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We introduce the concept of 𝐽𝑎V-distance (an analogue of 𝑏-metric), 𝜙𝑝-proximal contraction, and 𝜙𝑝-proximal cyclic contraction
for non-self-mappings in Hausdorff uniform spaces. We investigate the existence and uniqueness of best proximity points for these
modified contractive mappings. The results obtained extended and generalised some fixed and best proximity points results in
literature. Examples are given to validate the main results.

1. Introduction

The importance of fixed point theory emerges from the
fact that it furnishes a unified approach and constitutes an
important tool in solving equations which are not necessarily
linear. A large number of problems can be formulated as
nonlinear equations of the form 𝑇(𝑥) = 𝑥, where 𝑇 is a self-
mapping in some framework; see [1–4] and other references
therein. Nevertheless, an equation of the type 𝑇(𝑥) = 𝑥 does
not necessarily possess a solution if 𝑇 happens to be a non-
self-mapping. In this case, one seeks an appropriate solution
that is optimal in the sense that 𝑑(𝑥, 𝑇(𝑥)) is minimum.That
is, we resolve a problem of finding an element 𝑥 such that 𝑥
is in best proximity to 𝑇(𝑥) in some sense.

Best proximity point theorem analyzes the condition
under which the optimisation problem, namely, inf𝑥∈𝐴𝑑(𝑥,𝑇𝑥), has a solution. The point 𝑥 is called the best proximity
point of 𝑇 : 𝐴 → 𝐵, if 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵), where 𝑑(𝐴, 𝐵) =
inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐴; 𝑦 ∈ 𝐵}. Note that the best proximity
point reduces to a fixed point if 𝑇 is a self-mapping.

A best proximity point problem is a problem of achieving
the minimum distance between two sets through a function
defined on one of the sets to the other.

The very popular best approximation theorem is due to
Fan [5]. If 𝐴 is a nonempty compact subset of a Hausdorff

locally convex topological vector space 𝐵 and 𝑇 : 𝐴 → 𝐵 is
a continuous mapping, then there exists an element 𝑥 ∈ 𝐴
such that 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝑇𝑥). Fan’s results are not without
shortcomings; the best approximation theorem only ensures
the existence of approximate solutions, without necessarily
yielding an optimal solution. But the best proximity point
theorem provides sufficient conditions that ensure the exis-
tence of approximate solutions which are also optimal.

Afterwards many authors such as Eldred and Veeramani
[6] have derived extensions of Fan’s Theorem and the best
approximation theorems in many directions. Significant best
proximity point results are in [7–11] and other references
therein.

In fixed point theory, other spaces of study other than
metric spaces have been used by different authors. Pseu-
dometric spaces interestingly generalise metric spaces. One
of the spaces in literature that generalises the metric and
pseudometric spaces is the uniform space.

Weil [12] was the first to characterise uniform spaces
in terms of a family of pseudometrics and Bourbaki [13]
provided the definition of a uniform structure in terms of
entourages. Aamri and El Moutawakil [14] gave some results
on common fixed point for some contractive and expansive
maps in uniform spaces and provided the definition of 𝐴-
distance and 𝐸-distance.
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Also, Olatinwo [15] established some commonfixed point
theorems for self-mappings in uniform spaces by using the
𝐴- and 𝐸-distances. Dhagat et al. [16] proved some common
fixed point theorems for pairs of weakly and semicompatible
mappings using 𝐸-distances in uniform spaces. Hussain et al.
[17] apply the concept of cyclic (𝜓) contractions to establish
certain fixed and common point theorems on a Hausdorff
uniform space.

In another development, Geraghty [18] introduced the
generalised contraction self-map using comparison func-
tions.

Another useful result is by Karapinar and Erhan [19]
who gave the definition of a 𝑘-contractive map for non-self-
mappings and Karapinar [20] who established some results
on best proximity points of 𝜓-Geraghty contractive non-self-
mappings.

Also, Basha [21] gave some necessary and sufficient con-
ditions to claim the existence of unique best proximity points
for proximal contractions in metric spaces. Mongkolkeha et
al. [22] introduced proximal cyclic contractions in metric
spaces which are more general than the class of proximal
contractions given by Basha [21].

Motivated by the results above, we develop the concept of
𝜙𝑝-proximal contraction and𝜙𝑝-proximal cyclic contractions
in uniform spaces and obtain the existence and uniqueness of
best proximity points of these non-self-contractive mappings
using 𝐽𝑎V-distance function.

2. Preliminaries

The following definitions are fundamental to our work.

Definition 1 (see [13]). A uniform space (𝑋, Γ) is a nonempty
set𝑋 equippedwith a uniform structure which is a family Γ of
subsets of Cartesian product𝑋×𝑋which satisfy the following
conditions:

(i) If 𝑈 ∈ Γ, then 𝑈 contains the diagonal Δ = {(𝑥, 𝑥) :
𝑥 ∈ 𝑋}.

(ii) If 𝑈 ∈ Γ, then 𝑈−1 = {(𝑦, 𝑥) : (𝑥, 𝑦) ∈ 𝑈} is also in Γ.
(iii) If 𝑈,𝑉 ∈ Γ, then 𝑈 ∩ 𝑉 ∈ Γ.
(iv) If𝑈 ∈ Γ, and𝑉 ⊆ 𝑋×𝑋which contains𝑈, then𝑉 ∈ Γ.
(v) If 𝑈 ∈ Γ, then there exists 𝑉 ∈ Γ such that whenever

(𝑥, 𝑦) and (𝑦, 𝑧) are in 𝑉, then (𝑥, 𝑧) is in 𝑈.

Γ is called the uniform structure or uniformity of 𝑋 and its
elements are called entourages, neighborhoods, surround-
ings, or vicinities.

Definition 2 (see [14]). Let (𝑋, Γ) be a uniform space. A
function 𝑝 : 𝑋 × 𝑋 → 𝑅+ is said to be an

(a) 𝐴-distance if, for any 𝑉 ∈ Γ, there exists 𝛿 > 0 such
that if 𝑝(𝑧, 𝑥) ≤ 𝛿 and 𝑝(𝑧, 𝑦) ≤ 𝛿 for some 𝑧 ∈ 𝑋,
then (𝑥, 𝑦) ∈ 𝑉;

(b) 𝐸-distance if 𝑝 is an 𝐴-distance and 𝑝(𝑥, 𝑦) ≤
𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

Another extension of ametric space is the 𝑏-metric space.

Definition 3 (see [2]). Let 𝑋 be a nonempty set and 𝑠 ≥ 1
be a given real number. A map 𝑑 : 𝑋 × 𝑋 → R is said to
be a 𝑏-metric if and only if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following
conditions are satisfied:

(i) 𝑑(𝑥, 𝑦) > 0 with 𝑥 ̸= 𝑦 and 𝑑(𝑥, 𝑦) = 0 if and only if
𝑥 = 𝑦.

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
(iii)

𝑑 (𝑥, 𝑦) ≤ 𝑠 [𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)] . (1)

The pair (𝑋, 𝑑) is called a 𝑏-metric space. If 𝑠 = 1, it becomes
a metric space.

Examples in literature to show that 𝑏-metric is a general-
isation of a metric space are in [16, 21].

Now, we introduce the concept of 𝐽𝑎V-distance.
Definition 4. Let (𝑋, Γ) be a uniform space. A function 𝑝 :
𝑋 × 𝑋 → 𝑅+ is said to be a 𝐽𝑎V-distance if

(i) 𝑝 is an 𝐴-distance,
(ii) 𝑝(𝑥, 𝑦) ≤ 𝑠[𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦)], ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑠 ≥ 1.

Note that the function 𝑝 reduces to an 𝐸-distance if the
constant 𝑠 is taken as 1.

Example 5. Let (𝑋, Γ) be a uniform space and let 𝑑 be a 𝑏
metric on 𝑋. It is clear that (𝑋, Γ𝑑) is a uniform space where
Γ𝑑 is the set of all subsets of 𝑋 × 𝑋 satisfying 𝐵𝜖 = {(𝑥, 𝑦) ∈
𝑋2 : 𝑑(𝑥, 𝑦) < 𝜖} for some 𝜖 > 0. Moreover, if Γ ⊆ Γ𝑑, then 𝑑
is an 𝐽𝑎V-distance on (𝑋, Γ).

Also, the following definition is required.

Definition 6 (see [13]). Let (𝑋, Γ) be a uniform space and 𝑝 an
𝐴-distance on 𝑋

(a) If 𝑉 ∈ Γ, (𝑥, 𝑦) ∈ 𝑉, and (𝑦, 𝑥) ∈ 𝑉, 𝑥 and 𝑦 are said
to be 𝑉-close. A sequence (𝑥𝑛) is a Cauchy sequence
for Γ if, for any 𝑉 ∈ Γ, there exists 𝑁 ≥ 1 such that
𝑥𝑛 and 𝑥𝑚 are 𝑉-close for 𝑛,𝑚 ≥ 𝑁. The sequence
(𝑥𝑛) ∈ 𝑋 is a 𝑝-Cauchy sequence if for every 𝜖 > 0
there exists 𝑛0 ∈ 𝑁 such that 𝑝(𝑥𝑛, 𝑥𝑚) < 𝜖 for all
𝑛,𝑚 ≥ 𝑁.

(b) 𝑋 is 𝑆-complete if for any 𝑝-Cauchy sequence {𝑥𝑛},
there exists 𝑥 ∈ 𝑋 such that lim𝑛→∞𝑝(𝑥𝑛, 𝑥) = 0.

(c) 𝑓 : 𝑋 → 𝑋 is 𝑝-continuous if lim𝑛→∞𝑝(𝑥𝑛, 𝑥) = 0
implies lim𝑛→∞𝑝(𝑓(𝑥𝑛), 𝑓(𝑥)) = 0.

(d) 𝑋 is said to be 𝑝-bounded if 𝛿𝑝(𝑋) = sup{𝑝(𝑥, 𝑦) :
𝑥, 𝑦 ∈ 𝑋} < ∞.

To guarantee the uniqueness of the limit of the Cauchy
sequence for Γ, the uniform space (𝑋, Γ) needs to be Haus-
dorff.

Definition 7 (see [13]). A uniform space (𝑋, Γ) is said to be
Hausdorff if and only if the intersection of all the 𝑉 ∈ Γ
reduces to the diagonal Δ of 𝑋, Δ = {(𝑥, 𝑥), 𝑥 ∈ 𝑋}. In other
words, (𝑥, 𝑦) ∈ 𝑉 for all 𝑉 ∈ Γ implies 𝑥 = 𝑦.
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A uniform structure Γ defines a unique topology 𝜏(Γ) on
𝑋 for which the neighborhoods of 𝑥 ∈ 𝑋 are the sets 𝑉(𝑥) =
{𝑦 ∈ 𝑋 : (𝑥, 𝑦) ∈ 𝑉}, 𝑉 ∈ Γ.

𝑓 : 𝑋 → 𝑋 is 𝜏(Γ) continuous if lim𝑛→∞𝑥𝑛 = 𝑥 with
respect to 𝜏(Γ) implies lim𝑛→∞𝑓(𝑥𝑛) = 𝑓(𝑥) with respect to
𝜏(Γ).

Observe that all the above maps are self-mappings.
A large number of articles investigate non-self-contract-

ivemappings onmetric spaces. Some of these are given below.

Definition 8 (see [19]). Let (𝑋, 𝑑) be ametric space and𝐴 and
𝐵 be nonempty subsets of𝑋. A mapping 𝑇 : 𝐴 → 𝐵 is said to
be a 𝑘-contraction if there exists 𝑘 ∈ [0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐴. (2)

Definition 9 (see [23]). Let 𝐴 and 𝐵 be nonempty subsets of
a metric space (𝑋, 𝑑) and let 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 such that
𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵,

(i) 𝑇 is cyclic if 𝑇(𝐴) ⊆ 𝐵 and 𝑇(𝐵) ⊆ 𝐴.
(ii) 𝑇 is called a cyclic contraction if

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) + (1 − 𝑘) 𝑑 (𝐴, 𝐵) ,
∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, (3)

for some 𝑘 ∈ [0, 1).
(iii) 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is called a cyclic 𝜙-contraction if

𝜙 : [0,∞) → [0,∞) is a strictly increasing map

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) − 𝜙 (𝑑 (𝑥, 𝑦)) + 𝜙 (𝑑 (𝐴, 𝐵)) ,
∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. (4)

Note that (4) becomes (3) with 𝜙(𝑞) = (1 − 𝑘)𝑞 for all 𝑞 ≥ 0.
But the converse is not true in general (see [23]).

Among the generalisations of the Banach contraction is
the proximal contraction given by Basha in [21] and the
proximal cyclic contraction in [22].

Definition 10 (see [21]). Let (𝐴, 𝐵) be a nonempty subset of a
complete metric space (𝑋, 𝑑). A mapping 𝑇 : 𝐴 → 𝐵 is said
to be a proximal contraction if there exists a nonnegative real
number 𝛼 < 1 such that

𝑑 (𝑢, 𝑇 (𝑥)) = 𝑑 (𝐴, 𝐵)
𝑑 (V, 𝑇 (𝑦)) = 𝑑 (𝐴, 𝐵)

⇓
𝑑 (𝑢, V) ≤ 𝛼𝑑 (𝑥, 𝑦) ,

(5)

for all 𝑢, 𝑥, V, 𝑦 ∈ 𝐴.
𝐴0 = {𝑥 ∈ 𝐴 : 𝑝(𝑥, 𝑦) = 𝑝(𝐴, 𝐵) for some 𝑦 ∈ 𝐵},
𝐵0 = {𝑦 ∈ 𝐵 : 𝑝(𝑥, 𝑦) = 𝑝(𝐴, 𝐵) for some 𝑥 ∈ 𝐴}.

Basha [21] proved the following theorem.

Theorem 11 (see [21]). Let 𝐴, 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝑇(𝐴0) is nonempty
and closed. Let 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:

(a) 𝑇 is a proximal contraction,
(b) 𝑇(𝐴0) ⊆ 𝐵0.

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇(𝑥)) = 𝑑(𝐴, 𝐵).
Moreover, if 𝑇 is injective on 𝐴, then the point 𝑥 such that
𝑑(𝑥, 𝑇(𝑥)) = 𝑑(𝐴, 𝐵) is unique.
Definition 12 (see [22]). Let 𝑆 : 𝐴 → 𝐵 and 𝑇 : 𝐵 → 𝐴. The
pair (𝑆, 𝑇) is called a proximal cyclic contraction pair if there
exists 𝛼 ∈ [0, 1) such that

𝑑 (𝑎, 𝑆 (𝑥)) = 𝑑 (𝐴, 𝐵)
𝑑 (𝑏, 𝑇 (𝑦)) = 𝑑 (𝐴, 𝐵)

⇓
𝑑 (𝑎, 𝑏) ≤ 𝛼𝑑 (𝑥, 𝑦) + (1 − 𝛼) 𝑑 (𝐴, 𝐵) ,

(6)

for all 𝑎, 𝑥 ∈ 𝐴, 𝑏, 𝑦 ∈ 𝐵.
Given nonempty subsets 𝐴 and 𝐵 of a uniform space

(𝑋, Γ), we adopt the following notations and definitions used
for metric spaces to the context of uniform spaces.

Definition 13. Let 𝑆 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐴 be an isometry.
The mapping 𝑆 is said to preserve the isometric distance with
respect to 𝑔 if

𝑝 (𝑆 (𝑔 (𝑥)) , 𝑆 (𝑔 (𝑦))) = 𝑝 (𝑔 (𝑥) , 𝑔 (𝑦)) ,
∀𝑥, 𝑦 ∈ 𝐴. (7)

Definition 14. An element 𝑥∗ is called a best proximity point
of a mapping 𝑇 : 𝐴 → 𝐵 if it satisfies the condition that
𝑝(𝑥∗, 𝑇(𝑥∗)) = 𝑝(𝐴, 𝐵) = inf{𝑝(𝑥, 𝑦) : 𝑥 ∈ 𝐴; 𝑦 ∈ 𝐵}.

Now, we give the definition of 𝜙𝑝-proximal contraction
and 𝜙𝑝-proximal cyclic contraction for non-self-mapping in
uniform spaces.

Definition 15. Let (𝐴, 𝐵) be a pair of nonempty subsets of
an 𝑆-complete Hausdorff uniform space (𝑋, Γ) such that 𝑝
is an 𝐽𝑎V-distance on 𝑋. A mapping 𝑇 : 𝐴 → 𝐵 is said to
be a 𝜙𝑝-proximal contraction if there exists a nondecreasing
continuous weak comparison function 𝜙 : 𝑅+ → 𝑅+
satisfying the following.

(𝜇1) For each 𝑡 ∈ (0,∞), 0 < 𝜙(𝑡) and 𝜙(0) = 0,
(𝜇2) lim𝑛→∞𝜙𝑛(𝑡) = 0, ∀𝑡 ∈ (0,∞),
(𝜇3) 𝜙(𝑡) < 𝑡 ∀𝑡 ∈ (0,∞),
(𝜇4) ∑∞𝑛=0 𝜙𝑛(𝑡) converges for any 𝑡, such that ∀𝑗, 𝑙, 𝑘, 𝑚 ∈

𝐴, such that
𝑝 (𝑗, 𝑇 (𝑘)) = 𝑝 (𝐴, 𝐵)
𝑝 (𝑙, 𝑇 (𝑚)) = 𝑝 (𝐴, 𝐵)

⇓
𝑝 (𝑗, 𝑙) ≤ 𝜙 (𝑝 (𝑘,𝑚)) .

(8)
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Definition 16. Let (𝐴, 𝐵) be a pair of nonempty subsets of 𝑆-
complete Hausdorff uniform space (𝑋, Γ) such that 𝑝 is an
𝐽𝑎V-distance on 𝑋. Suppose 𝑆 : 𝐴 → 𝐵 and 𝑇 : 𝐵 → 𝐴 are
mappings. The pair (𝑆, 𝑇) is said to be a 𝜙𝑝-proximal cyclic
contraction if there exists a nondecreasing continuous weak
comparison function 𝜙 : 𝑅+ → 𝑅+ satisfying 𝜇1–𝜇4 above,
such that

𝑝 (𝑗, 𝑆 (𝑘)) = 𝑝 (𝐴, 𝐵)
𝑝 (𝑙, 𝑇 (𝑚)) = 𝑝 (𝐴, 𝐵)

⇓
𝑝 (𝑗, 𝑙) ≤ 𝜙 (𝑝 (𝑘,𝑚)) + 𝑝 (𝐴, 𝐵) − 𝜙 (𝑝 (𝐴, 𝐵)) ,

(9)

for all 𝑗, 𝑘 ∈ 𝐴 and 𝑙, 𝑚 ∈ 𝐵.
It is easy to see that a self-mapping that is a 𝜙𝑝-proximal

contraction is a contraction. But a non-self 𝜙𝑝-proximal
contraction is not necessarily a contraction map. If 𝜙(𝑤) =
𝛼𝑤 and 𝐽𝑎V-distance 𝑝 is replaced with a metric 𝑑, (9) reduces
to (6). Similarly, (8) reduces to (5). Also, (9) and (8) reduce to
(2) if 𝐴 = 𝐵, 𝑆 = 𝑇, 𝜙(𝑤) = 𝑘𝑤 and if the 𝐽𝑎V-distance 𝑝 is
replaced with a metric 𝑑, in the sense that Γ = {(𝑥, 𝑦) ∈ 𝑋2 :
𝑑(𝑥, 𝑦) < 𝑠𝜖}, 𝑠 ≥ 0.

The following example shows that 𝐸-distance function 𝑝
is different from themetric distance function 𝑑. In fact, the𝐸-
distance function 𝑝 reduces to the metric distance function 𝑑
when 𝑋 is a metric space.

Example 17. Let 𝐴 = (−∞, 0] and 𝐵 = [2, +∞) be nonempty
closed subsets of 𝑋 = 𝑅 with the usual metric. Let 𝐻 : 𝐴 →
𝐵 be a mapping given by 𝐻(𝑥) = −4/𝑥 and 𝑢 = −1, V =
0, 𝑥 = −4, 𝑦 = −2 and let 𝜙(𝑥) = 𝑥/3. It is easy to see that
𝑑(−1,𝐻(−4)) = 𝑑(𝐴, 𝐵) = 𝑑(0,𝐻(−2)) = 2.

Clearly, 𝐻 : 𝐴 → 𝐵 is not a 𝜙-proximal contraction; that
is, 𝑑(−1, 0) > 𝜙(𝑑(−4, −2)).

𝐻 has no best proximity point since there is no 𝑥 ∈ 𝐴
such that 𝑑(𝑥,𝐻(𝑥)) = 2.

Now, taking 𝑢 = 𝑥 − 2, 𝑥 = 𝑢 + 2, 𝑥 < 𝑢. And consider
𝑝 defined as 𝑝(𝑥, 𝑦) = |2𝑥|.

Clearly, 𝑝(𝑢, V) ≤ 𝜙(𝑝(𝑥, 𝑦)) for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴. 𝐻 is a
𝜙𝑝-proximal contraction and −1 is the unique best proximity
point of 𝐻.

The following Lemma, which is true for self-mappings
(see Lemma 2.4 [23]) can be proved for non-self-mappings.

Lemma 18 (see [14]). Let (𝑋, Γ) be a Hausdorff uniform
space and 𝑝 be an 𝐴-distance on 𝑋. Let {𝑥𝑛}∞𝑛=0, {𝑦𝑛}∞𝑛=0 be
arbitrary sequences in 𝑋 and {𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 be sequences in𝑅+ converging to 0. Then, for 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following holds:

(a) If 𝑝(𝑥𝑛, 𝑦) ≤ 𝛼𝑛 and 𝑝(𝑥𝑛, 𝑧) ≤ 𝛽𝑛 ∀𝑛 ∈ 𝑁, then 𝑦 =
𝑧. In particular, 𝑝(𝑥, 𝑦) = 0 and 𝑝(𝑥, 𝑧) = 0, and then
𝑦 = 𝑧.

(b) If 𝑝(𝑥𝑛, 𝑦𝑛) = 𝑝(𝐴, 𝐵) and 𝑝(𝑥𝑛, 𝑧𝑛) = 𝑝(𝐴, 𝐵), then
𝑦𝑛 = 𝑧𝑛.

(c) If 𝑝(𝑥𝑛, 𝑦𝑛) ≤ 𝛼𝑛 and 𝑝(𝑥𝑛, 𝑧) ≤ 𝛽𝑛 ∀𝑛 ∈ 𝑁, then,
(𝑦𝑛)∞𝑛=0 converges to 𝑧.

(d) If 𝑝(𝑥𝑛, 𝑥𝑚) ≤ 𝛼𝑛 ∀𝑚 > 𝑛, then {𝑥𝑛}∞𝑛=0 is a 𝑝-Cauchy
sequence in (𝑋, Γ).

The major aim of this paper is to prove results similar to
Theorem 11 above in uniform spaces and give the modifica-
tion of results on proximal contractions in [22–24] in uniform
spaces.

3. Main Results

We give the first theorem.

Theorem19. Let (𝐴, 𝐵) be a pair of nonempty subset𝑋 of an 𝑆-
complete Hausdorff uniform space (𝑋, Γ) such that 𝑝 is an 𝐽𝑎V-
distance on𝑋 and is𝐴0 ̸= 0. Suppose a map 𝐹 : 𝐴 → 𝐵 is such
that𝐹(𝐴0) ⊂ 𝐵0 is a𝜙𝑝-proximal contraction.Then there exists
a unique point 𝑥∗ ∈ 𝐴0 such that 𝑝(𝑥∗, 𝐹(𝑥∗)) = 𝑝(𝐴, 𝐵).
Proof. Let 𝑥0 ∈ 𝐴0, since 𝐴0 ̸= 0 and 𝐹(𝐴0) ⊂ 𝐵0. There
exists 𝑥1 ∈ 𝐴 such that 𝑝(𝑥1, 𝐹(𝑥0)) = 𝑝(𝐴, 𝐵). Also, since
𝐹(𝑥1) ∈ 𝐵0, there exists 𝑥2 ∈ 𝐴0 such that 𝑝(𝑥2, 𝐹(𝑥1)) =
𝑝(𝐴, 𝐵). Furthermore, we obtain the sequences {𝑥𝑛} and
{𝑥𝑛+1} subsets of 𝐴0 such that

𝑝 (𝑥𝑛, 𝐹 (𝑥𝑛−1)) = 𝑝 (𝐴, 𝐵) , (10)

𝑝 (𝑥𝑛+1, 𝐹 (𝑥𝑛)) = 𝑝 (𝐴, 𝐵) , ∀𝑛 ∈ 𝑁. (11)

We show that {𝑥𝑛} is a complete 𝑝-Cauchy sequence whose
limit is the unique best proximity point of 𝐹. Since 𝐹 is a 𝜙𝑝-
proximal contraction, from (10) and (11) we have

𝑝 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜙 (𝑝 (𝑥𝑛−1, 𝑥𝑛)) . (12)

Thus by induction,

𝑝 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜙𝑛 (𝑝 (𝑥0, 𝑥1)) (13)

for any 𝑛 = 1, 2, . . ..
Since 𝑝 is an 𝐽𝑎V-distance, we have 𝑝(𝑥𝑛, 𝑥𝑚) ≤

𝑠[𝑝(𝑥𝑛, 𝑥𝑛+1) + ⋅ ⋅ ⋅ + 𝑝(𝑥𝑚−1, 𝑥𝑚)], 𝑠 ≥ 1. Now for 𝑟 ≥ 1,
𝑝 (𝑥𝑛, 𝑥𝑛+𝑟)

≤ 𝑠 [𝜙𝑛 (𝑝 (𝑥0, 𝑥1)) + ⋅ ⋅ ⋅ + 𝜙𝑛+𝑟−1 (𝑝 (𝑥0, 𝑥1))] .
(14)

Let 𝐽𝑛 = 𝑠∑𝑛𝑡=0 𝜙𝑡(𝑝(𝑥0, 𝑥1)), 𝑛 ≥ 0. Then

𝑝 (𝑥𝑛, 𝑥𝑛+𝑟) ≤ 𝐽𝑛+𝑟−1 − 𝐽𝑛−1. (15)

Suppose 𝑝(𝑥0, 𝑥1) > 0, and since 𝜙 is a weak comparison
function, by Definition 15(𝜇4), it follows that

∞

∑
𝑡=0

𝜙𝑡 (𝑝 (𝑥0, 𝑥1)) < ∞. (16)

So there exists a 𝐽 ∈ [0,∞) such that lim𝑛→∞𝐽𝑛 = 𝐽. Then by
(15),

lim
𝑛→∞

𝑝 (𝑥𝑛, 𝑥𝑛+𝑟) = 0. (17)
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Repeating the same argument, we obtain lim𝑛→∞𝑝(𝑥𝑛+𝑟,𝑥𝑛) = 0.
Therefore, the sequence {𝑥𝑛} is a 𝑝-Cauchy in the 𝑆-

complete space (𝑋, Γ). Hence there exists 𝑥∗ ∈ 𝐴0 such that

lim
𝑛→∞

𝑝 (𝑥𝑛, 𝑥∗) = 0, (18)

since 𝐴0 is closed. We prove that 𝑥∗ is the best proximity
point of 𝐹; that is, 𝑝(𝑥∗, 𝐹(𝑥∗)) = 𝑝(𝐴, 𝐵).

Also, since 𝐹(𝑥0) ⊆ 𝐵0 and 𝐹(𝑥∗) ⊂ 𝐵0, there exists an
element 𝑞 ∈ 𝐴0 such that

𝑝 (𝑞, 𝐹 (𝑥∗)) = 𝑝 (𝐴, 𝐵) . (19)

Using (19) and (11) and since 𝐹 is a 𝜙𝑝-proximal contraction,

𝑝 (𝑞, 𝑥𝑛+1) ≤ 𝜙 (𝑝 (𝑥∗, 𝑥𝑛)) . (20)

As 𝑛 → ∞, 𝑝(𝑞, 𝑥𝑛+1) → 0 since 𝑝(𝑥∗, 𝑥𝑛) → 0. Therefore,
𝑥𝑛 → 𝑞 and thus 𝑞 = 𝑥∗. So from (19),

𝑝 (𝑥∗, 𝐹 (𝑥∗)) = 𝑝 (𝐴, 𝐵) . (21)

To guarantee the uniqueness of 𝑥∗, we show that (𝑋, Γ) is
Hausdorff. Suppose there exists 𝑦∗ such that

𝑝 (𝑦∗, 𝐹 (𝑦∗)) = 𝑝 (𝐴, 𝐵) . (22)

By the 𝜙𝑝-proximal contraction 𝐹,

𝑝 (𝑥∗, 𝑦∗) ≤ 𝜙 (𝑝 (𝑥∗, 𝑦∗)) < 𝑝 (𝑥∗, 𝑦∗) , (23)

which implies 𝑝(𝑥∗, 𝑦∗) = 0. Similarly, 𝑝(𝑦∗, 𝑥∗) = 0. But by
the second property of 𝐽𝑎V-distance,

𝑝 (𝑥∗, 𝑥∗) ≤ 𝑠 [𝑝 (𝑥∗, 𝑦∗) + 𝑝 (𝑦∗, 𝑥∗)] . (24)

Hence,

𝑝 (𝑥∗, 𝑥∗) = 0. (25)

We conclude that 𝑥∗ = 𝑦∗.
Corollary 20. Let (𝑋, 𝑑) be a complete metric space. Suppose
𝑓 : 𝐴 → 𝐴 satisfies 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦), 𝑘 ∈ (0, 1); then
𝑓 has a unique fixed point.

Proof. Set 𝜙(𝑡) = 𝑘𝑡, 𝐴 = 𝐵, and Γ = {(𝑥, 𝑦) ∈ 𝑋2 : 𝑑(𝑥, 𝑦) <
𝜖} in Theorem 19, to obtain the result.

Corollary 21 (see [19]). Let𝐴 and 𝐵 be two nonempty subsets
of a complete metric space (𝑋, 𝑑). Suppose 𝑓 : 𝐴 → 𝐵 satisfies
𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦), 𝑘 ∈ (0, 1). Then 𝑓 has a unique
best proximity point.

Proof. Set 𝜙(𝑡) = 𝑘𝑡, 𝑗 = 𝑓(𝑚), 𝑙 = 𝑓(𝑘) and Γ = {(𝑥, 𝑦) ∈
𝑋2 : 𝑑(𝑥, 𝑦) < 𝜖} in Theorem 19, to obtain the corollary.

Corollary 22 (see [21]). Let𝐴 and 𝐵 be two nonempty subsets
of a complete metric space (𝑋, 𝑑). Suppose𝐴0 is nonempty and
closed and 𝑇 : 𝐴 → 𝐵 satisfies the following conditions:

(a) 𝑇 is a proximal contraction,
(b) 𝑇(𝐴0) ⊆ 𝐵0.

Then there exists a unique point 𝑥∗ ∈ 𝐴 such that
𝑑(𝑥∗, 𝑇(𝑥∗)) = 𝑑(𝐴, 𝐵). Moreover, ∀𝑥∗ ∈ 𝐴, and there exists
a sequence {𝑥𝑛} ⊆ 𝐴 such that 𝑑(𝑥𝑛+1, 𝑇(𝑥𝑛)) = 𝑑(𝐴, 𝐵) for
every 𝑛 ∈ 𝑁 ∪ {0} and 𝑥𝑛 → 𝑥∗.
Proof. Set 𝜙(𝑡) = 𝑘𝑡 and Γ = {(𝑥, 𝑦) ∈ 𝑋2 : 𝑑(𝑥, 𝑦) < 𝜖} in
Theorem 19.

Now, we establish some results of best proximity point for
𝜙𝑝-proximal cyclic contractions in uniform spaces.

Theorem 23. Let (𝐴, 𝐵) be a pair of nonempty closed subset𝑋
of a𝑝-bounded and 𝑆-completeHausdorff uniform space (𝑋, Γ)
such that𝐴0, 𝐵0 ̸= 0 and𝑝 is an 𝐽𝑎V-distance on𝑋. Let𝐹 : 𝐴 →
𝐵, 𝐺 : 𝐵 → 𝐴, and ℎ : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 satisfy the following
conditions:

(i) the pair (𝐹, 𝐺) is a 𝜙𝑝-proximal cyclic contraction,
(ii) 𝐹(𝐴0) ⊆ 𝐵0, 𝐺(𝐵0) ⊆ 𝐴0,
(iii) 𝐴0 ⊆ ℎ(𝐴0) and 𝐵0 ⊆ ℎ(𝐵0),
(iv) ℎ is isometry.

Then there exist unique points 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 such that

𝑝 (ℎ (𝑥) , 𝐹 (𝑥)) = 𝑝 (ℎ (𝑦) , 𝐺 (𝑦)) = 𝑝 (𝑥, 𝑦)
= 𝑝 (𝐴, 𝐵) . (26)

Further, if 𝑥0 is any fixed element in 𝐴0 and 𝑦0 is any fixed
element in 𝐵0, the sequences {𝑥𝑛} and {𝑦𝑛}, defined by

𝑝 (ℎ (𝑥𝑛+1) , 𝐹 (𝑥𝑛)) = 𝑝 (𝐴, 𝐵) ,
𝑝 (ℎ (𝑦𝑛+1) , 𝐹 (𝑦𝑛)) = 𝑝 (𝐴, 𝐵) ,

(27)

converge to the best proximity points 𝑥 and 𝑦, respectively.
Proof. Let 𝑥0 be fixed element in 𝐴0. Since 𝐹(𝐴0) ⊆ 𝐵0 and𝐴0 ⊆ ℎ(𝐴0), it follows that there exists an element 𝑥1 ∈ 𝐴0
such that

𝑝 (ℎ (𝑥1) , 𝐹 (𝑥0)) = 𝑝 (𝐴, 𝐵) . (28)

Again, since 𝐹(𝐴0) ⊆ 𝐵0 and 𝐴0 ⊆ ℎ(𝐴0), there exists an
element 𝑥2 ∈ 𝐴0 such that

𝑝 (ℎ (𝑥2) , 𝐹 (𝑥1)) = 𝑝 (𝐴, 𝐵) . (29)

Following the steps in the proof of Theorem 19, we can find
𝑥𝑛 ∈ 𝐴0 such that

𝑝 (ℎ (𝑥𝑛) , 𝐹 (𝑥𝑛−1)) = 𝑝 (𝐴, 𝐵) . (30)

By induction, one can determine an element 𝑥𝑛+1 ∈ 𝐴0 such
that

𝑝 (ℎ (𝑥𝑛+1) , 𝐹 (𝑥𝑛)) = 𝑝 (𝐴, 𝐵) . (31)
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Also, since ℎ is an isometry and by the 𝜙𝑝-proximity cyclic
contraction using (30) and (31), it follows that, for each 𝑛 ≥ 1,

𝑝 (ℎ (𝑥𝑛) , ℎ (𝑥𝑛+1)) = 𝑝 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜙 (𝑝 (𝑥𝑛−1, 𝑥𝑛)) + 𝑝 (𝐴, 𝐵) − 𝜙 (𝑝 (𝐴, 𝐵)) (32)

< 𝜙2 (𝑝 (𝑥𝑛−2, 𝑥𝑛−1))
...

< 𝜙𝑛 (𝑝 (𝑥0, 𝑥1)) .
(33)

Since𝑝 is an 𝐽𝑎V-distance, we have𝑝(𝑥𝑛, 𝑥𝑚) ≤ 𝑠[𝑝(𝑥𝑛, 𝑥𝑛+1)+⋅ ⋅ ⋅ + 𝑝(𝑥𝑚−1, 𝑥𝑚)]. Now for 𝑞 ≥ 1,
𝑝 (𝑥𝑛, 𝑥𝑛+𝑞) ≤ 𝑠𝜙𝑛 (𝑝 (𝑥0, 𝑥1)) + ⋅ ⋅ ⋅

+ 𝑠𝜙𝑛+𝑞−1 (𝑝 (𝑥0, 𝑥1)) .
(34)

Let 𝐽𝑛 = 𝑠∑𝑛𝑡=0 𝜙𝑡(𝑝(𝑥0, 𝑥1)), 𝑛 ≥ 0, and then

𝑝 (𝑥𝑛, 𝑥𝑛+𝑞) ≤ 𝐽𝑛+𝑞−1 − 𝐽𝑛−1. (35)

Next we show that {𝑥𝑛} is 𝑝-Cauchy in the 𝑆-complete space
𝑋; that is,

lim
𝑛→∞

𝑝 (𝑥𝑛, 𝑥𝑛+𝑞) = 0,

lim
𝑛→∞

𝑝 (𝑥𝑛+𝑞, 𝑥𝑛) = 0,
(36)

for any 𝑞 ≥ 1.
Recall that

𝑝 (𝑥𝑛+1, 𝐹 (𝑥𝑛)) = 𝑝 (𝐴, 𝐵) , (37)

if there exists 𝑛0 ∈ 𝑁 such that 𝑥𝑛0+1 = 𝑥𝑛0 , we are done, and𝑥𝑛0 is the required best proximity point of 𝐹. Thus we assume
that 𝑥𝑛+1 ̸= 𝑥𝑛.

Suppose 𝑝(𝑥0, 𝑥1) > 0. Now using Definition 15(𝜇4), we
have

∞

∑
𝑡=0

𝜙𝑡 (𝑝 (𝑥0, 𝑥1)) < ∞, (38)

so there exists a 𝐽 ∈ [0,∞) such that lim𝑛→∞𝐽𝑛 = 𝐽.
Then by (35),

lim
𝑛→∞

𝑝 (𝑥𝑛, 𝑥𝑛+𝑞) = 0. (39)

Repeating the same argument, we obtain

lim
𝑛→∞

𝑝 (𝑥𝑛+𝑞, 𝑥𝑛) = 0. (40)

So the sequence {𝑥𝑛} is 𝑝-Cauchy in the 𝑆-complete space
(𝑋, Γ).

Hence, {𝑥𝑛} converges to some element 𝑥 ∈ 𝐴. Similarly,
since 𝐹(𝐵0) ⊆ 𝐴0 and 𝐴0 ⊆ ℎ(𝐴0), there exists a sequence

{𝑦𝑛} such that it converges to some element 𝑦 ∈ 𝐵 and from
(31),

𝑝 (ℎ (𝑦𝑛+1) , 𝐺 (𝑦𝑛)) = 𝑝 (𝐴, 𝐵) . (41)

Since the pair (𝐹, 𝐺) is a 𝑝-proximal cyclic contraction and ℎ
is isometry, using (31) and (41), we have

𝑝 (ℎ (𝑥𝑛+1) , ℎ (𝑦𝑛+1)) = 𝑝 (𝑥𝑛+1, 𝑦𝑛+1)
≤ 𝜙 (𝑝 (𝑥𝑛, 𝑦𝑛)) + 𝑝 (𝐴, 𝐵) − 𝜙 (𝑝 (𝐴, 𝐵)) .

(42)

By (33), on taking limit as 𝑛 → ∞, we have

𝑝 (𝑥, 𝑦) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) + 𝑝 (𝐴, 𝐵) − 𝜙 (𝑝 (𝐴, 𝐵)) . (43)

We show that 𝑝(𝑥, 𝑦) = 𝑝(𝐴, 𝐵). Assume 𝑝(𝑥, 𝑦) ̸= 𝑝(𝐴, 𝐵),
from (43), 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑦), a contradiction. Hence,

𝑝 (𝑥, 𝑦) = 𝑝 (𝐴, 𝐵) . (44)

Thus, 𝑥 ∈ 𝐴0 and 𝑦 ∈ 𝐵0. Since 𝐹(𝐴0) ⊆ 𝐵0 and 𝐺(𝐵0) ⊆ 𝐴0,
there exist 𝜏 ∈ 𝐴 and 𝜂 ∈ 𝐵 such that

𝑝 (𝜏, 𝐹 (𝑥)) = 𝑝 (𝐴, 𝐵) ,
𝑝 (𝜂, 𝐺 (𝑦)) = 𝑝 (𝐴, 𝐵) .

(45)

Now, we show that 𝜏 = ℎ(𝑥) and 𝜂 = ℎ(𝑦).
Since (𝐹, 𝐺) is a 𝜙𝑝-proximal cyclic contraction, using

(44) and (31) we have

𝑝 (𝜏, ℎ (𝑥𝑛+1)) ≤ 𝜙 (𝑝 (𝑥, 𝑥𝑛)) + 𝑝 (𝐴, 𝐵)
− 𝜙 (𝑝 (𝐴, 𝐵)) .

(46)

Letting 𝑛 → ∞ in (46), 𝑝(𝜏, ℎ(𝑥)) < 𝑝(𝑥, 𝑥), and since 𝑝 is
an 𝐽𝑎V-distance,

𝑝 (𝜏, ℎ (𝑥)) ≤ 𝑠 [𝑝 (𝑥, 𝑥𝑛) + 𝑝 (𝑥𝑛, 𝑥)] . (47)

Again letting 𝑛 → ∞, we get 𝑝(𝜏, ℎ(𝑥)) ≤ 0 and so, 𝜏 = ℎ(𝑥).
Therefore we have

𝑝 (ℎ (𝑥) , 𝐹 (𝑥)) = 𝑝 (𝐴, 𝐵) . (48)

Similarly, we can obtain 𝜂 = ℎ(𝑦) and so,

𝑝 (ℎ (𝑦) , 𝐺 (𝑦)) = 𝑝 (𝐴, 𝐵) . (49)
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Thus, from (44), (48), and (49), we get

𝑝 (𝑥, 𝑦) = 𝑝 (ℎ (𝑥) , 𝐹 (𝑥)) = 𝑝 (ℎ (𝑦) , 𝐺 (𝑦))
= 𝑝 (𝐴, 𝐵) . (50)

Next we prove the uniqueness of 𝑥 and 𝑦. Suppose that
there exist 𝑥𝑎 ∈ 𝐴 and 𝑦𝑎 ∈ 𝐵 with 𝑥 ̸= 𝑥𝑎 and 𝑦 ̸= 𝑦𝑎 such
that

𝑝 (ℎ (𝑥𝑎) , 𝐹 (𝑥𝑎)) = 𝑝 (𝐴, 𝐵) , (51)

𝑝 (ℎ (𝑦𝑎) , 𝐺 (𝑦𝑎)) = 𝑝 (𝐴, 𝐵) . (52)

Since ℎ is an isometry, and 𝐹 is a 𝑝-proximal cyclic contrac-
tion, using (48) and (51), we have

𝑝 (ℎ (𝑥) , ℎ (𝑥𝑎)) = 𝑝 (𝑥, 𝑥𝑎)
≤ 𝜙 (𝑝 (𝑥, 𝑥𝑎)) + 𝑝 (𝐴, 𝐵)

− 𝜙 (𝑝 (𝐴, 𝐵)) .
(53)

𝑝(𝑥, 𝑥𝑎) < 𝑝(𝑥, 𝑥𝑎), a contradiction. Hence, 𝑝(𝑥, 𝑥𝑎) =
0. Similarly, we show that 𝑝(𝑥𝑎, 𝑥) = 0. But since 𝑝 is a 𝐽𝑎V-
distance, we have

𝑝 (𝑥𝑎, 𝑥𝑎) ≤ 𝑠 [𝑝 (𝑥𝑎, 𝑥) + 𝑝 (𝑥, 𝑥𝑎)] . (54)

Therefore,

𝑝 (𝑥𝑎, 𝑥𝑎) = 0. (55)

Nowwehave𝑝(𝑥𝑎, 𝑥𝑎) = 0 and𝑝(𝑥, 𝑥𝑎) = 0.ByLemma 18(a),
we conclude that 𝑥𝑎 = 𝑥. Similarly, 𝑦𝑎 = 𝑦.
Corollary 24 (see [17]). Let (𝑋, Γ) be a 𝑆-complete Hausdorff
uniform space and 𝑝 an 𝐸-distance on 𝑋. Suppose 𝑇 : 𝑋 → 𝑋
is a cyclic𝜓-contraction such that 𝑝(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜓(𝑝(𝑥, 𝑦)),
for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 is a weak comparison function. Then
𝑓 has a unique fixed point.

Proof. The proof follows from Theorem 23 if 𝐹 = 𝐺, 𝐴 = 𝐵,
and 𝐽𝑎V-distance is reduced to 𝐸-distance function.
Corollary 25 (see [18]). Let (𝑋, 𝑑) be a complete metric space
and 𝑇 : 𝑋 → 𝑋 be a Geraghty contraction satisfying
𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛽(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) for each 𝑥, 𝑦 ∈ 𝑋, where 𝛽 ∈ 𝑆.
Then 𝑇 has a unique fixed point.

Proof. The proof follows from Theorem 23 if 𝐴 = 𝐵, 𝐹 =
𝐺, 𝜙(𝑡) = 𝛽(𝑡)(𝑡) and 𝑝 is a metric distance.

We give the following example to show that (9) gener-
alises (6).

Example 26. Let𝐴, 𝐵 ∈ 𝑋 = 𝑅+ such that𝐴 = [1/4, 1/2], 𝐵 =
[3/4, 1]. Clearly, 𝑑(𝐴, 𝐵) = 1/4. Suppose 𝑢 = 1/4, V =
3/4, 𝑥 = 1/2, and 𝑦 = 1.

Let 𝑆(𝑥), 𝑇(𝑥), and 𝑝(𝑥, 𝑦) be defined by

𝑆 (𝑥) = 3𝑥
2 ,

𝑇 (𝑥) =
{{{
{{{
{

𝑥
4 , 𝑥 ∈ 𝐴;
𝑥
2 , otherwise,

𝑝 (𝑥, 𝑦) =
{{{
{{{
{

𝑦
3 , 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵;
2𝑦
3 , otherwise.

(56)

Now, for 𝐹(𝐴0) ⊆ 𝐵0 we obtain
𝐴0 = {𝑥 ∈ 𝐴 : 𝑝(𝑥, 𝑦) = 𝑝(𝐴, 𝐵) = 1/4 for some 𝑦 ∈
𝐵} = {1/2},
𝐵0 = {𝑦 ∈ 𝐵 : 𝑝(𝑥, 𝑦) = 𝑝(𝐴, 𝐵) = 1/4 for some 𝑥 ∈
𝐴} = {3/4}.

Now, (9) generalises (6) in the sense that
(1)

𝑑(1
4 , 𝑆 (1

2)) = 𝑑 (𝐴, 𝐵)

𝑑 (3
4 , 𝑇 (1)) = 𝑑 (𝐴, 𝐵)

⇓

𝑑 (1
4 , 34) ≤ 𝑘𝑑 (1

2 , 1) + (1 − 𝑘) 1
4 ,

(57)

for all 𝑢, 𝑥 ∈ 𝐴; V, 𝑦 ∈ 𝐵.
1/2 ≤ 𝑘(1/2) + (1 − 𝑘)(1/4) = (1/4)(𝑘 + 1), 𝑘 ∈ [0, 1) a

contradiction.
Hence, (6) fails. (𝑆, 𝑇) is not a proximal cyclic contraction.

We see that (𝑆, 𝑇) has no unique best proximity point since
there is no 𝑥 ∈ 𝐴 such that 𝑑(𝑢, 𝑆(𝑢)) = 𝑑(V, 𝑇(V)) = 1/4.

But taking 𝑢 = 𝑥 − 1, 𝑥 = 𝑢 + 1, 𝑥 < 𝑢,
(2)

𝑝 (𝑢, V) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) − 𝜙 (𝑝 (𝐴, 𝐵)) + 𝑝 (𝐴, 𝐵) ,
∀𝑢, 𝑥 ∈ 𝐴, V, 𝑦 ∈ 𝐵 (58)

becomes 𝑝(𝑢, V) < 𝑝(𝑥, 𝑦). (𝑆, 𝑇) is a 𝜙𝑝-proximal contrac-
tion. Clearly, 𝑝(𝑥, 𝑆(𝑥)) = 𝑝(𝑦, 𝑇(𝑦)) = 1/4 and 1/2 is
the unique best proximity point of the pair 𝑆, while 3/4 is
the unique best proximity point of the pair 𝑇. Hence, (9) is
different from (6).

We give the following examples to show that the 𝜙𝑝-
proximal cyclic contraction is different from the Geraghty
contraction.

Example 27. Consider the usualmetric (𝑋, 𝑑), 𝑋 = [0, 1] and
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| and let 𝐴 = [0, 1/10] and 𝐵 = [1/5, 1].
Obviously, 𝑑(𝐴, 𝐵) = 1/10,𝐴0 = 1/10 and 𝐵0 = 1/5, 𝐹(𝐴0) ⊆
𝐵0. Let 𝑆 : 𝐴 → 𝐵, 𝑇 : 𝐵 → 𝐴, be defined as 𝑆(𝑘) = 5𝑘 + 1/5,
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𝑇(𝑚) = 𝑚/10 taking 𝑗 = 1/50, 𝑘 = 1/25, 𝑖 = 2/5 and 𝑚 =
1. Also, consider 𝛽(𝑥) = 1 − 𝑥. And 𝑝 and 𝜓 are defined as
follows:

𝜓 (𝑥) =
{{{
{{{
{

2𝑥, 𝑥 ∈ [0, 12) ;
1
5𝑥 , 𝑥 ∈ [1

2 , 1] .

𝑝 (𝑥, 𝑦) =
{{{{{{
{{{{{{
{

𝑦
4 , 𝑦 ∈ [0, 12] , 𝑦 > 𝑥;

2𝑦, 𝑦 ∈ (1
2 , 1] ;

1, otherwise.

(59)

We show that 𝑆 is not a Geraghty contraction 𝜓(𝑑(𝑆(𝑥),
𝑆(𝑦))) ≤ 𝛽(𝜓(𝑑(𝑗, 𝑘)))(𝜓(𝑑(𝑗, 𝑘))) 𝑑(2/5, 8/15) > (4/50) ×
(1/50), a contradiction. 𝑆 is not a Geraghty contraction.

We see that 𝑆 has no best proximity points since there is
no 𝑘 ∈ 𝐴 such that 𝑑(𝑘, 𝑆(𝑘)) = 1/25.

But (𝑆, 𝑇) is a 𝜙𝑝-proximal cyclic contraction. Clearly
taking 𝑚 = 2𝑙, 𝑝(𝑗, 𝑆(𝑘)) = 𝑝(𝐴, 𝐵) = 𝑝(𝑙, 𝑇(𝑚)) implies
𝑝(𝑗, 𝑙) ≤ 𝜙(𝑝(𝑘,𝑚)) + 𝑝(𝐴, 𝐵) − 𝜙(𝑝(𝐴, 𝐵)), ∀𝑗, 𝑘 ∈ 𝐴 and
𝑙, 𝑚 ∈ 𝐵.

(𝑆, 𝑇) is a 𝜙𝑝-proximal cyclic contraction and 1/25 is the
unique best proximity point of 𝑆 while 2/5 is the unique best
proximity point of 𝑇.
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Paedagogiace Nyı́regyháziensis, vol. 23, no. 1, pp. 47–54, 2007.

[16] V. B. Dhagat, V. Singh, and S. Nath, “Fixed point theorems in
uniform space,” International Journal of Mathematical Analysis,
vol. 3, no. 4, pp. 197–202, 2009.

[17] N. Hussain, E. Karapinar, S. Sedghi, N. Shobkolaei, and S.
Firouzian, “Cyclic 𝜙-contractions in uniform spaces and related
fixed point results,” Abstract and Applied Analysis, vol. 2014,
Article ID 976859, 7 pages, 2014.

[18] M. A. Geraghty, “On contractive mappings,” Proceedings of the
American Mathematical Society, vol. 40, pp. 604–608, 1973.

[19] E. Karapinar and M. Erhan, “Best proximity point on different
type contractions,” Applied Mathematics & Information Sci-
ences, vol. 5, no. 3, pp. 558–569, 2011.

[20] E. Karapinar, “On best proximity point of 𝜓-Geraghty contrac-
tions,” Fixed PointTheory andApplications, vol. 2013, article 200,
2013.

[21] S. Sadiq Basha, “Best proximity points: optimal solutions,”
Journal of Optimization Theory and Applications, vol. 151, no. 1,
pp. 210–216, 2011.

[22] C. Mongkolkeha, Y. J. Cho, and P. Kumam, “Best proximity
points for Geraghty’s proximal contraction mappings,” Fixed
Point Theory and Applications, vol. 2013, article 180, 2013.

[23] M. A. Al-Thagafi and N. Shahzad, “Convergence and existence
results for best proximity points,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 70, no. 10, pp. 3665–3671, 2009.

[24] W. A. Kirk, S. Reich, and P. Veeramani, “Proximinal retracts and
best proximity pair theorems,” Numerical Functional Analysis
and Optimization, vol. 24, no. 7-8, pp. 851–862, 2003.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


