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Neural Net Expansion Model for Fissured Strong Expansive Soil
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ABSTRACT: Fissured strong expansive soil swelling behavior is complicated. In this 
paper, considering the typical filling fissures of strong expansive soils, fissure rate Kr was 
given as a fissure content quantitative indicator. A prediction model was developed for 
the prediction of swelling effect on a fissured strong expansive soil using BP neural net-
work approach, the gradient descent and the conjugate gradient algorithm methods were 
adopted. The actual test and predicted results of the two algorithms network showed 
high degree of similarity. The BP neural network model described by fissure rate, dry 
density, initial moisture content and overlying load can meet the precision requirements. 
The conjugate gradient method when compared with the gradient descent method, has a 
significantly improved calculation efficiency, the convergence rate is about 30 times less-
er than the latter, therefore, conjugate gradient algorithm BP network prediction model 
for swelling in the actual engineering calculation has obvious advantages.

1.  INTRODUCTION

Due to the unique mineral composition and struc-
tural characteristics of expansive soil, it shows 

mutual soil-water relationship, with the penetration of 
moisture, soil moisture increase, and water molecules 
gradually enter between clay sheets within the struc-
ture, leading to the release of large amount of stress, 
prompting soil volume to expands, i.e. swelling of ex-
pansive soil. 

Expansive soil swelling effect give rise to the main 
factors of expansive soil causing geologic disasters, it 
is affected by the influence of soil fissure, compact-
ness, moisture content, and various environmental fac-
tors caused by changed hydrological conditions [1–3]. 
Based on the South-to-North Water Transfer Proj-
ect geological survey work, on strong expansive soil 
macro-structure, the most characteristic feature is ex-
tremely developed fissure, and its large amounts of fill-
ing material, swelling effect is very significant [4–7]. 
There was not a good quantitative description method 
for fissure development. Fissured strong expansive soil 
has significant impact during channel design and con-
struction. In order to research on expansive soil swell-
ing and contraction effect, established expansive soil 
multiple factors swelling model for disaster prevention 

and engineering construction, which has significant 
importance.

Artificial neutral network tool have a strong non-lin-
ear massive parallel processing capabilities, it become 
an effective way to solve many complex non-deter-
mined problems [8]. Recently, this theory and technol-
ogy has been applied in geotechnical engineering for 
rock deformation and damage [9–12], rock seepage 
characteristics [13], soil strength characteristics [14–
15] and rock subtle concept structure [16–17].

In this paper, based on field research, the method 
to quantify filling fissure of strong expansive soil will 
be determine, fissure quantitative indicator will be es-
tablished, by developing remodeling strong expansive 
soil expansion test, to obtain the expansion law for fis-
sured expansive soil. The use of BP neural network 
is employed to carry out intelligent prediction of the 
non-linear relationship between strong expansive soil 
swelling rate and fissure rate, dry density, the initial 
moisture content and the overlying load through estab-
lished fissured strong expansive soil BP network swell-
ing model.

2.  FISSURE CHARACTERISTICS AND 
QUANTITATIVE GENERALIZATION 
PATTERN

Fissures of strong expansive soil are basically filled 
(see Figure 1). Due to the occurrence of strong expan-*Authors to whom correspondence should be addressed.  
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sive soil at depth generally up to 15 m or more, in such 
a high overburden stress conditions, fissure often do 
not exist in the normal form of having gaps between 
matrix, instead of being filled with gray-grayish green 
cohesive soil, which has high content of clay particles 
and hydrophilic mineral. These filling materials form 
in the process of migration of groundwater in cracks, 
during which ion exchange effects or mineral deposi-
tion effects happen with clay minerals such as mont-
morillonite and illite in strong expansive soil. The 
filling clay soil is very fine, and the natural moisture 
content is generally high.

Filling material network form irregular morphology, 
vertical and horizontal alternating distribution in the 
soil, filling thickness is 2~5 mm, film-like or lenticular, 
partially, the thickness is 2 mm or less and more than 
10 mm.

As a result of the frequent activities of the Nanyang 
expansive soil slope soil groundwater, most of the fis-
sures are filled with grayish green clay soil, the rest fis-
sure filling material are Calcium and Ferromanganese 
matter, etc. with very few non filled fissure. 

Research shows that, weak expansive soil grayish 
green clay filling fissures accounted for fissure total 
amount of 64.3%~83.9%. In middle expansive soil re-
gion, grayish green clay filling fissure has vertical zo-

nation characteristics, at depth within 6 m accounted 
for about 80%, and strong expansive soil depths are 
relatively high, grayish green filling fissure develop-
ment is more significant, accounting for total amount 
of fissure for more than 90%.

As a result, considering the strong expansive soil 
typical filling fissures, proposed filling material con-
tent to determine the extent of fissure growth, accord-
ing to statistical results made the assumption of strong 
expansive soil fissures are completely filled with gray-
ish green clay. Fissure rate Kr, i.e. the ratio of fissure 
volume and soils volume, can be indirect described as 
the ratio of the content of grayish green clay and the 
content of yellowish brown matrix clay, in order to es-
tablish strong expansive soil fissure content quantita-
tive indicators.

3.  FISSURED EXPANSIVE SOIL EXPANSION 
TEST 

Using quantitative indicator fissure rate, the fissure 
can be seen as one of the key factors included in the 
strong expansive soil swelling deformation model. Fis-
sured expansive soil expansion test is carried out (see 
Figure 2), gray filling clay in fissure surfaces were 
scraped from Nanyang segment, canal section TS95, 
TS105, TS109, as a fissure matrix, soil matrix using 
Nanyang segment TS106, TS95 canal slope and canal 
bottom yellowish brown soil, both physical property 
are shown in Table 1.

Based on ratio of gray and brown clay content, con-
figured gray clay content of 35%, 50%, 65% remolded 
expansive soil samples respectively for indoor test, 
simulated fissure were respectively 35%, 50%, 65%, 
different fissure rate expansive soil moisture absorp-
tion swell deformation research were conducted using 
no load and load swelling test, for three kinds of fis-
sure rate of soil samples, respectively conducted three 
dry density value (1.45, 1.50, 1.55 g/cm3), three initial 
water content amount (20%, 25%, 30%), three load (0, 
25, 50 kPa) conditions swelling test, analysis of strong 
expansive soil hygroscopic expansion deformation law 
and influencing factors.

Figure 1.  Strong expansive soil filling fissure.

Table 1.  Physical Properties Index of Fissured Expansive Soil.

Type
Moisture Content, 

% Density, g/cm3

Particles (mm) Composition, %
Liquid Limit, 

%
Plastic Limit, 

%
Free Expansion, 

%< 0.05 < 0.005 < 0.002

Fissure matrix 29.54 1.92 92 41 15 93.51 32.76 112
Soil matrix 24.87 1.93 87 30 12 55.42 27.45 68
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4.  BP NEURAL NETWORK ALGORITHMS

BP neural network is a kind of neural network 
model that can achieve nonlinear mapping multilayer 
feed-forward. Multilayered networks are capable of 
computing a wider range of Boolean functions than 
networks with a single layer of computing units. The 
basic three feed-forward BP neural network consists of 
an input layer, an output layer and a hidden layer, the 
topological structure is shown in Figure 3.

Through the learning samples, mapping from input 
layer n-dimensional Euclidean space to the output lay-
er m-dimensional Euclidean space can be completed, 
which can be used for pattern recognition and interpo-
lation, and it can approximate any nonlinear function 
in arbitrary precision. One hidden layer structure is 
generally used, for hidden layer quantity increase have 
no direct effect to improve precision of the network as 
well as enhance the network ability to express.

BP network study process is the process of error 
back propagation algorithm, through the forward cal-
culation and the error back-propagation, gradually ad-
justing the connection weights, until the network error 
E(k) reduce to the desired value, or reach the intended 
learning frequency. 

Neurons function is normally the derivable S (sig-
moid) type function [18]:

f x
e x( ) =

+ −

1
1

′ = −f x f x f x( ) ( )[ ( )]1

Error function R is:

R
Y Y

j nmj j=
−

=
Σ( )

)
2

2
    ( 1, 2, . . . , 

Where, Yj is the desired output; Ymj is the actual out-
put; n is the sample length. 

The most widely used standard BP algorithm is 
gradient descent algorithm, Let k be the iteration fre-
quency, from any given point z k( ),  along the negative 
gradient direction s k( )  in which the function declines 
the fastest to conduct 1-dimensional search:

 s k f z k( ) [ ( )]= −∇

Where, ∇f z k[ ( )]  is the gradient vector iterative 
point z k( ).  Then the next iteration point is 

   z k z k a k s k( ) ( ) ( ) ( )+ = +1

Where, a k( )  is the optimal step size. Terminal con-
dition of the iteration is:

Figure 2.  Fissured expansive soil expansion test.

Figure 3.  BP neural network topology diagram.
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∆ <z k( ) ε

Conjugate gradient algorithm, by improving the 
search direction, using a linear combination of the gra-
dient of the previous iteration points and the gradient 
of the present iteration points, obtained a new search 
direction, Fletcher-Reeves algorithm (Traincgf) as fol-
lows:

   z k z k a k s k( ) ( ) ( ) ( )+ = +1
  s k g k k s k( ) ( ) ( ) ( )+ = − +1 β

β ( ) [ ( )] ( )
[ ( )] ( )

k g k g k
g k g k

=
+ +

 

 

1 1T

T

 g k f z k( ) [ ( )]= −∇

Where, 
s k( )  is the search direction, which is a set 

of conjugate vectors; a k( )  is rep increments.

5.  STRONG EXPANSIVE SOIL BP NETWORK 
SWELLING PREDICTION MODEL

5.1.  Network Model Structure

For fissured strong expansive soil neural network 
swelling prediction model, using basic three feed-for-
ward BP network, i.e. network model consists of an 
input layer, an output layer and a hidden layer, which 
guarantees high prediction accuracy. According to the 
network accuracy requirements and strong expansive 
soil swelling rate change controlled factors, the input 
layer includes fissure rate, dry density, the initial mois-
ture content and the overlying load, obtained a network 
model input layer consisting of 4-dimensional vector 
components:

X K wr d= [ , , , ]ρ σ0

i.e. fissure rate Kr (%), dry density ρd (g/cm3), the ini-
tial moisture content w0 (%), the overlying load σ (kPa) 
respectively are for the four input neurons. Output lay-
er is 1-dimensional vector:

Y ep= [ ]δ

Swelling rate of expansive soils δep (%) is the out-
put neuron, thereby established strong expansive soil 
swelling prediction network model. Figure 4 is the 
schematic model.

5.2.  Samples Data Analysis and Processing 

The total number of train samples for BP neural net-
work is 81, sample sources are laboratory test data, soil 
characteristics include three fissure rate (35%, 50%, 
65%), three dry density (1.45, 1.50, 1.55 g/cm3), three 
initial water content (20%, 25%, 30%), three load (0, 
25, 50 kPa). Table 2 gives an example of train samples.

Singular sample data refer to the significant large 
or small sample data relative to other input sample. It 
can be seen from Table 2, expansive soil dry density 
is between 1.45~1.55 g/cm3, its value is significantly 
small compared to the fissure rate, moisture content, 
and load expressed in percentage. Dry density, which is 
the singular sample data, may reduce the computation-
al efficiency, and cause the results inability to converge 
during calculation. So, before the network comput-
ing, there is need to conduct normalization process for 
train data. An adequate normalization, not only for the 
network output variables but also for the input ones, 
previous to the training process is very important to 
obtain good results and to significantly reduce calcula-
tion time.

Data normalization is a process whereby target data 
will be limited within the specific range with the cal-
culation requirement after the treatment through some 
algorithm, and transform variables to dimensionless 
scalars. On the one hand it can ensure the convenience 

Figure 4.  Strong expansive soil prediction BP network structure dia-
gram.

(6)

(7)

(8)

(9)

(10)

(11)

(12)
Table 1.  Train Sample Illustration.

Input Layer

Output Layer δep (%)Kr (%) ρd (g/cm3) w0 (%) σ (kPa)

35 1.45 20 0 13.05
35 1.55 30 50 0.84
65 1.55 30 0 10.81
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of subsequent data processing, the other is to speed up 
the convergence rate. Using premnmx function, net-
work input data and output data were normalized, the 
normalized data is distributed within [–1,1], eliminat-
ing the singular sample data.

Assuming that data d = {di} is normalized ′ = ′d di{ },  
it can be calculated through the formula below:

′ = −
−
−

+d y y d d
d d

yi
i( )max min

min

max min
min

Where, ymax = 1, ymin = –1, dmax and dmin are the 
maximum and minimum formula data in the samples, 
y d ymin max .≤ ′ ≤i

5.3.  Network Model Parameters

Model training functions are traingdm function and 
traincgf function respectively, for gradient descent al-

gorithm and conjugate gradient algorithm, hidden layer 
activation function is tansig function, the output layer 
activation function is purelin function, the maximum 
number of iterations is epochs = 6000, the minimum 
expected error setting value is goal = 0.01, learning ef-
ficiency correction weights is lr = 0.05.

The number of hidden layer nodes complies with 
the accuracy and reasonableness of the entire network, 
generally uses spreadsheet optimization method to find 
the optimal solution.

Adopt MSE as an index, for predicting data and raw 
data corresponding point error squares and mean value:

The closer the MSE to 0, the better the data predic-
tion possibility and the fitting model.

Number of neurons in the hidden layer takes 3 to 

(13)

(14)

Figure 5.  MSE of predicted results for different hidden layer neurons. 

Figure 6.  Operating results for different algorithm program. (a) Gradient descent algorithm, and (b) Conjugate gradient algorithm.
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10 respectively, adopted gradient descent and conju-
gate gradient algorithm, MSE of predicted results are 
shown in Figure 5.

For the gradient descent algorithm and conjugate 
gradient algorithm, when hidden layer contains 5 neu-
rons, MSE reached its minimum at 0.7227 and 0.6117 
respectively, so the network hidden layer number of 
neurons is set to 5.

6.  NETWORK MODEL PREDICTED RESULTS 
ANALYSIS 

Strong expansive soil network model gradient de-
scent algorithm and conjugate gradient algorithm pro-
gram operation results are shown in Figure 6. 

Comparison of the two algorithms operation results, 
shows after 953 iterations for gradient descent algo-
rithm, the network error is 0.00999646, less than the 
expected error of 0.01, while the conjugate gradient 
algorithm is only requires 32 iterations to achieve the 
desired error, thus conjugate gradient algorithm con-
vergence rate is far higher than the gradient descent 
algorithm, network model structural parameters of the 
two algorithms are shown in Table 3 and Table 4.

Figure 7 shows the comparison of fitted values and 
measured values of expansive soil swelling rate calcu-
lated from the trained data. As can be seen, expansion 
deformation fitted values and measured values of the 
gradient descent algorithm and conjugate gradient al-

gorithm were consistent, error can be controlled within 
a narrow range, indicating that the network model has 
a high fitting precision.

After the network is fully trained, to verify the ac-
curacy of the model, a set of measured data different 
from training samples is selected, the results calculated 
through the model are shown in Figure 8.

As can be seen, for fissured strong expansive soil 
deformation prediction, the measured results and the 
prediction results are similar for the two networks of 
the gradient descent algorithm and the conjugate gradi-
ent algorithm, and the network model can meet the ac-
curacy requirements. Through fissure rate, dry density, 
the initial moisture content and the overlying load, BP 
neural network can be used intelligently to predict the 
expansion effect of strong expansive soil. By compar-
ing different algorithms, found that the conjugate gra-
dient algorithm relatively gradient descent, significant-
ly improve computational efficiency, the convergence 
rate of about 30 times the latter, therefore, conjugate 
gradient algorithm of BP network predicted model for 
expansion in the actual engineering calculation has ob-
vious advantages.

7.  CONCLUSION

Considering the strong expansive soil typical filling 
fissures, proposed filling material content to determine 
the extent of fissure growth, fissure rate Kr is given as 

Table 3.  Gradient Descent Algorithm BP Neural Network Structure Parameters.

Number of Neurons 
in the Hidden Layer

Hidden Layer Output Layer

Weights w1 Threshold b1

Hidden Layer 
Node Number Weights w2 Threshold b2

5

–-0.4091 –0.0078 0.8350 1.9573 1.6289 1 –0.7429

–0.0264
1.7492 –0.4154 0.7599 0.4727 –1.1377 2 0.0491
0.2801 1.0547 0.6010 –1.5505 0.0275 3 0.0610
1.1448 –1.0334 1.2182 –0.8692 0.7488 4 0.0072

–1.0582 –0.8798 0.5686 1.3874 –2.1083 5 –0.1891

Table 4.  Conjugate Gradient Algorithm BP Neural Network Model Structure Parameters.

Number of Neurons 
in the Hidden Layer

Hidden Layer Output Layer

Weights w1 Threshold b1

Hidden Layer 
Node Number Weights w2 Threshold b2

5

–0.5157 –1.0865 1.3420 –1.0923 2.0438 1 –0.0476

0.4107
1.5204 0.8745 –0.8515 0.0430 –0.7941 2 0.1455
0.1425 0.0548 –0.3567 –1.8996 –1.8809 3 0.9882

–0.3334 1.1245 0.6279 1.7224 –0.4459 4 –0.0539
0.7652 0.4226 0.6090 1.6750 2.2501 5 –0.0092
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a strong expansive soil fissure content quantitative in-
dicator, which can be indirect described as the ratio of 
the content of grayish green clay and the content of 
yellowish brown matrix clay of strong expansive soil.

The back-propagation training algorithm is ex-
plained. Partial derivatives of the objective function 
with respect to the weight and threshold coefficients 
are derived.

These derivatives are valuable for an adaptation 
process of the considered neural network. Training 
and generalization of multi-layer feed-forward neural 
networks are discussed. Improvements of the standard 
back-propagation algorithm are reviewed.

For fissure expansive soil deformation prediction 
adopt gradient descent and the conjugate gradient al-
gorithms, the actual test results and predicted results of 
the two algorithms network shows high degree of simi-
larity. The network model described by fissure rate, dry 
density, initial moisture content and the overlying load, 
which using BP neural network intelligence for predict-
ing strong expansive soil swelling effect, can meet the 

precision requirements. It is found that the conjugate 
gradient method when compared with the gradient de-
scent method, has a significantly improved calculation 
efficiency, the convergence rate is about 30 times lesser 
than the latter, therefore, conjugate gradient algorithm 
BP network prediction model for swelling in the actual 
engineering calculation has obvious advantages.
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