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ABSTRACT 

In this paper, a novel application domain of the symbolic implementation of finite element method using 

a linear heat dissipation radial fin has been presented. The problem of temperature distribution and 

heat transfer in radial fins of triangular, rectangular and parametric profiles was modeled and 

validated using symbolic computation. The current study has shown that the symbolic computational 

technique is less complex, effective and efficient in comparison with the earlier techniques used to solve 

heat transfer problem in this same problem domain. Our proposed concept could be adapted to solving 

heat transfer problems in further extended surfaces.  
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1.0 INTRODUCTION 

Numerical analysis is the usual recourse once 

boundary conditions and other factors preclude 

close-form solution to engineering problems. 

Finite Element Analysis (FEA) is perhaps the 

most successful approach to numerical 

computation of approximate solutions to such 

problems coupled with post-processing for 

simulation and sensitivity analysis. Commercial 

computational tools are widely available to 

implement several FEA schemes. Such canned 

programs often create a disconnection between 

the analyst and the problem as the whole process 

is rather mechanical. Computer Algebra System 

(CAS) is a program designed to perform symbolic 

and numerical manipulation following the rules 

of mathematics. Incorporating these with 

traditional FEA creates a middle ground where 

the development of the FEA schemes follows the 

same modeling approach as the symbolic 

representation of the underlying problems are 

directly accommodated. 

Symbolic computation techniques performed by 

Computer Algebra System have found broad 

applications in many areas of science and 

engineering. It has led to new approaches for 

problems solving and provide tools that enable an 

automatic and computerized solution of problems 

in ways that are not possible with conventional 

computing systems. The number and quality of 

symbolic manipulation program has expanded 

dramatically since the availability of graphical 

workstation and personal computers have 

encouraged interactive and experimental 

programming, MATHEMATICA and MAPLE 

being the leading general purpose contenders, 

though there are more specialized programs. 

Of importance in the study of computational 

techniques of heat transfer is the work of Campo 

et al (2008) who used mean value theorem in 

integration implementation, for solving the 

derived quasi-1D heat conduction equation. He 

used it to obtain an approximate analytical 

temperature distribution and heat transfer rates in 
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annular fins of hyperbolic profiles while setting 

aside the conventional use of modified Bessel 

functions. He argued that the use of numerical 

evaluation with tools such as power series 

method, the finite-difference technique and the 

shooting method of temperature and heat transfer 

rates are extremely complicated even with 

symbolic codes.  

Several of these numerical evaluation tools can be 

improved, sometimes considerably via embedded 

symbolic parts into the numerical algorithms. 

This is called hybrid techniques, because it 

involves numeric as well as symbolic 

manipulations. Jiang and Wang (2006) called this 

hybrid system “semi-symbolic program”. They 

concluded that, “semi-symbolic program” written 

for the implementation of finite element method 

in plasticity is a good compromise between the 

computational efficiency and human effort in 

developing non-linear FEM program. In the 

paper, while developing the weak form of the 

governing differential equation, the shape 

function (or weight function), its derivatives, 

Jacobian and the strain-displacement matrix for 

each element are computed symbolically and 

stored in closed form. However, in order to 

maintain the equilibrium condition in Newton-

Raphson iteration scheme, the evaluation of 

stiffness matrix and equivalent force of stress 

were performed numerically by using the Gauss-

Legendre quadrature. This resulted in a semi-

symbolic program of nonlinear finite element 

method.  

A few other people have worked on the use of 

symbolic algebra system in the context of finite 

element method. Ioakimids (1993) solved an 

elastic problem to obtain a solution in terms of 

symbolic parameter. Yew et al (1995), Lee and 

Hobbs (1998) have obtained some closed form 

integration of the finite element stiffness matrix. 

Of the most important in the context of plasticity 

analysis with symbolics is the work of Korelc 

(2004). He developed a hybrid system in which 

MATHEMATICA was used for the automatic 

derivation of material model and the generation 

of symbolic nonlinear finite element codes. 

However, Korelc still relied on the transformation 

of MATHEMATICA codes into C codes for 

numerical evaluation. Papusha et al (2008) 

developed a symbolic solution to boundary value 

problems and applied it to solve problems in 

offshore design technology.  

That means a good manipulation of symbolic 

implementation tool such as MATHEMATICA 

with in-built numerical evaluation schemes can 

help to achieve an entire implementation of FEA 

in symbolic form rather than semi symbolic or the 

hybrid system. The objective of this is study to 

develop a symbolic Finite Element solution to the 

radial heat transfer problem in fin of different 

profiles that can be used for design optimization. 

Such an approach is also very useful in the 

teaching of the FEA method since the symbolic 

solution paralleled the problem formulation 

directly.  

2.0 FINITE ELEMENT FORMULATION 

FOR RADIAL FIN 

The finite element method is an elementwise 

application of the variational method, in which a 

given differential equation is recast in an 

equivalent integral form (Reddy, 2006). 

The finite element formulation for radial fin may 

be deduced from an energy balance for the 

steady-state condition of convective heat transfer 

and be reduced to equation (1) below: 

 

  
.  

  

  
/       (    )                  (1) 

Where K is thermal conductivity,   is heat 

transfer coefficient,      (   )   
  

(area 

normal to the heat flux),         (perimeter of 

fin). 

Therefore, the governing equation of heat transfer 

in radial fin is given by: 

 

  
0   

  

  
1      (    )      

Subject to                   
  

  
                 (2) 
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Figure 1 Sketch of a radial fin of triangular 

profile 

 Where 
 

f   is the shape function of a fin of 

arbitrary profile. For example, for a radial fin 

with triangular profile,   
 (    )

 (     )
,  and for 

rectangular profile   
 

 
 . 

2.1 Weak Formulation 

The weak form of equation (2) is obtained below 

by multiplying the equation with a weight 

function  ( ) and integrating over the domain 

  (   ) of the problem: 

  ∫  0
 

  
.   

  

  
/    (    )1   

  

  
      (3) 

Integration by parts yields  

  ∫ 0   
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       (4a) 

  

∫ 0   
  

  

  

  
     1   0∫         
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To simplify further, we introduce the linear and 

bilinear forms  

 

 (   )  ∫ 0   
  

  

  

  
     1   

  

  
, 

 ( )  0∫          (  )    (  )  
  

  
1(5) 

 In matrix notation, the linear algebraic equations 

can be written as 

[   
 ]*  +  *  

 +                   (6) 

Where 

   
  ∫ [   

   
 

  

   
 

  
     

   
 ]    
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  0∫       

      
 (  )     

 (  )  
  

  
1    

         (7)     

Where    
   

    

  
  and   

   
     

  
    are the 

interpolation functions expressed in terms of 

radial coordinates for linear elements.   

The symbolic forms of the element coefficients 

matrix    
  and the source vector   

  are given 

below in radial coordinates; 
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  ]                 

(9) 

2.2 Assembly of Elements into Master Matrix 

In deriving the element equations, a typical 

element was isolated from the mesh and 

formulated the weak form and developed its finite 

element model. To obtain the finite element 

equation of the total problem, we must put the 

elements back into their original positions.  
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Using an 8-linear element node approach the 

symbolic form of the assembly is given below. 

 

 

“Master Stiffness After Member Merge” 
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The matrix of the assembly of all the members (8 linear elements) is too large to be contained on the page of 

this paper.  

“Master Source Vector Assembly of Elements” 

, -  
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“Condensed Source Vector Assembly of Elements” 
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 3.0 MODEL VALIDATION 

The proposed finite element numerical scheme 

which is novel in its area of application in the 

current study is to be validated in the case study 

as presented below. 

Consider a set of radial fins with triangular, 

rectangular and parametric profiles as shown in 

figure 2 below, and assuming the following 

parametric quantities hold for this radial fin:   
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Figure 2 Radial fins (a)Triangular, 

(b)Rectangular, (c)Parametric Profiles 

 Inner and outer diameters are 10 and 25cm 

respectively, thickness of fin base is 0.25cm, the 

surrounding temperature is 35
0
C, while the 

temperature of fin base is 110
0
C, 

If the thermal conductivity of the material which 

is made from steel is 40W/mK, and the heat 

transfer coefficient is 40W/m
2
, the table and the 

graphs below give the summary of the results. 

 

Table 1 Temperature distribution along radial fin with triangular, rectangular and parametric 

profiles  

 TEMPERATURE DISTRIBUTION ALONG THE FIN   

NODE NO TRIANGULAR  
0
C RECTANGULAR 

0
C PARAMETRIC 

0
C 

1 110.0 110.0 110.0 

2 91.0 89.0 89.8 

3 76.7 74.6 76.1 

4 65.8 64.7 67.0 

5 57.4 58.0 61.0 

6 51.1 53.4 53.7 

7 46.4 50.6 48.2 

8 42.9 49.0 44.2 

9 (fin tip 

temp) 41.0 48.5 42.0 

(c) Figure 2 Radial fins (a) Triangular,  (b) Rectangular,  (c) Parametric Profiles 
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Figure 3  Temperature distribution along fin height of different profiles. 

 

Figure 4   Comparison of fin efficiencies: radial fins of rectangular, triangular and parametric 

profiles 
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RESULTS AND DISCUSSION 

One of the key advantages of the Symbolic form 

of the Finite Element Analysis is that the entire 

solution is computed symbolically and stored in 

closed form. The Finite Element Analysis itself is 

a numerical method used in seeking approximate 

solution for practical problems that involve 

complicated domains (both geometry and 

material) where analytical solutions are not 

possible. Such is the problem of Radial fins with 

parametric profile. 

The FEA analysis was carried out using the weak 

formulation approach also known as the Ritz 

method in the derivation of the element equation. 

In deriving the element equations, we isolated a 

typical element from the mesh, formulated the 

weak form and developed its finite element 

model. To obtain the finite element equation of 

the total problem, the elements were put back into 

their original positions (undoing of what was 

done before formulating the discrete problem).        

In the discretization of the domain of the 

problem, we used eight (8) linear elements. The 

reason is not far-fetched.  The finite element 

method is a powerful tool such that the higher the 

number of elements(   ) used to discretize a 

domain, the faster the approximation solution 

converges to the exact solution. For instance, an 

infinite number of tiny line segments can 

approximate the perimeter of a circle. But this 

large number of elements invalidated 

computational efficiency in the result obtained 

from symbolic analysis. Therefore in order to 

achieve the main objective of this paper, and still 

have a solution that has almost zero error 

estimate, we used eight (8), linear elements.  

In generating the condensed equation, the 

boundary conditions          and 
  

  
         

which are of the mixed type were used. The 

boundary condition at     indicates that heat in 

not dissipated at the tapered edge of the fin, since 

area of the edge is zero for triangular profile. For 

radial fins of other profiles, it was assumed that 

heat dissipation at      is negligible. 

The condensed equation can be applied directly in 

determining temperature distribution in radial fin 

of different profiles, since a general profile 

function has been built into the symbolic solution. 

In order to determine temperature distribution for 

specific profile, the profile function of the shape 

is substituted into the stiffness matrix or recoded 

into the program. For simplicity, the linear 

element was used and the Finite Element program 

was developed for a uniform mesh of arbitrary 

number of elements.  

The performance of the fins is shown in the 

graphs below. Figure 3 shows the temperature 

distribution along the fin height in radial fin of 

different profiles, while Figure 4 shows the 

efficiencies of the fins with different profiles. 

From Figure 3, a minimal variation was observed 

in the temperature distribution along the fin 

height for these profiles. This minimal variation 

suggests that the fins will perform the same way 

regardless of the profile.  

But a remarkable difference in their performance 

was observed when a normalization process was 

carried out. This was done by considering 

material usage of the fins. The material usage was 

gradually reduced as shown in Figure 5 below, 

where fin profile was changed from rectangular to 

triangular. The intermediate state is the 

parametric profile. At      , fin profile is 

completely rectangular, and then parametric at   

ranging from 1 through 4 and finally triangular at  

   . This normalization is shown in Figure 6. 

In the figure, heat dissipated per material volume 

is plotted against    ,   where     represents the 

gradual change of profile from rectangular to 

triangular.  
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Figure 5 Parametric Profile as the profile 

changes from rectangular to triangular. 

 

Figure 6 Heat dissipated per material volume as 

profile changes from rectangular profile to 

triangular profile. 

This changing of fin profile or geometry from 

rectangular to triangular was done with ease in 

the symbolic computation. Doing it 

conventionally would require a significant 

increase in the complexity of mathematical 

manipulation. This is another advantage of 

symbolic computation. The result of symbolic 

computation as shown in the graph is useful for 

optimization of material usage. The graph shows 

that radial fin of triangular profile has a higher 

optimization of material usage in the design of 

radial fins than fins with rectangular profile. 

Considering the material usage, it dissipates heat 

by 90% more than radial fin with rectangular 

profile. 

CONCLUSION  

It has been shown from this study that Finite 

Element Analysis of Radial Fin Heat Transfer can 

be implemented symbolically with Computer 

Algebra System (CAS) such as 

MATHEMATICA. It has also been shown that 

this symbolic computation technique is very 

effective and has the advantage to automatically 

derive the complex coefficients of the polynomial 

equations in matrix forms. It exempts one from 

using complex numerical methods to solve the 

polynomial equations. Modeling becomes very 

easy yet versatile.  

The program for the implementation of the 

symbolic analysis of the radial fin is displayed in 

the appendix. The result of symbolic computation 

was used for optimization of material usage. This 

result showed that radial fin of triangular profile 

has a higher optimization of material usage in the 

design of radial fins than radial fin of rectangular 

profile.  
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