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Abstract: The existence of the common fixed points for some pairs of hybrid
maps(i.e. singled-valued and set-valued maps) satisfying some generalized con-
tractive conditions in G-symmetric spaces are proved. The results extend and
improve some results in literature.
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1. Introduction and Preliminary Definitions

Mustafa and Sims in [1] generalized the notion of a metric space to the notion
of a G-metric space in the sense that each triplet of an arbitrary set is assigned
a real number. Many authors also generalized the notion of metric space to
different abstract spaces. Eke and Olaleru (see [2]) generalized the notion of
a G-metric space to a G- partial metric space. In the same reference, they
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studied the existence of fixed points for contraction mappings in ordered G-
partial metric spaces. Also, Olaleru et al in [3] recently proved the existence
of fixed points for generalized Ciric-type contractive mappings in ordered G-
partial metric spaces. Cartan [4] generalized the notion of metric space by
omitting the triangle inequality axiom of the metric spaces to obtain what
he termed symmetric spaces. Several fixed point theorems have been proved
in this space (see [5], [6], [7], [8]). Inspired by this, Eke and Olaleru (see [9])
recently introduced the notion of G-symmetric spaces by omitting the rectangle
inequality axiom of G-metric spaces. In this work, we prove some fixed point
theorems for some multivalued maps in G-symmetric spaces.

The study of the fixed points for multivalued contraction mapping in metric
space was introduced by Nadler in [16]. Thereafter many authors studied the
fixed point for multivalued contractive mappings in different abstract spaces
(see [1], [11], [12], [13]). The purpose of this work is to obtain some fixed point
theorems involving hybrid pairs of single-valued and multi-valued mappings
satisfying certain contractive conditions in the setting of G-symmetric spaces.

The following definitions and motivations will be needed in the sequel.

Definition 1.1. (see [1]) LetX be a nonempty set, and let G : X×X×X →
R+ be a function satisfying:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle
inequality).

Then, the function G is called a generalised metric, or more specifically a
G-metric on X, and the pair (X,G) is a G-metric space.

Definition 1.2. (see [4]) A symmetric on a set X is a real valued function
d on X ×X such that:

(i) d(x, y) ≥ 0 and d(x, x) = 0 if and only if x = y; and

(ii) d(x, y) = d(y, x).

Wilson in [14] also gave two more axioms of a symmetric d on X as:
(W1) Given {xn}, x and y in X, d(xn, x) → 0 and d(xn, y) → 0 imply that

x = y;
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(W2) Given {xn}, {yn} and x ∈ X, d(xn, x) → 0 and d(xn, yn) → 0 imply
that d(yn, x) → 0.

Definition 1.3. (see [15]) A mapping T : X → 2X is called a multivalued
mapping. A point x ∈ X is called a fixed point of T if x ∈ Tx.

Definition 1.4. (see [15]) Let X be a given nonempty set. Assume that
g : X → X and T : X → 2X . If w = gx ∈ Tx for some x ∈ X, then x is called
a coincidence point of g and T and w is a point of coincidence of g and T .

Definition 1.5. (see [15]) Maps g : X → X and T : X → 2X are said to
be weakly compatible if gx ∈ Tx for each x ∈ X implies gTx ⊆ Tgx.

Definition 1.6. (see [16]) Maps g : X → X and T : X → 2X are said to be
occasionally weakly compatible mappings if and only if there exists some point
x in X such that gx ∈ Tx and gTx ⊆ Tgx.

An occasionally weakly compatible map is weakly compatible but not vice-
versa.

Proposition 1.7. (see [15]) Let X be a given nonempty set. Assume that
g : X → X and T : X → 2X are weakly compatible mappings. If g and T have
a unique point of coincidence w = gx ∈ Tx, then w is the unique common fixed
point of g and T .

Definition 1.8. (see [15]) Let g : X → X and T : X → 2X . The pair
(g, T ) satisfies property (E.A) if there exists a sequence {xn} in X such that
lim
n→∞

gxn = t ∈ A = lim
n→∞

Txn for some t ∈ A and A ∈ 2X .

We give the following definitions and results.

Definition 1.9. A G-symmetric on a set X is a function Gd : X×X×X →
R+ such that for all x, y, z ∈ X the following conditions are satisfied:

Gd(1) Gd(x, y, z) ≥ 0 and Gd(x, y, z) = 0, if x = y = z;

Gd(2) 0 < Gd(x, x, y) for all x, y ∈ X with x 6= y,

Gd(3) Gd(x, x, y) ≤ Gd(x, y, z) for all x, y, z ∈ X with y 6= z,

Gd(4) Gd(x, y, z) = Gd(y, z, x) = Gd(z, x, y) =,..., (symmetry in all three
variables).
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Example 1.10. Let X = [0, 1] equipped with a G-symmetric defined by

Gd(x, y, z) = (x− y)2 + (y − z)2 + (z − x)2,

for all x, y, z ∈ X. Then (X,Gd) is a G- symmetric space. This does not
satisfied the rectangle inequality axiom of G-metric space hence it is not a
G-metric space.

The analogue of axioms of Wilson [14] in G-symmetric space is as follows:
(W3) Given {xn}, x and y in X, Gd(xn, x, x) → 0 and Gd(xn, y, y) → 0

imply that x = y.
(W4) Given {xn}, {yn} and x inX, Gd(xn, x, x) → 0 and Gd(xn, yn, yn) → 0

imply that Gd(yn, x, x) → 0.

Definition 1.11. Let (X,Gd) be a G-symmetric space. A G-symmetric
space satisfies property (H.E) if given {xn}, {yn} and x ∈ X, Gd(xn, x, x) → 0
and Gd(yn, x, x) → 0 imply that Gd(xn, yn, yn) → 0.

Definition 1.12. Let (X,Gd) be a G-symmetric space.

(i) (X,Gd) is Gd- complete if for every Gd- Cauchy sequence {xn}, there
exists x in X with lim

n→∞
Gd(xn, x, x) = 0.

(ii)f : X → X is Gd-continuous if

lim
n→∞

Gd(xn, x, x) = 0

implies
lim
n→∞

Gd(fxn, fx, fx) = 0.

Let (X,Gd) be a G-symmetric space, x, y ∈ X and A ⊆ X, Gd(x, y,A) =
inf{Gd(x, y, a) : a ∈ X}. CB(X) is the class of all nonempty closed and
bounded subsets of X and B(X) is defined as the class of all nonempty bounded
subsets of X. The diameter of A,B,C ∈ CB(X) is denoted and defined by

δ(A,B,C) = sup{Gd(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

Two distinct points in a set are said to be Hausdorff if there exist two disjoint
open sets such that each element is in each open set. Hausdorff assures the
uniqueness of points in a multivalued set. We denote the HausdorffGd - distance
on CB(X) by H(.,.,.), where
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HGd
(A,B,C) = max{sup

x∈A

Gd(x,C,B), sup
x∈B

Gd(x,A,C), sup
x∈C

Gd(x,A,B)}.

For singlevalued sets we denote and define

Gd(A,B,C) = inf{Gd(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

Here we state the following definitions given by Zhang [17].

Assume that F : [0,∞) → R satisfies the following:

(i) F (0) = 0 and F (t) > 0 for each t ∈ (0,∞) and

(ii) F is nondecreasing on [0,∞).

Define F [0,∞) = {F : F satisfies (i)− (ii)}. Let ψ : [0,∞) → R satisfy the
following

(iii) ψ(t) < t for each t ∈ (0,∞) and

(iv) ψ is nondecreasing [0,∞).

Define Ψ[0,∞) = {ψ : ψ satisfies (iii)− (iv) above}.

Tahat et al [15] proved some common fixed point theorems for pairs of hy-
brid mappings using weakly compatible mappings satisfying a generalized con-
tractive conditon defined on G-metric spaces. Aliouche [18] proved the common
fixed point for two pairs of hybrid mappings using the concept of T-weakly and
S-weakly commuting mappings satisfying generalized contractive conditions in
symmetric spaces. Abbas and Rhoades [16] proved some common fixed point
theorems for hybrid pairs of occasionally weakly compatible mappings satisfy-
ing a generalized contractive conditions of integral type in symmetric spaces.
Abbas and Khan [19] further proved several common fixed point theorems for
hybrid pairs of occasionally weakly compatible mappings having a function co-
efficient in symmetric spaces. In this work, we prove some common fixed point
theorems for pairs of hybrid mappings in G-symmetric spaces. Our results are
analogue of the result of Abbas and Khan [19] for G-symmetric spaces and
generalizations of other similar results in literature.

2. Main Results

Theorem 2.1. Let (X,Gd) be a G-symmetric space satisfying (H.E). Let
g : X → X and T : X → CB(X). Assume that there exists a function
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α : [0,∞) → [0, 1) satisfying lim sup
r→t+

α(r) < 1 for every t ≥ 0 and α(t) < t for

each t > 0 such that

HGd
(Tx, Ty, Ty) ≤ α(Gd(gx, gy, gy))Gd(gx, gy, gy), (1)

for all x, y ∈ X. If T (X) ⊆ g(X) and g(X) is a Gd - complete subspace of X and
{g, T} satisfies the property (E.A), then g and T have a point of coincidence in
X. Furthermore, if we assume that gu ∈ Tu and gv ∈ Tv implies that

Gd(gu, gv, gv) ≤ HGd
(Tu, Tv, Tv).

Then:

(i) g and T have a unique point of coincidence.

(ii) If in addition g and T are weakly compatible then g and T have a unique
common fixed point.

Proof. Assume that the pair {g, T} satisfies property (E.A). Then there
exists a sequence {xn} in X such that lim

n→∞
Gd(gxn, z, z) = 0 and

lim
n→∞

HGd
(Txn, A,A) = 0

for some z ∈ A ⊆ X ∈ CB(X). By (H.E) we have that

lim
n→∞

Gd(gxn, Txn, Txn) = 0.

Suppose that g(X) is a complete subspace of X, then there exists z = gu

for some u ∈ X. We claim that gu ∈ Tu. If not, using (1), we have

HGd
(Txn, Tu, Tu) ≤ α(Gd(gxn, gu, gu))Gd(gxn, gu, gu).

Letting n → ∞ in the above inequality yields HGd
(gu, Tu, Tu) ≤ 0 but

HGd
(gu, Tu, Tu) ≥ 0, hence gu ∈ Tu. This implies that T and g have a point

of coincidence which is z and u is the coincidence point.
Next we prove the uniqueness of the coincidence point of g and T . Using

(1) and this assumption which says that if gu ∈ Tu and gv ∈ Tv, then

Gd(gu, gv, gv) ≤ HGd
(Tu, Tv, Tv),

we have

Gd(gu, gv, gv) ≤ HGd
(Tu, Tv, Tv) ≤ α(Gd(gu, gv, gv))Gd(gu, gv, gv). (2)
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Since α(Gd(gu, gv, gv)) < Gd(gu, gv, gv), then (2) becomes Gd(gu, gv, gv) =
0. i.e gu = gv.

Thus by (1):

HGd
(Tu, Tv, Tv) ≤ α(Gd(gu, gv, gv))Gd(gu, gv, gv) = 0,

and Tu = Tv. Thus g and T have a unique point of coincidence. Since g and T
are weakly compatible then by proposition 1.7, g and T have a unique common
fixed point.

Corollary 2.2. Let (X,Gd) be a G-symmetric space satisfying (H.E).
Let g : X → X and T : X → X. Asssume that there exists a function
α : [0,∞) → [0, 1) satisfying lim sup

r→t+

α(r) < 1 for every t ≥ 0 such that:

Gd(Tx, Ty, Ty) ≤ α(Gd(gx, gy, gy))Gd(gx, gy, gy), (3)

for all x, y ∈ X. If T (X) ⊆ g(X) and g(X) is a Gd-complete subspace of X,
then g and T have a point of coincidence. Furthermore, if g and T are weakly
compatible then g and T have a unique common fixed point.

If T is changed from a set-valued map to a single-valued map, then Theorem
2.1 gives the following.

Corollary 2.3. Let (X,Gd) be a complete G-symmetric space. Assume
T : X → CB(X) satisfies the following condition

HGd
(Tx, Ty, Ty) ≤ α(Gd(x, y, y))Gd(x, y, y), (4)

for all x, y ∈ X, where α : [0,∞) → [0, 1) satisfies lim sup
r→t+

α(r) < 1 for every

t ≥ 0. Then T has a fixed point in X.

Further, if we assume that p ∈ Tp and q ∈ Tq implies

Gd(q, p, p) ≤ HGd
(Tq, Tp, Tp),

then T has a unique fixed point.

Proof. It follows by taking g as the identity on X in Theorem 2.1.

Remark 2.4. Corollary 2.3 is an analogue of ([14], Theorem 2.1) in the
context of a G - symmetric space.
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Theorem 2.5. Let f , g be self maps of a G-symmetric space X, and let
T , S be maps from X into B(X) such that the pairs {f, T} and {g, S} are
occasionally weakly compatible. If

F (δ(Tx, Sy, Sy)) ≤ ψ(F (M(x, y, y))) (5)

and
F (δ(Tx, Tx, Sy)) ≤ ψ(F (M(x, x, y))) (6)

for each x, y ∈ X for which fx 6= gy, where

M(x, y, y) = max{Gd(fx, gy, gy), Gd(fx, Tx, Tx),

Gd(gy, Sy, Sy), δ(fx, Sy, Sy), δ(gy, Tx, Tx)} (7)

and

M(x, x, y) = max{Gd(fx, fx, gy), Gd(fx, fx, Tx),

Gd(gy, gy, Sy), δ(fx, fx, Sy), δ(gy, gy, Tx)} (8)

then f , g, T and S have a unique common fixed point.

Proof. Since {f, T} and {g, S} are occasionally weakly compatible, then
there exist points x, y ∈ X such that fx ∈ Tx, gy ∈ Sy implies fTx ⊆ Tfx

and gSy ⊆ Sgy.
Clearly Gd(f

2x, g2y, g2y) ≤ δ(Tfx, Sgy, Sgy), inview of the fact that f2x =
Tfx and g2y = Sgy, using (7) we obtain

M(fx, gy, gy) =max{Gd(f
2x, g2y, g2y), Gd(f

2x, Tfx, Tfx),

Gd(g
2y, Sgy, Sgy), δ(f2x, Sgy, Sgy), δ(g2y, Tfx, Tfx)}

=max{Gd(f
2x, g2y, g2y), δ(f2x, Sgy, Sgy), δ(g2y, f2x, f2x)}

=max{Gd(f
2x, g2y, g2y), δ(Tfx, Sgy, Sgy), δ(Sgy, Tfx, Tfx)}

≤max{δ(Tfx, Sgy, Sgy), δ(Sgy, Tfx, Tfx)}.

Case (i). Suppose

max{δ(Tfx, Sgy, Sgy), δ(Sgy, Tfx, Tfx)} = δ(Tfx, Sgy, Sgy),

then we

F (δ(Tfx, Sgy, Sgy)) ≤ ψ(F (M(fx, gy, gy))) ≤ ψ(F (δ(Tfx, Sgy, Sgy)))
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< F (δ(Tfx, Sgy, Sgy)).

Case (ii). Suppose

max{δ(Tfx, Sgy, Sgy), δ(Sgy, Tfx, Tfx)} = δ(Sgy, Tfx, Tfx),

then substituting this inequality into (5) yields

F (δ(Tfx, Sgy, Sgy)) ≤ ψ(F (M(x, y, y))) ≤ ψ(F (δ(Sgy, Tfx, Tfx)))

< F (δ(Sgy, Tfx, Tfx)). (9)

Similarly, using (8), we obtain

M(fx, fx, gy) =max{Gd(f
2x, f2x, g2y), Gd(f

2x, f2x, Tfx),

Gd(g
2y, g2y, Sgy), δ(f2x, f2x, Sgy), δ(g2y, g2y, Tfx)}

=max{Gd(f
2x, f2x, g2y), δ(f2x, f2x, Sgy), δ(g2y, g2y, Tfx)}

=max{Gd(f
2x, f2x, g2y), δ(Tfx, Tfx, Sgy), δ(Sgy, Sgy, Tfx)}

≤max{δ(Tfx, Tfx, Sgy), δ(Sgy, Sgy, Tfx)}.

Case (i). Suppose

max{δ(Tfx, Tfx, Sgy), δ(Sgy, Sgy, Tfx)} = δ(Tfx, Tfx, Sgy),

then we have

F (δ(Tfx, Tfx, Sy)) ≤ ψ(F (M(fx, fx, gy))) ≤ ψ(F (δ(Tfx, Tfx, Sgy)))

< F (δ(Tfx, Tfx, Sgy)).

Case (ii). If

max{Gd(f
2x, f2x, g2y), δ(Tfx, Tfx, Sgy), δ(Sgy, Sgy, Tfx)}

= δ(Sgy, Sgy, Tfx),

then putting this inequality into (6) yields

F (δ(Tfx, Tfx, Sgy)) ≤ ψ(F (M(fx, fx, gy))) ≤ ψ(F (δ(Sgy, Sgy, Tfx)))

< F (δ(Sgy, Sgy, Tfx)).

By Gd(4):

F (δ(Tfx, Tfx, Sgy)) ≤ F (δ(Tfx, Sgy, Sgy)). (10)
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Combining (9) and (10) we obtain

F (δ(Tfx, Sgy, Sgy)) < F (δ(Tfx, Sgy, Sgy)).

This is a contradiction, hence fx = gy.

Next we show that x = fx. Since fx ∈ Tx and gy ∈ Sy thenGd(fx, g
2y, g2y) ≤

δ(Tx, Sfx, Sfx).

Using (7) and putting x = x and y = fx, we obtain

M(x, fx, fx) =max{Gd(fx, g
2y, g2y), Gd(fx, Tx, Tx),

Gd(g
2y, Sgy, Sgy), δ(gy, Sgy, Sgy), δ(g2y, Tx, Tx)}

≤max{δ(Tx, Sfx, Sfx), δ(Sfx, Tx, Tx)}.

Case (i). Suppose

max{δ(Tx, Sfx, Sfx), δ(Sfx, Tx, Tx)} = δ(Tx, Sfx, Sfx),

then we have

F (δ(Tx, Sfx, Sfx)) ≤ ψ(F (M(x, fx, fx))) ≤ ψ(F (δ(Tx, Sfx, Sfx)))

< F (δ(Tx, Sfx, Sfx)).

Case (ii). If

max{δ(Tx, Sfx, Sfx), δ(Sfx, Tx, Tx)} = δ(Sfx, Tx, Tx),

then using (5) and this inequality, we get

F (δ(Tx, Sfx, Sfx)) ≤ ψ(F (M(x, fx, fx))) ≤ ψ(F (δ(Sfx, Tx, Tx)))

< F (δ(Sfx, Tx, Tx)). (11)

Similarly, using (8) we obtain

M(x, x, fx) =max{Gd(fx, fx, g
2y), Gd(fx, fx, Tx), Gd(g

2y, g2y, Sgy),

δ(gy, gy, Sgy), δ(g2y, g2y, Tx)}

≤max{δ(Tx, Tx, Sfx), δ(Sfx, Sfx, Tx)}.

Case (i). If

max{δ(Tx, Tx, Sfx), δ(Sfx, Sfx, Tx)} = δ(Tx, Tx, Sfx),
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then we obtain

F (δ(Tx, Tx, Sfx)) ≤ ψ(F (M(x, x, fx))) ≤ ψ(F (δ(Tx, Tx, Sfx)))

< F (δ(Tx, Tx, Sfx)).

Case (ii). If

max{δ(Tx, Tx, Sfx), δ(Sfx, Sfx, Tx)} = δ(Sfx, Sfx, Tx),

then putting this inequality in (6) yields

F (δ(Tx, Tx, Sfx)) ≤ ψ(F (M(x, x, fx))) ≤ ψ(F (δ(Sfx, Sfx, Tx)))

< F (δ(Sfx, Sfx, Tx)). (12)

Combining (11), (12) and by Gd(4) gives

F (δ(Tx, Sfx, Sfx)) < F (δ(Tx, Sfx, Sfx)).

This is a contradiction hence x = fx.
Next we show that y = gy. Obviously Gd(fgy, gy, gy) ≤ δ(Tgy, Sy, Sy).
Using (7) and letting x = gy and y = y in (7), we obtain

M(gy, y, y) =max{Gd(fgy, gy, gy), Gd(fgy, Tgy, Tgy),

Gd(gy, Sy, Sy), δ(fgy, Sy, Sy), δ(gy, T gy, Tgy)}

=max{Gd(fgy, gy, gy), δ(fgy, Sy, Sy), δ(gy, Tgy, T gy)}

≤max{δ(Tgy, Sy, Sy), δ(Sy, Tgy, Tgy)}.

Case (i). If

max{δ(Tgy, Sy, Sy), δ(Sy, Tgy, Tgy)} = δ(Tgy, Sy, Sy),

then using (5) we obtain

F (δ(Tgy, Sy, Sy)) ≤ ψ(F (M(gy, y, y))) ≤ ψ(F (δ(Tgy, Sy, Sy)))

< F (δ(Tgy, Sy, Sy)).

Case (ii). If

max{δ(Tgy, Sy, Sy), δ(Sy, Tgy, Tgy)} = δ(Sy, Tgy, Tgy),

then using (5) with this inequality yields
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F (δ(Tgy, Sy, Sy)) ≤ ψ(F (M(gy, y, y))) ≤ ψ(F (δ(Sy, Tgy, Tgy)))

< F (δ(Sy, Tgy, Tgy)). (13)

Also using (8) we obtain

M(gy, gy, y) =max{Gd(fgy, fgy, gy), Gd(fgy, fgy, Tgy),

Gd(gy, gy, Sy), δ(fgy, fgy, Sy), δ(gy, gy, Tgy)}

≤max{δ(Tgy, Tgy, Sy), δ(Sy, Sy, Tgy)}.

Case (i). Let

max{δ(Tgy, Tgy, Sy), δ(Sy, Sy, Tgy)} = δ(Tgy, Tgy, Sy),

then using (6) we get

F (δ(Tgy, Tgy, Sy)) ≤ ψ(F (M(gy, gy, y))) ≤ ψ(F (δ(Tgy, Tgy, Sy)))

< F (δ(Tgy, Tgy, Sy)).

Case (ii). Let

max{δ(Tgy, Tgy, Sy), δ(Sy, Sy, Tgy)} = δ(Sy, Sy, Tgy),

then using (6) with this inequality we have

F (δ(Tgy, Tgy, Sy)) ≤ ψ(F (M(gy, gy, y))) ≤ ψ(F (δ(Sy, Sy, Tgy)))

< F (δ(Sy, Sy, Tgy)). (14)

Combining (13), (14) and by Gd(4) yields

F (δ(Tgy, Sy, Sy)) < F (δ(Tgy, Sy, Sy)).

This is a contradiction hence y = gy. Therefore x = fx = gy = y implies
that f, g, T and S have a common fixed point.

For uniqueness, let u and v be the different common fixed point of f , g, T ,
S. Suppose Gd(fu, gv, gv) ≤ δ(Tu, Sv, Sv) Using (7) with x = u and y = v, we
have

M(u, v, v) =max{Gd(fu, gv, gv), Gd(fu, Tu, Tu),

Gd(gv, Sv, Sv), δ(fu, Sv, Sv), δ(gv, Tu, Tu)}

=max{Gd(fu, gv, gv), δ(fu, Sv, Sv), δ(gv, Tu, Tu)}

≤max{δ(Tu, Sv, Sv), δ(Sv, Tu, Tu)}.
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Case (i). If

max{δ(Tu, Sv, Sv), δ(Sv, Tu, Tu)} = δ(Tu, Sv, Sv),

then using (5) we obtain

F (δ(Tu, Sv, Sv)) ≤ ψ(F (M(u, v, v))) ≤ ψ(F (δ(Tu, Sv, Sv)))

< F (δ(Tu, Sv, Sv)).

Case (ii). If

max{δ(Tu, Sv, Sv), δ(Sv, Tu, Tu)} = δ(Sv, Tu, Tu),

then using (5) with this inequality yields

F (δ(Tu, Sv, Sv)) ≤ ψ(F (M(u, v, v))) ≤ ψ(F (δ(Sv, Tu, Tu)))

< F (δ(Sv, Tu, Tu)). (15)

We also make use of (8) to have

M(u, u, v) =max{Gd(fu, fu, gv), Gd(fu, fu, Tu),

Gd(gv, gv, Sv), δ(fu, fu, Sv), δ(gv, gv, Tu)}

≤max{δ(Tu, Tu, Sv), δ(Sv, Sv, Tu)}.

Case (i). If

max{δ(Tu, Tu, Sv), δ(Sv, Sv, Tu)} = δ(Tu, Tu, Sv),

then using (6) yields

F (δ(Tu, Tu, Sv)) ≤ ψ(F (M(u, u, v))) ≤ ψ(F (δ(Tu, Tu, Sv)))

< F (δ(Tu, Tu, Sv)).

Case (ii). If

max{δ(Tu, Tu, Sv), δ(Sv, Sv, Tu)} = δ(Sv, Sv, Tu),

then using (6) with this inequality yields

F (δ(Tu, Tu, Sv)) ≤ ψ(F (M(u, u, v))) ≤ ψ(F (δ(Sv, Sv, Tu)))

< F (δ(Sv, Sv, Tu)). (16)
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Combining (15), (16) and by Gd(4) gives

F (δ(Tu, Sv, Sv)) < (F (δ(Tu, Sv, Sv)).

This is a contradiction, hence u = v.

Corollary 2.6. Let f , g be self maps of G-symmetric space X, and let
T , S be maps from X into B(X) such that the pairs {f, T} and {g, S} are
occasionally weakly compatible. If

F (δ(Tx, Sy, Sy)) ≤ ψ(F (M(x, y, y))) (17)

and
F (δ(Tx, Tx, Sy)) ≤ ψ(F (M(x, x, y))) (18)

for each x, y ∈ X for which fx 6= gy, where

M(x, y, y) = h max{Gd(fx, gy, gy), Gd(fx, Tx, Tx), Gd(gy, Sy, Sy),

Gd(fx, Sy, Sy) +Gd(gy, Tx, Tx)

2
}, (19)

and

M(x, x, y) = h max{Gd(fx, fx, gy), Gd(fx, fx, Tx), Gd(gy, gy, Sy),

Gd(fx, fx, Sy) +Gd(gy, gy, Tx)

2
}, (20)

and 0 ≤ h < 1, then f ,g, T and S have a unique common fixed point.

Since Corollary 2.6 is a special case of Theorem 2.5 then the proof of corol-
lary 2.6 follows from Theorem 2.5.

Remarks 2.7. Theorem 2.5 is an extension of [18], Theorem 2.1 and [16],
Theorem 2.1 for symmetric spaces. Also it is an improvement of [19], Theorem
2.1 to G-symmetric spaces. Since the authors proved their results in the context
of symmetric spaces.

Example 2.8. Let X = [1,∞) and Gd be a G-symmetric on X defined
by Gd(x, y, z) = max{(x − y)2, (y − z)2, (z − x)2} for all x, y, z ∈ X. Define
g : X → X and T : X → CB(X) by Tx = [1, x + 1] and gx = x2. Also define
α : [0,∞) → [0, 1) by α(t) = 1

4 . Then:

(a) T (X) ⊆ g(X)
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(b) g and T are weakly compatible

(c) g(X) is a Gd - complete subspace of X

(d) HGd
(Tx, Ty, Ty) ≤ α(Gd(gx, gy, gy))Gd(gx, gy, gy)

Taking xn = 1 + 1
n
, the pair (g, T) satisfies the property (E.A) with t = 1,

A = [1, 2]. Also (g, T ) satisfies (H.E). All the hypothese of Theorem 2.1 are
satisfied with 1 the common fixed point of g and T .
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