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Abstract

This study used ARMA-GARCH h)pe oolatilin] models for predicting future values of the Nigerian stock market's
percentage nominal returns and volatilihj. The data used in the study are time series data of the monthly Nigerian
Stock Exchange All-Share-Index for the period of January 1990 to December 2012. The data was further segmented
into in-sample and out-sample data sets for model building and out-of-sample forecast comparisons. Three
ARMA(l, 2)-GARCH(l, 1) models with skeioed nornuil distribution (SNORM), skewed Student-t distribution
(SSTD) and skewed generalized error distribu tion (SGED) were fitted. In-sample model selections were based on
the Akaike Info77nation Criterion (AI C), Bayes Information Criterion ( BIC), Schwarz Information Criterion (
SIC) and the Hannan - Quinn Information Criterion ( HQIC), while out-sample forecast evaluations were based
on the Forecast Root Mean Square Error (FRMSE) and Forecast Mean Absolute Error (FMAE) meirics. The
results of the study revealed the asymmetn) inherent in the stock market returns distribution with kuriosis that
exceeds that of normal distribution. TIle ARMA (1, 2)-GARCH (1, 1) model with sketoed normal error distribution
slightly outperformed the other models in the out-sample forecast evaluations, but for short-run forecasts the three
models are quite adequa te.
Keywords: GARCH model, Skewed distribution, Conditional mean and Conditional variance

1.0 Introduction

Forecasting of volatility of financial assets is fundamental in risk management,
derivative pricing, hedging and. estimation of risks associated with investment
portfolios. Volatility is a central parameter for many financial decisions and is simply
the random and autocorrelated changes in the variance exhibited by financial time
series. The analysis of risks and uncertainty in financial markets has given rise to
methods that allow for the modeling of temporal dependencies in the variances and
covariances of financial variables.

Most of the volatility models-presented in the empirical literature are based on the
assumption that volatility is time-varying and that periods of high volatility tend to
cluster (Ane, 2006). The Autoregressive Conditional Heteroscedasticity (ARCH)
models introduced by Engle (1982) and later extended to Generalized ARCH or
GARCH models in Bollerslev (1986) have proven to be useful means for empirically
capturing well observed features jn financial.or economic time series such as fat tails,
large kurtosis, leverage~effe~ts, co-rnovernentsjn volatility, and volatility clustering.
The insight offered by the' ARCH or generalized ARCH models-according to Hamilton
(2010) -lie in the distinction .b~tv".een the conditional and unconditional second order- - .....
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moments. While the unconditional variance-covariance matrix for the variables of
interest may be independent of time; the conditional variances and covariances often
depend on the past states of the data generating process. Thus, assumptions of
homoscedasticity can lead to loss of asymptotic efficiency.

Many studies have shown the existence of direct relationship between the volatility of
an asset's return and its market capitalization or its liquidity (Ane. 2006). And it has
been observed that most of the empirical applications of ARCH or GARCH models
have been in the study of financial time series such as stock prices/ or returns; interest
rates and exchange rates (Bollerslev and Woolridge (1992), Hamilton (2010)). Cohen et
al. (1978) also asserted that variance is inversely related to the market value of a stock.
Cheung and Ng (1992) explained that although the strength of the relations between
stock price dynamics and firm size appear to change over time; the essential
characteristics of such relationships are stable.

In Nigeria, Ogum et nl. (2005) examined the emerging stock market volatility using
Nigerian stock market returns series. They fitted EGARCH model to the series, and the
result of their analysis showed the presence of asymmetric volatility in the Nigerian
stock market. Also Olowe (2009) investigated the relationship between stock market
returns and volatility using an EGARCH-M model based on insurance and banking
reforms, stock market crash and the global financial crisis. His results showed some
evidence of relationship between volatility and stock returns, the impacts of banking
reforms and market crash was found to be negative; and insurance reforms and
financial crisis have no effect on stock returns. Emenike (2010) fitted GARCH (I, 1) and
GJR-GARCH (I, 1) models to examine volatility persistence, leverage effects and
asyrrunetries of returns on the monthly NSE All-Share-Index. The results of his study
showed that the returns process is characterized by fat-tail; leverage effects and
volatility persistence. Suleiman (2011) used daily market capitalization index of the
Nigerian stock exchange to assess the robustness of stock market returns volatility and
its effect on the performanc~ on the capital market. His study employed ARCH and
GARCH-type models for the estimation of the 'conditional returns variance.~ , .

The findings from his study showed the presen,ce of volatility in the conditional
variance as-well as the long-term volatilitypersistence in the stock market indicating
that Nigerian stock market is inefficient. Idris (2012) also examined the impact of stock
market liberalization on the size and liquidity of the Nigerian stock exchange using

,""" ..

data for the period 1986 to 2010. Fitting multiple regression and ARCH models, the
study revealed that foreign portfolio investment has no significant effect on the size
and liquidity of the Nigerian stock market. He further recommended that the market
structure be strengthened so as to create a sound environment that will encourage
foreign portfolio investments. Other studies conducted by [ayasuriya (2002), Terfa
(2010), Kehinde (2011), Oke and Adewusi (2012), and Osisanwo and Atanda (2012) as

--------
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well as those already cited based their models and analyses on the assumption that the
returns distribution is Gaussian. This distributional assumption is usually violated by
most economic and financial returns time series. Thus, this study intends to determine
first the distribution of the NSE All-Share-Index returns process, and in the case of
non-normality, fit skewed ARMA-ARCH or ARMA-GARCH models to the returns
data. A good exposition to the theory on the ARCH, GARCH, EGARCH and TGARCH
models can be found in Franke et al (2004), and in econometric or financial time series
textbooks such as Hamilton (1994), Cryer et al (2008), Tsay (2010) and Enders (2010).

2,0 Statistical preliminaries

Let rt denote the stock market returns at time t. Then, the returns process can be
defined as:

(1)

where f.-lt = E(rtITt-l) is the conditional expected returns function which may be time
variant; Et corresponds to innovation in the return at time t, and Tt-1 is a set of
conditioning information based on past history of r.. In the classical time series
analysis framework, it is common to model the conditional mean returns process using
a multiple regression, nonlinear regression or a stationary Autoregressive-moving-
average (ARMA) model. The general formulation of a stationary ARMA(l11,11)models
is:

(2)

where ai, i = 1,2, ... ,171 and Pj,j = 0,1, 2, ... , n are real constants, (Po = 1, am '* 0, Pn '*
0) and Et is a white noise process with constant variance er2. An ARMA(l1l, 0) model is
referred to as an autoregressive model of order 111denoted by AR(71l); while an
ARMA(O, 11) model is referred to as a moving average model of order Jl and is denoted
by MA(n). The disadvantage of the ARMA models for modeling financial time series is
the assumption ·of constancy of the innovations variance. SU1Cemost financial time
series exhibit changes in volatility, the series cannot be adequately captured or
modeled by the assumption of constant variance. According to Aydernir (1998), the
limitations of the ARMA models definitely lead to choices of models where either the
general ARMA framework is retained and allowing Et as non-Gaussian white noise, or
abandoning the Iinearity assumptions of the ARMA models.

In this study, the ARMA framework for modeling the conditional mean is retained.
and we allow Et = ertZt denote an ARCH or GARCH process which may have Gaussian
or non-Caussian distribution. ert denotes the standard deviation of the innovations at
time t, and Zt is a sequence of independent and identically distributed random
variables with mean zero and unit variance. Thus, Equation (1) can be rewritten as:

(3)
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(4)

The Equation (4) suggests modeling the innovations process using ARCH or GARCI-I-
type models.

2.1 Testing for ARCH Effects

The Lagrange Multiplier (LM) test can be constructed for testing the presence of ARCH
effects based on regressing cE on C;_i for i = 1,2, ...,p. Under the null hypothesis of no
ARCH effects, the test statistic

(5)

where N is the length of the time series used and R2 is the coefficient of determination
obtained from the regression. For significant values of LM statistic, the null hypothesis
of no ARCH effects is rejected. Similarly, the Ljung and Box (1978) Q-statistic can be
used to diagnose serial correlation ill the residuals obtained from the estima ted
conditional mean returns function. This statistic is given by:

Q = N (N + 2) ,,~_ ph£) ~X2
k L..k-l Nr-k: k (6)

The McLeod and Li (1983) test statistic for testing autocorrelation of the squared
residuals, with the same distribution and degrees of freedom as the Ljung and Box Q-
statistics is given by:

McL(k) = N(N + 2) l:~=lp~~!)~X~ (7)

For significant values of M cL statistic, the null hypothesis of no ARCH effects ill the
squared residuals is rejected.

2.2 The GARCH models

The serial correlations in the squared returns or conditional heteroscedasticity may be
modeled using an ARMA(O, q) process for the squared residuals. To allow for
conditional heteroscedasticity in the residuals, we assume that varir, l:Ft-l) = o} and

(8)

Since Ct is a white noise process, var(ctl:Ft_l) = T;(cEI:Fc-l) = or Thus, Equation (8)
can be rewritten as:

(9)

where Vc = cE- E(cEI:Ft-l) is a white noise process. The models (3) and (8) constitute
the ARCH(q) model of Engle (1982). A formulation that extends Engle's model is the
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more parsimonious GARCH(p, q) models proposed by Bollerslev (1986). This
formulation is given by:

(10)

The coefficients w 2 0, a( i = 1,2, ..., q and b/ j = 1,2, ...,p arc all assumed to be
positive to ensure that the conditional variance (Jl is always positive. The Equations (3)
and (10) specify the ARMA-GARCH models which assume a Gaussian distribution for
the residuals obtained from the conditional expected returns function.

2.2.1 Skewcd distributions

Fernandez and Steel (1998) proposed a general approach that allows the introduction
of skewness into continuous unimodal and symmetric probability distribution
functions using inverse scale factors in the positive and negative real half lines (see
Zhang (2009) and Alexios, (2011) for details). Given the asymmetry parameter, C the
probability density function of a continuous random variable z can be written as:

f(zlD = (~!l[g(~Z)H( -z) + 9 G) H(Z)] (11)

where 0 < ~ < 00; g(.) is a symmetric density function and H(z) = ~[1 + sgn(z)] is the

heavy-side function. For ( = I, the probability density function. f(zl~ = 1) = g(z) is
symmetric, The mean and variance of z are given respectively by:

£(z) = Ml(e;l) (12)

Var(z) = (Mz - MD [(~;l]+ 2Mf - Mz (13)

where Mr is the reil absolute moments of z derived from the relation:

(14)

The Skewed Normal (SNORM), Skewed Student-t (SSTD) and the skewed Generalized
Error Distribution (SGED) are variants of the Normal, Student-t and Generalized Error
Distribution that have been standardized to have mean zero and unit variance using
(12) and (13). Lambert and Lament (2001) extended Fernandez and Steel (1998) density
function to include the conditional mean as well as the conditional variance in a
manner that the innovations have mean zero and unit variance. The skewed
distribution so obtained is a standardized skewed distribution function. The
probability density function of a standardized skewed distribution (see Wiirtz and
Chalabi (2012)), is defined as:

(15)
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with

(16)

where g'(zle) may be any standardized symmetric unimodal distribution function.
The parameters I-l( and CJ( are calculated via the moments given in (13),

The probability density function of sketoed Nonnal distribution (SNORM) for the random
variable z is given by:

(17)

with ( is fixed, and cfJ(z) is the probability density function of the standard normal
distribution, and

r:C!J((z) = -00 cfJ(x)dx (18)

Similarly, the probability density function of the skewed Sludent-i distributio» (SSTD) for
the random variable is given by:

{

2~ ~n-g(((sz+p)lv) forz <--
~ +1 a

f(zl(, v) = 2u( (SZ+IL ) 11
-g -I v for z > --
(2+1 ( - U

(19)

The function g(.) in equation (19) is the standard Student-t density function; ((, v)
denote the asymmetric and shape parameters, while (I-l, s) denote the mean and
standard deviation of the skewed Student-t distribution, The mean I-l and standard
deviation s are defined respectively by:

l = r(~)v'V=2 [e-1]

I- ~r(~) (

s = .Je + (-2 -1-l2 -1

(20)

(21)

The probability density function of the standard sketued generalized error distribution
(SGED) is given by:

v [!Z-O!V]f(zlv,O = 2Br(v-1) exp [1-sgn(z-o)jVBv (22)

where

e= r(v-1) 1--*-r(~) scn (23)

(24)

(25)
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and

A=
r(~)

r(;)rm
(26)

The parameters ( and v > 0 control the skewness and fat tails of the density function.
For ( = 0 and v = 2, the SGED becomes the standard normal distribution.

2.3 Parameter estimation

The skewed Student-t distribution was extended by Lambert and Laurent (2000 and
2001) to accorrunodate the GARCH-type models proposed by Fernandez and Steel
(1998). Its log-likelihood function for the sequence {Zt(19)} is given by:

L(Zt, B) = N [loge r (V;l) - log, G) - ~log, n( v - 2) + log, (~+~-1)+ log, s] -

~If=l [loge al + (v + 1) log, (1 + (S~~~)Z C2lc)]
(27)

with the asymmetric parameter denoted by ( and v denoting the degree of freedom of
the distribution, and

s = J e + (-2 - /l2 - 1

r(V+l)~
u > -Z :- ((_(-1)

vrrr(z)

(28)

(29)

{
I, if Zt ~ -/lIs

I =
t -1, if Zt < -/lIs (30)

The values of the parameter vector 19 that optimizes equation (27) are the maximum
likelihood estimate of the log-likelihood function. In a similar manner, the maximum
likelihood estimates of the parameter vector of the skewed normal and skewed
generalized error distribution can be obtained, (see Lambert and Laurent (2001) and
Dima et al (2008) for details). For this study, the quasi-maximum likelihood estimator
as implemented in the R - fGARCH package developed by Wuertz and Chalabi (2012)
will be used for estimating the parameter vectors of the models. Though, it has been
reported that the QMLE estimates are consistent and have limiting normal distribution
that provides asymptotic standard errors that are valid under non-normality, however,
the estimates are not efficient and the efficiency loss can be marked under asymmetric
distributions (see Bol1erslev and Woolridge (1992), Alexios (2010), and Wuertz and
Chalabi (2012)).

2.4 Forecasting

The ability of the GARCH models for forecasting has been discussed and this can be
found in the review paper by Poon and Granger (2003). The forecast of the future
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values of the conditional mean and conditional variance of the percentage nominal
returns series will be carried out using the R-fGarch package. The documentation on
forecasting using this package can be found in Wuertz and Chalabi (2012).

3.0 Methodology

The monthly percentage nominal return at time t denoted by Tt is defined as:

Tt = 100 * [loge ( ASh )]
ASh-l

(31)

While the monthly percentage nominal return in deviation form at time t is defined as:

(32)

with ASI and f denoting the All-Share-Index and sample mean of respectively. Figure 1
shows the time series, histogram (empirical densitu plot superimposed) and the quantile-
quantile normal plots of the percentage monthly stock market nominal returns for the
period January 1990 through December 2010 (see the Appendix). The sample
descriptive statistics of the returns for this period and the normality tests are presented
in Tables 1 and 2 respectively. It is obvious from the results reported in Tables 1 and 2
and the plotted graphs in Figure 1 that the returns process is asymmetric and non-
normal with kurtosis that exceeds that of the normal distribution. Also, the time series
plot shows that the variance of the returns process changes over time.

Minimum Mean Median Maximum Variance Skcwness Kurtosis

-36.58828 1.70505 1.69188 32.5158 40.33999 -0.7191997 7.955137

Table 1: Sample descriptive statistics of the percentage nominal returns series (Jan. 1990 - Dec. 2010).

test Statistic Degree of freedom p-value
Shapiro - Wilks 0.9054 - 1.756e-11
Jargue - Bera 653.3879 2 2.2e -16

Table 2: Normality tests of the log - returns time series (Jan. 1990 - Dec. 2010)

3.1 Data segmentation

The monthly stock market returns series were segmented into in-sample and out-
sample data sets respectively. The in-sample data set used for fitting the models
comprise of data points from January 1990 through December 2010, while the out-
sample data set used for out-of-sample evaluation comprise of data points from
January 2011 through December 2012.
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3.2 Model evaluations

3.2.1 In-sample evaluation

Model selection criLeria for the ARl\ 1A (JIJ, Il) models have the form:

MSC(m,71) = lcg , 0'2 (m, n) + CN * <p(m, 71) (33)

where 0'2 (m, 71) is the maximum likelihood estimate of the variance oJ the residual
errors from the fitted ARMA (Ill, 11) model, and CN is a sequence indexed by the length
of the series N, and <p(m, n) is the penalty function which penalizes large ARMJ\ (Ill, 11)

models. The following information criteria will be applied in the study for in-sample
evaluations and selection of the best fitted models.

Akaikes Information Criterion (AlC); Akaike (1973):

[
SSE]I1lC(k) = N log, IV + 2k (34)

Bayesian Information Criterion (BIC); Sawa (1978):

BlC(k) = N la [SSE] + 2(k+2)N(T2 + 2N2(T4
g, N SSE SSE2 (35)

Hannan-Quin Information Criterion (HQIC); Hannan and Quinn (1980):

[
SSE]l-IQIC(k) = N log, IV + k lage(lage N) (36)

And the Schwarz Information Criterion (SIC); Schwarz (1978):

[
SSE]SIC(k) = N log, IV + tc log, N (37)

The constant k denotes the number of estimated parameters in the fitted model,

SSE = l:~=l(Rt - Rt)2 denotes the residual sum of squares, while (52 denotes the pure
error variance fi.tting the full model. The models in which all of the inlorma tion criteria
simultaneously agree will be selected as tentative for further analysis.

3.2.2 Out-sample evaluation
.,

Comparisons of the out-of-sample forecast performance of selected models will be
based on the following metrics:

Forecast Root Mean Square Error (FRMSE) defilled hy

[
1, ]1/2FRMSE = - "T_ (R - R )2T' L..T-1 T T (38)

Forecast Mellll Absolute Error (FlvLAE) defilJeli by

1 '\~T' I ~ IFM 11£ = ~ L..T=l RT - ~T (39)
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where r ' is the number of observations in the out-sample data set and the sequence
{Ry}.

4.0 Data analysis and results

Figure 2 presents the autocorrelation function (ACF) and partial autocorrclation
function (PACF) of the centred percentage returns time series of the in-sample data.
These functions suggest maximum orders of 111 = 4 and 11 = 3 respectively for the AR
and MA parts for the expected conditional mean function. Fitting different ARl\"JA
models to the centred percentage returns by varying the order combinations give
optimal orders (m, 11) = (1,2) [or the expected conditional mean function, and
(p, q) = (1,1) for the condi tional variance [unction. These model orders are optimal [or
the SNORM, SSTD and SGED GARCH models respectively. The ARCH test results on
the squared residuals of the fitted ARMJ1(l, 2) model using Equation (7) are shown in
Table 3, while Table 4 shows the sunuJlary of tile models selected using the
information criteria. The McLeod and Li tests show that ARCH effects exist in the
residuals at lags 10, 20, 30, and 40 respectively; thus the choice of ARMA-GARCH
functions for modeling the log-returns series is appropriate.

Type of Test Lag Chi-square statistic Degree of p-value
freedom

Mc Lead and Li 10 85.2481 ]0 4.663e - 14
20 92.79-13 20 2.397e -11
30 94.906 30 1.163e - 08
40 96.3237 40 1.51e - 06

Table 3: ARCH tests on squared residuals of the fitted ARMA (1, 2) model using
McLeod and Li test.

Mode] AlC mc SIC HQIC

Skewed Normal ARMA(I, O)-GARCH(l, 1) 6.12723-1 6.197460 6.126-158 6.155-193
Distribu tion ARMA(l, 1)-GARCH(1, 1) 6.10-1684 6.188958 6.103576 6.138598
(SNORM) ARMA(l, 2)-GARCH(1, 1) 6.061721 6.1600-11 6_060221 6.101287
Skewed ARMA(l, 2)-GARCH(1, 1) 5.952621 6.064986 5.950671 5.99783<)
Student-t
Distri bu tion
(SSTD)
Skewed ARl'I[A(I, O)-GARCH(l, 1) 5.972672 6.056946 5.97"156-1 6.006586
Generalized ARMA(l, l)-GARCH(l, 1) 5.962330 6.060650 5.960830 6.001896
Error ARMA(l, 2)-GARCH(1, 1) 5.933623 6.045988 5.931674 5.978S42
Distribution
(SGED)

Table 4: Summary of the fitted models adequacy by information criterion (selected models Jar each
distribution indicated ill bold blue colom).
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The details of the estimated parameters and the residual diagnostics and filled values
(or each of the estimated models are given in Table 5, Figures 3, 4, 5 and 6 respectively
(see the Appendix). The parameters of tile fitted models are all highly significant,
except [or the intercept term of the SSTD conditional variance function. Also the
residual diagnosLi.cs show that there are no inadequacies found in the fitted models.
The estimated parameters for skcwness and shape are also significant for all of the
models, except for SNORM which has no shape parameter. Th.is is an indication that
tile returns distribution is asymmetric. The [arque-Bera and Shapiro-Vvilks statistics are
significant, indicating tile non-normality of the error distribution. Also, the Ll\l Arch-
test, Ljung-Box and McLeod tests for the residuals and squared residuals indicate that
the fitted ARMA(l, 2)-GARCH(1, 1) models are all adequate for forecasting purposes.
The tune series plots the filled values of the estimated models have almost equal
goodness-of-fit lo the data. The fitted ARMA(l, 2)-GARCH(1, 1) models for each error
distribution type are:

Sketoed Normal Distribution (SNORM):

Rc = 0.9841Rc_1 - 0.6146[t_1 - 0.2719[t_2 (40)

(41)

Skaced Studeni-L Distribution (SSTD):

k, = 0.9687 RC-1 - 0.5786tc_1 - 0.250lEc_2 (42)

(43)8! = 1.7008 + 0.4974[f_1 + 0.64118?_1

Skewed Generalized Error Distribution (SGED):

Rc = 0.9724Rt_1 - 0.6158[t_1 - 0.2594[c_z

8! = 1.8139 + 0.4363{;_1 + 0.60588t2_]

(44)

(45)

The summary of forecast performance of tile fitted models is presented in Table 5. Th
results show that the ARMA(1, 2)-GA1~CH(1, 1) model with skewed normal error
distribution slightly outperformed the other models. The difference in the values of the
performance metrics between SNORM and SGED are negligible. Figures 7, 8 and 9
show the out-of-sample forecasls [or the three models, where tile forecasl confidence
intervals are computed using conditional mean square error. II is also clear from these
forecasls values that as the forecast horizon increases, the forecast intervals also
increases or widens.
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Model fRMSE FMAE

ARMA(l, 2)-GARCH(1, 1) (SNORM) 0.513805 1.780493

Al~MA(1, 2)-GARCI-I(1, 1) (SSTO) 0.529947 1.806737

ARMA(J, 2)-GARCH(J, 1) (SGED) 0.5] 9722 J .790928

Table 5: Values of the forecast performance metrrcs of the fitted models 111the out-of-sarnple d,1td,

5.0 Conclusion

The aim of the study was to fiL skewed GARCH-type volatility models that are
adequate and that can give precise predictions of future values of the conditional mean
nominal returns as well as the associated conditional variance. The nominal returns
series was assessed for non-normality and asymmetry and it was found to be non-
normal with skewness to the left and kurLosis that exceeds that of the normal
distribution. Analysis of the residuals from the fitted ARMA(l, 2) model for the
conditional mean returns function indicates that ARCH effects are present and
significant at the 5% level of significance. These tests necessit. te fitting of ARl\1A-
GARCH models with skewed error distributions to the nominal returns time series.
The nominal returns series was segmented into in-sample and out-sample data sets for
model estimation and forecast performance evaluations respectively. Three ARMA(l,
2)-GARCH(1, 1) models were estimated with Skewed Normal (SNOR 1), Skewed
Student-t Distribution (SSTD) and the Skewed Generalized Error Distribution (SGED).
Each of the estimated models have adequate fit on the data, but it was observed that
the SGED ARMA(l, 2)-GARCH(1, 1) model has the best fit on the data based on U1e
inforrna tion criteria used for model selection.

The out-sample forecast p rformance evaluations were conducLed using FRMSE and
FMAE. The evaluations show that the ARMA-GARCH model with SNORM error
distribution slightly outperformed the order models, but the differences in values of
the metrics between S ORM and SGED or SGED and SSTD error models are very
small. For predicting short-run Iu ture values of the conditional returns and the
conditional variance or volatility, any of the models can be used. But for long-run
forecasts, the forecast confidence intervals widens rapidly which may give imprecise
forecast values, especially with the SSTD error distribution model.
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Figure 1: Actual realizations, histogram with superimposed density plot and quantilc-quantile
normal plot of the percentage nominal Jog-returns process (lan. 1990 - Dec. 201 0).
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Figure 2: ACr and PACF of the in-sample monthly centred percentage nominal returns time series.
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Figure 5: Diagnostics of the fitted ARMA( 1, 2) -GARCH(1, 1) model for SGED.
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Table 5: Values of the estimated parameters and the standardized residuals test tor the AR 1.\(J,2)-
GARCl-l(1,1) models for each distribution.

Skcwcd Normal Sicewcd Student-t Skewcd Generalized E ror I
Distribution (SNORM) Distribution (SSTD) Distribution (SG[D)

Parameter Estimate p-value Estirna te n-value Estimate p-value
ar l 0.9S~08 <2c-16w>* 0.96874 <2e-] 6*** 0.972399 I <2c-16....,...~
mal -0.61455 <2e-16*"* -0.57859 <2e-16*** -0.615794 <2e-16*"*
ma2 -0.27191 0.000218*** -0.2501 0 1.9ge-05*** -0.259.,125 <2e-J6**'

0111e9a 1.71.,181 0.0087-14** 1.70078 0.1388b6 1.813909 0.0388'
alpha 1 0.43612 3.44e-05*** 0.49735 0.025730* 0.436307 2.07e-06**'
betal 0.60623 <2e-16**~ 0.6.,1114 2.71 e- ] 2*** 0.605820 <2C'-'16d*
skew 1.09363 <2e-16*** 1.07794 <2e-16*** 1.036855 <2e-16~**
shape - 3.18990 0.000103*** ] .00000 <2e-16***

J - B Test 48.20384 3 ..J09328e-11 60.5186.,1 7.21645e-14 51.11655 7.9.J6643e-12
S - W Test 0.962365 3.772147e-06 0.9585-127 1.28295e-06 0.9615067 2.946-134e-06
LBRQ(lO) 8.355121 0.5941921 8.212451 0.6080936 8.275416 0.60195·13
LBRQ(15) 12.23536 0.6611338 12.70352 0.6251862 11.92865 0.6844213
LBRQ(20) 14.57.,133 0.8002248 16.607-19 0.6782937 14.609-43 0.79303]

LBR2Q(lO) 7.928778 0.6357937 8.5387] 7 0.5763668 8.1057.,18 0.6185083
LBR2Q(15) 14.68337 0.47-W558 1-1.50729 0.48745-12 14.2]884 0.5090011
LBR2Q(20) 27.87349 0.112-1281 25.66422 0.1771902 26.78799 0.1-1133-19

LMArchTest 10.69959 0.554824 10.32239 0.5877007 10.41812 0.5793296
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Figure 7: Out-of-sample forecasts of SNORMARMA(1, 2}-GARCH(1, 1)
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figure 8: Out-of-sample forecasts of SSTD ARl\lA(l, 2)-GARCHll, I)
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Figure 9: Out-of-sample forecasts of SGED ARMA(1 2) -GARCH(1, 1) .


