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ABSTRACT ‘

In this dissertation a new concurrency control
algorithm is proposed and compared for efficiency with
two of the existing algorithms. An abstract model is
used to evaluate the costs associated with the
algorithms and performances of the algorithms are
determined using simulation technique.

Simulation results show that none of the
algorithms is uniformly better than the others.
However, the newly proposed algorithm, the Integrated
Transaction Characteristics, is generally better when
concurrency control information is kept in primary

memory.
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CHAPTER 1
INTRODUCTION
1.1 Database and transaction abstraction
A database is a model of some part of the real
world. It consists of some named resources called
entities. For the database to be a reliable real-
world model, the value of the entities must be, at
all times, related in a way that satisfies certain
integrity constraints.
However, it may be impossible to carry out an

operation_consisting of a sequence of indivisible

2
(atomic) steps)without temporarily violating the
integrity constraints at some intermediate stage(s).
For example, it may be impossible to transfer funds
from one bank account to another without violating
at some intermediate point the <consistency
constraint stating that the sum of all balances
equals the total liability of the bank.

It is for this and some other reasons that
indivisible steps are grouped into an abstraction

called a transaction. Thus if a set of atomic steps

are applied on a consistent database and the



database remains consistent at the end of the
operation, then the set of atomic steps is a unit of
consistency. Such unit of consistency is a
transaction.

If a transaction is run by itself on a consistent
database, then it is guaranteed to produce a
consistent database at the end. As a corollary, the
same holds for any serial (éne-at—a—time) execution
of many transactions. However, in practice,
transactions are run concurrently as many users,
unaware of each other’s presence, initiate their own
transactions. This may result in inconsistencies
despite the guaranteed correctness of individual
transactions.

Therefore, in order to avoid inconsistencies and
thus ensure database correctness when several
transactions access (read and update) the same
database concurrently, there must be some kind of
coordination of the various actions to ensure that
the resulting sequence of actions is correct, that
is every user must receive a consistent view of the

data and the actions must in turn leave the database



in a consistent state at the end.

1.2. Database consistency problems and coordination

of transactions
An important component of a shared database
system is a transaction coordinator or scheduler.
This portion of the system is responsible for
dealing with the recovery and synchronization
aspects of database management.

It coordinates transaction actions such
that the integrity of the database is assured. An
example will illustrate database consistency
problems and the need for proper transaction
coordinatioen. |

Consider a database of three bank accounts
A,B,C, and the three sample banking transactions
shown in Figure 1.1. The read and write operations in
Figure 1.1 respectively represent reading values
from the database into local variables and writing
values from local variables into the database.

Transaction T1 transfers forty Naira from
account A to account B, transaction T2 computes

interest for account A, and transaction T3 deposits



fifty naira into account C. TIf the three
transactions are all allowed to run concurrently
without proper coordination or synchronization,
database consistency problems such as those
highlighted below may arise.
Transaction T1
Begin;
read a-value from A;
read b-value from B;
a-value: = a value - 40;

b-value + 40;

b-value:

write a-value into A;

write b-value into B;
end;

Transaction T2

Begin;
read a-value from A;
a-value: = a-value * 1.10;
write a~value into A;

end;

Transaction T3

Begin;



<

c-value: = c¢=-value + 5O;

write c-value into c;

end;

Figure 1.1: Transactions T1i, T2, T3

1.2.1. Lost Update Problem

Typrcad cate pestant

Consider the actions of transactions Tl

and T2 below. The subtraction of forty naira by T1

from account A is lost when T2 writes the results of

its interest

lost update.

computation. This is referred to as

T2: read a-value from A;

T2: a-value: = a-value * 1.,10;

Tl: read a-value from A;

Tl: read b-value from B;

Tl: a-value: = a-value-40;

Tl: b-value: = b-value + 40;

Tl: write a-value into A;

T1l: write b-value into B;

T2: write a~value into A;
1.2.2 Data inconsistency Problem

Another problem which could occur when



transactions execute concurrently without controls
is the reading of inconsistent data by some
transaction(s). Take for instance the interleaving
of transaction Tl and T4 below. Transaction T4 is
reading while transaction Tl is writing resulting in
accessing of inconsistent data by T4.

The inconsistency arises because T4 reads
balances from both account A and B after T1 has
written its new value for A but before writing its
new value for B. T4 therefore sees forty naira
missing from A but not yet added to B. T4 could not
see such partial results in a correctly synchronized

execution of T1 and T4.

Tl: read a-value from A;

Tl: read b-value from B;

Tl: a-value: a-value - 40;

Tl: b-value: b-value + 40;
Tl: write a-value into A;
T4: read a-value from A;

T4: read b-value from B;

T1l: write b-value into B;



1.3 Serializable executions

If the transactions T1, T2, T3 and T4 are
executed serially, one after the other, the problens
highlighted in section 1.2.1 will not occur. The
results of executing these transactions serially,
one after the other, are known as serial outcomes.

Obviously, different serial outcomes would
result depending on the order of executing the
transactions. But each of the outcomes preserves the
integrity of the database.

But since in practice transactions are not
run serially there is a need for an organised
interleaving of the actions of the transactions such
that the integrity of the database is still
preserved. Such an organised interleaved actions of
transaction which produce the same results as some
serial outcome is called serializable execution
[Eswa76, YannB4].

The problem of guaranteeing
serializability for non-serial or concurrent
transactions is known as the concurrency control

problem. A number of solutions to this problem are



known [Bernsl].

Some of these solutions, called
concurrency control algorithms, are discussed in the
next chapter. Some algorithms which are not forcy
about serializable executions but ensures
preservation of database integrity constraints are
also discussed.

1.4 Scope of Work

This study examines a special class of
concurrency control algorithms. These algorithms are
those that use characteristics of transactions to
further improve the performance of basic concurrency
control mechanisms. The algorithms are Transaction
Classes [Bern80c], Semantically Consistent Schedules
[Garc83] and Integrated Transaction Characteristics.
Transaction Classes and Semantically Consistent
Schedules use syntactic properties and semantic
properties of transactions respectively.

We are proposing the Integrated
Transaction Characteristics algorithm. It is based
on both the syntactic information in Transaction

Classes algorithm and semantic information in



Semantically Consistent schedule algorithm.

Using an abstract concurrency control
model [Care83al] the storage and CPU costs of the
algorithms are determined. Also given some set of
conditions, the relative performance of the
algorithms is evaluated. This is with the hope of
1denF1fy1ng algorithm which performs uniformly
betéer than others and the algorithms that are best
under certain given conditions.

1.5 Oorganisation of the Thesis

The remaining part of the thesis is
organised as follows.

Chapter 2 reviews concurrency control
algorithms and their performance.

Chapter 3 describes Integrated Transaction
Characteristics algorithm and uses an abstract
concurrency control model to determine the storage
and CPU costs of the transaction knowledge based
algorithms. Chapter 4 evaluates relative performance
of the transaction knowledge based algorithms using
a workload model and a logical database queuing

model.



Chapter 5 contains conclusions and recommendations

for further research.
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CHAPTER 2
LITERATURE REVIEW
2,1. Fundamental Mechanisms
Much research on algorithm construction
has been done in the area of concurrency control for
both single-site and distributed database systems.
Some of these researches have focused on the theory
involved in proving the correctness of concurrency
control algorithms [Eswa76, Bern80d, Papa82}]. Early
work has led to the develeopment of new concurrency
control algorithms, most of which are either hybrids
of or based on one of three mechanisms: locking
[Mena78, Gray79], timestamps [Thom78, Bern80a] and
serial validation [Kung8l, Mena82].

Most of the algorithms deal mainly with
two operations READ and WRITE. Some of the
algorithms make use of more information about
transactions or recognize additional operations
[Bern80c) while some allow non-serializable but
integrity preserving executions [Garc83]. The order
in which data items are accessed, the particular set

of items which the transactions might access, and

11



the manner in which WRITES are computed from READS
are examples of additional information that could be
supplied to a transaction processing mechanism.
Examples of additional operations which might be
recognised are INSERT operation to create a new data
item and a DELETE operation to eliminate a data
item.

When only READ and WRITE operations are
allowed, serializability theory is concerned with
two types of dependencies which can arise between
transactions. They are the READ/WRITE and
WRITE/WRITE dependencies. Consider the execution of
two transactions Ti and Tj. A READ/WRITE dependency
holds from transaction Ti to transaction Tj if
either Ti reads some data item which is later
written by Tj or Ti writes some data item which is
later read by Tj. A WRITE/WRITE dependency holds
from Ti to Tj if Ti writes some data item which is
later written by Tj. The existence of a READ/WRITE
or WRITE/WRITE dependency from Ti to Tj implies that
Ti must precede Tj in any serial execution of

transactions which produces the same result as

12



their concurrent execution. One can construct a
graph, called a DEPENDENCY or CONFLICT GRAPH, with
transactions as nodes and an arc from T; to Tj if

there is a dependency from T; to T It can be shown

je
that the concurrent execution of a collection of
transactions is serializable if and only if the
dependency (or conflict) graph is acyeclie, that is
if the graph contains no cycles [Papa77,Papa79,
Stea76). For concurrency control algorithms based on
other types of operations, other types of
dependencies are defined between operations to
provide the basis for serializability [Bernsl].
2.1.1. Locking

Most solutions to concurrency control
problem are based on some explicit or implicit
locking scheme {Eswa76]. A transaction may lock
objects to ensure their inaccessibility while in a
temporarily inconsistent state. Locks can be set
either statically (at transaction startup time) or
dynamically as READS and WRITES are performed.

In the simplest case each object has a

unique lock which is held by at most one transaction

13



at a time. If a transaction attempts to lock an
object that is already locked it must either wait,
abort itself, or preempt the other transaction.

Typical of locking algorithms is two-phase
locking (2PL). It requires all transactions to be
well-formed and two-phased to guarantee consistency
[Eswa76]}.

A transaction is well-formed if it

(i) locks an object Dbhefore
accessing it
(ii)‘does not lock an object
which is already locked
and (iii) unlocks each object it has
locked before it completes.
It is two-phased if no object is unlocked
before all objects are locked.

Formally, suppose a tramaction T =((t, a ,
i

e ) 1 =1, n)

where t is the transaction name

a 1is the operation at step i.
i

14



e 1is the object accessed at step

i
i.
Then
(1) T is well~-formed if for each step
b [ o
if a = lock then e is not locked by
i i
T through step i - 1
if a .# lock then e is locked by T
i i
through step i
and at step n, only e is still
n
locked by T and a = unlock;
n
and
(2) T is two-phased if for some j < n

i < j implies a # unlock
i

I

unlock

-
il

j implies a
i

i > j implies a # lock;
i

steps 1, ......, J-1 are

called the growing phase

15



and steps Jj-1, ...., n the

shrinking phase.

2.1.2 Timestamping

A timestamp is a unique number assigned to
a transaction or object and is chosen from a
monotonically increasing sequence which is often a
function of the time of day. Some solutions to
concurrency control procblem are based on
timestamping [Rose78, Thom79, Reed78, Bern80a].

Typical of timestamp algorithms is basic
timestamp ordering [Bern80a). In addition to
transaction timestamps, each object {(the smallest
loéical unit of data) has read timestamp and a write
timestamp in basic timestamp ordering. These are the
timestamps of the latest reader and writer
(respectively) for the object of interest, and are
maintained in a timestamp table.
(A transaction Ti is later than another transaction
Tj if Ti has a larger timestamp)

These timestamps are used to force
transactions which access a common object in a

conflicting manner to do so in their initiation time

16



order. Transactions attempting to violate timestamp
ordering are restarted (aborted and started over);
causing serialization to occur in timestamp order.
2,1.3 Serial validation

In Serial Validation algorithms [Kung81l,
Bada79, Schl8l, Mena82], transactions are permitted
to run freely until they reach their commit point
(the point at which the effects of the transactions
are about to be registered in the database). Upon
reaching this point, each transaction is subjected
to a test which ensures that committing it will not
lead to violation of the database integrity
constraints or non-serializable results.
Transactions which fail this test are restarted.

Typical of Serial Validation algorithms is
Kung and Robinson’s Optimistic Serial validation. It
is optimistic since database resources are not
locked hoping that they will not be modified by
other transactions.

Kung and Robinson [Kung81] divided update
transaction into three phases: the read phase, the

validation phase and the write phase. In the yread

17



phase the intended work of the transaction is done,
all updates are made on local copies of the database

objects. In the write phase the local database

objects are made global. In the validation phase a

test for serializability of the developing parallel
transaction system is performed in the following
way:
each transaction is assigned a unigque
transaction nunber after positive
validation, before the write phase

Let t be the highest transaction number
s

at the start of transaction T,

et t be the highest transaction number
£

at the begining of the validation
phase of T,
Then in the validation phase the following
check is performed:
Valid : = true;

for £t fromt + 1 to t do
s f

if (write set of transaction t

18



intersects readset of T)
then valid: = false
Validation and subsequent write are one
critical section.
In the validation phase, all transactions
t which had their write phase after the begining of
T and before the validation of T are considered. For
these transactions we check whether the set of
objects written by t interesects with the set of
objects read by T. In this case we possibly have a
conflict which may destroy serializability, such
that T has to be backed-up and restarted.
Read transactions, of course, do not have
a write phase, but they also have to be
validated. Again, the write sets of all transactions

with numbers from t + 1 to t have to be examined
s £

to detect intersections with the read set of T. The
difference being that the validation need not be
done in a critical section.

2.2 Transaction Classes algorithm.

In most cases, a particular transaction

19



depends only on a small part of the system state and
by implication it depends on a small part of the
database and other resources.

Therefore one technique for avoiding
conflict is to partition database entities into
disjoint classes of entities. Transaction using
common parts of the database must still be
scheduled serially. If such a policy is adopted then
each transaction will see a consistent version of
the state [Eswa76). Bernstein et al used this idea
in the design of Transaction Classes algorithm of
the system for the Distributed Databases (SDD-1)
[Bern80cC]

In the Transaction Classes algorithm,
avoidance of undesirable interleavings is
accomplished using two methods:

(1) Examination of each transaction to
determine if it is conceivable that it could
participate in a non-serializable execution. Most of
these efforts is done statically during database
design stage. The database administrator establishes

a static set of transaction classes during database

20



design stage. Each transaction class is defined by a
logical readset and writeset. A transaction fits in
a class if the readset and writeset of the
transaction are contained (respectively) in the
readset and writeset of the class. An example of
class definition is shown in figure 2.1 below.

2. If the examination in (1) indicates that some
transactions are dangerous because they <c¢an
participate in non-serializable executions then
READs and WRITEs of such transaction are
synchronized using timestamping mechanism.

Relation Schema INVENTORY (ITEM #,

DESCRIPTION, PRICE,

QUANTITY)

Class 1

Readset: INVENTORY (ITEM #,
PRICE)

Writeset: INVENTORY (PRICE)

Comments: Transactions that
update prices

Class 2

Readset: : INVENTORY (ITEM #,

21



QUANTITY WHERE

PRICE > 100)
Writeset: INVENTORY (QUANTITY)
Comments: Transactions that

update dquantities

of high priced items

Class 3

Readset: INVENTORY (ITEM #,
DESCRIPTION, PRICE
WHERE QUANTITY > 0 )

Writeset: Users Terminal

Comments: Transactions that
display information
about items curren-
tly in stock.

Fig 2.1 Class definitions using simple predicates

A simple illustration of how a transaction is
synchronized at run time and how the algorithm works
is shown in fig 2.2.

Do forever;

Wait for a transaction T to arrive;

Find a class C, in which T fits;

22



Look up the transaction classes
table for the synchronization rules
of class C;
Effect READ operations on behalf of
T, sychronizing where necessary;
Effect WRITE operations on behalf
of T, synchronizing where necessary:
End;
Fig. 2.2 How a transaction is
processed for single site database.

2.3. Ssemantically Consistent Schedules Algorithm

It has been shown by Yannakakis [Yann82b]
that serializability is much more than what is
required to guarantee consistency in database. It
has also been reported that in some applications
users may be satisfied with a schedule that
preserves consistency even though it is not
serializable. Allowing the system to run these non-
serializable but consistency preserving schedules
may result in higher parallelism and better
performance [Eswa76]. These facts are used by

Garcia-Molina [Garc83] in proposing Semantically

23



Consistent Schedules (SCS) algorithm.

Like the Transaction <Classes (TC)
algorithm, scCs algorithm uses transaction
information. But Garcia-Molina disagrees with the
restricted way transaction information is used in TC
algorithm. In TC algorithm, transactions Tl and T2
ofdthe same type have similar access patterns,
céﬁélict heavily, and should be synchronized. In
Garcia-Molina‘’s propeosal, the fact that T1 and T2
are of the same type does not convey exhaustive
information about conflicts. Hence, the 8CS
algorithm requires information about the
compatibility or otherwise of Tl and T2. So while
the ' TC: algorithm uses transaction conflict
(syntactic) information, the SCS algorithm uses
compatibility (Semantic¢) information with the hope
of allowing more concurrency.

The basic idea of the proposal is that
transactions fall into a collection of semantic
types. It is assumed that through the user’s

semantic knowledge of the transactions and the

actions they perform, users may be able to

24



group the actions of the transactions into steps.
Then, the users may be able to indicate that the
steps of a transaction of a given semantic type can
be interleaved, without violating consistency
constraints, with the steps of another type of
transaction.

The semantic knowledge is suppl#ed in form
of rules that describe the most common ﬁgf not all)
of the Semantically Consistent Schedules to a
locking mechanism.

2.4. Performance of Concurrency Control

Algorithms

All concurrency control algorithms have a
cost with the controls which they provide. Since it
would be easy to simply require transaction to
execute serially, one might question the decision
not to achieve serializability in this simple
manner.

Several factors make concurrent
transaction execution desirable. First, to achieve
the best possible transaction throughput, it is

necessary to keep the various hardware components

29



busy. The more parallelism (such as CPU-I/0O overlap}
that can be achieved, the better the overall system
performance will be. Running one transaction at a
time makes achievement of such overlap extremely
difficult, leading to poor resource utilization.
This problem is even more severe if transactions can
pause for thinking in the middle of their execution.
Second, system users always want fast response for
their transactions. Serial transaction scheduling
has the undesirable property of making short
transactions wait for 1long transactions which
precede them regardless of whether or not they
actually conflict. This leads to poor average
response time. Allowing controlled concurrent
database accesses by transactions solves these
potential problenms. Given that a
concurrency control algorithm is needed, and that
some algorithms are available, the database system
designer is faced with a difficult decision: which
concurrency control algorithm should be chosen?
Below is a review of performance of the basic

concurrency control algorithms.
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2.4.1 Locking Performance

Several of the studies on 1locking
performance were based on simulations while sone
were based on qualitative and analytical techniques.
The various studies have produced a wealth of data
and some empirical results.

Some of the earliest work on locking
performance was done by Munz and Krenz [Munz77] in a
simulation study of two problems concerning
deadlocks. The following questions were asked in the
study.

(i) when deadlock occurs which
transaction should be restarted?

(ii) if the state of a transaction is
saved periodically (checkpointing), then a
transaction needs not restart from the begining;
it can be rolled back to the nearest check-point
necessary for breaking the deadlock, then continued
from there; does check-pointing help?

The study involved about six hundred
simulation runs and the conclusions of the study

are:

27



(1) if the cheapest (by some measure)
transaction in a deadlock is restarted, this would
be considerably better than simply restarting the
transaction that caused the deadlock.

(ii) checkpointing does not pay:; 1i.e.
transactions should release all locks when they
restart.

Balter, Berard and Decitre [Baltsg2)
investigated the relative effects of blocking and
deadlock in 1locking algorithm. They simulated
several concurrency control algorithms and found
that deadlocks are secondary to blocking in
performance degradation; for when the system
thrashes (when there are many transactions doing
useless work) for locking, the waiting time for
locks is much greater than the time cost in restart
delays.

An extensive simulation study has been
done by Ries and Stonebraker [Ries77, Ries79}. This
is a study of the effect of granularity on locking,
in which they considered exclusive locking, both

static and dynamic, in centralized and distributed

28



systems.

They have found that dynamic locking is
better than static locking when transactions are
short, and worse when they are 1long. They also
considered sequential data access, locking
hierarchies and predicate locks and concluded that
for sequential access; a medium granularity is
usually optimum; locking hierarchies should be used
if transactions are long and granularity is fine;
and it is doubtful that predicate locking [Eswa76]
can improve performance.

In considering the benefit of coarse
granularity, they argued that with <c¢coarse
granularity, a transaction needs to set a few locks
only, and so cuts down on the cost of setting locks.

Another benefit of coarse granularity was shown by

~Tay, Goodman and Suri [Tay84] to be reduced

workload.

Peinl et al [Pein83, Hard85, Pein87])
studied locking as well as certification. Peinl
disagreed with the highly idealized simulation

approach taken by previous authors and used a bench
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mark-like technique instead. He took page reference
strings from some applications on a CODASYL-LIKE
database, and fed them to a string converter which
generated from them reference strings for a given
number of concurrent transactions. Essentially to get
the multiprogramming level up to the desired number,
a transaction 1is picked from further down the
reference string. These transactions are then run on
a fictitious database with different concurrency
controls, so as to compare the performance of the
algorithms. Unfortunately, the experimental results
show a high restart rate. Two main reasons could be
attributed for this.

First, in the applications that were
monitored, transactions may release read locks once
they were done with them (and acquire more locks
later), whereas the experiments used two-phase
locking. The probability of conflict is therefore
higher in the experiments. Second, the technique of
picking transactions from further down the reference
string to match the desired multiprogramming level

makes it possible that two very similar transactions
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are run at the same time, thus raising the
probability of conflict above that in the original
applications themselves,

2.4.2. Performance of other algorithms

To date, literature on performance of
concurrency control algorithms based on other
mechanisms than locking has been very scanty or
indeed lacking. It has, however, been established
that some of the concurrency control algorithms have
anomalies that c¢ould hurt their performance
particularly in situations where conflicts are not
rare.

For example, timestamping cyclic restart
anomaly could affect timestamping performance
[Bern80a]. Transaction starvation, a peculiarity of
Optimistic Serial Validation {Kung8l] can also hurt
serial validation performance particularly in non-
query dominant applications. The degree to which
this anomaly affects performance depends on the
length of typical restart delays in the system of
interest as the anomalies arise due to the fact that

transactions which are restarted request the same
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data items during reincarnation (each time they
run) .

Race condition anomaly of the SCS
algorithm [Garc83] could also hurt its performance.
For example, the anomaly may make it impossible to
obtain the results of a semantically consistent
schedule with any serializable schedule. This may
have a 1limiting effect on the anticipated
performance of SCS.

In general, pre-analysis of transactions
in TC and SCS algorithms promises a reduction of
transactions requiring synchronization and therefore
may allow more concurrency. But this advantage does
not come for free since users and/or database
administrators are burdened with the task of
identifying and indicating transactions that could
be involved in dangerous interleavings.

As special purpose algorithms, performance
of TC and SCS depends on application. The algorithm
may not improve performance in some applications

while performance will definitely improve in others.
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CHAPTER 3

INTEGRATED TRANSACTION CHARACTERISTICS ALGORITHM AND A COST MODE]

This chapter proposes Integrated
Characteristics (ITC) algorithm. The ITC algorithm
makes use of syntactic properties of transactions as
in [Bern80c] as well as semantic properties of

transactions as in [Garc83]. 4
The Integrated Transaction Characterigg;cs

(ITC) algorithm is expected te further improve on

the performance gains of TC and SCS algorithms over

the basic timestamping and locking mechanisms.

The ITC algorithm is designed for a single
site database environment and does not have to
contend with and provide for node failures,
communication. overhead and. other problems peculiar
to distributed database environment.

Also described in this chapter is a model
for evaluating the costs associated with alternative
concurrency control algorithms. The model, a variant
of the abstract cost model reported by Michael Carey

[Care83a), is subsequently used to analyse storage
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and CPU costs associated with Transaction Classes
(TC), Semantically Consistent Schedules (SCS) and

Integrated Transaction Characteristics (ITC)

algorithms.
3.1 Integrated Transaction Characteristics
algorithm

The basic idea about ITC algorithm is that
each transaction has a set of attributes in form of
its readsets, writesets and the transactions it is
potentially in conflict with. So, given a set of
transactions that can run on a database, the
attributes indicate which of the transaction(s)
can run simultaneously without being involved in
non-serializable execution.

The attributes are divided into syntactic
and semantic attributes. Syntactic attributes are
identified during database design stage while
semantic attributes are determined and supplied by
the users of the database as explained below.

3.1.1. Syntactic attributes

Logical readsets and writesets of

transactions are used by the database administrator
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to establish a set of syntactic groups or
transaction classes. Formally, each transaction
class is defined by a logical readset and writeset.
A transaction fits into a class if the readset and
writeset of the transaction are <contained
(respectively) in the readset and writeset of the
class. Furthermore, a transaction fits into one and
only one class and there may be some classes with
only one transaction.

Two classes conflict if the readset or
writeset of one class intersects with the writeset
of the other class. So, by examining the readsets
and writesets of each class vis a vis the readsets
and writesets of other classes conflicting classes
are determined.

3.1.2. Semantic attributes

Transactions within a <class have
intersecting readsets and writesets and therefore
traditionally require synchronization at run time.
But through the semantic knowledge of transactions
and the actions they perform the database

administrator and/or users may be able to tell which
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of the transactions with overlapping
readsets/writesets are compatible [Garc83]. This
semantic knowledge is given to the ITC algorithm in
order to allow the non-interfering transactions to
run faster.

For this purpose the transactions are
gréuped into semantic types which indicate the
transactions operation (e.g. delete, write, read,
re-write etc). A compatibility set which describes
the interleavings that do not violate consistency is
associated with each of these semantic types. Each
compatibility set consists of interleaving
descriptors which depict a specific type of
allowable interleaving.

As an example, if Y1,Y2, Y3 are semantic
types of three transactions. We may have a
compatibility set €S (Y1) = {{¥Y1, ¥2), {¥1, Y¥3}},
meaning that transactions of type Y1 can be
interleaved with transactions of type Y2 and with
those of Y3. However, Y2 and Y3 transactions cannot
be interleaved. The interleaving descriptor sets are

{Y1l, Y2} and (Y1, ¥3).
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Semantic type, compatibility set and
€ interleaving descriptor are defined more formally in

[Garc83] as follows.

Semantic Type: Transactions are classified (by the
users) into a set of semantic types. Let
TYPES be the set of all transaction types.
(for a given application). Then each
transaction T submitted to the system will
have a type ty (T) ( TYPES,
associated with it.

Compatibility Set: With each semantic type ¥ e
TYPES, associate a compatibility set
CS(Y). Each element of CS(Y) is an

* interleaving descriptor set.

Interleaving desriptor set: An interleaving
descriptor set of a compatibility set
cs(Y), h (h € cs(Y), Y € TYPES), must have
the following properties:

(1) h ¢ TYPES
(2) any schedule S of a set of
transactions T must. be semantically

consistent for all initial database
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states if the following
characteristics exist:

(a) There is a transaction T G T such
1

that ty (T ) = Y;
1

(b) All other transactions T éT (T #
2 2

T ) are such that ty (T ) £ h and
1 2

(c) 8 is stepwise serial, that is a
schedule which represents an execution
in which a set of actions (which make
up a step of a transaction) are

performed as indivisible units.

3.1.3 The Synchronization Mechanism
The basic mechanismn used for

synchronization in ITC algorithm is locking. It is

obviously not a new mechanism since all the

ingredients (e.g. exclusive/shared locks deadlock
detection) are well known. However, the ingredients

are used in a fashion that guarantees that only

compatible transactions are interleaved.

Associated with each object in the
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database (at run time) is an interleaving descriptor
ID(0). The descriptor indicates that one or more
transactions with the interleaving descriptor
associated with the object have accessed the locked
object, are being interleaved, and have not finished
yet. In addition to the basic locking requirements
of the locking mechanism, the interleaving
descriptor indicates that a reguesting transaction
could only access the 1locked object 1if the
interleaving descriptor is an element of the
requesting transaction’s compatibility set otherwise
the transaction must wait.

For example, suppose a transaction T with
semantic type ty (T) = Y1 and interleaving
descriptor id(¥l) = (Y1, Y2, ¥3}. If T accesses an
unlocked object 0, it sets a lock on it with ID(0) =
{Y1l, Y2, ¥3) indicating that T could be interleaved
with transactions of semantic types Y1, ¥2, ¥3. If T
requires another object 0’ which is already locked,
then T must check if it can proceed: If ID(0’) #
{Yl, Y2, Y3} then object 0’ is participating in a

different interleaving and T must wait. Otherwise T
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can proceed.

Alsc, when a transaction has multiple
interleaving descriptors, it can choose what
interleaving it wishes to participate in. For
example, consider a transaction T such that semantic
type ty (T) = Y1 and compatibility set €8 (Y1) =
{{¥1, ¥2},{Y¥1,¥3)}. Transaction T must decide which
interleaving it 1is to participate 1in after
requesting for an object O which has been locked by
other transactions. If ID(0) = ({¥1l, Y2}, then T
selects the (Y1, Y2} descriptor and from then on
acts as if it had no other ones. (If, later on, T
wishes to access an object 0 with ID (0) = (Y1,
Y3}, it will have to wait). Similarly, if ID (0) =
{Y1, ¥3), then T selects the (Y1, Y3} descriptor as
its only one. If ID(0O) is neither {¥1, Y2} nor (Y1,
Y3), then T must wait until 0 is unlocked. Finally
the object locked by T before a descriptor decision
is reached, are locked with ID(0)=0 (null}. When a
decision is reached all these descriptors are set to

the decided set.
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3.2. Concurrency Control Cost Model

The model contains a single concurrency
scheduler which makes scheduling decisions based on
information that it maintains about the history of
requests received to date and predefined transaction
characteristics. This information is referred to as
the concurrency control database, and is treated
conceptually as a simple relational database,
ignoring the many data structures which might be
used in an actual implementation. For a particular
concurrency control algorithm, the scheduler obeys a
well-defined set of rules as indicated in their
description which describes how it should respond to
incoming requests, based both on the requests
themselves and on the contents of the concurrency
control database. The model is as shown in figure
3.1,

3.2.1. Transaction Requests

The model recognises three types of
requests from transaction viz: BEGIN, END, and
ACCESS. The first two mark the begining and the end

of transaction execution, and the latter indicates
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that the requesting transaction wishes to access one
or more objects. A given transaction may make any
number of ACCESS requests during its execution. When
the scheduler receives an ACCESS request, it also
receives a collection of (obj-id, mode) pairs
indicating the objects and modes (read or write)
associated with the current request. It is assumed
in the model that transactions abide by the

responses received from the scheduler, accessing
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data objects accordingly. It is also assumed that
writes go to a list of deferred updates [Gray79%] to
be installed at transaction commit time.

3.2.2. The Concurrency Control database

The concurrency control database, shown in
figure 3.1 consists of seven relations.

The XACT relation contains transaction
state information, specifying the +transaction
identifier, state (ready, blocked, committed,
aborted) and time-stamp of each current transaction.

The ACC relation contains information
about accesses to objects, specifying the object
identifier, access mode (read or write), transaction
identifier and timestamp for each current or recent
access. This relation plays the role of a
concurrency control table. For Semantically
Consistent Schedules algorithm and Integrated
Transaction Characteristics algorithm, the ACC
relation will store current access information in
the form of lock table entries, and it will store

information about current and recent accesses in the
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form of timestamp entries for Transaction Classes
algorithm.

The BLKD relation contains information
about any blocked transactions, the transaction
identifiers which they are waiting for, and the
identifier of the object which is the source of the
conflict which led to the blocking action. It 1is
assumed that deleting a BLKD relation implicitly
unblocks the corresponding transaction, allowing it
to continue processing from where it left off.

The CLAS relation contains information about
the class a transaction belongs and timestamp of the
transaction. The SEM relation describes transaction
identification, transaction semantic type, and its
compatibility set.

The ITC relation stores transaction infor-
mation such as transaction identification, the class
a transaction belongs, the semantic type of the
transaction and its compatibility set.

The HIST relation stores histories of ACCESS
requests which are conditionally granted until a

concurrency control decision is made. Entries in
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this relation specify the transaction identifiers,
object identifiers, and access modes associated with
such requests.

Not all concurrency contreol algorithms
use all of the relation in the concurrency control
database, as this set of relations is intended to
represent the collection of all possible information
which algorithms might require. For the same
reason, not all concurrency control algorithms use
all of the fields of these relation. Thus, the
portion of the concurrency control database used by
an algorithm is used for the costing discussed in
the next section.

3.2.3 Algorithm Cost Comparison

The storage and CPU costs are compared via
a simple complexity analysis based on
implementation - independent units of CPU and
storage costs. These cost units are based on ideas
used to compare algorithm cost in [Bern80f]. The
analysis techniques are illustrated by using them to
compute and compare the cost of the three

transaction characteristic based algorithms.

46



To facilitate cost analysis, a performance
model on a set of simple parameters is used. The
parameters are defined as though the transaction mix
used to evaluate algorithm cost consists of
transaction of the same fixed size. The technique
applied here can be thought of as a formal analysis
of a simple transaction mix or alternatlvelylfs a
mean - value approximation [Ferr78} to an angly51s
of a mix where the parameters are interpreted as
being averages.

Let Tc be the number of transactions in.the
system (that is, the multiprogramming
level)

Let R be :the readset size for these
transactions.

If Fw is the fraction: of the writeset
included in the readset then each tran-
saction makes R + RFw or R (1+Fw) data
access requests (assuming there are no
blind writes)

Let Fb be the fraction of Dblocked

transactions so that FbTec 1is the
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current number of blocked transactions
lLet Frc be the recent commit factor, so

that Frc Tc is the number of recently

committed transactions, where a recently

committed transaction is one which
committed since the oldest remaining
active transaction began running.

Let Ct, Cs and Cc be the number of
comparisons (search length) for
Transaction Classes, Semanticaly
Consistent Schedules and Integrated

Transaction Characteristics algorithms

respectively.
The blocking and restarting
characteristics of the algorithms will influence

the parameter Fb and Frc, so they will vary
depending on the underlining concurrency control
algorithm. The parameter Fw is determined by the
transaction mix. To bound these parameter, note that
O < Fb < 1, 0 <Fw <1. It is certain that the recent
commit factor Frc > ©O. Alsoc the lower bound of Ct,

Cs and Cc are one each. That is Ct >1; Cs 2>1; Cc >Ct
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It is expected that transactions commit
roughly in their startup order if transactions are of
equal size thus producing a small value for Frc.
However a very long transaction mixed with a
collection of short transactions would result in a
large value for Frc since many short transactions
could complete during the life-time of the long
transaction.

3.2.4 8torage Cost

In order to compare the storage costs of
various concurrency control algorithms, the sizes of
the relations in the concurrency control database
portion of their models may be analysed. One field
of one tuple of one relation is taken as the unit of
storage cost for this analysis. The overall database
size is the sum of the products of the cardinalities
and tuple widths for each relation in the database.
Both upper and lower bounds on the stcrage cost of
algorithms may be determined by considering both
possible extremes of the degree to which requests

from different transactions have objects in common.
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3.2.4.1. The storage Cost of Transaction Classes

Algorithm

The XACT relation represents a storage
cost of 3Tc.

The HIST relation must store write request
entries for the Tc¢ active transactions, so
it represents a storage cost of 2TcFwR. The ACC
relation must store the timestamps associated with
recently accessed objects. The amount: of storage
required for this information depends wupon the
degree of overlap between transactions. In
the case where all transactions access totally
different objects, the ACC relation must hold R read
timestamp entries and .RFw write timestamp entries
for each of Tc active transactions plus the FrcTc
recently committed transactions. This yields a worst
case total storage cost ‘for the ACC relation of

3Tc(1+Frc) R({1+Fw).

At the other extreme, if all active and
recently committed transactions access the same set
of objects, the storage cost of the ACC relation is

just: 3R(1+Fw), since each object has at most one
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read timestamp entry and one write timestamp entry.
The CLAS relation represents a storage cost of 2Tc.
Thus for Transaction Classes (TC) algorithm the
storage cost (STORte) is:

3R(1+4Fw)+ Tc(5+2FwR) <STORtc<3Tc(1+Frc)R(1+Fw)+Tc
L ) 2 R & B

3.2.4.2 he Storage Cost of Semantically Consistent 4

v

’

Schedules algorithm

The XACT relation represents a cost of 2Tc
while BLKD relation costs 2FbTc; for the ACC relation;
a storage cost of 3Tc(1-Fw)R is incurred for storing
read locks. For storing write 1locks, the cost can
vary from as low as 3FwR in the case where all Tc
transactions write the same object.

The SEM relation represents a storage cost
of 3Tc.

Thus for Semantically Consistent
Schedules(SCS) algorithm the storage cost (STORscs)
is: 2T¢(1+Fb)+ 3TcR(1-Fw)+3FwR+3Tc<STORSCS<2Tc (1+Fb)

+ Tc(3R+3} which is equivalent to 2Tc(1+Fb)+3TcR(1-

Fw) +3FWR+3Tc<STORSCS<TC (5+2Fb+3R) ... (2)
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3.2.4.3 The Storage Cost of Integrated Transaction

Characteriatics Algorithm

The XACT, BLKD and ACC relation are used as
in 3.2.4.2. above.

The ITC relation represents 4Tc. Thus for
Integrated Transaction Characteristics (ITC)
algorithm the storage cost (STORitc) is:
2Tc (1+Fb)+3TcR (1-Fw) + 3FwR+4Tc < STORitc < 2Tc
(14Fb) +3Tc (R+2) which is equivalent to 2Tc (1+FD)
+ 3TcR (1~Fw) +3FwR+4Tc < STORitc < 2Tct+2TcFb +
3TcR+4Tc which is equivalent to 2Tc (1+Fb)+3TcR(1-
Fw) +3FwR+4Tc < STORitc < Tc(6+2Fb+3R) .....(3)

3.2.4.4. Relative Storage Costs Of The Algoerithms

Given the bound of Fb and Fw (which is
between O and 1) some conclusion can be drawn about
the relative storage costs of the concurrency
control algorithms. From equations (1), (2) and (3)
it can be concluded that Semantically Consistent
Schedules algorithm has the smallest worst-case
storage of the three algorithms which is (7+3R) Tc.
The Integrated Transaction Charateristics algorithm

has the next worst-~case storage of (8+3R)Tc; while
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the Transaction Classes algorithm has the highest
worst case storage since parameter Frc is unbounded.

The worst-case storage occurs when
transactions do not compete for the same data items,
which is likely to be the case for real mixes of
transactions according to the analysis of
probability of conflicts in (Gray8la].

For the best-case storage, we compare the
three equations again.The best-case storage for
Transactions Classes algorithm (7Tc+6R) is smaller
and therefore better than the best-case storage for
either Semantically Consistent Schedules (9Tc+3R)
algorithm or Integrated Transactions Characteristics
algorithm (10Tc+3R). The Semantically Consistent
Schedules algorithm dominates the Integrated
Transaction Characteristics algorithm.

The Semantically Consistent Schedules
algorithm is best in terms of worst case storage
cost, indicating that it is superior under low-
conflict transaction mixes. Transaction Classes
algorithm is best in terms of best-case storage

cost. This implies that it is better under high-
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conflict transaction mixes. The Integrated
Transaction Characteristics algorithm is worst in
terms of best-case storage cost, meaning that it
performs worst under high-conflict transaction mixes
but better than the Transaction Classes algorithm
when transaction conflicts are low.

3.2.5. CPU COST

The number of operation involved in executing
the query sets for various algorithm is analysed, in
the following, in order to compare their CPU costs.
The unit of CPU cost for this analysis is taken to
be one tuple access, insertion, replacement or
comparison in one relation. So the assumption
implies that the CPU time required is proportional
to the number of table lookups and/or class or
semantic type comparisons [Bern8o0d].

But, analysing the CPU cost of a given
concurrency control algorithm is, in general,
considerably more complex than analysing the storage
cost of the algorithm. So for simplicity and clarity
only the no-conflict CPU cost [Bada8l) (the CPU cost

experienced by a transaction which does not
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conflict in any way with other concurrent
transaction) is considered. Since in practice actual
conflicts are rare [Gray8la], the no-conflict CPU

cost should be a reasonable "first-order" estimate.

3.2.5.1. The CPU Cost Of Transaction Classes

algorithm.

For this computation, we assrﬁé that read
requests are processed as they arrive, and all write
requests are processed together just prior to
transaction commit time. This simplifies the
considerations involved in making the- underlining
timestamping mechanism work with deferred updates;
otherwise some scheduling would be required to
prevent transactions from reading objects for which
a write request has been processed but the
associated deferred updates has not yet taken place
[Bern82, Agra83). The HIST relation is used to defer
write timestamp checking until commit time, with
similar timestamp checking and updating involving
HIST relation occurring with END request. So, the

cost of processing a BEGIN request is 1.
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For identification of the class of the
transaction a Ct class comparisons are made so we
charge a CPU cost of Ct for the operation. The cost
of checking restart conflict is 1; while a CPU cost
of 2 is charged for each write entry in the HIST
relation for an END request check. Thus, the cost of
processing R read requests, each of which checks for
a restart conflict and then conditionally inserts or
updates a timestamp in the non-conflict case, is 2R.
The cost of processing RFw write requests, each of
which simply records the pending request in the HIST
relation, is RFw.

The cost of procéssing an END request
depends on the number of timestamps deleted. In the
no-conflict case, it is assumed that all
transactions access different data items, meaning
that all timestamps associated with a given
transaction must eventually be explicitly deleted.
This timestamp deletion cost is chafged to the
transaction creating the timestamp, even though
deletion may occur at some later point in time.

Thus, the cost of processing an END request is 2RFw
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to check the HIST relation contents for restart
conflicts, 1 to change the state of the committing
transaction, 2RFw to update the write timestamp of
each write request in the HIST relation once the
transaction has indeed committed, and 1+R(1+2Fw) to
delete the information associated with the
transaction. Hence the CPU cost for the transaction
classes algorithm is CPUtc = Ct+3+R(3+7FW)...... .. (4)

3.2.5.2, The CPU cost of Semantically Consistent

S8chedules Algorithm

The cost of processing a BEGIN request is 1.
The cost for checking blocking conflict is 1, so the
cost of processing R(1+Fw) data access request is 2R
(1+Fw) if no blocking occurs. The CPU cost for
comparing and identifying transactions of the same
semantic types is Cs. The cost of processing an END
request 1is 3+R, 1 torchange the state of the
committing transaction and 2+R to delete all the
information about the transaction (assuming one BLKD
access to determine the 1lack of blocking

transactions). Hence the CPU cost of Semantically
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Consistent schedules algorithm is CPUscs = Cs + 4 +R

(3+2Fw) - (5)

3.2.5.3. The CPU cost of Integrated Transaction

Characteristics Algorithm

The analysis for Integrated Transaction
Characteristics algorithm is much like that for
Semantically Consistent Schedules algorithm except
that it incurs the cost of identifying transaction
class as 1in Transaction Classes algorithm and
additionally identifies semantic type within a
transaction class. Hence the CPU cost of Integrated

Transaction Characteristics algorithm is CPUitc =

Garcia-Molina ([Garc83] has reported that
given an application and assuming a relational
database the SEM relation cardinality is less or
equal to CLAS relation cardinality. This implies
that Cs is at most egqual to Ct. Therefore using the
bounds of Fw,Ct,Cs, Cc and considering equations (4)
and (5) it 1is clear that the CPU cost for the

Semantically Consistent Schedules algorithm is less

58



than the Transaction Classes algorithm CPU cost
except when Fw is very small and Ct equals Cs when
CPUscs could be the same as CPUtc. Now we consider
equations (5) and (6). Cc is greater than Ct;
therefore if Fw is very small CPUitc is greater than
CPUtc otherwise if Fw is not small and Cc is
sufficiently close to Ct then CPUtc is greater than
CPUitc. This of course implies that CPUscs is less

than CPUitc.
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CHAPTER 4

CONCURRENCY CONTROL PERFORMANCE

This chapter degcribes a simulation model
of a database system. It is used to compare
performance of the three single-site concurrency
control algorithms evaluated under various
transaction workloads and systemrcosts. Performance
results using this simulation model are given for
Transaction Classes, Semantically Consistent
Schedules, and Integrated Transaction
Characteristics algorithms.

4.1. Background

Before describing the simulation model, it
will be helpful to consider the nature of the
problem it addresses. The purpose of a concurrency
algorithm is to facilitate the simultaneous
execution of a number of transactions in order to
enhance performance. The degree to which an
algorithm allows transactions to execute
concurrently and make progress towards completion is

its level of useful concurrency. In order to compare
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alternative algorithms, a measure of their relative
levels of useful concurrency must be obtained.

Usually, the number of active transactions
in a system is more than the system’s level of
useful concurrency because of the possibility of
restarts and idling. This implies that there could
be some active transactions doing useless work. The
number of active transactions as a measure of
performance is therefore obviously undesirable as
illustrated by the following example based on serial
validation.

Consider a mix of N transactions whose
readsets and writesets all include some object X,
and suppose serial validation is the concurrency
control algorithm being used. All N transactions
will be allowed to execute concurrently.

When they are subjected to the commit time
validation test after executing all their reads,
doing their respective computation and catching
their writes locally, N-1 will be forced to restart.
Thus, knowing that N transactions are executing

concurrently is not sufficiently informative. A
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better measure of concurrency benefits offered by

AN alternative algorithms is a measure of successful
commits per unit time or throughput. We have
therefore considered throughput as a fair measure of
performance and it will be used for the purpose of
this work.

Concurrency control semantics are actually
implemented and simulated in a closed queuing model
of a database system to obtain throughput
information.

4.2. JUSTIFICATION FOR A SIMULATION APPROACH

There are several reasons why simulation
is most appropriate to obtain relative performance
information about alternative concurrency control
algorithms. First, analytic queuing models of
concurrenty control algorithms are difficult to
develop because the sharing of a large number of
distinct data objects is a key factor in determining
algorithm performance. It would, thus, be
prohibitively hard to develop tractable analytical
models of three concurrency control algorithms for

comparative purposes. Second, by selecting a
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simulation approach, a more realistic collection of
transaction mixes and workloads can be studied.
Finally, there are certain facts about the
behaviour of transaction in real systems which are
difficult to represent in an analytical model. For
example, restarted transactions could re-request the
same datalﬁbjects that they requested the last time.
Simulatiogr;rovides a way to model such facts and

evaluate algorithm performance.

4.3. Model Description

4.3.1. The Workload Model

An important component of the performance
model is a transaction workload model. The workload
model is a variant of Tay’s worklcocad model [Tay84]).

Initiation of a transaction from a
terminal essentially entails picking a transaction
randomly from a transaction table (see Appendix 1).
Each transaction thus picked has a transaction
type, a transaction class, a compatibility set and a
workload consisting of a readset and a writeset
(determined during pre-analysis stage). Transaction

type, transaction class and compatibility set are




the attributes of the transaction while the readset
and writeset are the objects the transaction will
read and write during its execution. Other workload
parameters apart froﬁ the predetermined readsets and

writesets are shown in Table 4.1.

/ ________________________________________________________
| Workload Parameters
Readset |} determined during pre—a?%lysis
| Writeset | }
| l
Nterms ! No of terminals (level of
| nulti-programming) .
Dbsize | number of objects in database
I
| Gransize | number of object in a granule
I |
| Conflict- | Conflict avoidance delay
| delay |
[ i ittt /

Table 4.1. Workload Parameters for simulation
The parameter Nterms determines the number
of terminals or level of multiprogramming.

The parameter Conflict-delay determines

the mean length of time required for a terminal to
resubmit a transaction after finding that its
current transaction has been restarted with the
delay associated with each particular restart

determined from an exponential distribution with
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this mean.

The parameter Dbsize determines the number
of objects in the database, that is the database
size.,

The parameter Gransize determines the
number of objects in each granule of the database,
that is the granule size,

Concurrency Control requests are made on
granule basis. Thus when a transaction reads or
writes an object, an assocliated concurrency control
request is made for the granule which contains the
object.

In order to model read and write request,
objects are given integer names ranging from 1 to
Dbsize while granules are also given integer names
ranging from 1 to Dbsize/Gransize. Since concurrency
control request is made for a granule which contains
the objects, it follows that a request should be
made for granules ((i - Dbsize/Gransize)+1l) in order
to access object 1i.

4.3.2. The Queueing Model

The second component o©of the performance
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model is a close queueing model (figure 4.1) of a
single~site database system. The model is an
extended version of Ries model [Reis77, Ries79].

In the model there is a fixed number of
terminals Nterm from which transactions originate.
Each transaction enters concurrency control queue
(CCqueue) and makes the first of its concurrency
control requests. Here, several tables are looked up
depending on the requirements of the algorithm under
consideration. The tables include active transaction
table, lock tabkle, transaction classes table,
compatibility sets table and timestamp table. The

transaction table contains active transactions that
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are not yet committed. Objects that are being held
by transactions are contained in the 1lock-table.
Transaction classes and semantic compatibility sets
tables contain information about the characteristics
of transactions that are expected in the system.

A history of transaction accesses is also
maintained mainly to determine whether the granule
that has been accessed contain the object that is to
be accessed next. It is also used to ensure that
transaction doesnot request for objects, and hence
granules, that it has accessed or held.

When the next concurrency control request
is required, the transaction re~enters the
concurrency control queue and makes the next desired
request. It is assumed, for ease of implementation
that transactions which read and write objects
perform all of their reads before performing any
write.

If access is denied the transaction either
blocks or restarts. For example if the outcome of
concurrency control request i1s that the transaction

must block, it enters the blocked queue until it is
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once again able to proceed. If a request leads to a
decision to abort and restart, the transaction goes
to the back of the concurrency contreol after a
randomly determined conflict avoidance delay period
of mean conflict-delay; it then begins to make all
of its concurrency control request over again. The
conflict-delay ensures that, as much as possible,
the transaction with which the restarted transaction
is in conflict with has committed in order to avoid

cyclic restarts. Eventually, the transaction may
complete and the concurrency control algorithm may
decide to commit the transaction. If the transaction
is read-only, it is finished. If it has written one
or more objects during its execution, it must first
write its deferred updates intoe the database. In
either case the transaction returns to its terminal
for re-cycling, after committing.

Associated with each 1logical service
(concurrency control queue and blocked queue) and
table look ups is some use of CPU and I/0 resources.
When a transaction enters a queue it first performs
the queue-related I/0 processing and then performs

the queue-related CPU processsing, with the amounts
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of CPU and I/0 per logical service being specified
as simulation parameters. The underlying physical
systems model is depicted in figure 4.2. As shown,
the physical model is simply a collection of
terminals, a CPU server, and an I/0 server. Each of
the two servers has one dqueue for concurrency
control service and another queue for all other
service.

The scheduling wused to allocate
resources to transactions in the concurrency control
I/0 and CPU gueues of the underlying physical model
is first come, first served (FCFS). Concurrency
control requests are thus processed one at a time,
as they would in an actual implementation. The
resource allocation policy for the normal I/0 and
CPU service queue of the physical model are FCFS and
round-robin respectively. These policies are again
chosen to approximately model the characteristic
which a real database implementation would have.
When request for both concurrency control service
and normal service are present at either resource,

such as when one or more concurrency control
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requests are pending while other transactions are
processing objects, concurrency control service
requests are given priority.

The parameters determining the I/0 and CPU
service times for the logical resources, that is the

system parameters are given in Table 4.2.

| IO-time | I/0 time for accessing an [
| | object |
= |
I I |
| cPU-time | CPU time for accessing an |
| | object |
B |
l | |
| cCc-IO-time | Concurrency control I/0 time |
e |
l | l
| cCc-CPU-time | Concurrency Control CPU time |
D |
| ! |
| TAB-IO-time | Searching I/0 time |
D |
| | |
| TAB-CPU-time | Searching CPU time |
e A |
| I |
| stagger-mean | Mean of exponential |
| | randomizing delay |
T e e ST /

Table 4.2: System Parameters for Simulation
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The parameters IQ0-time and CPU~-time are
the amounts of I/O0 and CPU associated with reading
and writing an object in the database. Reading an
object takes resources egqual to CPU-time at the time
of the write request and IO-time at deferred update
time, as it is assumed that deferred update list is

maintained in buffers in main memory.

The parameters CC-IO-time and CC-CPU-time
are the times associated with a concurrency control
request.

The parameters TAB-I0~time and TAB-CPU-
time are the times associated with a table look up.

The Stagger-mean parameter is the mean of

an exponential time distribution which is used to
randomly stagger transaction initiation time from
terminals.

‘For ease of implementation all the time
parameters represent constant service times rather

than stochastic ones.

4.4 Pre-analysis of transactions and data

generation

For a user. to -supply helpful indicators
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of the characteristics of transactions at Jjob
submission time, an analysis of transactions ought
to have been done at database design stage and
relevant guide made available to the user. So in
preparation for the simulation experiments, a pre-
analysis involving the determination of transactions
and their readsets is done. Assuming that there are
no blind writes, writesets which are subsets of
readsets are statically determined.

By examining the readsets and writesets,
transaction classes and conflicting classes are
determined. The transaction classes are later
submitted along with randomly initiated transactions
in the simulation so as to determine which class a
transaction should run in parallel with or whether
synchronization within a class is necessary.

Also the semantic types are determined by
examining the generated transactions. For ease of
implementation the semantic types we consider are
READ-ONLY and READ-WRITE. So, all transactions fall
into READ-ONLY and READ-WRITE semantic types. 1In

addition only READ actions and WRITE actions are
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considered; counteractions are ignored so as to
avoid unnecessary complexity. To determine

compatible sets, actions of transactions are checked
against actions of other +transactions thus
ascertaining whether the actions, when interleaved,

would ensure serializablity.

Unlike trace driven simulations of Peter
Peinl [Pein83, Pein87] where empirical trace input
called object reference strings (ORS) were taken
from real DB-application of different types and
sizes, this simulation is random-number driven. The
choice is informed by the wunavailability of
appropriate local database environment and the fact
that result based on traces do not yield general
results [Hard85].

As in [Munz77], readset of a transaction is
determined using a mean readsize and exponential
distribution. That is the readset size is selected
from an exponential distribution with mean readsize
and truncated to an integer value. All transactions
read at least one object so the readset size is set

to 1 if the exponentially determined value is less
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than 1. The readset size is truncated to the size of
the database if it exceeds the database size as
transactions cannot possibly access more objects
than the database holds.

Only sequential transaction types are
considered in this implementation while random
transaction types are left for future work.

In the sequential case all objects in the
readset are adjacent, so the collection of objects
in the readset is selected randomly from the set of
all possible collections of adjacent objects of the
appropriate size. The sequential transaction type is
intended to model transaction which access objects
using either an ordered primary index or a sequential

scan of an entire relation or file.

4.5. Design of Experiment

In order to obtain the relative
performance of each algorithm, the parameters
(factors)} which influence appreciably the value of
the chosen performance index (throughput) are
identified. The values (levels) of each factor are

then suitably selected.
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Multiple simulation 1runs are also
performed in order to determine the influences of
a factor on the performance of each algorithm.

4.5.1 Identification of the factors

In the factor identification task we rely
on our knowledge of the algorithms [Ferr78). For
example all the algqflthms incur some concurrency
control costs whllé/synchronlzlng transactions.
Also,a lot of probes (table lookups) have to be done
in order to synchrohize transactions or permit
access to database objects. We also know that the
number of active transactions (multiprogramming
level) has some effect on throughput.

Concurrency control costs, searching costs
and multiprogramming level are thus identified as
factors that could contribute significantly to
throughput performance.

4.5.2 Selection of level for each simulation run

The values (or levels) of each factor are
selected such that the levels adequately cover the

range of plausible variability of that factor.
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Since our goal is to compare different
algorithms we use non-factorial approach [Ferr78],
that is one-factor-at-a-time approach.

This approach requires variation of one
factor at a time while other two factors are kept
constant. The experiment is thus broken down into
three distinct experiments, each having as its {
objective the study of the effects of one factor. //
Each of the three experiment,in turn has as many runs
as there are values (or levels) of the factor under

consideration.

4.5.3. Concurrency Control and Searching Costs

To evaluate the concurrency control
algorithms fairly and determine how their searching
actions and blocking/restart decisions affect
performance some assumptions are made about their -
concurrency control :and searching costs. This

section will briefly describe how the CC-CPU-time,

CC-IO-TIME, TAB-CPU-time and TAB-IO-time are used

in modeling the costs for each of the algorithms in

this thesis.

For Semantically Consistent Schedules (SCS)

algorithm a CPU cost of CC-CPU-time and an I/0 cost
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of CC-IO-time are assessed each time the algorithm
makes a read or write concurrency control request.
So in the absence of restarts the CPU and I/O
concurrency control cost for a transaction are (Nsr
+ Nsw) x CC-CPU-time and (Nsr+Nsw)x CC-IO-time where
Nsr and Nsw are the number of read objects and write
objects requiring synchronized access using ScCS.

In addition,the algorithm will also incur
a compatibility set table lookup cost of TAB-CPU=-

time and TAB-IO-time for each probe. For simplicity

and since the number of compatibility set entries is
small a linear search is used.

So, for a table of ntab entries

a transaction requires an average of ntab/2 probes
and therefore an average cost of (ntab/2)x TAB-T10-

time and (ntab/2)x: TAB CPU-time,.

For Transaction Classes (TC) algorithm a

CPU cost of CC-CPU-time and an I/0 cost of CC-I0-

time are also assessed. In the absence of restarts

(Ntr+Ntw)xCC~-CPU-time and {Ntr+Ntw) xCC-10-time

concurrency control costs are incurred respectively

with write related costs NtwxCC-CPU-time and NtwxCC-
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I0-time being charged together at transaction commit
time thus modeling the fact that it is a timestamp
based algorithm;
where Ntr and Ntw are the number of read and write
objects requiring synchronized access using TC.

The Transaction Classes algorithm also
incurs a transaction class tab%F look up cost of

yid
TAB~CPU-TIME and TAB—IO—TIME/ for each probe.

Assuming for simplicity that the number of classes
in TC algorithm is the same as the number of
compatibility sets in SCS algorithm, SCS also incurs
an average table probe cost of (ntab/2)x TAB-IO-

time-and (ntab/2)x TAB-CPU-time.

For Integrated Transaction cCharacteristic
(ITC) algorithm a CPU cost of CC-CPU-time and an I1I/0
cost of CC-I0 ~time are again assessed each time the
algorithm makes a read or write concurrency control
request. Hence for objects requiring synchronized

access, ITC algorithm incurs (Ncr+ Ncw)x CC-CPU-ti-

me and (Ncr + Ncw )x CC-I0-time for <CPU and I/O

operations.
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/2Yx TAB-IQO-time and (ntab/2)x TAB-CPU~time table

look up costs as the TC algorithm plus additional

table look up costs of (ntabl/2)%xTAB-TIO-time and

(ntabl/2}xTAB-CPU-time for compatibilty set within a

class where ntabl is the number of entries for a

compatibilty set within a class.
It is assumed that the unit costs for

concurrency control operations, CC-IO-time and CC-

CPU-time for the three algorithms are all the same.

It is also assumed that the TAB-IO-time and TAB-CPU-

time are of the same magnitude. This is reasonable

since the basic steps in each algorithm only inveolve
doing simple table look-ups or probes per request.

4.5.4. Simulation Output data analysis

Due to the variability of worklocad, each
individual performance index is very often
unreliable. Usually, our observations of a
simulator’s behaviour cannot be considered
independent and identically distributed. We can
therefore not apply central 1limit theorems to

estimate the .variance of the estimators based on our
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observations.

These variances about the unknown true
means are needed to calculate the accuracies of the
estimates of our performance indices. When all the
estimates reach their desired accuracies, the run
can be stopped. Variance reduction methods (e.g.
autocovariances, indepedent replications,
regenerative, batch means) could be applied. We use
the option of batch means in this thesis for the
following reasons. First, due to a lack of
exponential service times and the fact that the
transactions compete for a large number of shared
logical resources {(granules) the only true
regeneration state for the simulations in this
thesis is the state in which all terminals are in
their "stagger delay" waiting periods prior to
submitting new transactions.

It was found from preliminary experiments
that this state does not occur with sufficient
frequency to permit use of the regenerative method.
Second, if the run is long enough and the sub-runs

{({batches) are about 40, batch means has the
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advantage over independent replications that initial
transients do not bias each of the throughput
observations [Law82]. Finally, a practical
programming difficulty made the use of batch mean
simpler than the method of independent replications
as independent replications method requires starting
the 51qﬁlator ‘all over’. This implies that the
51mu1a{5r would have to garbage c¢ollect and re-
initialize simulation and algorithm dependent data
structures between observation periods, if the
method of independent replications were chosen.

Using the method of batch-means,

simulation runs are divided into a set of ny, individual

batches or sub-runs each of which is t;, simulation
time units long. Each batch within a simulation run
provides one throughput observation, and these
observations are averaged to estimate the overall
throughput.

Confidence intervals are usually computed
using standard techniques assuming that the

throughput observations from the
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batches are independent and identically distributed
[Law82, Saue8l, Ferr78). Two assumptions underly the
use of batch means. The first assumption is that
batches are long enough so that the results are not
Bﬁ?sed by startup transients.

The second assumption is that the batches
are not correlated.

Appendix 2 addresses the assumptions
underlying batch means, reviewing the mathematics
associated with the method, describing how startup
transients, were excluded from the results and
detailing a method which was used to account for
correlation between batches in computing confidence
- intervals.

In order to make definitive statements and
draw conclusions about concurrency control
performance issues, it is necessary that confidence
intervals for the experimental results be
sufficiently small so that they do not overlap from
algorithm to algorithm, at least where important
differences are to be demonstrated. Small confidence

intervals are achievable only when "reasonably

i
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large" number of sucessful transaction commits is
contained in the overall simulation run, as
otherwise the variance in throughput results from
the batches will be too large. Preliminary
experiments in this study seem to indicate that 2000
or more commits are desirable.
The results in this chapter areffbtained
using t = 50,000 and n = 40 or a total ogq;,ooo,ooo
b b

simulation time unts as described in Appendix 2.
These settings were selected based on confidence
interval results obtained from preliminary

experiments and also from suggestions in [Law82].

4.6, Assumptions

The results of this study are subject to
the limitations of the models used to obtain them.
There are a number of assumptions inherent in the
performance model and simplifications purposely for
ease of implementation. Obviously each of these
assumptions and simplifications must have had, to
some extent, an influence on the results.

Some of the underlying assumptions and

simplifications include:
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(a)

(b)

(c)

(d)

(e)

(£)

(9)

transaction$ do not pause during their
executions

the cost of processing a collection of
concurrency control or search requests is
proportional to the size of the collection.
READ-ONLY and READ/WRITE semantic types are
representative of most transaction types.
due to only READ-ONLY and READ/WRITE
semantic types, compensating actions are
unnecessary and therefore unimplemented.
buffer contents are flushed for restarted
transaction so the cost of executing a
transaction from beginning to end is the
same independent of the restart history of
the transaction.

the overhead associated with switching
contexts from one transaction to another is
not large

each object read by a transaction is read
only once and all objectS written must have
been read previously.

The first assumption may be interpreted as
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a decision to model a transaction processing system
rather than an interactive query processing system,
a decision which may be justified by noting that the
performance impact of concurrency is probably most
important for transaction processing environments in
which high throughputs are required.

The second assumption may be restated as
the assumption that the overhead of concurrency
control routine or search routine call is not the
dominant factor in the cost of concurrency control
or search request processing. Otherwise the simple
cost modeling approach taken in the simulations,

based on the CC-IO-time, CC~-CPU_ time, TAB-IO-time

and TAB-CPU-time may have to be modified.

The third and fourth simplifications imply
that only READ and WRITE operations were recognised
in the implementation. This suggests the possibility
of other operations like DELETE and INSERT in some
real systems. The introduction of additional
operations would necessitate implementation of
compensating actions in Semantically Consistent

Schedules and Integrated Transaction Characteristics
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algorithms instead of restarting transactions. This
could affect throughput performance of the two

algorithms and thus the results obtained may not be

applicable in an environment with DELETE and/or

INSERT operations.

The fifth and sixth assumptionshave to do
with the costs of restarting and blocking. The fifth
assumption says that restarted transactions were
modeled by starting them all over again, having them
re-read all of the objects in their readsets and re-
write all of the objects in their write set. The
sixth assumption says that blocking was modeled by
setting blocked transactions aside, and that the
cost of blocking was assumed to be some fraction of
the average locking cost modeled by cc-I0-time and
CC-CPU-time.

If these assumptions are modified, so that
restarts are nearly free and the cost of blocking
(and context switching) is very high in comparison,
it is expected that the results would come out
differently. The final assumption can be interpreted

as a combination of assuming that transactions have
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sufficient buffer space to maintain all items which
may be re-read in primary memory, and that
transactions do not make "blindwrites®". Both
assumptions were made for convinience in generating
and manipulating transaction read and write sets in
the simulator. It is not expected that changing
either of these assumptions would lead to major

changes in the results.

£.7. Program Development

In the absence of simulation languages
locally, the simulator is written using Fortran77.
The 1lack of appropriate simulation language
inevitably results in the development of a lot of
routines some of which are used to handle special
tasks such as queue management which otherwise could
have perhaps been more efficiently handled with
special purpose simulation languages.

The simulator consists of six main modules
each of which consists of several subroutines. The
six main modules are all centrally controlled by a

control program CNTPRG.
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The modules include
Initialisation Routine
Start routine
Request routine
Search routine
Commit routine and
. Update routine
VA
The iditialisation routine initializes all
algorithm-dependent data structures and variables.
It also loads traﬁsaction table, transaction classes
table and semantic type/compatibility sets table.
Start routine is called whenever a transa-
ction is to be started. It randomly determines which
transaction to start and calls search routine to
pick the transaction from transaction table. The
newly started routine is then made to jein the
concurrency control queue.* It alsoc assigns
timestamp to transactions as may be required.
The request routine is invoked when there
are reads or writes to be done. It returns cost inf-
ormation about the resources utilised e.g. units of

simulation to charge for CPU and I/0 associated with
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processing the concurrency control request. It also
returns concurrency control decisions e.g. access
block, restart, update, commit which determine which
subroutine to invoke next. The request routine is
responsible for checking concurrency control data
structures such as transaction classes table,
semantic type/compatibility sets table and lock 4

://
table. .
The search routine is called by start and
request routines. It picks required information about—
transactions on relevant tables and return the
information to the caller. It also returns cost
information associated with table lookups.

When the transaction arrives in the
concurrency control queue after finishing its last
request (with ‘commit’ decision) the commit routine
is ¢alled. The routine is responsible for validating
the correctness or otherwise of the objects read or
updated using the timestamps of the transactions
initiated since the committing transaction started
running. Again, the routine returns cost and

concurrency control decision to CNTPRG. If a
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transaction completes and it has written some object
during execution, update routine is called after the
transaction has committed and has written its
deferred updates. The routine releases transaction
locks if any in lock based methods. It also returns
cost information to CNTPRG.

The number of read-only transactions that
sucessfully commit and the number of read-write
transactions that sucessfully commit and update is
accumulated by CNTPRG. The number of commits and
simulation time are recorded for various parameter
settings and throughput is computed.

4.8. Experiments and Results

Results of three different performance
experiments are reported below. Each of these
experiments is performed on the three concurrency
control algorithms. The experiments are designed to
investigate the relative performance of the various
algorithms, in hopes of identifying algorithm whose
performance is either uniformly superior to that of
other two or whose performance is superior under

some set of reasconable conditions.

92



The first experiment investigates the
effect which the level of multiprogramming has on
performance of the algorithms.

The second experiment investigates the
effect of concurrency control cost on the
performance of the algorithms while the third
experiment examines the effect of searching overhead
on performance.

4.8.1. Multiprogramming level

This experiment investigates the effect of
multiprogramming level on performance of the
algorithms.

The parameters varied in this experiment
are the granularity of database and number of
transactions (multiprogramming level). Since
concurrency control regquests are made for granules
rather than objects, varying the granularity of the
database varies the probability that transactions
requiring synchronization will conflict with one
another. When the finest granularity is chosen,
where each granule contains a single object,

conflict should be rare for transactions with small
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readsets and writesets and many transactions are
expected to run sucessfully.

But when the granularity is coarse, and in
particular when the entire database is a granule
frequent conflicts are inevitable for transaction
that either belong toc the same class or do not
belong to the same compatibil%ﬁy set. The purpose of
this experiment is to observg/the behaviour of the
algorithms under varying probabilities of conflicts
and also to see how multiproéramming level affects
this behaviour.

The system parameter settings for this
experiment are given below. All simulations are run
with one simulation unit interpreted as one
millisecond of simulated time. With these system
parameter settings, a transaction incurs a cost of
40 milliseconds disk access and 15 milliseconds of
CPU time for each read or write of an object. In
addition, a cost of o and 1 milliseconds would be
incurred respectively for transaction c¢lasses and
compatibility sets table lookup since the tables are

loaded into memory at the onset. The cost associated
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with processing each concurrency control request is
1 millisecond of CPU time and no I/0 time. A 25
millisecond random delay time is used to stagger

transaction initiations.

T e O R .
l
Systen parameter Settings
System Time
Parameter | (milliseconds)
OBJ-I0-time 40
| OBJ-CcPU-time 15
I
CC-IO~time 0
| CC-CPU-time 1
TAB-IO-time 0
|
TAB-CPU-time | 1
|
| stagger-mean | 25
| I
\ _________________________________________________________
Table 4.3. Bystem parameter

Setting for experiment 1
The relevant workload parameter setting
for the experiment are given below. The database

consists' of ‘1,000 objects and -its granularity is
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varied from 1 to 1,000 granules (or 1,000 down to 1
object per granule). The number of transactions is
varied from 5 to 20 and all transactions are of the
sizes generated during pre-analysis. Transaction numbers
are randomly generated and picked from the transaction
table for submission. Conflict advoidance delay mean
(co?flict—delay) meant to avoid cyclic restart

i
ang;aly as much as possible is 1 second.

________________________________________________ |
!
| Nterms | Vary from 5 to 20
| | |
Dbsize ] 1000 objects
|
[ Gransize | Vary from 1 to 1000
| |
| | objects/granule
| o
| Conflict-delay | 1 Second [
| I |
| | I
\ TS me /

Table 4.4. Workload Parameters
for Experiment 1
Figure 4.3. through 4.6. show throughput results in

experiments 1.1. through 1.4. for multiprogramming
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level of 5,10, 15 and 20 vrespectively. The
throughputs are given in units of committed
transactions per second of simulated time.

The Gran column for each associated tabile
indicates the number of granules, in the database,

used for each experiment.

i e il \
| Gran | TC | SCS | ITC l
N
T R
o R
I —“;; ————————— | __I;-;;I"T--1-1-.‘4_1_2_———-I-—lgh.-0‘2—3 _____ I
s o
i
P
ettt /

Table 4.5. Throughput experiment 1.1.

(multiprogramming level = 5).

Experiment 1.1 investigates the
performance behaviour of the three algorithms when
multiprogramming level is 5. The experiment
shows that throughputs in the three cases are very

close, with Integrated Transaction Characteristics
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algorithm outperforming the other two.

The Semantically Consistent Schedules
algorithm performs slightly better than the
Transaction Classes algorithm when granularity is
coarse. But as granularity is made finer the
Transaction Classes algorithm exhibits a performance
edge over the Semantically Consistent Schedules

algorithm.
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In this experiment, the closeness in the
performance of the algorithms could be attributed to
low probability of conflicts since transactions are
just 5. Also the additional costs incurred as a
result of restarting has to be borne by the
Transaction Classes algorithm. This cost is more

pronounced when granularity is coarse.

e it \
| Gran | TC | Scs | ITC

I | | I -

| == oo |
I I I | I
| 1 | 2.596 | 3.709 |  4.411

| ______________________________________________

I I | I

| 5 | 3.988 | 4.898 | 6.204 I
| === oo |
| ! | I I
| 10 | 5.120 | 5.890 | 6.985 |
R — |
I I | I |
| 50 ] 6.108 | 6.723 [ 7.891 |
|~ oo |
I I | | |
| 100 | 6.907 | 7.067 | 8.050 |
| === mm = o oo |
I | I ! I
| so00 | 7.018 | 7.112 | 8.126 |
i |
I I | I |
| 1000 1 7.139 | 7.250 | 8.163 |
=TS s S s s s s s s /

Table 4.6: Thoughput experiment 1.2

(multiprogramming level = 10
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Fig4.4:Throughput expt.1.2 (Multiprog.level=18)
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Experiment 1.2 checks throughput of the algorithm
while the multiprogramming level is 10. Again, there
is a noticeable improvement in the throughput as
granularity becomes finer. But here, relative to
results of experiment 1.1, the throughputs generally
decrease. Also, the Transaction Classes algorithm is
consistently worst while the Integrated Transaction
Characteristics algorithm maintains its lead. The
difference in behaviour could again be attributed to
the conflict resolution peculiarities of the

algorithms.
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I | :

Gran | TC scCs | ITC |

I | I |
____________________________________________ |
| | I

1 | .280 809 | 1.859 |
____________________________________________ |
I |

5 | .314 .912 1.934 |
____________________________________________ |
I | I

10 | .517 | 1.166 2.057 |
____________________________________________ [
I | I

50 | 1.200 | 1.304 2.311 |
____________________________________________ I
I I I

100 2.342 | 2.704 | 3.934 |
____________________________________________ I
I | |

500 2.581 | 2.813 | 4.056 |
____________________________________________ I
I I I

1000 3.359 | 3.394 | 4.431 |

Table 4.7: Throughput experiment 1.3

{multiprogramming level = 15)
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Experiment 1.3 sets multiprogramming level
to 15. A sharp drop in the throughputs of the
methods is noticed in this experiment. Relatively
the Integrated Transaction Characteristics algorithm
still leads while the semantically consistent
schedules algorithm follows. This experiment perhaps
shows that quite apart from conflict probability,
the resources of the system is beginning to be

stretched close to its limit.
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I | | |
! | I |
Gran | TC | scs | ITC [
| I |
————————— e B R
I | |
1 | .104 | 351 | 393 |
| I |
_________ I___...................._. e —— | - ————————
|
| 5 | 104 .312 327
| 1
mmmmmmn- e e Ryt A
| I |
| 10 | .106 | .104 | .184
I I |
--------- R B
| I I
50 | 241 | 511 | 433
I | I I
————————— e R ]
I | I I
100 | 302 | .802 | .939 |
| I I |
--------- ] B
I I I | I
| 500 | 696 | 1.019 | 1.312 |
I | | I I
e | =mmmmee | ~ommmme e | ~ommmmmmmeee |
I | | I |
| 1000 | 1.574 | 1.700 | 1.782 |
I ! I | I
| ittt ket et /

Table 4.8: Throughput Experiment 1.4
(Multiprogramming level = 20)
For once, while the multiprogramming level
is 20, the Semantically Consistent Schedules

algorithm performs better than Integrated
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Transaction Characteristics algorithm when
graularity is 10 or in the neighbourhood of 10.

The curves get most depressed in this
experiment, thus showing that as the
multiprogramming level is increased the probability
of conflict gets higher and resource contention gets
worse.
4.8.1.1 summary of results of the multiprogramming

level Experiments.

Perfomance of each algorithm improves with
increase in the number of granules whereas their
perfomances steadily decrease with increase in
multiprogramming level. This result is corroborated
by intuition and various results in performance
literature [Ries77, Garc78, Tay84a). Also, the
graphs are similar to a segment of the general
granularity curve reported by Tay [Tay84a].

The Integrated Transaction Characteristics
algorithm performs uniformly better than the other
two algorithms in all the experiments except when
multiprogramming level becomes large and the

throughputs of the three algorithms become very
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close. In particular, when multiprograming level is
20 and number of granules 1is about 10 the
Semantically Consistent Schedules algorithm edges
out the Integrated Transaction Characteristics
algorithm. The performance of Transaction classes
algorithm 1is in general worse than that of
Semantically Consistent Schedules algorithm.

The poor performance of Transaction Classes
algorithm is attributable to its conflict resolution
technique. Its conflict resolution technique is time
stamp based, it therefore resclves conflicts by
restarting transactions that have already incurred
some costs. Another explanation of its worst
performance is that, under a high probability of
conflict (when granularity is coarse and/or level of
parallelism is high), cyclic retarts [Date82] may
occur.

This anomaly is illustrated in figqures 4.6 and 4.7
transaction T1:
begin
read x-value from X;

compute;
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Figure 4.6 Cyclic restart transactions

Step Action

1 T1:
2 T2:
3 T1:
4 T2:
5 T1:
6 T1:
7 T2

write x-value into X:

end:

transaction T2:

begin

read x-~value from X:

compute;

write X-value into X:

end:

Result

begin xact
begin xact
read x-value
from X

read x-value
from X

write x-value
into X

read x-value

from X

: write x-value

into X
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8 T2: read x-value R-TS(X) =4

from X

9 Tl: write x-value Restart (T1)
into X with TS(T1)

= 5

10 Tl: read x-value R-TS(¥) = 5

from X
yie
11 etc ete |

Figure 4.7: Example of cyclic restart

anomaly

Figure 4.6 shows a pair of transactions
both reading from object X and writing into object
X, which make the two transactions prone to cyclic
restart anomaly.

Figure 4.7 demonstrates how  these
transactions can be involved in an infinite cycle,
restarting each other repeatedly and incurring
costs. Only the first ten steps in the infinite
interleaving cycle are shown in the figure.

The problem with the two transactions is

i1l



that they are reading and attempting to write the
same granule. If they attempt to interleave
execution in the manner shown in Figure 4.7,
performing their reads in time stamp order and then
attempting to do the same for their writes, they are
liable to follow the pattern shown in the figure
forever.

The problem begins when T1 is restarted at
step 5 because X has been read by a younger
transaction T2. At this point,Tl1 actually becomes
younger than T2 and re-reads X. This dooms T2’s
subsequent write to end in a restart. If the
computation delay between the read and write of X
exceeds the conflict avoidance delay,that is the
delay from the time of a restart to the time of re-
reading X for both transactions T1 and T2, this
pattern can indeed persist forever.

4.8.2 Concurrency Control Cost

This experiment investigates the effects
of concurrency control costs on the result of
experiment 1.2. The experiment is repeated with

concurrency control ©parameters modified to
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investigate the effects of alternative concurrency
control costs. The system parameter and workload
parameter settings are as shown in Table 4.9 and

4.10 respectively.

e i \
I |
| SYSTEM PARAMETER SETTINGS |
| |
| == - |
I |
] System Time |
| Parameter (Milliseconds) |
I |
G | -mmmmmm e e |
| OBJ-10-time | 40 |
|
OBJ-CPU-time 15 |
I
| cCc-10-time Vary from 0 to 40 |
| I
CC-CPU-time Vary from 0 to 10
I
| TAB-10-time 0
I I
| TAB-CPU-time | 1
|
| Stagger~mean 25
| | I
T T T s s e /

Table 4.9 : 8ystem Parameter 8Settings for

Experiment 2
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-—— e e e A D S — — e W T T S ——— A - —— — A oy S — — —

| l
| l
| I I
| Dbsize | 1000 objects |
| I l
| Granssize | Vary from 1 to |
| I I
| | 1000 objects/ |
| l |
| | granule |
l | |
| Nterms | 10 |
l I |
] Conflict~-delay | 1 second |
l | l
o e e e e e e S smmm—emmm /

Table 4.10: Worklcad Parameters for Experiment 2.
Figure 4.8 through 4.10 show throughput
results in experiments 2.1 through 2.4 with respect

to varying CC-I0O-time and CC-CPU-time.
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I I I
] Gran [ TC | SCS | ITC
| -=mmmmmeen | ===mmmmmmmmee i — | =-=-mmee-
| 1 | 2.609 ] 3.818 | 4.488
I I I
| —=mmmmmm e o | ~=mmmmmmeee e
5 3.988 | 5.212 | 6.193
!
_________________________ I _——mememwm———— | ——-————————
| 10 | 5.252 | 6.416 7.469
| I
_________________________ |____.___......_.. ———————————
50 5.807 6.736 8.012
| _______________________________________________
| 100 6.918 7.069 8.051
| I I
R | =mmmmmmmmmmen ] R
| 500 6.932 7.117 | 8.153
I I
R R | =mmommmee | --=mmm e
| 1000 7.140 | 7.252 | 8.163
I

Table 4.11: Throughput Experiment 2.1

(CC-CPU-time=0,CC~10-time=0)
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Fig 4.8:Throughput Expt 2.1
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Experiment 2.1 investigates a situation
where both CC-I0-time and CC-CPU-time are very small
and therefore could be regarded as being Zzeros.

Except for some minor variations when
granularity is coarse (few objects per granule) the
throughputs and hence the behaviour of the
algorithms are similar to results of experiment 1.2.

This result suggests that the CC-CPU-time

has little or no effect on the relative behaviour of

the algorithms. This observation 1is further
corroborated by the result of experiment 2.2
below.

In experiment 2.2 the CC-CPU-time is 5.
The experiment is intended to check results in 2.1
and 1.2 vis a vis concurrency control CC-CPU-time
cost. The results in 1.2, 2.1 and 2.2 are nearly
identical. This indicates that the effects of the
cost of concurrency control could be negligible as
long as concurrency control overhead is small
compared to the costs associated with object
accesses, This observation is checked out in the

next two experiments by increasing concurrency
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control costs. The two experiments model a situation
where concurrency control information is kept on
disk rather than in memory, with one disk access
being required per conccurency contrel request

processed.
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——————————— ——— ———— —— > ——————— —— A T — " - . — T ——————

1 2.611 3.818 | 4.489
| | I
I I I

5 | 4.001 | 5.193 | 6.200
| I I
I | |

10 | 5.250 | 6.411 [ 7.456
! | I
I | !

50 | 6.203 | 6.334 | 7.837
I I I
| | I

100 | 6.709 | 7.070 | 8.051
| ! I
I | |

500 | 6.812 | 7.122 | 8.094
I I |
I I I

1000 | 7.142 | 7.252 | 8.162

Table 4.12: Throughput Experiment 2.2

(CC~CPU-time=5, CC-10-time=0)
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Table 4.13 and Figure 4.10 show the result of
experiment 2.3.

This result is interesting in more than
one way. First, it confirms the observation in
experiments 1.2, 2.1 and 2.2 that the effect of
Concurrency Control cost is significant with respect
to throughput when its cost is very close to object
access costs. Secondly, the throughputs take a dip
when the granularity is more than 100. An
implication of this is that a lot more Concurrency
Control information is required at finer
granularities and if access to this information is

expensive throughput would inevitably drop.
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i ——— —————— A S T A e S ———— o — T . S — o V=t

\
I | I
GRAN TC [ scs ] ITC I
| | I I
______________________________________________ |
I ! I
1 2.599 | 3.019 | 4.415 |
I | | |
______________________________________________ |
I I
5 4.000 4.234 | 5.924 |
| I I I
______________________________________________ |
I I
10 5.223 6.013 | 7.112 |
I I I I
______________________________________________ |
I | I
50 5.998 | 6.036 | 7.530 !
I | I I

! I |

100 | 6.107 | 6.904 | 7.635

I I I I

| | I

500 | 4.982 | 6.112 |  6.497

I I I I
______________________________________________ ]
I | I I
1000 | 3.703 | 3.698 | 4.011 |

Table 4.13: Throughput Experiment 2.3

(CC-CPU-time=1, cc-Io-time=40)
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Fig 4.18:Thxoughput expt.2.3

—3
o
hs
o
-

oQ
o

o

c

(—1—
.+

S %
- TC
2_._
~+ SCS
1+ * ITC
0 { } } $ 4 } —
0 1 5 10 50 100 500 1000

Granularity(log scale)

123



Gran | TC | scs | ITC
| | ! |
1 | 2.587 | 3.017 | 4.201
| I I
__________________________________________ l
| I
5 3.665 | 4.672 | 5.723
I | |
__________________________________________ I
I |
10 5.101 5.989 | 6.910 |
| I I
__________________________________________ |
I I I
50 [ 5.213 6.181 | 7.006
| I |
100 | 5.997 6.781 | 7.513 |
| I
I | |
500 | 3.813] 5.529 | 6.102 |
| I I
| I
1000 | 3.702] 3.577 | 3.934
| | |

Table 4.14: Throughput Experiment 2.4

(CC~-CPU-time = 10; CC-10-time=40)
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Table 4.14 and Figure 4.11 illustrate the
result of experiment 2.4. The relative performance
is similar to that of experiment 2.3. A striking
difference is that the throughput has generally
decreased.

4.8.2.1 Summary of result f Concurrency Control

experiments.

There is a general decrease in the perfor-
mance of each algorithm with increase in concurrency
control cost. The Integrated Transaction Characteri-
stics algorithm is still the best.

The CC-CPU-time Concurrency Control cost
has little or no effect on the relative performance
of the algorithm while an increase in the CC-
IO-time reduces the throughput of the algorithms.

It is also observed that the effect of
Concurrency control «cost is negligible in
performance determination provided concurrency
control overhead is small compared to the cost
associated with object accesses.

4.8.3 Searching Costs

This experiment investigates the effects

126



4.4-:‘

of searching costs on throughputs of the
algorithm. Experiment 1.2 is repeated with TAB-IO0-
time and TAB-CPU-time parameters modified. The
system parameter and workload parameter settings are

as follow.

it it \
SYSTEM PARAMETER SETTINGS |
|
System | Time
Parameter i (Milliseconds)

—— T ———— — ————— — — —————————— o~ — i ——————— A —— —

OBJ-10-time 48
OBJ-CPU-~time 15
CC~10-time 0

TAB-10-time Vary from 0 to 40

TAB-10-time Vary from 0 to 10

25

|
|
|
|
|
|
| cc-cpu-time | 1
|
|
|
|
|
Stagger-mean |
|

Table 4.15: System parameter settings for

experiment 3
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| WORKLOAD | PARAMETER |
| =mm oo |
| Dbsize | 1000 objects |
| |
| Gransize vary from 1 |
| to 1000 |
| object/granule ]
| |
I |
| Nterms 10 |
| |
| conflict- |
| delay | 1 second |
| | I
| | |
I e it /
Table 4.16: Workload parameters for

experiment 3.
Figures 4.12 through 4.15 show throughput results in
experiments 3.1 through 3.4.

Experiment 3.1 investigates the
performance of the algorithms when no cost is
charged for searching class or compatibility set
matches. The result of the experiment is identical
to those of experiments 1.2, 2.1 and 2.2. This
implies that searching overhead, like concurrency
control overhead is not significant whenever
searching cost is small compared with the cost of

object accesses,
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Gran TC | scs | ITC |
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Table 4.17: Throughput experiment 3.1
(TAB-IO-time=0, TAB-CPU-time = 0)

Experiment 3.2 is performed with cost
associated with CPU set to 5. Except for some minor
differences in throughput the result of this
experiment is similar to those of experiments 1.2,
2.1, 2.2 and 3.1. Experiment 3.2 further confirms
that searching overhead is not significant whenever
searching cost is small compared with cost of object

accesses.,
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| Gran | TC | scs | ITC

T e T e | aes
Dl i e
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Table 4.18: Throughput Experiment 3.2

(TAB-I0O-time = 0; TAB-CPU-time = 5)
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Table 4.19 and Figure 4.14 show the resul-
ts of experiment 3.3. Searching overhead has an eff-
ect on throughputs of the three algorithms. But the
most significant result here is that the Integrated
Transaction Characteristics algorithms for the first
time is out-performed by the Semantically
Consistent Schedules algorithm. This perhaps shows
that the number of table procbes could adversely
affect throughputs especially when the table is
large and resident on a secondary storage. Another
observation here as in experiment 2.3 and 2.4, is
that the throughputs peaked between 10 and 100 gran-

ules and dropped thereafter.
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I I I I
| Gran | TC SCs | ITC |
I | | I I
| === |
I I I I
| 1 | 1.913 3.107 | 2.112 |
I | | I I
| === |
I | I I
| 5 | 2.426 3.410 | 2.561 |
| | I | I
T |
I I
10 3.235 3.946 I 3.127 |
I | |
I I
50 3.364 | 4.372 | 3.489
! I I
| I I
100 | 3.721 | 4.801 | 3.943
I | I I
l ___________________________________________
I I | I
| 500 | 3.213 | 4.013 |  3.217
| | I I I
| === |
I | I I I
| 1000 | 2.614 | 3.310 | 2.633 |
| ittt /

Table 4.19: Throughput Experiment 3.3
(TAB-IO-time=40; TAB-CPU-time=1)
Table 4.20 and Figure 4.15 show the results

of experiment 3.4.

There is a general drop in the performance

134



Throughput

Granularity(log scale)

. Fig4.14:Throughput expt.3.3 /
(TAB_IO_time=46; TAB_CPU_time=1 \
41 "
/+/ / \4
34
2+ /
- TC
1+ -+ SCS
# ITC
0 : 4 : : : }
0 1 b 10 b0 100 500

1000

135



X

of the algorithms with throughput at their maximum

when granularity is about 100.

The Integrated Transaction Characteristics
algorithm still 1lags behind (in terms of
performance) when compared with the other two
algorithm between granules 1-50. Between granules
100-1000, the order of performances is SCS, ITC, and

TC.
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Gran | TC | scs | ITC |
__________________________________________ l
| | I |

1 | 1.892 | 3.107 | 2.109 |
| | | :
__________________________________________ |
I I I

5 2.903 | 3.774 2.856 |
I |
__________________________________________ |
I I | I

10 3.231 | 3.945 3.126 |
I I
__________________________________________ l
| I I

50 | 3.804 | 4.500 3.620 |
I | I I
__________________________________________ |
| | I

100 | 3.719 | 4.796 3.738 |
| | I I
__________________________________________ |
| | |

500 | 3.1112 | 3.903 | 3.444 |
| I I |
__________________________________________ l
I I I |

1000 | 2.513 | 3.295 | 2.620 |

Table 4.20: Throughput Expeperiment 3.4

(TAB-CPU~-time=10; TAB-10-time=40)
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4.8,3.1. Summary of results of ¢the

Searching Cost Experiments

Results of searching cost experiments show
that an increase in searching overhead has a
degrading effect on the throughput performance of
the three algorithms.

The TAB-CPU-time Searching cost has little
or no effect on the relative performance of the
algorithms while an increase in TAB-IO-time
adversely affects throughputs of the algorithms in
general and the Integrated Transaction
Characteristics algorithm in particular. So when the
table to be searched is so large that it has to be
kept on an auxiliary (secondary) storage, the
throughput of Integrated Transaction Characteristics
algorithm and indeed the other two algorithms could
be badly affected.

It is also observed that the effects of
searching cost, on performance, is negligible if the
cost is small compared to the costs associated with

object accesses.

139



CHAPTER 5

CONCLUSION

5.1 Bummary of Results

Results obtained from a comparison of the
costs of Transaction Classes, Semantically
Consistent Schedules and Integrated Transaction
Characteristics algorithm show that,

(i) Semantically consistent schedules
algorithm has the smallest worst-case storage of the
three algorithms. The Integrated Transaction Charac-
teristics algorithm has the next worst-case storage
while the Transaction Classes algorithm has the
highest worst-case storage.

(ii) The best-case storage for Transaction
Classes algorithm is smaller and therefore better
than the best-case storage for either Semantically
Consistent Schedules algorithm or Integrated
Transaction Characteristics algorithm.

(iii) The Semantically Consistent
Schedules algorithm is best in terms of worst-case

storage cost, indicating that its storage

requirements is superior under low-conflict
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transaction mixes.

Transaction classes algorithm is
best in terms of best-case storage implying that it
is better under high conflict transaction mixes.

{iv) CPU cost for Semantically Consistent
Schedules algorithm is less than the CPU cost of
Transaction Classes algorithm except when
writes/reads ratio is very small and transaction
class entries are equal to compatibility sets
entries in which case the cost could be the same.

(v) If writes/reads ratio is very small,
CPU cost for Integrated Transaction characteristics
algorithm is greater than CPU cost for Transaction
Classes algorithm

(vi) If writes/reads ratio is not small,
the total entries for transaction classes and
compatibility sets for Integrated Transaction
Characteristics algorithm are sufficiently close to
transaction classes entries (for example when just a
compatibility set is contained in a class) then
CPU cost for Transaction Classes algorithm is

greater than CPU cost for Integrated Transaction
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Characteristics algorithm.

In general the cost asscociated with
Semantically Consistent Schedules algorithm is at
least as low as those for Transaction Classes
algorithm and Integrated Transaction
characteristics algorithm.

The three algorithms were also tested
under varying multiprogramming levels, concurrency
control costs and searching costs.

The results of the experiments show that

(vii) Performance of each algorithm
improves with increase in number of granules while
their performances steadily decrease with increase
in multiprogramming level.

(viii) The Integrated Transaction
Characteristics algorithm performs better than the
other two algorithms in all the multiprogramming
level experiments. But when the multiprogramming
level becomes large, the throughputs of the

algorithms become very close.
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(ix) Given a multiprogramming level, the
performance of Transaction Classes algorithm is in
general worse than that of Semantically Consistent
Schedules algorithm.

(x) In general, increase in concurrency
control costs degrades performance.

(xi) Concurrency control cost has little
or no effect on the relative performance of the
algorithms

(xii) Effects of concurrency control cost
is negligible in throughput performance whenever
concurrency control overhead is small compared to
the costs associated with object accesses.

(xiii) The algorithm of choice under
varying concurrency control costs is Integrated
Transaction Classes algorithm.

(xiv) Increase in searching overhead has a
degrading effect on throughput performance of the
three algorithms.

(xv) The input/output cost increase for
table probes have a more severe performance

degradation effect than CPU cost associated with
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such searches.,

(xvi) Effects of searching cost are
negligible if the cost is small compared to the
costs associated with object accesses.

(xvil) For the maintenance of performance
edge of transaction knowledge based algorithms
(TCc,SCS and ITC) over traditional algorithms (e.q.
two-phase locking, Timestamp ordering and serial
validation), information about the characteristics
of transactions must be as small as possible and
must be kept in primary memory.

(xviii) The algorithm of choice under
varying searching costs is Semantically Consistent
Schedules algorithm.

A major conclusion here 1is that no
algorithm is uniformly better than the other two.
the throughputs of the algorithms depend heavily on
availability of relevant resources (e.g. fast
input/output devices large memory that could
accommodate both concurrency contrel and searching
information), the structure of the database and the

environment (e.g. the number of concurrent
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transactions)

5.2 Comparison with other work

It has been reported by Eswaran et al (Eswa76)
that availability and usage o©f transaction
Characteristics by concurrency control algorithms
could improve throughput. This fact was used by
Bernstein et al (Bern80c] and Garcia-Molina [Garc83]
in proposing Transaction classes andg Semantically
Consistent Schedules algorithm respectively.

A comparison of the relative throughput
performance of the two algorithms is hitherto non-
existent in concurrency control performance
literature. A major contribution of this study is
the evaluation of the throughput performance of the
two algorithms and the determination of a better
choice which is Semantically Consistent Schedules
algorithm,

In effect there is no available results in
the performance evaluation of this class of
concurrency control algorithms with which our
results could be compared. The result should however

be a template for results of subsequent performance
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evaluation efforts.
5.3 Future research directions

The abstract model in chapter 2 considers only
the non-conflict CPU cost [Badas8l] - the CPU cost
experienced by a transaction which does not conflict
in any way with other concurrent transaction. One
area of further work is therefore a generalisation
of the analysis to include the additional resources
of CPU cost associated with transaction restarts and
blocking.

Another area of further research is to
relax the assumptions discussed in 4.6. Although it
is not expected that this should significantly alter
the results, it is by trying that the expectation
can be confirmed.

only sequential transaction types and
well-placed granules were considered in this study,
future efforts could be extended to random
transaction types and random-placed granules

respectively.
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The results in this thesis are based on
simulation experiments. An alternative is an
analytic approach. This option is also 1left for

future work.
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[AGRA83)

[Bada79]

[Bada8O]

[Bada81]
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APPENDIX 1

Generation of

transaction, transaction classes and Compatibility

set tables
A random number generator is used to
identify the first of the objects and the
number of objects to be accessed by each
transaction.
It is assumed that writeset of a
transaction is a subset of its readset. It
is further assumed that Pr(write/read)
ranges from 0 to 0.5.
For implementation ease, each transaction
constitutes a transaction class
By inspecting readset and writeset of each
class, conflicting classes are determined.
Also, transaction types (e.g. READ-ONLY
and READ/WRITE transactions) are
determined while compatibility sets are
randomly picked among the transactions.
Using compatibility sets and transaction

classes, compatible transactions within
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10

11

12

13

14

15

16

transaction classes are identified.

TRANSACTION TABLE

10

11

12

13

14

15

16

13

12

12

001,015
002,002
003,008
006,011
008,019
013,059
014,014
017,017
025,032
029,029
034,042
043,065
075,102
054,062
062,071

086,062
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001,008
NIL
003,005
009,011
NIL
036,059
014,014
017,017
NIL
029,029
041,047
NIL
NIL
054,059
NIL

NIL



17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

10

10

10

10

10

10

11

11

12

12

090,089
094,100
100,107
106,110
119,122
120,141
126,127
130,161
132,132
133,133
144,168
168,186
170,197
172,174
174,231
181,225

185,185

191,191

201,229

220,238

257,257

263,281
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090,094
097,100
100,102
108,110
119,120
120,131
127,127

NIL
132,132
133,133
156,168
168,177
183,197

NIL
203,231
181,203
185,185
191,191
201,224

NIL
256,257

NIL



P

39

40

41

42

43

44

45

46

47

48

49

50

bl

52

53

54

55

56

57

58

59

39

40

4]

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

12

14

14

13

12

13

15

15

15

18

16

16

lé

17

18

18

18

17

17

17

17

274,278
|
331,341
335,346

358,362

397,403

| 435,456
|

452,478
457,487

503,515

510,510

|537,578

| 545,559

|

557,561

|

|573,573

I

|607,618
:621,662
636,636
| 677,706
689,703

| 697,702

698,727
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274,276

NIL
335,346
358,360
400,403

NIL
465,478
472,487
503,508
510,510

NIL
552,559
557,559
573,573
612,618
621,642
636,636

NIL
689,697
697,699

712,727
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s

‘_,-n

60

61

62

63

64

65

€66

67

68

€69

70

71

72

73

74

60

61

62

63

64

65

66

67

68

69 |

70

71

72

73

74

17

18

19

19

19

19

19

19

21

21

20

22

22

22

20

731,745
741,755
777,780
|785,818
797,797

804,804

852,864

859,892

|

| 892,908

|

|905,917

|918,927

|

|919,966

|935,959

|951,953

|994,1000
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731,738
741,748
779,780
785,801
797,797
804,804
852,857
875,892
899,908
905,910
918,922

Nil
935,942
953,953

994,997
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TRANSACTION CLASSES TABLE

[ e e e eSS m S ms S e S s \
| Transaction| conflicting | conmpatible Transactions |
| Cclass | Classes |within conflicting Classes |
\m===mmmmme- | === e - | ==mmmmmmmmmm oo /
| I
1. | 1,2,3,4,5,7 | (1,2,3) (4, 5)
| I
| I
2. 1 | Nil
I
3. 4,3, | Nil
|
4 1,4,5 | (4,5)
I
5. !| 1,4,7,8 | | (7,8)
6. |1,5,7,8,9,10,6 | (7,8,9,10)
| I
7. | 7 | Nil
| |
8. | 8 | Nil
I
9. 10 | Nil
I
10. 10 | Nil
I
11. 6,11,12,13 | Nil
I |
12. 6,11 | Nil
|
13. 16,17,18,19 | (17,18)
I |
14. | 14 | Nil
I
15. 15 | Nil
I |
16. | 13,16,17,18 | (17,18)
I I
17. | 13,16,17,18 | (17,18)
| I
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el

18.

19.

20.

21.

22.

23.

24.
25,

26,

27.

28.

29,

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

13,17,18,19
13,18,

19,20

21,22
21,22,23,24,25,26
22,23

25,26,27
24,25

24,26
28,29
27,28,29,30,32,33
28,29,30,32,33
28
28,29,31,32,33
29,31,32,33
29,32,33
29,33,34
31,32,35
31
37
38

39
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(17,18)

Nil

(19, 20)

Nil

(22,24) (25,26)
Nil

(25,26,27)
Nil

Nil

(27,28)
(29,30,32,33)
(29,30,32,33)
Nil
(29,31,32,33)
(29,31,32,33)
(29,32,33)
(29,33,34)
(31,32)

Nil

Nil

Nil

Nil



40,

41.

42,

43.

44,

45.

46,

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

59,

60.

41
40,41
42
43
44
45,46
45,46
47,48

48
50,51,52
49,50,51
49,50,51
52
53
54,55
57,58
57,58
56,57,58
58,59
61,60

61

Nil

(40,41)
Nil

Nil

Nil

(45, 46)
(45,46)
Nil

NIL
(50,51)
(49,50,51)
(49,50,51)
NIL

NIL
(54,55)
(57,58)
(57,58)
(56,57,58)
(58,59)
(58,59)

NIL



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

62
63
64
65
66
67
68,69
68,69
70
70,73
71,72,73
71,73
73

74

NIL
NIL
NIL
NIL
NIL
NIL

(68,69)
(68,69)
NIL
NIL
(71,72,73)
(71,73)
NIL

NIL
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COMPATIBILITY SETS TABLE

Compatibility Set No. | Compatible Transactions
------- . 125
2. I 4,5,6
3. I 7,8,9,10
4. 11,12
5. 14,15
6. 17,18,19
7. | 22,24
8. 19,20,21
9. I 23,25,26,27,28
10. ; 29,30,31,32,33,34
11. } 35,36
12. I 43,15,37,38,39,16
13. { 13,42,44
14. I 41,40
15. { 45,46,47
16. = 49,50,51
17. 54,56,57,58,59,60
18. | 48,52,53,55,61
19. 62,63,64,65,66,67
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20.

21.

22.

174

70,74
68,69

71,72,73



APPENDIX 2

QUTPUT DATA ANALYSIS

This appendix represents the statistical
analysis techniques used to interpret the
simulation results of experiments of Chapter 4. The
methods employed here are based on a combination of
the traditional batch means approach [Ferr78, Law82,
Saue81] and an improved technique for estimating
variance for use in computing confidence intervals
for the results. The improved variance estimation
technique was proposed by Law et al [Law82].

A. Statistical Model

This section describes the improved batch

means approach used in this thesis. Each simulation

is run for t simulation time units, and the overall
b

simulation is divided into n individual batches of

t / n simulation time units apiece. The throughput
b b

th
estimate for the i batch, dencted as X for
i

1L<1ix<n is the ratio of the number of

175



transactions which commit during the batch to the
length of the batch in simulation time units. (This
number is multiplied by a scaling factor of 1000 for
display purposes). This estimates are summed and
divided by the total number of batches in order to
compute the overall throughput estimate for a

simulation:

To model the statistical characteristics
of the throughput observations, it is assumed that
{Xi} is a stationary sequence and that each Xi has

2
mean U and variance 8 . It is further assumed that

the correlation between adjacent batches is
significant, but the correlation between non-
adjacent batches is negligible [Conwé3]. More
formally:

a if | i-j |

1
Cov (Xi,Xj) = { o if | i-3 | 1

v oI

ceeeeee(2)
Given this model of the correlation between batches,

the variance of the sum of the Xi’s may be expressed
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as.

n . n
b b
Var | foi { = E ~Var (Xi) + 2x
1i=1 i=1
n n
b-1 b
> ~ Cov (Xi, Xj) ceeevensss (3)
T=1 j=1i+1
2
=ng + 2 (n-1)d
b b

Thus, the variance of the mean throughput estimate X
2

is obtained by dividing this result by n
b

P LR I N T R I )

_ 2
var (X) = e (5)

In order to compute a confidence interval

for the throughput estimate-§, var (X) must be

estimated. This, in turn, requires that estimates be
2

2
obtained for g and d. The estimate often used for g
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2
in computing confidence intervals is S , the sample

variance of the throughput observations:

n
2 A Zb .
S =n,i (xi-x) . & % 2 5 8 8 B & & & s 0 (6)
b i=1

If the Xis are correlated, the usual
2
sample variance is not a good estimate for g .

2
Instead, g may be estimated by taking advantage of

the fact that only adjacent batches are correlated.

The sample variance of the throughput from the even

2
batches provides an unbiased estimate of g , as

does the sample variance of the throughput from the
odd batches, so these two sample variances are
computed and averaged in order to obtain a better

2
unbiased estimate of g . (This improved estimate of

2 2
gq is denoted S to indicate that it has been
d

introduced because of covariance d between adjacent
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batches, and it is assumed that n , the number of
b

2
batches is chosen to be even). To estimate g , then:

- i -
x = (n/z) a e ® @ & & *F 80 4 u & P (7)
odd i odd
1 .
— —— .
x = (n /2) xl s W b m & & " B s s e b (8)
even b i even
2
s = (n/ 2) 12 (Xi-% odd) .. (9)
odd b: i odd
2
s = (n / 2) - 1“;_; (Xi-% even) ... (10)
even i even
2 2 2
s = S even + S Qdd c.scicerinonnn (11)
d 2
The covariance term in equation (5) may
2
then be estimated once S hsbeen computed. This
d

estimate of the covariance d, denoted c, may be
computed as follows. First, an unbiased estimate k

2
of the quantity 2(g -d) is:
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n —4

i b . 2
\ K = n -1 “Z (xi+1— xi) » ® 8 8 8 % 2 & 3 @ (12)
— b i=1
Given K, an estimate of 4 is:
2
C=S-K......'...'I.I.llll....lll..‘ (13)
d 2 '

3
Finally, then, the variance estimate S_ for the

X
overall throughput X may itself be computed by
substituting the variance and covariance estimates

of equations (11) and (13) into equation (5):

2 a2 n
s_ = Sd+2‘ b—llc PR IR B BN B AR B ) (14)
x n n 2

b b
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Confidence Intervals

Given an overall throughput estimate X and

. * . . .
an estimate 8. of its variance, confidence intervals
X

can be computed in a fairly simple manner. The
confidence interval computation is performed as
though the Xi’s were independent, as is typically

, . . a
assumed, with the improved variance estimate S__ used
X

2
in place of the usual estimate of S / n . Thus, the
b

100 (4-a)% confidence interval for the mean

throughput t is computed as:

X

_.tL..'......'.....'..........lllll.. (15)
Where: L=s8s t / 2;n S = {8, ... (16)
x @& b-1, x -
The t®/2,; n term is chosen from the
b-1
student-t distribution with n degrees of freedom.
b-1

That is, if Y has this distribution, then:

Prob (¥>ta/2; n ) T A ceeieccinesaass (17}

b-1 2
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In order to obtain the most reasonable
confidence interval estimates, the computational
proceeﬂure in this thesis differs slightly from what
has been discribed thus far. First, the confidence
interval estimate obtained using the preceding
method will be slightly narrow because correlation
betwwen adjacent Xi’s reduces the "effective" number
of degrees of freedom [Law82]. The actual confidence
interval computations in this thesis are therefore

performed assuming only n /2 degrees of freedom, a
b

heuristic intended to make the confidence intervals
cbtained using the method describe here even more
realistic.

Second, since the estimator ¢ of the
covariance d is itself just a random variable,
actual experimental data may occasionally yield a
negative covariance estimate. Since correlation tend
to be positive in this type of study, cgo is taken
to indicate that the actual covariance d is itself
neglégible. When such values are obtained, the

associated confidence interval estimate is computed
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’ 2
by reverting to standard. methods, using 8 / n to
b

estimate var(X) and using n for the number of
b-1

degrees of freedom.
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