QUANTITATIVE AVA ATTRIBUTES ANALYSIS USING SIMULTANEOUS AND ELASTIC IMPEDANCE INVERSIONS:

A CASE STUDY OF 'SANDFISH' FIELD, IN THE NIGER DELTA.

BY

ADESANYA, OLUWAKEMI YEMISI MATRIC NO: 099076017

MARCH, 2017

QUANTITATIVE AVA ATTRIBUTES ANALYSIS USING SIMULTANEOUS AND ELASTIC IMPEDANCE INVERSIONS:

A CASE STUDY OF 'SANDFISH' FIELD, IN THE NIGER DELTA.

BY

ADESANYA, OLUWAKEMI YEMISI B.Sc. (LASU); M.Sc. (UNILAG)

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES OF THE UNIVERSITY OF LAGOS, AKOKA, LAGOS, NIGERIA FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D.) DEGREE IN GEOPHYSICS

MARCH, 2017

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION This is to certify that the Thesis:

QUANTITATIVE AVA ATTRIBUTES ANALYSIS USING SIMULTANEOUS AND ELASTIC IMPEDANCE INVERSIONS:

A CASE STUDY OF 'SANDFISH' FIELD, IN THE NIGER DELTA. Submitted to the School of Postgraduate Studies University of Lagos

> For the award of the degree of DOCTOR OF PHILOSOPHY (Ph.D.) is a record of original research carried out

By: ADESANYA, OLUWAKEMI YEMISI in the Department of Geosciences

AUTHOR'S NAME	SIGNATURE	DATE
1 st SUPERVISOR'S NAME	SIGNATURE	DATE
2 nd SUPERVISOR'S NAME	SIGNATURE	DATE
1 st INTERNAL EXAMINER	SIGNATURE	DATE
2 nd INTERNAL EXAMINER	SIGNATURE	DATE
EXTERNAL EXAMINER	SIGNATURE	DATE
SPGS REPRESENTATIVE	SIGNATURE	DATE

DEDICATION

This study is dedicated to the merciful and unrivalled God that has made the study possible. The dedication also extends to my father, Late Engr. Felix Adesanya, who sleeps in the bosom of the Lord. May his gentle soul rest in peace! Amen.

ACKNOWLEDGEMENTS

Adorable mercy and glory to the Lord Almighty for guiding me through this research work. I am sincerely grateful for His grace during the course of this study and will continue to appreciate His benevolence over my life till eternity. I would like to appreciate my supervisor, Dr. L. Adeoti for kind acceptance regardless of my inadequacies, support and mentoring not only during my Ph.D study but also as inspiration to a career path I have chosen. I quite appreciate the contributions of my other supervisor, Dr. K.F. Oyedele who didn't only supervise me but was always ready to give advice for the progress of my research.

I am grateful for the encouragement and concern of Prof. E.A Ayolabi, Prof. S. B. Olobaniyi, Dr. S.I. Bankole, Dr. S. Oladele and Dr. K.S. Ishola during the course of the research work. I wish also to express my gratitude to all the academic and non- academic staff of the Department of Geosciences, University of Lagos for contributing to the joyful atmosphere for conducive research. I am grateful to the Chevron Nigeria Limited and Department of Petroleum Resources (DPR) for providing the data used for this study. I also appreciate members of the Earth science and reservoir services unit of Chevron Nigeria Limited; Mr Sunkanmi Iyiola, Dr. Robert Kieckhefer, Mr Christopher Ogundare, Mr Peter Afinotan, Mr Ayo Adekanle, Mr Godwin Aguwenke and Mr Paul Evbotokhai for their support and encouragement during my internship.

I was privileged to have some of the following postgraduate students around me during the course of this study: Mr Olawunmi Fasakin, Mr Wale Alo, and Mr Taofik Adeleke. I quite appreciate the support of my good friends Miss Jumoke Kolade and Mrs A.O. Adesoji, thanks for being there. I am grateful for the encouragement and concern of academic staff of Distance Learning Institute, University of Lagos most especially ex-Director; Prof. Funke Lawal, Prof. and Mrs A.A Adekunle, Dr. E.A. Ebabhi and Dr. A.J. Oladipo. I appreciate the motherly advice of Mrs K.L. Adeoti whose advice has enhanced the responsibility status of my personality.

The merciful Lord has honoured me with wonderful parents, Late Engr. Felix Adesanya and Mrs. F.M. Adesanya, who are source of enormous support and joy to me. I am grateful for the moral and financial support of my siblings: Mr and Mrs B.A. Adesanya, Mr and Mrs O. Atofarati, Mr and Mrs F. Oke, Saheed Alli, Fransisca Odeleye, Mr and Mrs S.O. Adeogun, Mr and Mrs E. Adeogun, Taiye Adeogun, Kehinde Adeogun, Bolu Adeogun, Biodun Adeogun, Damilare Adeogun, Tosin Adeogun, Eniola Adeogun, Deborah Adeogun, Felicia Adeogun, Victoria Adeogun, Seyi Adeogun, Iyanu Ogundele and Daniel Omiyinka.

The Lord graciously honoured me with a good friend and husband full of encouragement, patience, understanding and conviction that I will come out excellently in my study; Dr. Oluwagbenga Adeogun, thank you for the support, I am grateful and to my son Erifeoluwa Adeogun; you are precious.

TABLE OF CONTENTS

Title]	page	i
Certif	fication	iii
Dedication		iv
Ackn	owledgements	v
Table	e of Contents	vii
List o	of Figures	xi
List o	of Tables	xiv
Abstr	ract	XV
CHA	PTER ONE: INTRODUCTION	1
1.0	Introduction	1
1.1	Background to the Study	1
1.2	Statement of the Problem	4
1.3	Aim and Objectives of the Study	5
1.4	Significance of the Study	5
1.5	Definition of Terms	6
1.6	List of Abbreviations	7
1.7	List of Symbols	8
CHA	PTER TWO: LITERATURE REVIEW	10
2.0	Literature Review	10
2.1	Seismic Inversion	10
2.1.1	Simultaneous Inversion	11
2.1.2	Elastic Impedance Inversion	12
2.2	Integrated Approach	12
2.3	Location of Study Area	14
2.4	Geology of Niger Delta	15
2.4.1	Stratigraphy	16
2.4.2	Structural Geology	21
2.4.3	Petroleum System	22

2.4.3.1 Source Rock		22
2.4.3.2 Petroleum Origination and Migration		
2.4.3.3 Reservoir Rock		
2.4.3.4	4 Trap	27
2.4.3.	5 Seal	28
2.5	Theoretical Concepts	29
2.5.1	Basic AVO/AVA Theory and Equations	29
2.5.2	Seismic Reflection Theory	30
2.5.3	P-wave velocity (V_P) and S-Wave Velocity (V_S)	33
2.5.4	Poisson's Ratio	34
2.5.5	Lambda-rho ($\lambda \rho$)	35
2.5.6	Mu-rho (μρ)	35
2.5.7	Density (p)	36
2.5.8	Porosity (ϕ)	36
2.5.9	The Biot Gassman Theory	37
2.5.10) Fluid Replacement Modeling	37
2.5.10	AVO Classifications	38
CHA	PTER THREEE: MATERIAL AND METHODS	41
3.0	Materials and Methods	41
3.1	Data Gathering	41
3.2	Data Loading	42
3.3	Data Validation and Quality Control (QC)	42
3.3.1	Seismic Data and QC	41
3.3.2	Well Data and QC	45
3.3.3	Horizon	46
3.3.4	Correlation of Seismic and Well Data	48
3.3.2	Wavelet Extraction	50
3.4	AVA Sensitivity Analysis	54
3.4.1	Cross-plot Analysis	54
3.4.2	Fluid Substitution Analysis	54

3.5	Building Low Frequency Models	55
3.5.1	Low Frequency Model QC	59
3.5.2	Low Frequency Trend	59
3.6	Testing of Inversion Parameters	64
3.7	Simultaneous Inversion	66
3.8	Elastic Inversion	67
3.9	Correlation of Inverted Volumes	68
3.10	Comparison of Seismic Data with Inverted Volume	68
3.11	Generation of Lithology and Fluid Probability Maps	69
CHAF	TER FOUR: RESULTS	70
4.0	Results and Discussion	70
4.1	AVA Sensitivity Analysis	70
4.1.1	Cross-plots	70
4.1.2	Fluid Substitution	75
4.2	Simultaneous Inversion Results	78
4.3	Elastic Impedance Inversion Results	83
4.4	Derived Volumes	85
4.5	The Relationship between Inverted Volumes and Petrophysical Logs	87
4.5.1	Cross-Plot of Inverted P-Impedance and Well P-Impedance	87
4.5.2	Comparison between Inverted P-impedance (band pass) and Well impedance (filtered)	88
4.5.3	Blind Test	89
4.6	Correlation of Inverted Volumes	90
4.6.1	Comparison of Elastic impedance (near and far-far) with P-impedance from	90
	Simultaneous inversion (full bandwidth)	
4.6.2	Comparison of Elastic impedance (near and far-far) with P-impedance from	91
	Simultaneous inversion (band limited)	
4.6.3	Comparison of Inverted Volumes	91
4.6.4	Comparison of seismic amplitude data with inverted volume	91

4.7	Seismic Attribute Extraction	95
CHAPTER FIVE: SUMMARY AND CONCLUSIONS		
5.1	Summary of Findings	98
5.2	Conclusions	99
5.3	Contributions to Knowledge	100
5.4	Recommendations	100
REFE	REFERENCES	
Appe	ndix A	114

LIST OF FIGURES

TITLE	P	AGE
Figure 1	Map of Niger Delta showing the location of the study area.	15
Figure 2	Map of the Niger Delta Province.	16
Figure 3	Stratigraphic section of the Anambra Basin from the Late Cretaceous	18
	through the Eocene and time equivalent formations in the Niger Delta.	
Figure 4	East-West (A-A') and Southwest-Northeast (B-B') cross sections through	n 19
	the Niger Delta Region; revealing sediment thickness and continental bas	sement.
Figure 5	Stratigraphic column of the Niger Delta.	20
Figure 6	Niger Delta Distal Portion of Depobelt.	22
Figure 7	Subsurface depth to top of Niger Delta oil kitchen in Akata and lower	24
	Agbada Formation.	
Figure 8	Deep marine sediments in the Gulf of Guinea off the Niger Delta.	26
Figure 9	Slope edge normal fault simulation (2Ma-present) for the Niger Delta.	27
	Bright intervals are sands	
Figure 10	Niger Delta oil field structures and associated trap types.	28
Figure 11	Wave energy reflections at surface boundary.	29
Figure 12	AVO Classes.	39
Figure 13	Plot of AVO Gradient (B) against AVO Intercept (A).	39
Figure 14	Base Map of Sandfish field showing the seismic coverage and the well	41
	Locations.	
Figure 15	Seismic (near stack) data import with the peak amplitude at zero of the histogram.	43
Figure 16a	Near stack with wells Sfn (01, 02 and 05) and the four horizons.	43
Figure 16b	Frequency spectrum from near to far-far stack.	44
Figure 17	Far-far amplitude spectrum overlain with near amplitude spectrum.	44
Figure 18	Sfn-01 showing the various logs.	46
Figure 19	Interpreted Horizons E01, K01, N01 and P01.	47
Figure 20a	Seismic to well tie using near (6°-12°) stack and Sfn-01.	49
Figure 20b	Seismic to well tie using near $(6^{\circ}-12^{\circ})$ stack and Sfn-02.	49
Figure 20c	Seismic to well tie using near $(6^{\circ}-12^{\circ})$ stack and Sfn-05.	50

Figure 21a	Wavelet amplitude spectrum.	50
Figure 21b	Wavelet amplitude spectrum and phase.	51
Figure 21c	Transform wavelets.	51
Figure 22a	Wavelet Autocorrelation QC.	52
Figure 22b	Comparison between wavelet spectrum and seismic spectrum.	53
Figure 23	Time-depth curve for the three wells.	53
Figure 24	Earth model.	55
Figure 25a	P-impedance high frequency model.	56
Figure 25b	S-impedance high frequency model.	56
Figure 25c	Density high frequency model.	57
Figure 26a	P-impedance low frequency model.	57
Figure 26b	S-impedance low frequency model.	58
Figure 26c	Density low frequency model.	58
Figure 27a	P-impedance at the well overlain by high-cut filtered interpolated	59
	P-impedance.	
Figure 27b	S-impedance at the well overlain by high-cut filtered	60
	interpolated S-impedance.	
Figure 27c	Density at the well overlain by high-cut filtered interpolated density.	60
Figure 28a	P-impedance compaction trend.	61
Figure 28b	S-impedance compaction trend.	62
Figure 28c	Density compaction trend.	62
Figure 29	Optimum parameters used for inversion.	65
Figure 30	Merge filter with the required cut off filter frequency.	66
Figure 31	The Workflow for Simultaneous Inversion.	67
Figure 32	The Workflow for Elastic Impedance Inversion.	68
Figure 33	Cross-plot of P-impedance and S-impedance from well logs colored by	70
	Vshale.	
Figure 34	Cross-plot of P-impedance and S-impedance from well logs colored	71
	by Sw.	
Figure 35	Cross-plot of mu-rho and lambda-rho from well logs colored by Vshale.	72
Figure 36	Cross-plot of porosity and density from well logs colored by Vshale.	73

Figure 37	Cross-plot of porosity and density from well logs colored by Sw.	
Figure 38	Cross-plot of Poisson's ratio and P-impedance from well logs colored	
	by Vsh.	
Figure 39	Cross-plot of lambda-rho and P-impedance from well logs colored by Sv	v. 75
Figure 40	AVO responses at N-01 reservoir saturated with different fluids.	76
Figure 41	Comparison of N-01 and P-01 reservoirs from Sfn-05.	77
Figure 42	Plot of amplitude reflection coefficient at N-01 reservoir	
	versus angle of incidence.	
Figure 43	AVA Intercept (A) and Gradient (B) of N-01 reservoir.	78
Figure 44	P-impedance (full-bandwidth) overlain with gamma ray log.	79
Figure 45	P-impedance (band-limited) overlain with gamma ray log.	80
Figure 46	S-impedance (full-bandwidth) overlain with gamma ray log	81
Figure 47	S-impedance (band-limited) overlain with gamma ray log.	81
Figure 48	Density (full-bandwidth) overlain with gamma ray log.	82
Figure 49	Density (band-limited) overlain with gamma ray log.	82
Figure 50	EI 9.2 (full-bandwidth) overlain with gamma ray log.	83
Figure 51	EI 9.2 (band-limited) overlain with gamma ray log.	84
Figure 52	EI 37 (full-bandwidth) overlain with gamma ray log.	84
Figure 53	EI 37 (band-limited) overlain with gamma ray log.	85
Figure 54	Lambda-rho overlain with resistivity log.	86
Figure 55	Mu-rho overlain with resistivity log.	86
Figure 56	Poisson ratio overlain with resistivity log.	87
Figure 57	Cross-plot of the Inverted P-impedance and the Well P-impedance.	88
Figure 58	Inverted P-impedance bandpass and well P-impedance filtered.	89
Figure 59	Sfn-04 shows good match with N-01 sand top away from well control.	90
Figure 60	Comparison of Elastic impedance (near and far-far) with P-impedance	92
	(full-bandwidth).	
Figure 61	Comparison of Elastic impedance (near and far-far) with P-impedance	93
	(band-limited).	
Figure 62	Cross plot of Inverted P-impedance and EI 37.2 (Far-far elastic impedance	ce) 93
Figure 63a	Initial seismic section with subtle features.	94

Figure 63b	Lambda-rho better discriminate the lithology and fluid types at	94
	prospect zones.	
Figure 64	Lithology Map.	96
Figure 65	Vsand (blue), gamma ray (green), Poisson's Ratio (red).	96
Figure 66	Fluid Prediction Map.	97

LIST OF TABLES

TITLE		PAGE
Table 1	Qualitative Evaluation of Porosity	36
Table 2	AVO Behaviour for Gas Sands	40
Table 3	P-impedance values at the various horizons	63

ABSTRACT

The global energy demand is rising and production from mature fields is on the decline while oil and gas companies are expanding activities into increasing challenging areas. Currently, misinterpretation of seismic data due to subtle features of complex reservoirs has resulted into bypass of hydrocarbon zones and drilling of many dry holes. The combination of Simultaneous and Elastic impedance inversion techniques had been applied to estimate amplitude variation with angle (AVA) attributes such as P-impedance (Z_P), S-impedance (Z_S), density (ρ), lambda-rho $(\lambda \rho)$, mu-rho $(\mu \rho)$, Poisson's-ratio (σ) , near and far-far elastic volumes with a view to reducing risk, enhancing hydrocarbon discovery and optimizing development plans in 'Sandfish' Field located offshore, Niger Delta. Four 'Sandfish' (Sfn) wells (Sfn-01, Sfn-02, Sfn-04 and Sfn-05), check-shots and 3D seismic data of five angle stacks (6°-12°, 12°-18°, 18°-26°, 26°-32° and 32°-42°) were used in the study. Sensitivity analysis involving cross-plots of petrophysical and elastic properties from well data was first carried out to establish rock property relationships in the interval of interest. Biot-Gassmann fluid substitution analysis was also used to reveal variation of rock properties to pore-fill types. Low frequency (0-2 Hz) models were generated from interpolation of high-cut-filtered compressional wave velocity log (P-sonic), shear wave velocity log (S-sonic) and density log guided by interpreted four seismic horizons. The low frequency models were used to broaden the spectrum and estimate the elastic volumes. The five partial angle stacks varying from 6°-42° were simultaneously inverted using Jason's Rock-Trace® inversion software which iterated trial inversions until the model sufficiently matched the seismic data. The near (6°-12°) angle and far-far (32°-42°) angle stacks were inverted to compliment the results from the simultaneous inversion. The inverted Z_P, Z_S, and p volumes from simultaneous inversion were used to derive σ , volume of sand (Vsand), $\lambda \rho$ and $\mu \rho$ volumes. The Sensitivity analysis carried out established that Z_P and Z_S were good candidates for lithology and fluid discrimination in the field of study. The cross-plot of Inverted Z_P and well Z_P gave correlation coefficient of 86% indicative of high quality inverted volume which will reduce exploration risk. The study revealed that $\lambda \rho$ was a better lithology and fluid discriminator when compared with other derived elastic volumes used in the study. The inversion results further showed good match with well logs from Sfn-04 away from the well control reflecting that the technique could be adopted in areas with limited well data. The elastic volumes revealed good correlation at 1850 ms and 2050 ms though the prospects were more visible at the far-far elastic volume compared to Z_P from simultaneous inversion and near elastic volume. The low σ from the fluid prediction map showed presence of hydrocarbon while lithology map reflected high Vsand of good quality. The study concluded that rock-property models from simultaneous and elastic impedance inversions were effective predictive tools for lithology and fluid types.

Keywords: Elastic Impedance Inversion, Simultaneous Inversion, Low Frequency Models, Reservoir Development.