
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

26 | P a g e

http://ijacsa.thesai.org/

A Genetic Algorithm for Solving

Travelling Salesman Problem

Adewole Philip

Department of Computer Science

University of Agriculture,

Abeokuta, Nigeria

philipwole@yahoo.com

Akinwale Adio Taofiki

Department of Computer Science

University of Agriculture,

Abeokuta, Nigeria

aatakinwale@yahoo.com

Otunbanowo Kehinde

Department of Computer Science

University of Agriculture,

Abeokuta, Nigeria

kenny_csc@yahoo.com

Abstract— In this paper we present a Genetic Algorithm for

solving the Travelling Salesman problem (TSP). Genetic

Algorithm which is a very good local search algorithm is

employed to solve the TSP by generating a preset number of

random tours and then improving the population until a stop

condition is satisfied and the best chromosome which is a tour is

returned as the solution. Analysis of the algorithmic parameters

(Population, Mutation Rate and Cut Length) was done so as to

know how to tune the algorithm for various problem instances.

Keywords- Genetic Algorithm, Generation, Mutation rate,

Population, Travelling Salesman Problem

I. INTRODUCTION

The traveling salesman problem (TSP) is a well-known and
important combinatorial optimization problem. The goal is to
find the shortest tour that visits each city in a given list exactly
once and then returns to the starting city. In contrast to its
simple definition, solving the TSP is difficult since it is an NP-
complete problem [4]. Apart from its theoretical approach, the
TSP has many applications. Some typical applications of TSP
include vehicle routing, computer wiring, cutting wallpaper and
job sequencing. The main application in statistics is
combinatorial data analysis, e.g., reordering rows and columns
of data matrices or identifying clusters.

The NP-completeness of the TSP already makes it more
time efficient for small-to-medium size TSP instances to rely
on heuristics in case a good but not necessarily optimal solution
is sufficient.

In this paper genetic algorithm is used to solve Travelling
Salesman Problem. Genetic algorithm is a technique used for
estimating computer models based on methods adapted from
the field of genetics in biology. To use this technique, one
encodes possible model behaviors into ''genes". After each
generation, the current models are rated and allowed to mate
and breed based on their fitness. In the process of mating, the
genes are exchanged, crossovers and mutations can occur. The
current population is discarded and its offspring forms the next
generation. Also, Genetic Algorithm describes a variety of
modeling or optimization techniques that claim to mimic some

aspects of biological modeling in choosing an optimum.
Typically, the object being modeled is represented in a fashion
that is easy to modify automatically. Then a large number of
candidate models are generated and tested against the current
data. Each model is scored and the "best" models are retained
for the next generation. The retention can be deterministic
(choose the best k models) or random (choose the k models
with probability proportional to the score). These models are
then randomly perturbed (as in asexual reproduction) and the
process is repeated until it converges. If the model is
constructed so that they have "genes," the winners can "mate"
to produce the next generation.

II. TRAVELLING SALESMAN PROBLEM

The TSP is probably the most widely studied combinatorial
optimization problem because it is a conceptually simple
problem but hard to solve. It is an NP complete problem. A
Classical Traveling Salesman Problem (TSP) can be defined as
a problem where starting from a node is required to visit every
other node only once in a way that the total distance covered is
minimized. This can be mathematically stated as follows:

Min (1)

s.t (2)

 j (3)

 (4)

 (5)

 (6)

 (7)

 (8)

mailto:philipwole@yahoo.com
mailto:aatakinwale@yahoo.com
mailto:kenny_csc@yahoo.com

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

27 | P a g e

http://ijacsa.thesai.org/

Constraints set (4), (5), (6) and (7), are used to eliminate
any sub tour in the solution. Without the additional constraints
for sub tour elimination, the problem reduces to a simple
assignment problem which can be solved as an Linear
Programming without binary constraints on xij and will still
result in binary solution for xij. Introduction of additional
constraints for sub tour elimination, however, makes the
problem a Mixed Integer Problem with n2 integer variables for
a problem of size n, which may become very difficult to solve
for a moderate size of problem [7].

III. METHODOLOGY

Genetic algorithm is a part of evolutionary computing,
which is a rapidly growing area of artificial intelligence.
Genetic algorithm is inspired by Darwin's theory about
evolution. It is not too hard to program or understand, since
they are biological based. The general algorithm for a GA:

1) Create a Random Initial State:
An initial population is created from a random selection of

solutions (which are analogous to chromosomes). This is unlike
the situation for symbolic artificial intelligence systems where
the initial state in a problem is already given instead.

2) Evaluate Fitness:
A value for fitness is assigned to each solution

(chromosome) depending on how close it actually is to solving
the problem (thus arriving to the answer of the desired
problem). These "solutions" are not to be confused with
"answers" to the problem, think of them as possible
characteristics that the system would employ in order to reach
the answer.

3) Reproduce (ChildrenMutate):
Those chromosomes with a higher fitness value are more

likely to reproduce offspring which can mutate after
reproduction. The offspring is a product of the father and
mother, whose composition consists of a combination of genes
from them (this process is known as "crossing over").

4) Next Generation:
If the new generation contains a solution that produces an

output that is close enough or equal to the desired answer then
the problem has been solved. If this is not the case, then the
new generation will go through the same process as their
parents did. This will continue until a solution is reached.

B. Algorithm

1. Initialization: Generate N random candidate routes and
calculate fitness value for each route.

2. Repeat following steps Number of iteration times:

a) Selection: Select two best candidate routes.

b) Reproduction: Reproduce two routes from the best

routes.

c) Generate new population: Replace the two worst

routes with the new routes.

3. Return the best result

IV. IMPLEMENTATION

1) Program Details
The program was written with Java. In genetic algorithm, a

class “Chromosome” is needed. The Chromosome class
generates random tours and makes them population members
when its object is instantiated in the TSP class. The TSP class
uses the Chromosomes “mate” method to reproduce new
offspring from favoured Population of the previous
generations. The TSP class in this case has two methods that
use methods in Chromosome, the two methods are described
below.

start(): This method initializes the cities and creates new
chromosomes by creating an array of Chromosome objects. It
also sorts the chromosomes by calling the method
sortChromosomes() in Chromosomes then it sets the generation
to 0

run(): Gets the favoured population from all the chromosomes
created and mates them using mate() after this it sorts the
chromosomes and then calculates the cost of the tour of the
best chromosome. It repeats this procedure until the cost of the
best tour can’t be further improved.

In this program we have three algorithmic parameters that
can be altered at each run of the program so as to vary the
evolutionary strategies. The two parameters are Population and
Mutation rate. The parameters go long way in determining the
result of the algorithm. The program generates n random tours
where n is the population size. These n tours are then sorted
based on their fitness where the fitness function is basically the
cost of tour. The best two tours gotten after sorting are mated to
produce two new tours. And some randomly selected tours are
also mutated. The worst tours are removed from the population
and replaced with the new ones gotten from mating and
mutation. This continues until best candidate can no longer be
improved.

To test the algorithm a geometric city with 7 nodes is used.
The optimal tour of the geometric city is 6 -> 5 -> 4 -> 3 -> 2 -
>1 ->0 or 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6, both have the same
cost. Genetic Algorithm was tested and the result is shown on
the screen capture figure 1 below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

28 | P a g e

http://ijacsa.thesai.org/

Figure 1: Using the Algorithm to solve a Geometric City.

The program is used to solve a geometric city with clear

optimal solution so as to be sure that the algorithm can arrive

at optimal solution. As we can see in the figure 1 above, the

path is optimal and the run time is fair at 218 milliseconds.

V. RESULTS AND DISCUSSIONS

The data used in this paper is the distances between
Nigerian major cities. The data was used because it is an
average sized problem with 31 cities and its distances are
moderate. The data was stored in a text file which can be
imported into the program by clicking the load button on the
GUI as shown in figure 2.

Figure 2: Loading cities from text file

It is possible to alter the data in the file or add another

different data. Table 1 shows the results of experiments carried
out on the algorithm using different parameters. The table
shows all the parameters used and the results. Performance of
the result is based in the runtime and distance (cost).

TABLE 1 PARAMETERS AND RESULTS

Pop. Mut.

Rate

Cut

Length

Run

Time

Distance Individuals

1000 0.1 0.2 546 5918.0 221000

1000 0.2 0.2 640 5896.0 226000

1000 0.3 0.2 748 5829.0 232000

1000 0.4 0.2 577 5886.0 192000

1000 0.5 0.2 577 5700.0 97000

1000 0.6 0.2 453 5981.0 190000

1000 0.7 0.2 577 5973.0 191000

1000 0.8 0.2 500 6100.0 195000

1000 0.9 0.2 608 5925.0 211000

1000 1 0.2 562 6010.0 209000

1000 0.01 0.2 532 9048.0 139000

100 0.1 0.2 31 10584.0 14400

100 0.2 0.2 47 10581.0 14600

100 0.3 0.2 31 11141.0 13600

100 0.4 0.2 31 12221.0 13500

100 0.5 0.2 32 10564.0 13900

100 0.6 0.2 32 9668.0 15200

100 0.7 0.2 31 9888.0 13900

100 0.8 0.2 31 10634.0 13700

100 0.9 0.2 31 11778.0 14000

100 1 0.2 31 10335.0 13000

100 0.01 0.2 46 9642.0 13600

It is important to note that change in the mutaton rate
affects the runtime of the program. Figure 3 and 4 show the
effect of mutation rate on runtime. Figure 3 is the plot using
population size of 1000 while figure 4 illustrates the plot using
a population size of 100.

Figure 3: Plot of runtime against mutation rate for Population size of 1000

Figure 4: Plot of runtime against mutation rate Population size of 100

Another major thing to note about the algorithm is the

number of Individuals which is the result of the population size
and the ability to improve candidate solution. Also the more
the number Individuals used the higher the likelihood of getting
a better solution. Figure 5 shows the plot of Individuals against
the distance of tour gotten.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

29 | P a g e

http://ijacsa.thesai.org/

Figure 5: Plot of Individuals against distance

VI. CONCLUSION

We presented an efficient Genetic Algorithm program for
solving the Travelling Salesman Problem. The program
produced good results for various problem sizes but run time
increases with increasing number of cities. We found that the
population should be tuned to match the problem size (not
arithmetically). To get very good solutions a tradeoff must be
made between runtime and the solution quality.

REFERENCES

[1] R. Anthony and E. D. Reilly (1993), Encyclopedia of Computer
Science, Chapman & Hall.

[2] U. Aybars, K. Serdar, C. Ali, Muhammed C. and Ali A (2009), Genetic
Algorithm based solution of TSP on a sphere, Mathematical and
Computational Applications, Vol. 14, No. 3, pp. 219-228.

[3] B. Korte (1988), Applications of combinatorial optimization, talk

 at the 13th International Mathematical Programming Symposium, Tokyo.

[4] E. L. Lawler, J. K. Lenstra, A. H. G. RinnooyKan, and D. B. Shmoys
(1985), The Traveling Salesman Problem, John Wiley & Sons,
Chichester.

[5] H. Holland (1992), Adaptation in natural and artificial systems,
Cambridge, MA, USA: MIT Press.

[6] H. Nazif and L.S. Lee (2010), Optimized CrosSover Genetic Algorithm
for Vehicle Routing Problem with Time Windows, American Journal of
Applied Sciences 7 (1): pg. 95-101.

[7] R. Braune, S. Wagner and M. Affenzeller (2005), Applying Genetic
Algorithms to the Optimization of Production Planning in a real world
Manufacturing Environment, Institute of Systems Theory and
Simulation Johannes Kepler University.

[8] Z. Ismail, W. Rohaizad and W. Ibrahim (2008), Travelling Salesman
problem for solving Petrol Distribution using Simulated Annealing,
American Journal of Applied Sciences 5(11): 1543-1546.

