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Abstract 

One of the problems confronting the full use of the power of the computers is that they 
understand very little of the meaning of human language. Significant progress is therefore 
being made to develop computational tools that will help organise data (text corpora) that 
will support computer users to quickly find relevant information from the sea of collective 
knowledge that are digitised and stored in online databases. Many semantic models, 
including latent Dirichlet allocation, have been proposed to help computers to deal with the 
potential vagueness that may arise due to variability in word usage. Latent Dirichlet 
allocation model reduces each document in a text collection to a mixture of topics that 
summarises the main themes in the collection. The Latent Dirichlet Allocation (LDA) 
model has been widely used to identify and extract hidden structures in data. Recent 
literature, however, reported that the model suffers from the restriction that the values of its 
controlling parameters, namely, prior distributions for the computation of the mixture 
components for theme extractions are not derived from data. Rather, pre-allocated, fixed 
priors are adopted and used irrespective of domain of application. The use of pre-allocated 
priors is based on the assumption that the computation of thematic structures is 
independent of the occurrence of words and documents in text collections. This assumption 
is, however, too strong and it has been observed that usage of pre-allocated priors which 
are often not consistent with the underlying data has led to some well-developed models 
failing to produce reasonable predictions in real application. In this study, empirical prior 
latent Dirichlet allocation (epLDA) model that uses latent semantic indexing framework to 
derive the priors required for topics computation from data is presented. The derived priors 
incorporate knowledge from the data into the LDA model. The parameters of the priors so 
obtained are related to the parameters of the conventional LDA model using exponential 
function. The model was implemented using C# programming language and tested on 
benchmarked data. It achieved higher prediction accuracy than the conventional latent 
Dirichlet allocation (LDA), supervised latent Dirichlet allocation (sLDA) and other 
existing models that have used the same data set for predictive tasks. It was observed that 
the epLDA model consistently outperforms the conventional LDA on different datasets; its 
performance falls within highly sure confidence level. The best known reported model in 
literature, Random Walk Heterogeneous Graph (RWHG), achieves a prediction accuracy 
of 90.36 percent while the proposed model achieves a prediction accuracy of 92.15 percent 
thereby providing higher prediction confidence. The model also achieves lower perplexity 
resulting in better generalisation performance than the conventional LDA model on the 
same dataset. The average generalisation performance of the model on test data is 65.46 
while that of the conventional LDA on the same dataset is 72.94. 
 
Keywords: latent Dirichlet allocation; semantic indexing; empirical priors; hidden 
structures; perplexity measure. 

 




