———

A Seventh-order Block Integrator for Solving Stiff Systems

By

B. I. Akinnukawe and S. A. Okunuga

A Paper presented at the Mathematical Association of America (MAA)
Conference held in Washington D.C., from August 5-8, 2015

Partly sponsored by University of Lagos, Lagos



A Seventh-order Block Integrator for Solving Stiff Systems

B. 1. Akinnukawe and S.A. Okunuga

akinnukaweb(@yahoo.com, nugabola@yahoo.com
Department of Mathematics, University of Lagos, Lagos, Nigeria.

Abstract: In this paper, an L,- stable Second Derivative Block Integrator of uniform order seven
is proposed for the numerical integration of stiff systems, including large stiff systems resulting
from semi-discretization of Parabolic differential equations. The conventional 3-step second
derivative backward differentiation formula is obtained from a continuous scheme while the
additional methods are obtained from the second derivative of the same continuous scheme. All
methods are derived via Interpolation and Collocation techniques and assembled into a block
scheme. The convergence and stability properties of the block scheme are discussed and the
stability region shown. The performance of the scheme as compared to other existing schemes is
considered favorable.
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1. Introduction
Consider a system of first order differential equation of the form
u'(t) = f(t,u(t)), u(to) = uy, t € [to, ty] (1)
where N € Z*, f:R X R™ — R™, m is the dimension of the system and f satisfies the Lipschitz
condition as given in Henrici [1]. The system (1) is said to be stiff if the eigenvalues of the

Jacobian (Bf / ay) matrix have negative real parts. Recently, scholars have been attracted to the

research of stiff problems especially large stiff systems resulting from the semi-discretization of
Parabolic equations since solution to most partial differential equations are not easily obtained in
the closed form and numerical methods to handle such problem must have large stability
intervals. Hence, the need for at least Ly- stable methods for efficiently solving (1) with large
system. Stiff problems were first researched into by Curtis and Hirschfelder [2] and after then,
several other scholars have proposed numerical methods efficient for solving (1) (see Enright [3],
Hairer and Wanner [4], Cash [5], Chartier [6], Brugnano and Trigiante [7], Onumanyi et al [9]).
In this paper, the conventional 3-step second derivative backward differentiation formula (main
method) and additional methods are assembled as a block scheme (Block Second-derivative
Backward Differentiation Formula denoted as BSBDF) to solve large stiff systems. The BSBDFs
are bundle as main and additional methods, a concept that is due to Brugnano and Trigiante [8].
The main method is obtained from a continuous scheme while the additional methods are
obtained from the second derivative of the continuous scheme. The numerical solution of the
problem is simultaneously provided in each block without the use of predictor from other
methods (see Jator and Agyinyi [10], Jator [11]).

The paper is structured as follows: Section 2 shows the derivation of 3-step BSBDF and how to
generate the specific members of the block scheme. In section 3, the stability and convergence
properties of the block scheme is studied while in section 4, the numerical algorithm of the block
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scheme is implemented on selected stiff systems and Parabolic equations. Finally, the conclusion
of the paper is discussed in section 5.

2. Derivation of 3-step BSBDF
In this section, we construct the main method and the additional methods from its second
derivative and are combined to form the 3-step Block Second derivative Backward
Differentiation Formula (BSBDF) on the interval [t,, t,+3]. The conventional 3-step second

derivative backward differentiation formula which is the main method is of the form
2
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t, is a node point and a;B), j =0,1,..,3, y3 are parameters to be obtained from the
collocation and interpolation techniques. The exact solution U(t) is assumed to exist and unique
in [to, t3]. We approximate the exact solution U(t) by seeking the continuous solution u(t) of
the form

r+s—1
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where b; are unknown coefficients and ¢;(t) = ¢/, j = 0(1)r + s — 1 are the polynomial basis
functions of degree r + s — 1. The number of interpolation points r and the number of the
distinct collocation points s are chosen to satisfy r = k and s = k + 2. The 3-step Block Second
Derivative Backward Differentiation Formula of order 7 is constructed by imposing the

following conditions:
¥
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Equations (4)-(6) lead to a system of eight equations which is solved to obtain the coefficients

bj, j = 0(1)7 and substitute the values of b; into equation (3) to obtain the continuous solution
in the form of (7) as
2
u(t) = Z a; (t)unﬂ + hZBj (t)fnﬂ + h? ¥3(£)Gn+3 (7)
j=0

where h is the chosen step-length and a] (t) J=0(1)2, Bj(t),j=0(1)3, y; are continuous
coefficients given as
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The main method is generated by evaluating (7) at the point t = t,,,3 to obtain

16 81 6
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- Differentiating (7) twice w1th respect to t, we have
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The additional method is generated by evaluating (9) at the point t = t,,,4, t,4» to obtain
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The methods (8), (10) and (11) are combined as a 3-step BSBDF of order 7 given by
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3. Analysis of 3-step BSBDF
The 3-step BSBDF (12) is represented by a block matrix finite difference equation as
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The local truncation error associated with 3-step BSBDF methods can be defined to be the linear

difference operator
3
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Assume that u(t) is differentiable as often as needed and evaluated at t = t,, then by using
Taylor series expansion to expand u(t, + jh), u'(t, + jh) and u"'(t,, + 3h)

we have
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Substitute u(t, + jh), u'(t, + jh) and u''(t,, + 3h) into (14) to obtain
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The BSBDF method (12) is said to have a maximal order of accuracy m if
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Thus the 3-step BSBDF is of order 7 since
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with error constant
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3.1 Zero-stability of BSBDF
Applying 3-step BSBDF to the scalar test problem u = Au and let z = hA, we have
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Since R(u,z) = det[(M; — zN; — z2P;)u — ( My + zN,)]. The stability polynomial R(u, z) of
3-step BSBDF is
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Solving (17) as z — 0, the first characteristics polynomial p(u) is given as

840
p(u)- #(1 )

Following Fatunla [12], the 3-step BSBDF i 1s zero stable since the roots of p(u) = 0 are less
than or equal to 1 and for the root equal to 1, the multiplicity does not exceed 1.

3.2 Consistency and Convergence

Since 3-step BSBDF is of order p = 7 > 1, therefore the method is consistent. The necessary
and sufficient condition for convergence is that the method is consistent and zero-stable,
therefore the 3-step BSBDF is convergent.

3.3 Region of Absolute Stability
From (17), equate R(u,z) = 0 and solve for u gives the roots of the stability polynomial as
M1 = 0, Uy = 01
8.65979 + 11.134z + 6.391752% + 2.10309z3 + 0.412371z* + 0.04123712z5
H3 = "8.65979 — 14.8454z + 11.958822 — 5.938142° + 1.989692* — 0.4536082°

+0.0618557z°
The stability function of the method is the maximum root of the three roots which is




8.65979 + 11.134z + 6.391752% + 2.10309z3 + 0.412371z* + 0.0412371z°

H3(2) = 5 5e079 — 14,8454z + 11958827 — 5.938142° + 1.989692* — 0.4536082°

+0.0618557z¢%
Set |u3(2)| < 1 to obtain the absolute stability interval which is shown in the region of absolute

stability. The RAS of 3-step BSBDF (12) is plotted in fig.1.

Fig. 1: Region of Absolute Stability of 3-step BSBDF
From Fig. 1, since the method is A,-stable and in addition,
lim yz(z) =0
Z—00
Thus 3-step BSBDF is Lj-stable.

4. Numerical Examples

This section deals with some numerical examples executed in MAPLE language to show the
performance of the Block method on selected stiff problems.
Example 1: Consider the following linear system ontherange 0 <t <1

=21 19 =20

i = [ 19 =21 20 ]u, =01 o0 -7

40 —-40 -40

with theoretical solution

ui(t) = %(e‘z’t + e~*%(cos(40t) + sin (40¢)))
4, (t) = %(e'” — e~*(cos(40t) + sin (40t)))

uz(t) = -;- (2e~*%¢(sin(40t) — cos (40t)))

This problem has been solved by Brugnano and Trigiante [7] using the GBDF (Generalized
Backward Differentiation Formula) of order 7 and also solved by Akinfenwa et al. [13] using
BBDF (Block Backward Differentiation Formula) of order 7. The results for the GBDF and
BBDF are reproduced in Table 1 and compared with the results given by BSBDF of order 7. It is
seen from Table 1 that the BSBDF performs better than both GBDF and BBDF.

Example 2: Consider the linear systemontherange 0 <t < T
u; = —=10u; + fu,, u,(0) =1
u.'z = -ﬂul = 10u2, uz(O) =1
uz = —yus, uz(0) =1
This problem was extensively solved by Shampine [15] and reported that the system is stiff when
- f =21and y = 10 and the Jacobian has eigenvalues —10 + fi and - y. Its exact solution is:

uy (t) = e "*(cos(Bt) + sin(pt))



u,(t) = e "*(cos(Bt) — sin(Bt))
ug(t) = e_-yt
The absolute error for the end point T = 1 and 2 are computed and shown in Tables 2 and 3
respectively. The problem was also solved by Akinfenwa et al.[14] using Continuous Block
Hybrid Method (CBHM) of order 9. The results for the CBHM are reproduced in Tables and
compared with the results given by BSBDF of order 7. From Tables 2 and 3, it is seen that the
BSBDF performs better than existing method CBHM.

Example 3: Consider the nonlinear system which was solved by Jator and Agyinyi [10] and also
by Akinfenwa et al. [13]

u; = —1002u1 + 1000112, uI(O) =1

Uy = Uy — up (1 + up), u,(0) =1
Exact solution u,(t) = e~2t, u,(t) =et
It is obvious from Table 4 that the absolute errors obtained at the specified values of
t for BBDF and BSBDF are small and BSBDF performs better than BBDF. We chose not to
compare BSBDF with HBDF in Jator and Agyinyi [10] since BSBDF is expected to perform
better because of its higher order.

Example 4: Consider the Parabolic Partial Differential Equation of the form, (see Cash [16]),
du  d%u

— =0, 0< ; <t
ot Hoax? 5 3

u(0,t) =u(1,t) =0
u(x,0) = sin(mx) + sin(wrx), 0<x<1, w>» 1
The exact solution to this problem is
u(x,t) = e ™kt sin(mx) + e "W T Ht sin(wmx)
Semi-discretizing the PDE to a system of IVP using Method of Lines (Lambert [17], Ramos and
Vigo-Aguiar [18]), we have

(-2 1 0 0 - 07 u@® ]
1 =2 1 0 - 0| u@
, 4|0 1 -2 1 : ' :
U=5l0 o . - . [i=12.,N=1,  t>0,
0 0 0 1 =2 1 |uy,@®
00 0 - 1 =2fuy,(0)]

with initial conditions
u(x;,0) = sin(mx;) + sin(wnx;), 0<x; <1, i=12..,N-1

BSBDF are applied to the system of IVP arising from the parabolic equation and the results are
compared to existing method also used in solving the problem in Cash [16] and Crank-Nicholson
(C-N). Table 5 shows the absolute error of the methods at t = 1,u = 1 at different w values.
Cash [16] notes that as w increases, the problem in example 4 exhibits features similar to stiff
equations and that methods like Crank-Nicolson which are not Ly-stable are expected to perform
poorly. The BSBDF is Ly-stable and hence perform well and better than the existing method in
Cash [16].



Table 1: A comparison of Errors of Methods for Example 1

h BBDF(order 7) GBDF(order 7) BSBDF(order 7)
Max |error]| Max |error| Max |error]|

0.01 1.81E-4 1.18E-3 1.13E-6

0.005 3.37E-6 1.38E-5 1.31E-9

0.0025 2.03E-8 1.07E-7 1.43E-11

0.00125 1.57E-10 1.07E-9 1.41E-13

0.000625 1.16E-12 9.41E12 1.23E-15

Table 2: A Comparison of errors of Methods for Example 2 at T = 1 where Error= |u; — w;(t;)|

CBHM BSBDF
(order 9) (order 7)

h Error 1 Error 2 Error 3 Error 1 Error 2 Error 3
0.1 3.46E-6 2.43E-5 1.68E-6 3.17E-6 1.13E-5 3.15E-8
0.01 1.26E-6 1.12E-5 1.01E-7 2.45E-12 5.46E-12 5.03E-15
0.001 1.74E-6 1.09E-5 7.46E-8 1.51E-19 6.41E-19 2.40E-22

Table 3: A Comparison of errors of Methods for Example 2 atT = 2
CBHM BSBDF
(order 9) (order 7)
h Error 1 Error 2 Error 3 Error 1 Error 2 Error 3
0.1 1.74E-9 1.11E-9 1.97E-10  5.74E-10 7.04E-10 2.73E-12
0.01 8.36E-10 3.84E-10 9.18E-12  2.89E-16 4.52E-16 4.51E-19
0.001 8.54E-10 3.51E-10 6.78E-12  4.12E-23 4.33E-23 2.03E-26
Table 4: A comparison of absolute errors of Methods for Example 3
t h N BBDF(order 7) BSBDF(order 7)
Err(u;) Err(u;) Err(uy) Err(up)
1 0.05 20 8.4994E-12 1.2500E-11  2.9131E-14 3.9452E-14
10  0.017 600 6.5265E-22 7.1828E-18  1.7528E-24 1.9179E-20
Table 5: Absolute Errors of methods for Example 4att =1,u=1
w BSBDF C-N Cash [16]
1 2.69E-06 6.20E-05 3.7E-05
2 1.35E-06 3.83E-05 1.8E-05
3 1.35E-06 9.30E-03 1.9E-05
5 1.35E-06 1.80E-01 1.8E-05
10 1.35E-06 6.10E-01 1.8E-05

5. Conclusion

An Lj-stable Block Second-derivative Backward Differentiation Formula (BSBDF) has been
proposed and implemented as a self-starting method for the numerical integration of stiff systems
which includes large systems arising from semi-discretized parabolic PDEs. The convergence,
consistency and stability of the block method were established. Application of the block



algorithm to linear problems, non-linear problem and a system of initial value problem resulting
from discretizing parabolic equation demonstrate the accuracy of the method. BSBDF is clearly
superior when compared to some existing schemes of same or higher order in literature.
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