X(28)*(P133%C33+4P2%533))/(1.C+POES)

BSFYO=ESASINAINI®PBR(X{26)4X(2T)%2P2)/(1.0+PCILS)

BSEY32=FESHSINAINI#PBR(~X{25)%S33+X{26)%C33+¢X{27)2(P133%533+P2¢(3"
1-X128)*(P133*C33+P2%S33))/(1.C+POIS)

BSEY3=FES*SINAIN)*PR2[~ Xl25!*S’+X(26)*C341127)*(P13*83+92*C31—X128
1#(P132C3+4P2%53))/(1.0+PDIS)
CSSEY3=ES®SINAINI*PB8H(X[29)%2S2+4X{3C)I*C2+X{31)#(PL2%2S2+P23C2 14X {32
1¥(P12%C2+P2%52})/(1.0+POIS)

SSFy32= ES*SINA(N!*PB*(X(ZG)#522+X(303¢C22+X{31I*(P122*32?+PZ*C223
1+4X132)%{P122%C22+P2 *S5221)/11.0+PCIS)

SSEYQO=ES*SINAIN)=PE#(X{ICI+X{21)¥P2) /{]1.0+PCIS)

SSEYA2=ES*SINA(NI#*PBE(-X(2G)%S22+X{30)0C224X{3L)#{P122%S224P24( 22
I=X{32)%(P122%C224P2%522))/(1.C+POLS) -

SSEY4= ES*S[NA{NI*PP*I-K(29'*“2+X(303*C2*X(311*(PlZ*SZ#PZ*C?}-X(3c
13{P12%C2+P2%S52)1/{1.0+POILS)
MYTI=PT2%(X{1)2PT4axCHIIN)+X(2)2P745S1 4+ X (3182 N¥ESISCTLECT IO Vg
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IX(AIR(2.0%C1+PT42PL1#ST)I%SINAIN]

MYTL2=PT2%(X{ L) ePT4*CLL+X(2)%P T4 S 11+ %{3} 2 (2. 0%S1LL+P74*PL11%C11)
IX{4)*(2.0%CLLI+PT4PILI*SLILE)&SINA{N)I=-DE(2,.0%PHESLLI=FOIN)+PBEFO(N.
2{GO{N)*PT4%S11+PLLIL*PT4*CLL) I #SINA(N)

MYTO=P72%(X{ )i %PT44+X{4)%2 . 0)&SINA(NI-D2{2.0%P8*SIEFCI{N}+PEEFQ(N
LI®(GO{N)#PT4%S 1 +P 74P 1 %C1))2SINA{N}

MYTAZ=PT2%(X{L)*PI42xCL1=-X{2)%PT40S1-X(31¢ (2, 0%S11+P742PL11%C11)
IX{a)®(2,0%CLL4PT4%P L11%S11))=SINAIN)I-D=(2,0%PB*S I#FL{N)+PREFI (N
ZIGLIN)2P 4SS 14P74¥PL11*C LT3 SSINAIN)

MYTa4=PT2%(X{1)*PT4XCL-X(2)%PT4xS1~X(3)*(2,C2S1+PT4%PL14CLI+X(4)%
l.ORC1I+PT4%PL1%S1)I#SINAIN])

MYSL=PT28( X5} %P T4%C2~XI6)*PT4*52~ X(?)#(Z CeS2+4PT42P12%C2)+X%(8)%
loQ%C2+PT4EP12%S2) )%STINAIN)

MYSL2=PT2%(X{5)*P 74%{ 22~ X(6)*P74*522—X(7!*(2.0*522+P?439122*C22L
IX(B8)5(2.,0%C22+PT4%P 122%S22) = SINA(N)

MYSO=PT2%(X{5)%PT4+X{8)%2.0)%SINA(N)

MYS2 =PT25{X[5)FP 7402+ X[ 6IFPT4ES2+4X (T #{2.0%S24PT742P128C2)+X(8)!
L2.0%C2#PT4*P12%S2) )% SINA(N)

MYS22= P?Z*(x{5i*D?4#C22+X¢6)*P?4¢522+X(7I¢(2.0#522+P74#P122*622L
IX(B)%(2.0%C22+4P 74%P 1224522 ) )% SINA(N)

MYB2=PT2%(X{ S} &P TaxCI-X{10)%P74%S3-X(11}2{2,0%S3+FT4OPLI34C T} +X (1]
L#{2.,0%C3+P 74P 13253} ) %SINAIN)

MYBZ22=PT72%(X(G)*P74*C33-X{10}*P74%533- xilll*(? 0¢S33¢PT74%P1338(12"
14X (12)#{2,0%C334P 74P 1335533 )=SINAINY

MYBO=PT2%{X(G}2PT4+X{121%2.0)*%SINAIN)

MYR32=PT2%(X{G)*PT4%C3A3+X(1C)*PT742S33+X[11)%({2, 0%533+PT4%P133%(C3:
LexX{12)%(2.0%C334PT4%P 133%533) J«SINAIN)

MYRI=PI2%(X(Q)*PT4+C3+X{1C)*P745S34X{11)1%{2. 0*<3+P74*P13*C3}+X{L
12{2,0¢C3+PT742P 13553 ] )2SINAIN)

MYS3=PT23(X(13)1#PT14%C2-Xx{14)%Pj4%<2- x(l%l*(z 0#S2+F74%F122C2)+X1
LISV ={ 2. 0%C2+PT4%xP 1 2%S2) 1% STNA[N)

MYS32=PT728(X{13)8PT4C22-X{ L4 )2PT14%522-X{15)%(2.0%S22+4P74%P122%(,
LIEXI 1618 2. 0%0224PT4%P122%522 )1 %SINAIN)

MYSOO=PT2%(X(13)%0T4+X(16)%2,.C)&SINALN) 1

MYS42=P 2% (X{13)%¥PT48C224 X (1A ¢PT4#S22+4 0 151%(2,04522+4+PT7423P}22%(;
LI+X{16)%(2,0%C224P74%P122%522))%SINA(N)

MYSG=PT2%(X(13)%P 742C2+X(14)%P 74524 X{15)%(2,0%S2+4PT4%P{22C2) 4X (]

P) (2. 0%C2+4PT4%P 12552 12 SINA(N) ,

AVSXT=PTCR(-X{ 18)%S1-X(19)%(P2%S1+P11%C1)} 8

AVSXB=P 718 {~X{26)%S3-%X{27)%(P24S3+P13%C3)})

WK4=WK G+ W4

WK42=WK42+WT 42

WKO=WKO+WTO

WK1Z=sWK12+WT12

WK1=WK1+Wwl

WKS1=WKS1+WS1

WKS12=WKS12+WSLZ

WKSO=WKS0+WSO

WKSZ22=WKS522+WS22

WKSZ2=WKS2+WS52

WKB22=wKBZ22+WB22

WKBO=WKBG+wW30 N

WKB32=WKB32+WB32

WKS3=WKS3+¢WS3

WKS32=WKS32+4WS5372

WKSOOD=WKSQQ+WS QO



- 134

~

WKS42=WKS42+4WS 4z
WKS4=WKS4+WS4 N
TKX4=TKX4+TSEX4
TKXO=TKXG+TSEXOQ
TKX1=TKX1+TSEX]
TRKX12=TKX12+TSEX]12
WK2=WK2+W2
WK3=WK3I+w3 -
TKX42=TKX424TSEX4D
SKX1=SKX1+SSEX]
SKX12=SKX124SSEx1?2
SKX0=SKX0+SSEXQ
3 SKX22=SKX22+5SEX22
= SKX2=SKX24SSEX2 |
‘ BKX2=BKX2+BSEX?
BKX22=BKX22+4BSEX2?
BKXO=BKXQ0+B8SEXC
l BKX32=BKX32+BSEX3?

BKX3=BKX3+BSFX3
SKX3=SKX3+SSEX3
SKX32=SKX32+SSEX32
SKXOO=SKXOO+SSEXOC
SKX42=SKX42+SSEX4E
SKX4=SKX4+5SEx 4
TKY42=¥KY42+TSEV42
TKY4=TKY4+TSEY 4
TKYO=TKYO+TSEYO
TKY1=TKY1+TSEY1
TKY12=TKY12+TSEY12
SKY1=SKY1+SSEY1
SKY12=SKY12+SSEY12
SKYO=SKYQ+SSEYQ
SKY22=SKY22+¢55FY2)
SKY2=SKY2+SSEY?
BKY2=BKY2+RSEY?
BKY22=BKY22+BSEY22
BKYG=BKYO+BSEYG
BKY32=HKY32+BSEY32
BKY3=BKY34+BSEY3
SKY3=SKY3+SSEY3
SKY32=SKY32+SSEY32
SKY00=SKY00+SSEYOG
SKY42=SKY42+SSEY42
SKY4=SKY4+SSEY4
MKYT1=MKYTI+MYT]
MKYT12=MKYT12+MYI12
MKYTO=MKYTO+MYTO
MKYT42=MKYT42+MYT4)
MKYT4=MKVT4+MYT4
MKYSl=MKYSl+MYSl
MKY512=MKY512+MYSIZ
MKYSO=MKYSO+MY SO
MKYS?2=MKY522+M¥822
~ MKY52=MKYSZ+MYSZ
M‘g_ MKYB2=MKYB24MYB2 *
™ MKY822=MKY822+MY822
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MKY BO= MK Y BO +MY BQ
MKYB32=MKYB32+MYB32
MKYB3I=MKYB3+MYB 3
MKYS3=MKYS3+MYS2
MKYS32=MKYS324MYS$32
MKYSOD=MKYGU+MY.SO0
MKYS42=MKYS42+4MYS42
MKYS4=MKYS4+MYS4
AVKSXB=AVKSXB+AVSXS
AVKSXT=AVKSKT+AVSXT
EFWT=AVK SXT /TKX 1 ,
EFWR=AVK SXB/BKX2 |
98 CONTINUE/

WRITEL 3, 5111 WK 4, WK42 WK Oy WK12 yhK1
HRITE(3,S512IWKS1sWKSLE2,WKSO,WKS22 4WKS2
WRATE (3,513) WK2:WKB22,WKBO,hKB32,WK3 .
WRITE{3,514)WKS3,WKS32,WKSOC,wKS42,WKS4
AWRITEC 3y 61LITKX L TKXL2, TKXOy TKX42 , TK X4
T OWRITE(3y612)8KX1ySKX12ySKXOySKX2245KX2
WRITE(3,613)BKX2,BKX22,RKXC,BKX32,BKX3
WRITE(3,614)SKX3,SKX32,SKX00, SKX42,SKX4
WRITE{3, T11)TKY L1, TKY12,TKYO,TKY42,TKY4
WRITE(3,7T12)SKY1,5KY12,SKYO,SKY22,SKY2 |
WRITE{3, T13)BKY2,BKY22,BKY04BKY32,BKY3
WRITEL3, 71435KY3,5KY32,SKY00D, SKY42,SKY4
WRITE(3, 211} MKYT14MKYT12,MKYTO,MKYT42 ,MKYT4
WRITE(3,212) MKYSLI,MKYS12,MKYSC,MKYS22 ,MKYS?
WRITE{3,213) MKYRZ,MKYB22,MKYBG,MKYB32,MYBE3
WRITE(3,214) MKYS3,MKYS32,MKYSCO,NKYS42,MKYS4
C
111 CONTINUE
112 CONTINUE
C
1144 FORMAT(/1X,2(4%X,F12.5))
1000 FORMAT{/3X,'ANGLE=",F12.5])
4444 FORMAT{/1X, *AVKSXT=1 ,F12.5,6X,9AVKSXR=7 ,F12.5})
511 FORMAT(/1IX, ‘WK4 =9, F12.5,2Xy"hKG42 =9 ,F12.542X4*WKO =%,F12.5,2X
IPWKL2 =9,F12.542X, WK1 =',F12.5) .
512 FORMAT(/1X, *WKSL =0 ,F12.542Xs "hKS12=? ,F12.542X,'WKSO =*,F12.5,2X
1fWKS22="1 |’:12-512xt'HKSZ =t ,Fl12.5}
i 513 FORMAT{/1X,'WK2 =% ,3F12.542Xy "WKB22=" ) F12.5,2X,"WKB0 =% ,F12.5,2X

1*wWKB32=F,F12.5:2X3*WK3 =0,F17.5)

514 FORMAT{/1X, *WKS3 TRl 2459 2Ky ThKE32= 1 ,F 12,542 X9 ' WKSO0=",F12.5,2X
1I9WKSE2=T,F12,.5,2X,'WKSs =',F12.5} : :

611 FORMAT(/IXsPTKX] =" 3F16e5+2X9'TKX12=% ,F1l6.5,2Xs* TKXO =P FlH.5,42X
LOTKX42=" ,F16.5,2X4"TKX4 =9 ,F1l&.5)

612 FORMAT({ /11X, "SKX1 =% ,F16.542X, *SKXLIZ2=% ,F16.542X,7SKX0 =? s Fl6.542X
19SKX22=Y 4 Flb.542%9"SKX2 =4,FlE.5)

€13 FORMAT(/1X,'BKX2 U FLl6.532X s "BKX22=" ,F16.542X"BKX0 =% ,F16.5,2X
1'BKX32=" 3 F16.542X4"BKX3 =0 ,F1E.5)

tl4 FGRMAT{IIX,'$KXB =V F16.592X s PSKXI2=1 4, F16.542% " SKX00=7,F16.5,2X,
LY SKX42= 4 FlE .54 2K 8SKXG==9 ,F1£,.5)

2Ll FORHAT{IIX.'MKYI1=‘,F12.5,2X,'FKY112=',F12.5.2X.'HKYTG='.FIZ.S,Z
L' MKYT42= ,F1l2.542Xy*"MKYT4=?,F12.9)

212 FORMAT (/I o "MK YSL =t o F 12 o0 o2 X EMKYSTI D=t L F1I2. 5.9 ANKVS=? .13 & _9
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1VMKY S22=9,F12.542%, "MKYS2=%,F12,.5)

213 FOPMAT{/1X, "MKYB2=13F12.5,2Xy *MKYB272=F12.542X, " MKYBO=" yF12.5,2
1°MKYB32=" 4 F12.592Xy *MKYB3=4,F12.5)

214 FORMAT(/1X,"MKYS3=¢,F12.5,2X e 'MKYS32=10,F12.542X,*¥KYSCG=",F12.5,
12X, "MKYS42=1,F12,5,2X, "MKYS4=*,F12.5)

711 FORMATL/IXy "TKYL=4,F16.5,2Xy*TKYL12=" ,F16.5¢2X,"TKYO=? ,F16.5,2X,
Lt TKY42=1 ,F16.572X.‘IKY4=' 1FlEL.5)

712 FURMAT(/lX,'SKY1=“,F16.5.2X,'SKYIZ?'qFlb.S,ZX}'SKYO=',F16.5,2X.
19SKY22=% ,F16.542X,*SKY2=4,F16.5} ,

T13 FORMAT(/1X,'BKY2=*,F16, 5.2x.*anv22-',F16 592Xy "BKYO=" 3, F1645,2X,
1'BKY32=*,F16.542X,'BKY3=*,F16.5}

T14 FORMAT(/1Xy *SKY3=9,F16.542Xy*SKY325",F16.542X,'SKY00=*,F16.5+2%,
LYSKY42=",F16.542X,75KY4=2,F1€,.5)

40 FORMAT(1H1,8(3X,F12.5))

100 FORMAT{12,12,F14.5)

202 FORMAT{Fl4.8)

203 FORMAT(F14.8,3X,12)

208 FORMAT({1H,8(3%X,F12.5))

406 FORMAT(//2X42(5X,F164.5))
sTop .
ENG

EXEC LNKEDT
EXEC
1l 006005



