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Preamble

Allri The Vice-Chancellor, Deputy Vice-Chancellor (Management
r 'ths reserved. No part of this publication may b Services), Deputy Vice-Chancellor (Academic and Research), the

stored in a retrieval system or transmitted j o T piDdlibed, Registrar, Dean of Science and other Deans, Members of

means, electronic mechanica rr?' i i Tl iy il Senate [Sistinguished Ladies and Gentlemen )

otherwise without the R e s?or?t)ofctﬁzym%, recording or ' :

i | find myself here before you today because in my early years |
was, it would seem, quite familiar with numbers. The words “this
boy is a mathematician, a Chike Obi” kept ringing in my ears.
Now, as | approach the winter of my sojourn on this planet | find
myself asking, mathematics: is it all about numbers? Please

Published 2009 come along with me and let us find out.

Man and Numbers

There is a general consensus that Mathematics is a language.

Nevertheless, there is some difficulty in speaking mathematics
By like one would speak some other languages. This difficulty arises

from the fact that in mathematics we express truths only, and

nothing but the truth. Indeed, in mathematics there is no room for

UrLiliversity of Lagos Press laxity in the expression of truths.
nilag P. O. Box 132
University of Lagos, As a rule, we use symbols in expressing these truths. Even
Akoka — Yaba, though we also use words to express these truths it does not in
Lagos, Nigeria any way diminish the difficulty in speaking mathematics. In spite

of the difficulties in speaking mathematics, it may still be used to
explore our world. In this lecture we will attempt to show how.

The basic foundation for mathematics is the number and the
ISSN 1119-4456 story of its development is quite exciting. At a stage in man’s
development he was confronted with the need to express his
thoughts about quantities. For instance, he needed to know how
many sheep he took out for grazing and how many he brought
back home. Having developed a means of expressing quantities
he soon felt the need of comparing them. These challenges
brought man’s ingenuity into play even in his early days. The
ingenuity persists till today. Man progressed from his familiarity
with the basic idea of counting, that is, the counting numbers, to
the present day state of advanced mathematics. The history of
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the development of the use of numbers is fascinating but it is not
the subject matter of this lecture. We will therefore not pursue the
matter further.

Let us take a trip back to our early days in the primary school. |
remember, with nostalgia, the chorus that reverberated
throughout the classroom when the teacher asked the very
simple and elementary question: “what is 2 - 3?” With the air of
impeccable confidence the answer rang out from every corner of
the classroom, ko se se (it is not possible). Indeed, as long as we
confine ourselves to the set of counting numbers {1, 2, 3, . . }
then indeed 2 - 3 has no answer! Man soon discovered that there
was, in fact, an answer. All he did was to figure out the negative
counting numbers. One may ask the irreverent question: did God
create these negative numbers? Before too long the inadequacy
of these numbers (the counting numbers and the negative
counting numbers) stared man in the face. It was a great
challenge but he didn't give up. He merely went on to discover
the set of rational numbers. Or should one say that the set of
rational numbers was revealed to him?. By the way, the set of

rational numbers is composed of numbers of the form % where a

and b are integers. For example % is a rational number. We can

go on in this manner to see how man was confronted at each
stage of his development with difficult situations and how man’s
ingenuity came to the rescue but space and time do not permit.
Nonetheless, even the shortest of the history of numbers will be
incomplete without a mention of the great mathematician,
Betrand Russell. Not too long after the discovery of the set of
rational numbers man realised that other kinds of numbers were
still lurking in the dark. One thing that was not in doubt was that

-not all numbers can be written in the form /ﬂ but the proof was
)

rather elusive. It took the genius of Betrand Russell to provide a
proof, a proof so short and elegant that every one wondered why
they did not think of it first. It is said that the proof occurred to

Russell at the close of work, on his way home. You know what he
did? In his own words: “I held my head with my two hands to
ensure that my head did not fall down and | walked far away from
the road to ensure that | did not get knocked down until I have put

down the proof”.

Let us cut a long story short but not before we take one more
example. | am sure if | ask this august audience the solution of

the equation
x'-1=0 (0.1)

" 1 will be overwhelmed with the answer, namely

x=+1 or x=-1.

Yes, indeed! you are all correct. Now let me change this question

slightly to have
X +1=0. (0.2)

and ask the question again: what is x? Notice that | have only
changed the — in equation (0.1) to + to get Equation (0.2). Do |
hear the chorus again? ko se sel Yes, it would appear it is not
possible to find an answer to the question after such a minor,
seemingly insignificant change. The fact, however, is that
Equation (2) led to the postulation of what we now call complex
numbers, thus opening up a vast new area of mathematics. Man.
once more, had a revelation and made an impossible soiution
possible. So much for numbers! Is mathematics all aboyt
numbers? | will try to provide an answer in the following three
sections.

As mentioned earlier, the truths of mathematics are expressed
using symbols and words. It is difficult to express them in words
only and it is also difficult to express them in symbols only. we
have to use an appropriate mix of words and symbols. | will
certainly use an appropriate mix of words and symbols. But | am
not going to start teaching you the symbols that we need in this
lecture. Do | hear “thank God™? The lecture has been written
such that you may read the words only and ignore most of the
symbols without much difficulty in comprehending the subject
matter. Is mathematics all about numbers?



1. Mathematics and Welding

Each one of us must have at one time or the other seen the
panel beater or the welder joining two metals together by the
process of oxy-acetylene welding in the case of the panel beater
or arc welding in the case of the welder. The process of joining
two metals together is simple and straightforward. In the case of
arc welding which is the subject matter of this section, the two
metals are heated by the discharge of electric current through an
electrode melting the metals in the process. The motion of the
molten metals in the weld pool determines the heat and mass
transfer in it. Consequently, the fluid motion in the weld pool is an
important factor in determining the chemical reactions between
and the fusion of the metals being joined together. It has been
demonstrated that, primarily, the motions in the weld pool are
induced by the electromagnetic force arising from the discharge
of an electric current through the electrode. We will see shortly
that the force that drives the motion of the fluid is due to the
interaction of the electric field and its associated magnetic field
which gives rise to the (J xB) force, commonly known as the
Lorentz force. There have been many attempts to throw light on
the role played by the Lorentz force in the motion of the fluid
within the weld pool but these attempts were rather too idealized
to successfully describe the practical welding situation. The most
realistic attempt was made by Sozou & Pickering (Journal Fluid
Mechanics, 1976, 73) who assumed the weld pool to be
hemispherical in shape and supposed the electric current to be
discharged into the fluid through a point. Their approach
predicted a flow pattern which is compatible with observations in
the weld pool but quantitative agreement between the theory and
practice was not quite good. This situation is not altogether
surprising because, as stated earlier on, the electric current is
discharged into the weld pool through an electrode which differs
quite significantly from a point. Therefore, in order to correctly
understand the motion of the fluid within the weld pool it is
necessary to account for the finiteness of the area through which
the current is discharged into the fluid. We shall in the following
take account of the finiteness of the electrode in our attempt to
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obtain a deeper and more realistic insight into the welding
process. Is mathematics all about numbers?

In the next few paragraphs it will be difﬁcu}t @o oommunigate
without expressing the truths of the analysis in mathematical
symbols. | will, however, endeavour to keep such symbols to the

minimal level.

Ajayi, Sozou and Pickering (Journal Fluid Mechanics, 1984, 148)
considered the fluid motions within a weld pool whose shape was
assumed hemispheroidal such that the plane boundary of t.he
fluid forms a free surface, except for a circular electrode of radlgs
k whose centre is coincident with the centre of the equatorial
plane of the hemispheroid. We shallin the ne)gt paragraph deﬁne
the configuration of the problem and the coordinate system which

we employed.

On account of the geometry of the problem the oblate spheroidal
coordinates were employed in tackling the prql_olem. The o_blate
spheroidal coordinates (u.¢.¢) form a curvilinear coord|nat§
system in its own right but for the purp.ose-of this lecture we find it
desirable to relate them to the cylindrical polar f:oorqlnates
(x,@,4) so thatwe may all be carried along. The relationships are
as follows:

x=kpg

@ = k(1- 1) (&7 +1)',
¢=9¢
where —1<u<1, 0<{ <o, 0<¢<27.

= h : AR
The origin of the coordinate system |s_at the centre of the circu
electroge, and the positive x-axis points into the fluid along the
axis of symmetry. The surface of the bowl is given by
¢ =¢,, 12p20;the electrode is described by ¢ =0, 1< u<0;and
the free surface is givenby u=0, 0<¢'< ¢, - Iltmay be noted th.at
large values of ¢, are associated with a small electrode while

small values correspond to a large elect(ode. Figure 1.1 shows
an axial section of the configuration studied for the case ¢, =1.



Figure 1: Axial section of the hemispheroidal bowl for the case ¢, =
o=1.

t7"7he electrode is Iabelleg’, the dotted lines represent the free surface and
e curvesj show the direction of current flow for the case where the
electrode is at a fixed potential.

The equation of motion of the problem is given by (1.1):
—pvxcurlv=—V(p+§pvé)+vpV2v+ij (1.1)

where p is the fluid density, v the velocity and p the pressure.

Equation (1.1) must be supplemented by an e i i
expresses the fact that during the motion o)f/the ﬂu?cllj ?wgorgavtzglrcig
grerat_ed or destroyeq. This requirement may be satisfied by

efining the velocity in terms of the stream function y as in
equation (1.2):

o7 2 i % W12
eerwf (o) 8 e pfpaya 0P

We w!ll shortly say a word about the term on the left hand side of
e:quatlon (1..1 ). Meanwhile, let us note that the last term on the
ngh_t hand side of that equation is the Lorentz force. This is the
dr!vmg force and so itis easy to see that the induced fluid motion
arises from the interaction of the electric current discharged
through the electrode with its associated magnetic field Ifgwe
Suppose that t'he electrode is raised to a certain potentiél thus
allowing electric current to flow into the fluid and we assume that

the electromotive force induced by the motion of the fluid is
negligible then the current discharged into the fluid is given by
Equation (1.4):
-1
et & (1.3)
2rko

o

G it A - (1.4)

20k (¢ + 1) (¢ +1)
where @ is the electrostatic potential, ./, the total current
discharged into the fluid and o is the conductivity of the fluid. Itis
a simple matter to show that the associated magnetic induction B
is given by equation (1.5):
Jyll==
ng 5 ahtios) £ (1.5)
27k (¢ +1) (1-4°)

To determine the velbcity field we must solve Equation (1.1)
subject to the constraints defined by equation (1.2). The task is

- not easy. In fact, it poses a formidable problem. Indeed at the

present moment there isn't a method for obtaining a general
analytic solution to the problem. In the literature, the most popular
approach to attack problems of this nature is to replace the
differential coefficients of Equation (1.1) by their finite-difference
equivalents. In so doing the question of instability of the
numerical computation often arises. This is not quite surprising
because that equation may change character within the solution
space. For example, Sozou & Pickering in their paper on the
development of the flow field of the round laminar jet, a problem
not unrelated to that under discussion here, found that the
governing equations were elliptic within some region but become
parabolic in some other region. In the present analysis we adopt
a solution method which is different from the usual run of the mill.
In order to avoid some’ discomfort to some members of this
august audience we shall omit the details of the derivation of our
equations. Suffice it to say that when we use equations (1.2),
(1.4) and (1.5) in equation (1.1) we obtain the fourth order
nonlinear partial differential equation define by equation (1.6):

7
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DI:ZZ’*‘QZII:I K(A +§)6)ua:“:’+§z;i)(zz+§2)J
ava|  Dw 1~
-(1—#}&3;{(|_;})(£+ "/i)}' S (1.6)

where D' =(7 +§,‘2)%+(1—;2)-a%. We have in effect turned a second

order differential equation into a fourth order differential equation.
If you permit me to put this situation in common parlance, it is like
having double trouble and then going on to double the double
trouble. We have, it would appear, made a difficult problem even
more difficult. As earlier stated rather than follow the usual
method of solution we introduce a procedure whereby the
equations of the problem are solved semi-analytically. In this
scheme of things the numerical computation is reduced to finding
the essential part of the solution (£(z) as we shall see later) by
the elementary process of numerical integration. But first let us
discuss the groundwork. It is well known that ordinary differential
equations are more tractable than partial differential equations.
For this reason we shall convert the partial differential equations
of equation (1.6) into ordinary differential equation by writing the
stream function ¥ in the form given in equation (1.7): .

. ggﬂ(zjlln+l (#), RO : '7 (17)

where e () is the Gegenbauer’s polynbmial which \isv re_lé_téd
to the Legendre’s polynomial by equation (1.8):

P ) 1) (1=2) 2 ()"

it ps 4n+1 CoFe 2n(2n+1—), i

Here and in subsequent expressions a prime ‘denotes

differentiation with respect to the argument of the function. We

may now eliminate the functions of -z from equation(1.6).-On

substituting (1.7) into (1.8) and making use of the'following
equaﬁon’ 1€ o IBNBQ

(1-p2)1;m, () +2n(2n+1) 1., (1) =0

we obtain the equation of motion 'in terms of an ordinary
differential equation defined by equation (1.9):

S (62 + )i +¢, i) Gy, —42G, 1= 2((2m +3)(m-1)(¢.'2* + &)

~ 6!‘2 It Z]GM}IZMH —4/‘1(1 ¥ #2 )GmI;mH

S 24,z T R
' 2.2 2 - 0 +1)G )i "
+ K LG 7 )G, iy Gt 24 2D AL

= 2u 2.2 2
' 2 2 ' _1 I G
—KFMIZ,M;[({OZZ +H )Izm * 1_'”2 (co z7+ 2/‘ ) zm] s

4
] m@ozzz +u’) (1-p). (1.9)
where the functions G, (&) are defined by equation (1.10):
G, =(2*+§, )~ 2s(2s +1)F, . (1.10)

L . .
Finally, we multiply (1 .9) by F—% and integrate both sides of
Tl
the resulting equation with respect to u over the interval (0, .1 4
once more the algebra is omitted, the final result is equation
(1.11):

”n
a,G,','+azG,', +a,G, +a,Gl,, +aG,,, +a,G)  +a,G,

K3 SIF @G +a,G)+agF,G)=a) (1)

m=1 s=|

‘wherea,, .. ., a, and are functions of ¢,.n and z, and g, 2, and a,, @ré
functions of ¢,,m,n,sandz. To be sure equation (1.11) is not

i i is thatitis an
nearly a simple equation. However, the good news is
ordin)a(lry differential equation and fortunately we are able to
construct its solution albeit numerically.

In order that the solution we construct may indeed describe the
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tflhwd motion gf the weld pool that we have in mind, it is necessary
at appropriate conditions be imposed on our solution. In other
\évords we need.t_o solve equation (1.6) subject to the appropriate
oundary conditions. Since the surface of the bowl, that is z=0
and thc-; part of the‘electrode in contact with the fluid, that is z=1:
tahree ?'OI.I((; we must Impose the no slip condition. This means that
VelociLt“ amt :ontact w:th_the§e surfaces must have the same
o y as the §yrfaces, in this case each of the velocities must
zero. In addition, at the free surface, thatis 4« 0, the normal

component of the velocity and the shear stress are zero. These

conditions may be written in terms of the stream i [
. r ea
In équations (1.12)-(1.17): B o e

W(u,0)=0, (1.12)
V. (4.0)=0, (1.13)
Plu=0, (1.14)
F(uD=0, (1.15)
¥(0,2)=0, (1.16)
¥,,(0,2)=0. (1.17)

The judicious choice of i i

I ¥ in equation (1.7) ensures that
z:fr;gl)tlgrg 1(;.16) and (1.17) are automatically satisfied, and
hc;ld: -15) will be satisfied provided equations (1.18)-(1 21)
ot ; F,(0)=0,E; (0)=0, E, (1)=0, F! (1)=0. (1.18)-(1.21)
note fct)rl'uhon method discussed above, we wish to point out, is
by ald e moment'the sort of material to be found in textbooks. It
eag'tl‘ ba;lso be_ pointed out that the approach adopled here can
oy clty . 'modlﬁed to accommodate the case where the solid
g ro eis replaced by a free surface where the shear stress is

ro, reminiscent of the work of Sozou & Pickering.

latr:/;i'll be pointless to attempt to solve equations (1.10) and (1.1 1)
vk Ytlca[ly. moreover a direct numerical solution s also out of
Question. We therefore solved these equations by an iterative

Jli=k 10

process. First, we assumed that the functions F,(z) are known
and solved (1.11) for the functions G, (z) ; these results are then
used to obtain a new approximation to F,(z). This process is
continued until convergence is obtained; here we assume that

there is convergence when two successive iterations produced
the same output to the third significant figure for all G, at all

nodal points.

For the purpose of this lecture, a detailed discussion of the
results will be out of place. Nevertheless, it is necessary to say a
word or two about what all this mathematics has achieved. We
carried out computations for values of ¢, ranging from 0.5 to
100. These values correspond to the situations where the size of
the electrode ranges from large to small thus giving us an insight
into the fluid motions of the weld pools over a wide range of the
electrode size. Details of the structure of the velocity fields are
shown in Figures 1.2, 1.3 and 1.4 the arrows on the solid curves

show the direction of motion of the fluid.

11
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Figure 1.2: Meridional section of  Figure 1.3: Meridional section of
the flow 'field for the case the flow field for the case &, =1;

(;b(; ::(1_(2) (A T (é) linear case; (b) K = 10°.

If vortices exist within the weld pool, this will be a fortunate
occurrence because they have the potential to enhance heat and
mass transfer within the pool. With regard to the existence of
vortices, our results are not conclusive even though in one of our
computations vortices were present but as K and the
nonlinearities of the flow field increase, they become smaller and
eventually disappear. Any interested researcher may wish to note
that the analysis presented here is based on the assumption that
the free surface is flat and thus our solution is valid provided the
deviation of the free surface from the flat position is small. The
calculation of the deformation when the flow field is nonlinear is
rather involved and has not been pursued here. Estimates of the
deformation have, however, been given by Craine & Weatherill

12
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Figure 1.3: Meridional section of the flow field for the case &; =0.5;

1

(a) linear case; (b) K=10".

(Journal of Fluid Mechanics, 1 980). They found that for the Lsfort of
currents considered in this work the maximum de’fqrmatlon'.is not
large. This gives us some assurance that the above analysisis a
close model of the electro-magnetohydrodynamics of the weld

pool.

To summarise, we have shown above how mathematics can be
used to investigate some basic principles of welding. I't is hoped
that this work we contribute to a better understandun_g pf,the
welding process. Is mathematics all about numbers? e s

2. Mathematics and Drops e & :
We are all very familiar with drops and bubbles because they

exist in numerous phenomena in everyday life. The 'bybble_s in
our fizzy drinks or beer, and drops that herald rainfall are
common examples. With respect to rainfall the frequently
accompanying lightning is also well-known to all.

13



In this section we wish to take a look at the mathematics of the
interaction of electrical discharges with liquid drops. The
interaction between liquids and electric field which has been
termed electrohydrodynamics has received the attention of many
authors.

Electrohydrodynamic phenomena are of interest in a wide variety
of scientific and engineering applications. These include, among
many more, cloud physics, high speed printing, space propulsion,
liquid aerosols and biological separation of living and dead cells.
When taken together with its closely related cousin, magneto-
hydrodynamics the area of application becomes rather extensive.

It has been demonstrated that when an electric field acts on an
insulating liquid drop, the drop becomes elongated in the
direction of the field and usually bursts at high fields. Sir Geoffrey
Taylor, a remarkable pioneer and the first scientist to receive the
Order of Merit award from the Queen of England, predicted in
one of his pioneering and illuminating scientific contributions that
when the liquid in which the drop is immersed is conducting, the
tangential stress of the electric field stress on the surface of the
drop generates a flow field within the drop as well as in its
surroundings (Proc. Roy Soc. Lond. A 111, 1966). This prediction
was later confirmed experimentally by Torza, Cox and Mason
(Phil. Trans. A 269, 1971) but these authors found that in most
cases the measured deformations were greater than the
theoretical prediction. There was, at that time, no accepted
explanation of the discrepancy. For this reason, Ajayi (Proc. Roy
Soc. Lond., A. 364, 1978) re-examined the basis of Taylor's
theory by paying particular attention to the boundary conditions to
be satisfied on the deformed drop. We noted that in the first
instance the electric field induced a deformation of the drop as
well as a fluid motion within and outside the drop. Surely, it is
unlikely that the interaction of the deformed drop with the induced
motion will be negligible. Let us take a brief look at the
mathematics in as simple a form as one can make it. The
relevant equations of motion are given in Equations (2.1) — (2.4):

14

iV x(Vxv)=~Vp. (2.1)
Ve =0" (22)
:LVX(Vx;)= -Vp - 2.3)
V=0 - (2.4)

where v is the fluid velocity and p its pressure .

In the above equations we have assumed }hat ipertia stresses
are small compared with those due to viscosity so that the
induced motion is a Stokes flow. In other words, we have
assumed that the forces acting on the fluid due to con\(ectlon are
small in comparison with forces due to molecular interaction
between the fluid particles. Equations (2.1) apd (2.3) may be
derived from Newton’s second law of motion while (2.2) and (2.4)
may be considered as a mathematical representation of t'he
assumption that matter is neither created nor destroyed during

the motion.

The motion of the fluid is determined by solvi'ng these four
equations for the velocities inside and .ou.t5|de thg drop.
Thereafter we may obtain the pressure within the fluid from
‘equations (2.1) and (2.3). It will be out of _order 'and pe.r‘haps
unkind to bother the greater percentage of this audience with the
detailed solution of these equations. Suffice it to say that thfes_e
equatiéns remain valid for all fluid problems as long as the f!un_d is
viscous and incompressible. A fluid is said to pe viscous if lt_ls
more like a syrup than water and is incompressuble_ if its density
never changes. When we have obtained the splutlons tq thes_e
equations for a particular geometry, these solutions remain valid
for all fluid motions having that geometry. In other to dlscyss a
particular ‘pro'blem it is important, indeed necessary, to specify the
conditions that distinguish that problem from any other one. For
the problem at hand the conditions, called boundary conditions,

will be stated later.

15 3 LIBRARY



The electric field may be determined from the electrical equations
which may be written in terms of the electric potential, ¢, the

equations are given in Equations (2.5) and (2.6)
Vig=0 (2.5)
V=0 (2.6)

The electrohydrodynamic problem is composed of equations
(2.1)~(2.6). Solving the fluid motion equations is relatively simple,
the solutions are given in Equations (2.7) and (2.8):

v=3b{(2-n)r'Va,+2(n+)rz,} -a* Y nc,Vx, , v (27

n

v=Y B {(n+3)r'Va,-2we,}+a*} (n+1)CVa, , (2.8)

but satisfying the boundary conditions is more formidable, and it
is here that our analysis goes beyond that of Sir Geoffrey Taylor.

The Boundary Conditions

Taylor assumed that the drop departs only slightly from a
spherical shape, and so the boundary conditions which strictly
ought to be satisfied at the surface of the drop, »=a(1+£(6)), may
be applied as if the surface were the sphere r=a. To proceed

beyond Taylor's analysis we assumed that in the steady state the
drop surface is given by Equation (2.9):

r=a(1+af,(6)+a’f,(6)+..) (2.9)

where & is a small unknown parameter. The introduction of this
parameter further complicates the problem because equations
(2.1)-(2.6) are no longer sufficient to determine the solution to the
problem. This difficulty may be resolved by introducing an
additional equation which addresses the question of the balance
of the normal stress on the surface of the drop. Here we do not,
for the sake of prudence, give a detailed mathematical exposition
of these equations, indeed some would say it will be unkind to do

16

. ver, it is worthy to note that while the tangenhal stresses
:?e '::swp?)nsible for the ?nduced fluid rpotions within the drop and
outside it, the normal stresses are in fa(_:t responsible for the
deformation of the drop. The satisfac_:tlon of the 'boundar.y
conditions to be imposed at the surface glv.en.by eqqailon (2.9)is
a next to impossible task and some ing_enqny is required to ma_ke
the problem tractable. We overcome this difficulty by tansfon'qmtg
all boundary conditions imposed at the surfaoe. (2.9) into
equations satisfied at r=a. It must be stressed that this is not the
same as replacing the actual surface by a sphere as was done by

Taylor.

Deformation of the Drop

i i ini formation of the
Care must be exercised in determining the de r
drop since the zeroth-order normal stress determines the first-
order displacement, r=amy,, of the surface, and the first-order

stress similarly determines r =aaf, . tmay be readily s.hovyn that,
correct to terms of order @” the curvature of the drop is given by
Equation (2.10):

pt+p, ___(2—mLﬁ —o {Lf, - 21, (14, —f,)})/a, (2.10)
where the operator L is defined in (2.11):
L@ b A5 2.11)
Lf_dn{(l ”)dn}+ 4

To the lowest order in @ the boundary condition is given by
Equation (2.12):
(B),*(B,,), ~(Por) =-Twa'Lf;, (2.12)

'H

and, to the next order we have Equation (2.13):
6 o gl = llbln
(R + (B, + () =255 Bada =P
9 (@ % =-Twa ' (Lf, -2£,(Lf, - 1,
_af,g(h,,)” —Zaa(g"‘)" Twa (L, -2/, (L, - 1))
The terms on the left of (2.12) involve only the Legendre function
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P (n); it follows that f is of the form AP (7). With further’
analysis (details omitted) 4 is found to be .Vgi\'/en by the next
equation:

ATola” =A{%(I+R2 ‘ZQR2)+§R(I—QR)(2;1 +3ﬁ)’(p+ﬁ)} i

The Taylor’s discriminant A may be retrieved from our equation
(2.14):
2

@ = 5aA/ T =1(ea/T)(3Z/(1+2R)) (2.14)

After some manipulation we find that f,is given by Equation
(2.15):

L= N {16k 1) R + 2P

35°4

~10(2:15)
FEAR(1=OR){(35 =3 =R )+ 2 (1440 )R]

Equations (2.14) and (2.15) together with (2.9) ahd fi =AP, give
the shape of the deformed drop correct to terms of secqn'd
degree in the perturbation parameter = . In view of Equation
(2.16), '

A=(1-R) +R(1-OR){2+1(2+3M)/(1+ M)} (2.16)

the deformed drop is certainly prolate if QR<1, but may be oblate
if QR is sufficiently large. This is what was confirmed experimen-
tally by Torza et al.(Phil. Trans. Royal Soc. Lond. A. 269, 1971).

In conclusion, we have demonstrated that the discrepancy
between Taylor’s electrohydrodynamic theory and experiment
may be partly explained by satisfying the boundary condition on
the surface of the deformed drop more accurately than was
previously done. The smallness of the expansion parameter @
precludes any great reduction in the discrepancy. Retaining
higher order terms in the expansions for the field and motion is
likely to improve the accuracy between theory and experiment but
is unlikely to succeed in curing it. One way out of the dilemma
would be to employ numerical methods.
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In a related paper, Ajayi & Sozou (Journal of Electrostatics, 9,
1981) investigated the stability of the axisymmetric equilibrium
configuration-.of two oppositely charged membranes. They
demonstrated that when the membranes are sufficiently close
together and are charged beyond a certain level they stretch
continuously until they touch at their centres. These results give
us an-insight into how two raindrops coalesce in rain clouds to
form larger drops until they fall as raindrops. When these results
are taken together with an earlier analysis of Ajayi (1976, J. West
Afri. Sci. Assoc.) who demonstrated that the fluidity of two
interacting drops in rain cloud enhances an increase in the
collision efficiency of raindrops then it is easy to see how these
results provide an illuminating insight into the formation of
raindrops in rainclouds.

In this section we have been able to use simple mathematics to

explore the interaction between discharges and drops/bubbles.
Is mathematics all about numbers?

19



3. A Novel Approach to Finite Differences

In this section we wish to discuss a novel method for solving
differential equations numerically. To avoid mathematical
indigestion on the part of many, we shall only give a synopsis of
the method but we will illustrate its use with two mathematical
models of population growth. These models will be simple
enough for anyone to follow and are chosen for relevance and
clarity. In the process we shall give an opinion on the Nigerian
Census results of the past half a century or so.

Differential equations may be used to describe many
phenomena. Once the theory behind a phenomenon is known, it
is often, but not always, possible to derive a differential equation
which describes that phenomenon. But the solution of the
resulting differential equation is, at times, a different matter
entirely. As an illustration, let us consider the classical simple
pendulum.

The simple pendulum consists of a small particle of mass m
attached to one end of a light, inextensible string of length a while
the other end of the string is fixed at some point O and the
particle swings freely in a vertical plane, see Figure 3.1.
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Figure 3.1: A simple pendulum
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If we employ the plane polar coordinates (r, ) and use the
Newton’s second law of motion we find,

ma@® = -mgcos@+T (3.1)
ma@ = —mg sin 6. (3.2)

where T is the tension in the string and a dot denotes
differentiation with respect to time t. It follows from Equation (3.2)
that the motion of the pendulum is described by the differential
equation,

0 =-’siné. (3.3)

| hope it does not surprise many to hear that Equation (3.3) is the
equation of motion of a simple pendulum. If it does, then it needs
to be pointed out that the very popular equation of motion of a
simple pendulum, that is,

0=-0%, (3.4)
may be derived as an approximation of (3.3) if we assume that
the movement of the particle from the vertical position is always
small.

Even though Equation (3.3) looks quite innocuous, it is not
possible to determine its general solution in terms of elementary
functions. This difficulty is what gives rise to the need to use the
approximate equation (3.4). We hope that with this simple
example, we have made the point that it is not always possible to
solve a differential equation. When faced with the situation in

‘which an analytic solution of a differential equation is unavailable

one way out of the difficulty is to use numerical methods. In this

~section we shall discuss a novel approach for solving differential

equations numerically.

First, let us consider the present state of things. A popular
approach for solving differential equations numerically is the use

of finite differences which we illustrate with the following example.

Suppose we wish to solve the equation,
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. 2 . : ¢
d—}—)+va,%+aoy=f(x) : . (35)

a,
¥’

in_some interval of interest, (x,.x,) say, where, in general,

a,,a, and a, are functions of x. But, for clarity and simplicity, we
shall assume each of those functions to be constant. We replace
the differential coefficients with their equivalent finite differences
and solve the resulting finite difference equation. It will be out of
place to give details of the procedure. The essential point to note
is that certain terms in the given equation are replaced by some
other equivalent expressions.

We now wish to discuss a newapproach to solving the equation
numerically. We shall, for brevity.and simplicity, only give a
synopsis of the method omitting all details but we-shall later
illustrate its use and compare our result with analytical ones to
demonstrate its accuracy.

Suppose we need to solve Equation (3.4) in the interval (x,, )
subject to two boundary conditions SrA i

Y(x) =@, y(x,)=B. nslab of oidiebed)

‘Where « and g are specified constants. We, as usual, divide the
“interval (x,,x,) into n sub-intervals, as sh'own'in Figure 3.2, .

Xy 298 WPV %Y i 10 X
Figure 3.2

Instead of solving /(3.4) in the interval (x;x,) we replace the
equation by ' - il
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d* dy :
(12 ._'Z+a|_}+a0y:f(xk )’ xk—] S'x‘<“xl(+l (36)
dx dx
and solve itin each of the n sub-intervals as defined in Figure 3.2
where the function f(x) is replaced by f(x,). It is elementary to

solve Equation (3.6). In this manner we have made an otherwise
intractable problem tractable in any chosen interval. Of course,
what we now have is an approximation to the given problem. But,
take note that f(x) is not being replaced by f(x,) over the entire

interval of solution but in a specified interval only. In other words
the approximation involved: is local and not global. The error
involved in the approximation can be cured by taking our sub-
intervals small enough. One other obvious improvement is to
replace f(x) by a refined approximation in the specified sub-
intervals. It may be observed that, in effect, what we have is a
generalized finite difference method and it is not too difficult to
show that the age-old approach of using finite differences to
replace differential coefficients is an approximation of our
method.

The method discussed above has been successfully employed to
tackle problems that are even nonlinear in character. One or two
examples will suffice. Ajayi, O.0. and Ajose, S.O (IEE
Proceedings. 135, 1989) used the method to derive a semi-
analytical procedure for computing the input impedance of a
general, non-uniform transmission line; it was also employed by
Uwanta (Ph.D Thesis, University of Lagos, 2005) to determine
the unsteady nonlinear fluid motion induced by a heat point
source in an incompressible, viscous fluid of infinite extent.

We have in the above paragraphs merely sketched the
procedure involved in using our new method, We shall now apply
the method to take a look at the perennial problem of the
acceptability of Nigerian Census results and proffer a
mathematical opinion.
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The Nigerian Census Results

Our nation, Good people, Great nation, has on numerous
occasions embarked, like other nations, on the arduous task of
determining how many of us inhabit our good land. Each time the
outcome of the exercise was greeted with dissatisfaction and
complaints. | wish in these closing remarks to give a
mathematical opinion of the past Nigerian Census results.

There has, for a long time, been keen interest in modelling the
growth of populations. One of the earliest workers in this area
was a reverend gentleman and economist, T.R. Malthus. His
model was simple and straightforward. Let us take a look at it: Let
p(1) denote the population of a given species at any time t and

r(p, t) the difference between its birth rate and death rate.

Malthus supposed that the rate of growth of the population is -

directly proportion to the population, that is,

dp

e (3.7)
Mathematically, we may write Equation (3.7) as -

dp._

dt n kp ’ (3‘8)

where k measures the average growth rate per unit time per
unit population. It follows that

dp
Ty rp (3.9)

When r is a constant, that is, the growth rate is constant, then
we have

o T aris & AN (3.10)

dt

where a is the constant growth rate and (xo., x,) is the interval

of interest. The last equation is the famous Malthusian law of
population growth.
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Let us look a little more closely at what Malthus had in store for
us. Suppose that Adam and Eve begat their children, who in turn
begat their own children and their children’s children begat their
own children and so on until the earth’s human population was
2.518 billions in 1950 (UN figures). If we assume as has been
well-documented that the world population has been increasing
at the rate of about 2% per year since 1950. To obtain the
subsequent human population all we need do is to solve
Equation (3.10) subject to these known values. The solution is

" p=(2,518,000,000)e """ (3.11)

Equation (3.11) gives the world human population at any t after
1950. Itis easy to see from this solution that the world population
will grow without end.

Since we have obtained the analytic solution to our equation it will
be superfluous to employ a numerical method to find the solution.
But, as a simple illustration of our new method discussed earlier
we shall determine a numerical solution and compare the
solution with the analytic one. For this purpose we may in the
interval of interest (1950, 2010), approximate Equation (3.10) by

d—p=ap(tk), b bk (3.12)
dt
On solving Equation (3.12) and eliminating the constant of
integration involved, we find
P = P +a(x,, —x.)p, - (3.13)

The solution in the interval of interest (x,, x,) may be generated

using (3.13). A comparison of the analytic solution and the
numerical solution is given in Table 3.1. There is good agreement
between the numerical and analytical values if the ratios of the
two quantities are close to unity. It will be noticed in column 4 of
Table 3.1 that our numerical solution agrees excellently with the
analytical ones.
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Table
3.5

Comparison of analytic and numerical solutions of the
Malthusian equation showing the world population

Analytic |Predicted [Analytic
Year populationjpopulation|Predicted
1950 2518
1955 2782.82 |2782.79 1.00001
1960 3075.49 [3075.43 1.00002
1965 3398.94 (3398.84 1.00003
1970 3756.41  |3756.26 1.00004
1975 4151.48  [4151.26 1.00005
1980 4588.1 4587.81 1.00006
1985 5070.63 |5070.26 1.00007
1990 5603.91 [5603.45 1.00008
1995 6193.28 |6192.7 1.00009
2000 6844.63 6843.92 1.0001
2005 7564.49  [7563.62 1.00011
2010 8360.05 (8359.01 1.00012
2015 9239.29 |9238.04 1.00014
2020 10211.00 [10209.5 1.00015
2025 112849 [11283.1 1.00016
2030 12471.7  |12469.7 1.00017
2035 13783.4 {13781 1.00018
2040 15233 15230.2 1.00019
2045 16835.1  |16831.8 1.0002
2050 18605.6 |18601.8 1.00021
2055 20562.4 [20557.9 1.00022
2060 22725 22719.8 1.00023
2065 25115 25109 1.00024
2070 27756.4 277494 1.00025
2075 30675.5 |30667.5 |1.00026
2080 33901.7 {33892.5 |1.00027
2085 37467.2 |37456.6 1.00028
2090 414076 413955 |1.00029
095 45762.5  |45748.7 1.0003
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We are pleased with this excellent agreement but we need not be
hilarious about it because the above example, a first order
equation, is not a stringent test of the accuracy or even the
efficiency of the new method but, at least in the meantime, it
provides us a reassuring start. In view of the above, we shall for
the rest of this section use our new method to obtain all
numerical solutions employed in this section.

You will notice from Table 3.1 that the world population keeps
increasing and with time the population will explode beyond what
the human race can handle. When Malthus introduced his theory
this scenario almost frightened life out of people because
according to Malthus the human population will grow without end
and as a result sooner or later, with emphasis on sooner, this
earth will no longer be big enough to sustain all of us. Available
food and other resources will not be nearly enough to sustain us
all. The consequence can only be imagined.

The question of the accuracy of the Malthusian theory does arise.
To answer this question let us compare the predicted Malthusian
world population with the actual world population. Table 3.2

shows a comparison of the actual world population and the

predicted ones using 1950 as our starting point. It will be noticed
from column 4 of that Table that there is reasonably good
agreement between the actual and predicted values up to about
1990, thereafter the agreement is no longer tenable.
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Table  Comparison of actual world population(in billions)
32: with corresponding values predicted by the
Malthusian theory using our method of solution
Actual |Predicted | Actual/
Year Population|Population|Predicted
195Q + [2.518 2.518 -
1955 200 2.78279  10.990013
1960 2.982 3.07543  |0.969621
1965 3.385 3.39884 0.981218
1970  [3.6925 ~ [3.75626  (0.983026
1975 4.068 4.15126  |0.979943
1980 4.4347 4.58781 0.966627
1985 4.831 5.07026  |0.952811
1990 5.2636 5.60345 [0.939351
1995 5.674 6.1927 0.91624
2000 6.0706 6.84392 |0.887006
2005 6.4536 7.56362 |0.853242
2010 - 8.35901 -

Fortunately, the explanation for this discrepancy seems quite
simple. The fact is that the Malthusian model imposes no
restriction on the population growth. It does not take account, for
instance, of the effect of advances in medical services and
improvement in agricultural practices which have led to an
increase in life expectancy. Neither did it take into consideration
such debilitating factors as war and epidemics. Other factors
such as emigration and immigretion were not taken into
consideration by Malthus. [t stands to reason that when these
factors are woven into the Malthus'an theory then we can expect
some improvement in the theory of population growth. The
logistic theory of population growth was introduced many years
ago to address the shortcomings mentioned above. Our interest
is to employ this theory to examine the validity of the various
Census exercises carried out in our dear country. For this reason
we shall merely state the logistic equation and map out the
numerical procedure as stated at the beginning of this section.
The logistic equation is given in Equation (3.14):
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% B, R (3.14)

where b is a parameter that accounts for factors militating against
or encouraging the growth of a population. As previously
mentioned, even though we need not solve this equation
numerically, we shall do so on this occasion so as to illustrate our
new method of solving differential equations numerically. To this
end we re-write Equation (3.14) as given in (3.15):

dj 2
;?:ap(t,‘)—bp'(t,( )EEE%, < x &, (3.15)

where we have divided the interval (x,,x,) into n sub-intervals

and k=0,1,2,.. .,n-1. We then proceed to solve Equation (3.15) in
each of the sub-intervals to determine the solution over the entire
interval of interest. On solving Equation (3.15) and eliminating the
constant of integration involved in the solution we find,

Pia = P "’(tm _tk)(a_bpk)pk . (3.16)
Equation (3.16) is used to generate the solution over the entire
interval of interest. The solution method is as simple as that. We
must, however, sound a note of warning. Even though the

. method is as simple as demonstrated in this example but when
_.we go on to consider equations of higher order then new
i 'challenges do crop up. We have so far found these challenges
"'summuntab'le even when the equation is of the fourth order. We

shal’l now dISCUSS the results

i ";L, OF

O7Table’3.3 'shows the values of the actual world populatlon and
‘the corresponding values predicted using our ‘solution ‘derived
from equation (3.16). It will be observed that unlike the
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Table  Comparison of actual world population(in billions)
3.3: with corresponding values predicted by the Logistic
theory using our method of solution
Actual [gredicted Actual/
Year population|population|Predicted
1950 2.518 2.518 1
1955 21790 2.75542  10.999847
1960 2.982 3.01244  10.989896
1965 3:335 3.29013 |1.01364
1970 3.6925 3.58953 |1.02869
1975 4.068 3.91162  |1.03998
1980 4.4347 4.25727  (1.04168
1985 4.831 4.62725  |1.04403
1990 5.2636 5.02218 |1.04807
1995 5.674 5.44249 |1.04254
2000 6.0706 5.8884 1.03094
2005 6.4536 6.35989  {1.01473
2010 - 6.85667 -

Malthusian theory, the logistic model predicts the world
population from 1950 to the present moment with acceptable
accuracy. You may wish to note, in particular, the value, 6.85
billions predicted for 2010, the latest available world population is
6.706 for 2008. Table 3.4 shows a comparison of the actual
population of the United States of America and corresponding
values predicted using our solution derived from Equation (3.16)
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Table 3.4 Comparison of the actual population (in millions)
of the United States with corresponding values
predicted by the Logistic theory using our method
of solution

Actual |Predicted | Actual/
Year |population|population|Predicted

1790 3.92921 [3.92921 |1
1800 5.23663 |5.33578 |0.981417
1810 7.23988 [7.22692 |1.00179
1820 0.63845 [9.75402 |0.988151
1830 12.866 13.1034 |0.981881
1840 17.0695 [17.4949 |0.97568
1850 23.1919 [23.1716 | 1.00087
1860 31.4433 |30.3767 |1.03511
1870 38.5584 |39.3124 |0.98082
1880 49.3713  [50.0813 |0.985823
1890 62.9798 [62.6206 | 1.00574
1900 76.2122  [76.6492 | 0.994299
1910 92.23 91.6591 | 1.00623
1920 106.02 106.972 |0.991104
1930 123.2 121.852 [1.01107
1940 132.16 135.644 |0.974318
1950 151.33 147.878 |1.02334
1960 179.32 158.316 | 1.13267
1970 203.21 166.929 |1.21735
1980 226.55 173.841 [1.3032
1990 248.71 179.267 |1.38737
2000 281.42 183.452 | 1.53402
2010 186.637

for the years 1790 to 2000. The Table also gives the predicted
population of USA for 2010. It will be observed that our solution is
in a very good agreement with the population of America for a
total of 160 years!
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The discrepancy in the years after 1950 may be attributed to the
fact that there has been a significant decline in the rate of growth
of the population of that country which is now about 1.1% instead
of about 3% in the years after 1790 which is the value used in our
computation.

Now let us take a look at the case of the Nigerian population. To
start with, we note that it would appear that the least controversial
Census figure is that of 1953. We accepted that figure as correct
and used it as the basis of our computation. Column 3 of Table
3.5 shows the predicted population (in millions) of Nigeria while
the second column contains the few available corresponding
values. The paucity of data gave us much difficulty in determining
the values of the parameters a and b. Therefore, the results
under consideration here must be viewed in that light. The results
of our computation are presented in Table 3.5 which shows the
predicted population of Nigeria from 1953 to 2012 as well as the
few available Census results. It will be observed that with the
exception of the 1991 Census result there is not much agreement
between the predicted and the Census results. We note further
that our predicted Nigerian population for 2009, 148.74 millions is
in reasonable agreement with the UN-estimated Nigerian
population, 148.24 millions for that year.
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Table 3.5 Comparison of the actual population (in millions)

of Nigeria with corresponding values predicted by

the Logistic theory using our method of solution

Actual |Predicted | Actual/
Year population|population|Predicted
1953 30.39 - -
1954 - 31.2759 -
1955 - 32.1873 -
1956 - 33.1251 -
1957 - 34.0899 -
1958 - 35.0825 -
1959 - 36.1037 -
1960 - 37.1544 -
1961 - 38.2352 -
1962 - 39.3471 -
1963 3a.7 40.491 1.37562
1964 - 41.6677 -
1965 - 42.8781 -
1966 - 441233 -
1967 - 45.4041 -
1968 - 46.7217 -
1969 - 48.0768 -
1970 - 49.4708 -
1971 - 50.9045 -
1972 - 52.3791 -
1973 - 53.8958 -
1974 - 55.4556 -
1975 - 57.0599 -
1976 - 58.7097 -
1977 - 60.4064 -
1978 - 62.1512 -
1979 - 63.9454 -
1980 84.7 65.7904 | 1.28742
1981 - 67.6876 -
1982 - 69.6383 -

33



1983 - 71.6441 -
1984 93.7 73.7063 | 1.27126
1985 - 75.8266 -
1986 - 78.0064 -
1987 - 80.2474 -
1988 - 82.5512 -
1989 - 84.9194 -
1990 - 87.3538 -
1991 88.5 89.8561 |0.984908
1992 - 92.4281 -
1993 - 95.0716 -
1994 - 97.7885 -
1995 - 100.581 -
1996 - 103.45 -
1997 - 106.399 -
1998 - 109.429 -
1999 - 112.542 -
2000 - 115.74 -
2001 - 119.027 -
2002 - 122.403 -
2003 - 125.871 -
2004 - 129.434 -
2005 - 133.093 -
2006 - 136.852 -
2007 - 140.712 -
2008 - 144 .676 -
2009 - 148.747 -
2010 - 152.927 -
2011 - 157.219 -
2012 - 161.626 -

Our mathematical calculations therefore show that the Census
results of 1963, 1980 and 1984 may well be an aberration while
the exercise of 1991 was in all probability carried out with a large
degree of accuracy. If we are correct in our analysis the accuracy
of the 1991 Census exercise persuades us that honest and
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patriotic people still inhabit our good land. Therefore, there is
hope that indeed Nigeria may yet be a land of Good people,

Great nation!

Is mathematics all about numbers? | hope we have been able to
show in the foregoing that in the beginning were num_bers and
mathematics was built on numbers and mathematics goes

beyond numbers.

Thank you for your kind attention.
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