EFFICACY OF SELECTED PHYTONUTRIENTS ON RATS EXPOSED TO CEMENT DUST

BY

YAHAYA, TAJUDEEN

(B.Sc. [Hons.] Zaria; M.Sc., Lagos)

A THESIS SUBMITTED TO THE SCHOOL OF POST GRADUATE STUDIES, UNIVERSITY OF LAGOS, AKOKA, LAGOS, NIGERIA, FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D.) DEGREE IN CELL BIOLOGY AND GENETICS.

OCTOBER, 2012

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that the thesis: EFFICACY OF SELECTED PHYTONUTRIENTS ON RATS EXPOSED TO CEMENT DUST

Submitted to the School of Postgraduate Studies

University of Lagos

For the award of the degree of

DOCTOR OF PHILOSOPHY (Ph. D.)

is a record of original research carried out

By:

YAHAYA, TAJUDEEN

in the Department of Cell Biology and Genetics

AUTHOR'S NAME

SIGNATURE

DATE

1st SUPERVISOR'S NAME

SIGNATURE

DATE

2nd SUPERVISOR'S NAME

SIGNATURE

DATE

DEDICATION

This research project is dedicated to my paternal grandmother, **late Madam Ajibola Bello**. May her gentle soul rest in peace.

ACKNOWLEDGEMENTS

All thanks and praise is to Almighty God, the Most Beneficent, the Most Merciful, who made my study a successful one. Indeed, Almighty God has fulfilled His promise when he said, "I will give you words and wisdom in order to succeed." I owe it all to Him.

I would like to express my profound gratitude to my supervisors, Prof. Joy Okpuzor and Dr. Tolu Ajayi for the patience they took in reading through and making meaningful corrections to this thesis. May Almighty God crown them with success in all their endeavours (Amen). I am grateful to Prof. M. O. Akinola for his assistance and contributions to the research project. I wish to also acknowledge the contributions of Dr. I. A. Taiwo and Dr. N. Kelechi for their advice and encouragement throughout my course of study. In fact, I extend my profound gratitude to all the teaching and non-teaching staff that helped or taught me one thing or the other during my course of study. May the Lord increase their knowledge (Amen).

My sincere gratitude goes to my parents, Mallam Yahaya Akanni and Hajiya Aishatu Yahaya for their prayers and moral support throughout the period of this study. I heartily acknowledge the untiring efforts of my wife, Mrs. Kafayat Yahaya. May the Lord bless them all (Amen).

I am deeply indebted to the following people: Mrs. Oladele Esther, Mrs. Salisu Faoozeyah, Tawakalt Fagbayi, Mr. Lateef Olaleye, Late Engr. Oladotun Lookman, Mr. Ajimoko Adebayo, Mr. Aderibigbe Adedayo, Mr. Onakunle Onabanjo, and Alufa Yussuf Usman. May the Lord grant their requests (Amen).

Finally, my gratitude goes to all whose names could not appear in this project because of space constraint. May the Lord give us the best here and hereafter (Amen).

TABLE OF CONTENTS

CONTENTS											PAGE
Title page	:	:	:	:	:	:	:	:	:	:	i
Certification	:	:	:	:	:	:	:	:	:	:	Ii
Dedication	:	:	:	:	:	:	:	:	:	:	111
Acknowledgement	:	:	:	:	:	:	:	:	:	:	iv
Table of Contents	:	:	:	:	:	:	:	:	:	:	V-X
List of Tables	:	:	:	:	:	:	:	:	:	:	xi-xiii
List of Figures	:	:	:	:	:	:	:	:	:	:	xiv-xv
List of Plates	:	:	:	:	:	:	:	:	:	:	xvi-xx
Abstract	:	:	:	:	:	:	:	:	:	:	xxi-xxii

CHAPTER ONE: INTRODUCTION

1.0	Introduction	1
1.1	Background to the study	1
1.2	Statement of problem	3
1.3	Aim of the Study	3
1.4	Purpose of Study	4
1.5	Objectives of Study	4
1.6	Significance of the study	4
1.7	Operational Definition of Terms	4
1.8	List of Abbreviations and Acronyms	6

CHAPTER TWO: LITERATURE REVIEW

2.0	Literature review	8
2.1	Discovery of Ordinary Portland Cement	8

2.2	The Entry of Portland cement into Nigeria Economy	9
2.3	Typical Constituents of Portland Cement	12
2.3.1	Physical Properties of Portland cement	12
2.3.2	Chemical Properties of Portland cement	12
2.4	Toxic Substances in Cement dust and Health Risks	13
2.4.1	Dioxins	13
2.4.2	Particulate Matter	13
2.4.3	Heavy metals	14
2.4.4	Silica	14
2.4.5	Aluminum	15
2.4.6	Gas Emissions	15
2.5	Economic Impacts of Citing a Cement plant in an Environment	16
2.6	Conventional Traditional Pollution Prevention and Control Strategies in Cement Industries.	16
2.6.1	Before Citing the Factory	16
2.6.2	After Citing the Factory	17
2.6.3	Use of Dust Collectors`	17
2.6.4	Personal Hygiene	18
2.7	Causes of the Failures of Traditional Pollution Prevention and Control Strategies in Cement Industries	19
2.7.1	Lack of Funds	19
2.7.2	Strategy Technicalities	19
2.7.3	Concealment of Facts by Cement Manufacturers	19
2.7.4	Weak Environmental Protection Laws	20
2.8	Emergency and First Aid Procedures for People Exposed to Cement dust	20
2.8.1	Dry or Wet Cement in Eyes	20

2.8.2	Cement dust on Wet Skin	21
2.8.3	Inhalation of Dust	21
2.8.4	Ingestion	21
2.9	History of Plant Medicine	21
2.10	Constituents of Medicinal plants	22
2.10.1	Phytonutrient	22
2.10.2	Phytochemical	22
2.11	Nutritional and Medicinal Values of the Selected Phytonutrients	22
2.11.1	Roselle (Hibiscus sabdariffa L.)	22
2.11.2	Moringa (Moringa oleifera Lam)	24
2.11.3	Ginger (Zingiber officinale R.)	25
2.11.4	'Ugwu' (Telfairia Occidentalis Hook-F	27
2.12	Importance of Rats in Biomedical Research	28
2.12.1	Wild Rats (Rattus Rattus L.)	28
2.12.2	Albino Rats (Rattus norvegicus)	29

CHAPTER THREE: MATERIALS AND METHODS

3.0	Materials and Methods	30
3.1	Materials	30
3.1.1	Description of Study site	30
3.1.2	Sources of Animals	32
3.1.2.1	Wild Rat (Rattus rattus L)	32
3.1.2.2	Albino Rat (Rattus norvegicus)	32
3.1.3	Source of the Plant Materials	32
		32

3.2 METHODS

3.2.1	Preparation of the Plant Materials	32
3.2.2	Preparation of the Plant Extracts	33
3.2.3	Phytonutrients Analysis of the Plant Extracts	33
3.2.4	Phytochemical Screening of the Plant Extracts	34
3.2.4.1	Alkaloids	34
3.2.4.2	Tannins	34
3.2.4.3	Glycosides	34
3.2.4.4	Reducing sugars	34
3.2.4.5	Saponins	35
3.2.4.6	Flavonoids	35
3.2.4.7	Phlobatanins	35
3.2.5	Acute Toxicity Test	35
3.2.6	Dosage Administered to the Rats	35
3.2.7	Study Design	36
3.2.7.1	Relative Growth Rate (RGR) of the Rats	36
3.2.7.2	Death Rate, Average Number of Newborn per Birth, and Percentage Offspring Survival	37
3.2.7.3	Elemental Analysis of the Lung Tissues of Exposed Rats	37
3.2.7.4	Haematological Studies	37
3.2.7.5	Biochemical Studies	39
3.2.7.6	Histopathology Studies	41
3.2.7.7	The DNA Purity of the Rats	42
3.3.7.8	Statistical Analysis	44

CHAPTER FOUR: RESULTS

4.0	Results	45
4.1	Acute Toxicity Test	45
4.2.1	Phytonutrient Analysis of the Plant Extracts	45
4.2.2	Phytochemical Screening of the Plant Extracts	45
4.3	Ameliorative Efficacy of the Plant Extracts on the Morphology, and	48
	Some Physical Characteristics of the Exposed Rats.	
4.3.1	Efficacy of the Plant Extracts on Body Weight of the Exposed Rats	45
4.3.1.1	The Wild Rats	45
4.3.1.2	The Albino Rats	45
4.3.2	Efficacy of the Plant Extracts on Physical Characteristics and	52
	Appearances of the Exposed Rats.	
4.3.2.1	The Wild Rats	52
4.3.2.2	The Albino Rats	52
4.4	Chemopreventive Efficacy of the Plant Extracts on Rats Exposed to	56
	Cement dust	
4.4.1	The Wild Rats	56
4.5.2	The Albino Rats	66
4.5	Prophylactic Efficacy of the Plant Extracts on Haematological	77
	Parameters of the Exposed Rats.	
4.5.1	The Wild Rats	77
4.5.2	The Albino Rats	87
4.6	Efficacy of the Plant Extracts on the Biochemical Parameters of Rats	100
	Exposed to Cement dust	
4.6.1	The Wild Rats	100
4.6.2	The Albino Rats	111
4.7	Histopathological Studies of the Exposed Rats	122
4.7.1	The Wild Rats	122
4.7.2	The Albino Rats	135

4.8	Effects of the Plant Extracts on the Purity or Quality of the DNA of the	148
	Exposed Rats.	
4.8.1	The Wild Rats	148
4.8.2	The Albino Rats	148
4.9	Exposure Effects of the Cement Factory	153

CHAPTER FIVE: DISCUSSION OF RESULTS

5.0	Discussion	156
5.1	Phytochemical Screening (Bioactive Compounds) of the Plant Extract	156
5.2	Ameliorative Efficacy of the Plant Extracts on Morphology, and some Physical Characteristics of the Rats Exposed to Cement dust	156
5.3	Chemopreventive Efficacy of the Plant Extracts on Rats Exposed to Cement dust	158
5.4	Bioprotective Efficacy of the Plant Extracts on Haematological Parameters of Rats Exposed to Cement dust	159
5.5	Bioprotective Efficacy of the Plant Extracts on Biochemical Parameters of Rats Exposed to Cement dust	160
5.6	Cell Rebuilding Efficacy of the Plant Extracts on Internal Organs (Lung, Liver and Kidney Tissues) of Rats Exposed to Cement dust	161
5.7	Bioprotective Efficacy of the Plant Extracts on the Purity of the DNA of Rats Exposed to Cement dust	162
5.8	Exposure Effects of the Cement Plant	162
5.9	Summary of Findings	164
5.10	Conclusion	166
5.11	Recommendation/Future Research	166
5.12	Contribution to Knowledge	167
	Appendices	167
	References	178

LIST OF TABLES

TABLE	TITLE	PAGE
1	The Phytonutrients Present in the Plant Extracts	46
2	The Phytochemicals Present in the Plant Extracts	47
3	Effects of Plant Extracts on Body Weight (g) of the Wild Rats	49
4	Effect of the Plant Extracts on the Body Weight (g) of the Exposed Lab	51
	Rats	
5	Efficacy of the Different Plant Extracts on Some Physical	55
	Characteristics of the Exposed Lab Rats	
6	Levels of Calcium (Mg Kg ⁻¹) Detected in the Lungs of the Wild Rats	61
	After Treatment with Different Plant Extract	
7	Level of Silicon (Mg Kg ⁻¹) Detected in the Lungs of the Wild Rats after	62
	Treatment with Different Plant Extracts	
8	Level of Aluminum (Mg Kg ⁻¹) Detected in the Lungs of the Wild Rats after	63
	Treatment with Different Plant Extracts.	
9	Level of Chromium (Mg Kg ⁻¹) Detected in the Lungs of the Wild Rats	64
	After Treatment with Different Plant Extracts.	
10	Level of Lead (Mg Kg ⁻¹) Detected in the Lungs of the Wild Rats After	65
	Treatment with Different Plant Extracts.	
11	Level of Calcium (Mg Kg ⁻¹) Detected in the Lungs of the Exposed Albino	72
	Rats Treated with Different Plant Extracts	
12	Level of Silicon (Mg Kg ⁻¹) Detected in the Lungs of the Exposed Albino	73
	Rats Treated with Different Plant Extracts	
13	Level of Aluminum (Mg Kg ⁻¹) Detected in the Lungs of the Exposed	74
	Albino Rats Treated with Different Plant Extracts	
14	Level of Chromium (Mg Kg ⁻¹) Detected in the Lungs of the Exposed	75
	Albino Rats Treated with Different Plant Extracts	

15	Level of Lead (Mg Kg ⁻¹) Detected in the Lungs of the Exposed Albino Rats	82
	Treated with Different Plant Extracts.	
16	The PCV (%) of the Wild Rats Treated with Different Plant Extracts	83
17	The HB (G DL ⁻¹) of the Wild Rats Treated with Different Plant Extracts	84
18	The RBC (X10 ⁶ μ L ⁻¹) of the Wild Rats Treated with Different Plant	85
	Extracts	
19	The WBC (MM ³) of the Wild Rats Treated with Different Plant Extracts	86
20	The PCV (%) of the Exposed Lab Rats Treated with Different Plant	92
	Extracts	
21	The HB (G DL ⁻¹) of the Exposed Lab Rats Treated with Different Plant	93
	Extracts	
22	The RBC (X10 ⁶ μ L ⁻¹) of the Exposed Lab Rats Treated with Different Plant	94
	Extracts	
23	The WBC (MM ³) of the Exposed Lab Rats Treated with Different Plant	95
	Extracts.	
24	The ALT (U L^{-1}) of the Exposed Wild Rats Treated with Different Plants.	101
25	The AST (U/L^{-1}) of the Exposed Wild Rats Treated with Different Plant	102
	Extracts	
26	The ALP (U/L^{-1}) of the Exposed Wild Rats Treated with Different Plant	103
	Extracts	
27	The Serum Protein (G DL ⁻¹) of the Wild Rats Treated with Different Plant	104
	Extracts	
28	The GSH (U L^{-1}) of the Exposed Wild Rats Treated with Different Plant	105
	Extracts	
29	The ALT (U L^{-1}) of the Exposed Albino Rats Treated with Different Plant	112
30	The AST (U L^{-1}) of the Exposed Albino Rats Treated with Different Plant	113
	Extracts	

31	The ALP (U L ⁻¹) of the Exposed Albino Rats Treated with Different Plant	114
	Extracts	
32	The Serum Protein (G DL ⁻¹) of the Exposed Albino Rats Treated with	115
	Different Plant Extracts	
33	The GSH (U L^{-1}) of the Exposed Albino Rats Treated with Different Plant	116
	Extracts	
34	The DNA Purity of the Wild Rats.	149
35	The DNA Purity of the Albino Rats	151
36	Elemental Analysis of Shagamu Cement Dust	154
37	Variation in Exposure to cement dust in Relation to Closeness to the	155
	Cement Factory	
38	Summary of Findings	164

LIST OF FIGURES

FIGURE	TITLE	PAGES
1	A Map Showing the Location of the Shagamu within Ogun State	31
2	The Percentage Body Weight Increase of the Wild Rats Fed with Different	50
	Plant Extracts for 180 Days.	
3	Relative Growth Rates of the Exposed Lab Rats Fed with Different Plant	53
	Extracts for 180 Days.	
4	Percentage of Calcium (Mg Kg ⁻¹) Reduced in the Lungs of the Wild Rats	67
	After Feeding with the Different Plant Extracts for 180 Days	
5	Percentage of Silicon (Mg Kg ⁻¹) Reduced in the Lungs of the Wild Rats	68
	After Feeding with the Different Plant Extracts for 180 DAYS	
6	Percentage of Aluminum (Mg Kg ⁻¹) Reduced in the Lungs of the Wild Rats	69
	After Feeding with the Different Plant Extracts for 180	
7	Percentage of Chromium (Mg Kg ⁻¹) Reduced in the Lungs of the Wild Rats	70
	After Feeding with the Different Plant Extracts for 180 Days	
8	Percentage of Lead (Mg Kg ⁻¹) Reduced in the Lungs of the Wild Rats	71
	After Feeding with the Different Plant Extracts for 180 Days	
9	Percentage of Calcium (Mg Kg ⁻¹) accumulated in the Lungs of the Exposed	78
	Lab Rats Fed with Different Plant Extracts for 180 Days.	
10	Percentage of Silicon (Mg Kg ⁻¹) accumulated in the Lungs of the Exposed	79
	Lab Rats Fed with Different Plant Extracts for 180 Days	
11	Percentage of Aluminum (Mg Kg ⁻¹) accumulated in the Lungs of the	80
	Exposed Lab Rats Fed with Different Plant Extracts for 180 Days.	
12	Percentage of Chromium (Mg Kg ⁻¹) accumulated in the Lungs of the	81
	Exposed Lab Rats Fed with Different Plant Extracts for 180 Days	
13	Percentage of Lead (Mg Kg ⁻¹) accumulated in the Lungs of the Exposed	82
	Rats Fed with Plant Extracts for 180 Days.	
14	The Percentage Increase in PCV Value of the Wild Rats after Treatment	88
	With the Different Plant Extracts for 180 days.	
15	The Percentage Increase in HB Value of the Wild Rats after Treatment	89
	With Different Plant Extracts for 180 days.	
16	The Percentage Increase in RBC Value of the Wild Rats after Treatment	90
	With Different Plant Extracts for 180 days.	

17	The Percentage Increase in WBC Value of the Wild Rats after Treatment With Different Plant Extracts for 180 days.	91
18	The Percentage PCV Decrease of the Exposed Albino Rats administered with Different Plant Extracts for 180 Days	96
19	The Percentage HB Decrease of the Exposed Albino Rats administered with Different Plant Extracts for 180 Days	97
20	The Percentage RBC Decrease of the Exposed Albino Rats administered with Different Plant Extracts for 180 Days	98
21	The Percentage WBC Increase of the Exposed Albino Rats administered with Different Plant Extracts for 180 Days.	99
22	The Percentage ALT Decrease of the Wild Rats after Treatment with the Plant Extracts for 180 days	106
23	The Percentage AST Decrease of the Wild Rats after Treatment with the Plant Extracts for 180 days	107
24	The Percentage ALP Decrease of the Wild Rats after Treatment with the Plant Extracts for 180 days	108
25	The Percentage Serum Protein Increase of the Wild Rats after Treatment with the Plant Extracts for 180 days	109
26	The Percentage GSH Increase of the Wild Rats after Treatment with the Plant Extracts for 180 days	110
27	The Percentage ALT Increase of the Exposed Albino Rats Treated with the Plant Extracts for 180 days	117
28	The Percentage AST Increase of the Exposed Albino Rats Treated with the Plant Extracts for 180 days	118
29	The Percentage ALP Increase of the Exposed Albino Rats Treated with the Plant Extracts for 180 days	119
30	The Percentage Serum Protein Decrease of the Exposed Rats Treated with the Plant Extracts for 180 days	120
31	The Percentage GSH Decrease of the Exposed Albino Rats Treated with the Plant Extracts for 180 day	121
32	The Mean Purity or Absorbance (A) of the DNA of the Wild Rats Following Treatment with the Plant Extracts.	150
33	The Mean Purity or Absorbance (A) of the DNA of the Exposed Albino Rats	151

LIST OF PLATES

PLATE	TITLE	PAGE
1	Wild Rat at Cement Dust – Free Zone	54
2	Wild Rat at the Cement Factory	54
3	The Rat before Exposure.	57
4	The Control Rat.	57
5	The Roselle Extract Fed Rat.	58
6	The Moringa Extract Fed Rats.	58
7	The Ginger Extract Fed Rats.	59
8	The 'Ugwu' Extract Fed Rats.	59
9	The Mixture Extract Fed Rats.	60
10	Photomicrograph of the Lung Tissues of the Wild Rat at the Cement Dust	123
	Free Zone	
11	Photomicrograph of the Lung Tissues of the Wild Rat before Administering	123
	the Plant Extracts (X400).	
12	Photomicrograph of the Lung Tissues of the Control Rats fed with Distilled	124
	Water	
13	Photomicrograph of the Lung Tissues of the Wild Rat fed with Roselle	124
	Extract (X400)	
14	Photomicrograph of the Lung Tissues of the Wild Rat fed with Moringa	125
	Extract (X400).	
15	Photomicrograph of the Lung Tissues of the Wild Rat fed with Ginger	125
	Extract (X400).	
16	Photomicrograph of the Lung Tissues of the Wild Rat fed with 'Ugwu'	126
	Extract (X400).	
17	Photomicrograph of the Lung Tissues of the Wild Rat fed with	126

Mixture Extract (X400).

18	Photomicrograph of the Liver Tissues of the Wild Rat at the Cement Dust –	127
	Free Zone	
19	Photomicrograph of the Liver Tissues of the Wild Rat before Treatment	127
	with Plant Extract (X400)	
20	Photomicrograph of the Liver Tissues of the Control Rats fed with Distilled	128
	Water	
21	Photomicrograph of the Liver Tissues of the Wild Rat fed with	128
	Roselle Extract (X400).	
22	Photomicrograph of the Liver Tissues of the Wild Rat fed with	129
	Moringa Extract (X400).	
23	Photomicrograph of the Liver Tissues of the Wild Rat fed with	129
	Ginger Extract (X400).	
24	Photomicrograph of the Liver Tissues of the Wild Rat fed with	130
	'Ugwu' Extract (X400).	
25	Photomicrograph of the Liver Tissues of the Wild Rat fed with	130
	Mixture Extract (X400).	
26	Photomicrograph of the Kidney Tissues of the Wild Rat at the Cement Dust	131
	– Free Zone	
27	Photomicrograph of the Kidney Tissues of the Wild Rat before Treatment	131
	with the Plant Extracts (X400).	
28	Photomicrograph of the Kidney Tissues of the Control Rats fed with	132
	Distilled Water	
29	Photomicrograph of the Kidney Tissues of the Wild Rat	132
	Fed with Roselle Extract (X400).	
30	Photomicrograph of the Kidney Tissues of the Wild Rat fed	133
	with Moringa Extract (X400).	

31	Photomicrograph of the Kidney Tissues of the Wild Rat fed	133
	with Ginger Extract (X400).	
32	Photomicrograph of the Kidney Tissues of the Wild Rat fed	134
	with 'Ugwu' Extract (X400).	
33	Photomicrograph of the Kidney Tissues of the Wild Rat fed	134
	with Mixture Extract (X400).	
34	Photomicrograph of the Lung Tissues of the Albino Rats before Exposure	136
	(X 400)	
35	Photomicrograph of the Lung Tissues of the Control Albino Rats	136
	after Exposure to Cement dust (X400).	
36	Photomicrograph of the Lung Tissues of the Exposed Albino Rats fed	137
	with Roselle Extract (X 400).	
37	Photomicrograph of the Lung Tissues of the Exposed Albino Rats fed	137
	with Moringa Extract (X 400)	
38	Photomicrograph of the Lung Tissues of the Exposed Albino Rats fed with	138
	Ginger Extract (X400).	
39	Photomicrograph of the Lung Tissues of the Exposed Albino Rats fed with	138
	'Ugwu' Extract (X400).	
40	Photomicrograph of the Lung Tissues of the Exposed Albino Rats fed	139
	with Mixture of the Extracts (X400).	
41	Photomicrograph of the Liver Tissues of the Albino Rats before Exposure	140
	(X400)	
42	Photomicrograph of the Liver Tissues of the Control Albino Rats at the	140
	End of Exposure (X400).	
43	Photomicrograph of the Liver Tissues of the Exposed Albino Rats fed with	141
	Roselle Extract (X400).	

44	Photomicrograph of the Liver Tissues of the Exposed Albino Rats	141
	fed with Moringa Extract (X400).	
45	Photomicrograph of the Liver Tissues of the Exposed Albino Rats	142
	fed with Ginger Extract (X400).	
46	Photomicrograph of the Liver Tissues of the Exposed Albino Rats fed	142
	with 'Ugwu' Extract (X400).	
47	Photomicrograph of the Liver Tissues of the Exposed Albino Rats fed	143
	with Mixture Extract (X400).	
48	Photomicrograph of the Kidney Tissues of the Albino Rats before	144
	Exposure (X400).	
49	Photomicrograph of the Kidney Tissues of the Control Albino Rats at	144
	the end of Exposure (X400).	
50	Photomicrograph of the Kidney Tissues of the Exposed Albino Rats fed	145
	with Roselle Extract (X400).	
51	Photomicrograph of the Kidney Tissues of the Exposed Albino Rats fed	145
	with Moringa Extract (X400).	
52	Photomicrograph of the Kidney Tissues of the Exposed Albino Rats fed	146
	with Ginger Extract (X400).	
53	Photomicrograph of the Kidney Tissues of the Exposed Albino Rats fed	146
	with 'Ugwu' Extract (X400).	
54	Photomicrograph of the Kidney Tissues of the Exposed Albino Rats fed	147
	with Mixture Extract (X400).	
55	Roselle (Hibiscus sabdariffa)	168
56	Moringa (Moringa oleifera)	169
57	Ginger (Zingiber officinale)	170
58	'Ugwu' (Telfairia occidentalis)	171
59	The Wild rat (Rattus rattus)	172
60	The Albino Rat (Rattus norvegicus)	173

61	Roselle (Herbarium Sample)	174
62	Moringa (Herbarium Sample)	175
63	Ginger (Herbarium Sample)	176
64	'Ugwu' Leave (Herbarium Sample)	177

ABSTRACT

Conventional pollution prevention and control strategies in the cement industry often fail, resulting in exposure of humans to harmful levels of cement dust with attendant heath effects. Owing to the renewed interest in plant medicine, there is a need to evaluate the efficacy of some food plants in ameliorating the effects of cement dust exposure. This study analyzed the bioprotective and cell-rebuilding efficacy, as well as effect on overall health, of Hibiscus sabdariffa Linn (roselle), Moringa oleifera Lam (moringa), Zingiber officinale Roscoe (ginger), and Telfairia occidentalis Hook-f ('ugwu') in both wild rats (Rattus rattus L.) and albino rats (Rattus norvegicus W.) that were exposed to cement dust at the cement factory in Shagamu, Nigeria. The wild rats were grouped into seven comprising of 15 rats per group, while the albino rats were grouped into six comprising of 18 rats per group. Group one of both rats (wild and albino) was control 1 while group two of the wild rats was control 2 which were treated with distilled water only. The test groups were treated individually with 400 mg kg⁻¹ ethanolic extracts of roselle, moringa, ginger, 'ugwu', and a mixture of the plants. Prior to analysis, the weight, gross morphology, elemental analysis of lung tissues, haematological, biochemical, histopathological and DNA analysis were carried out on both groups of rats. After treatment, the weight, birth rate, offspring survival rate, death rate, morphology, and elemental analysis of lung tissues were monitored monthly, while biochemical, histopathological, and DNA analysis were carried out at the end of the exposure.

The test and control rats showed comparable oral bruising and blindness; however, significant differences (p<0.05) were observed between the test and control groups in all other tested parameters. The test rats weighed more than the control rats, and weight differences were

observed among the test rats. The birth, fertility, and offspring survival rates of the test rats were higher than the control rats and the test rats showed a lower death rate when compared with the control rats. The test rats accumulated lower concentrations of calcium, silicon, aluminum, chromium, and lead compared with the control rats. Higher haematological parameters (packed cell volume, haemoglobin, white blood cells, and red blood cells) were noticed in the test rats than in the control rats. The test rats showed moderate to normal biochemical parameters (alanine amino transferase, aspartate amino transferase, alkaline phosphates activity, Serum protein, and reduced glutathione) when compared with the control rats. Severe histological damage was observed in the lung, liver, and kidney tissues of the control rats, while the test rats showed moderate to mild histological conditions. The moderate to normal health status of the test rats may be credited to the antioxidant and cell-rebuilding activities of some nutrients and phytochemicals in the plant extracts.

Overall, the mixture of extracts reduced effects of cement dust exposure more than any individual extract alone. Individually, 'ugwu' performed best, followed by ginger, moringa, and roselle. This study shows that the selected food plants ameliorate the effects of cement dust on exposed rats; that the food plants could be produced in forms to be taken as daily supplements for overall well-being of the exposed rats; and that the inhabitants of affected places should be advised on the possible benefits of including these phytonutrients in their diets.