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Abstract: Materials selection and development for application in advanced 
systems is becoming highly complex involving the need for lower cost alternatives 
without compromising service performance. This paper investigated selected 
critical mechanical properties of ceramic matrix composites synthesized from 
coconut shell carbon (CSC) reinforced with silica particles (SP). Coconut shells 
(CCS) and silica sand (SS) were pulverized separately in a plate mill and a ball mill 
respectively to obtain a particle size of 250 µm. The CCS powders were calcined 
at 5000 C in an oven to obtain coconut shell ash (CSA) which was carbonized 
in a furnace from 5000 C-10000 C under argon gas controlled environment. The 
materials were mechanically blended while the SP additions varied from 10-40 
wt. % and compacted using hydraulic press. The compacted mixture was sintered 
at 5000 C-12000 C, held for 2 hrs and the composites characterised for mechanical 
properties while the microstructural integrity was analysed using scanning electron 
microscope/energy dispersive x-ray spectroscopy (SEM/EDS). Microstructure 
showed that after sintering, coconut shell carbon developed strong cohesion with 
the silica particles which gave rise to effective load transfer. The mechanical 
properties that ensued demonstrated on the average 52.8 % comparability with 
conventional power plant structural materials in terms of hardness, compressive 
strength and impact energy. 
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1. Introduction 

One of the factors that impact the efficiency of a power plant is the thermal and mechanical 
characteristics of critical components of its turbine. Ceramic composites are known to exhibit high 
thermal characteristics. However, their brittle nature under impact load has been a major concern 
in application environments where stress is combined with elevated temperature [2, 9]. Hence, the 
imperative to develop ceramic matrix reinforcement that can significantly reduce the composite 
intrinsic brittleness. Both the choice of reinforcing material suitable for such application and the 
form in which such material is to be employed, demand scientific investigation in order to proffer 
an effective remedy.
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Generation of agro-waste in most developing countries has greatly increased over the years as 
a result of increase in population and agricultural activities. The most widely used method of 
managing these agro-wastes is open air burning. Due to the adverse effect associated with open air 
burning, there is a need to explore other disposal options where agro-wastes can be productively 
utilized with little or no harmful environmental effects. However, apart from the seemingly 
pioneering work of Madakson et al. [8] which reported that the carbon in coconut shell ash has 
the potential utilization as reinforcement in ceramics composites, there is a huge information gap 
with regard to using agro-waste in ceramic based composites. This has placed a huge limitation 
on the scientific basis for processing and utilising carbon particles obtained from agro-waste to 
produce high performance advanced materials with characteristics light weight. The aim of this 
work is to develop and evaluate the functional mechanical characteristics of coconut shell carbon 
reinforced ceramic composites for applications as power plant turbine blades and steam buckets. 
As an organic contaminant, the productive use of coconut shells will help to mitigate the adverse 
effect on the environment arising from its improper disposal.

2. Materials and Methods

2.1 Materials

The major materials employed for the study consist of coconut shell (CS), silica sand (SS), sodium 
bentonite and distilled water. 

2.2 Production of the Composites

Sufficient quantities of coconuts were obtained from a coconut farm and the shafts removed to 
isolate the nuts. Then, the edible portion of the nuts was removed with a sharp knife while the CS 
left was first oven dried and then ground into powder in a ball mill (Figs. 1a and 1b) and calcined 
into ash at 5000 C in an oven. The coconut shell ash (CSA) was then carbonized in a furnace at 5000 

C-10000 C under argon gas controlled environment. Fig. 2 shows a typical X-ray Diffractogram 
(XRD) of carbonized coconut shells obtained under the same conditions employed in this study. 
The silica sand was first oven dried and then pulverized in a ball mill and sieved to 250 µm particle 
size. Both carbon and silica powders fractions with addition of sufficient amount of distilled water 
were mechanically mixed with sodium bentonite according to the mix design shown in Table 1. 
The various mixes were compacted in a cylindrical metal mould using hydraulic press at 30 kgf. 
Prior to a full scale sintering in a furnace, the green compacts were oven dried between 2000 C 
and 3000 C to avoid crack during sintering. The composites were then sintered (Figs. 2a and 2b) 
by subjecting them to a gradual heating from 5000 C-12000 C, held for 2 hrs and allowed to cool in 
the furnace. 

Fig. 1: (a) Pulverizer (b) Ball mill
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2.3 Characterisation of the Composite Samples

The sintered composite samples were characterised for microstructural integrity and mechanical 
properties using JEOL JSM-5900LV scanning electron microscope (SEM) equipped with an 
energy dispersive X-ray spectrometer (EDS) facility, Instron universal testing machine, Avery 
impact tester and Brinell hardness testing machine respectively.

                                     

Fig. 2: XRD image of coconut shells [3]

Table 1: Samples formulation

Sample Materials (wt. %)
Carbon Silica Bentonite

A 80 0 20
B 70 10 20
C 60 20 20
D 50 30 20
E 40 40 20

Fig. 3: Compacted silica reinforced carbon matrix composites (a) Green compacts, (b) Sintered 
samples
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3. Results and Discussion

3.1 Microstructure

The SEM micrograph and EDS spectrograph of the 20 wt.% SP reinforced carbon composite 
sample, being the composite that demonstrated the best mechanical characteristics are shown in 
Figs. 4a and 4b. It is observed that the silica particles reinforcement phase dispersed homogeneously 
within the carbon matrix. This actually provided the particles sufficient contact area with the 
carbon matrix which is relatively soft (graphite formed at the fairly low carbonization temperature 
of 12000 C). However, because of the traditional strong and directional bonding between carbon 
atoms and silica particles, limited plasticity is conferred on the composite confirming the report 
by Ritchie [10], hence the relatively low impact toughness exhibited by the composite. Varied 
elemental concentrations retained within the composites phases after sintering are presented as 
obtained by EDS analysis in Tables 2 and 3 at 20 wt. % and 40 wt. % respectively. The structure 
developed at 40 wt. % SP addition (Fig. 4a) revealed two features namely: inhomogeneous particles 
dispersion and an extensive particle coarsening resulting in a relatively large particle size. This type 
of microstructural feature is known to impair desirable mechanical properties such as toughness 
(impact energy), modulus and shear strength because it promotes weak cohesion between the 
particles and the matrix. Thus, the low mechanical properties exhibited by the composite at 40 wt. 
% SP addition is attributable to its poor microstructural integrity. 

Fig. 4: (a) SEM micrograph and (b) EDS spectrograph of 20 wt. % SP reinforced carbon composite 
with the elemental composition
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Table 2: Elemental composition of the 20 wt. % SP reinforced carbon composite

Elements Oxygen
(O)

Silicon
(Si)

Aluminium
(Al)

Carbon
(C)

Concentrations 11.3 20.8 4.1 63.8

Fig. 5: (a) SEM micrograph and (b) EDS spectrograph of 40 wt. % SP reinforced carbon composite 
with the elemental composition

Table 3: Elemental composition of the 40 wt. % SP reinforced carbon composite

Elements Potassium 
(K)

Silicon
(Si)

Oxygen
(O)

Carbon 
(C)

Aluminium
 (Al)

Concentrations 1.6 42.3 13.5 37.7 4.9
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3.2 Compressive Strength

The maximum load bearing capacity of the composite was determined in a compressive strength 
test and the results are illustrated in Fig. 6. It is observed that the sample without silica particles 
(SP) addition has the lowest compressive strength of 115.3 MPa compared with other samples 
reinforced with varied additions of SP showing compressive strength ranging between 138.3 MPa 
and 187.8 MPa which compare well with that of conventional martensitic steels used in power 
plant structural components. The sample with 20 wt. % SP demonstrated the highest compressive 
strength of 187.8 MPa. This behaviour can be explained in term of the extent of wettability provided 
by the carbon matrix on the SP resulting in effective load transfer. It thus appears that the absence 
of SP in the control sample invariably gave rise to carbon-carbon interactions that resulted in a 
relatively low compressive strength. As observed in the current study however, the effectiveness 
of carbon as a wetting agent in a ceramic system appears to be on the average, in the ratio 8:1 for 
carbon/silica. This assertion is corroborated by the fact that a decrease in carbon/silica ratio to 4:1 
gave rise to corresponding decrease of about 15 percent in compressive strength from 162.5 MPa 
to 138.3 MPa. 

Fig. 6: Variation of compressive strength with silica particles addition

3.3 Hardness

The results of hardness property analysis conducted on the carbon composite samples are as 
presented in Fig. 7. The composites hardness values range from 106.5 to 178.4 Brinell hardness 
number (BHN) with the unreinforced sample having the lowest value while the peak is exhibited 
by the sample with 20 wt.% SP addition. The contribution to a relative high hardness of the 
reinforced samples may have stemmed from strong cohesion between the carbon matrix and the 
reinforcement phase that provided effective barrier to dislocation motion. 

Silica is reported to be one of the hardest materials as reported by Hassan and Aigbodion [7] and 
Alaneme et al. [1]. However, the low hardness exhibited by the sample with 0 wt.% SP addition 
can be attributed to the monolithic and relatively soft carbon matrix. Again, the composite hardness 
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reduces on further SP addition probably due to porosity suggesting that 20 wt. % SP is the optimum 
required for enhanced hardness characteristic of the carbon composite. However, the composites 
hardness value being in the range 131.8-178.4 BHN is 54.4 % of the standard hardness put at 270-
300 BHN for most power plant turbine blades as submitted by Ziegler et al. [12] and Bouville et 
al. [4].

Fig. 7: Variation of hardness with silica particles addition

3.4 Impact Energy

Fig. 8 illustrates the amount of energy required to fracture the composites at varied SP additions 
and is observed to increase progressively from 17.8 J, peaked at 28.7 J, and then dropped 
monotonously to 19.6 J. The unreinforced sample demonstrated the lowest impact energy which is 
17.8 J while the sample with low carbon/silica particle ratio of 4:1 also has relatively low impact 
energy, 19.6 J. Given these observations, it appears that variations in the level of cohesion between 
the carbon particles and SP additions influence significantly the impact energy of the composites as 
an indication of the tough-to-brittle transition behaviour of the composites [5, 11]. This is because, 
within ratios 8:1 and 5:1 of carbon/silica particle-matching within the system, the composites are 
conferred with the requisite ability to undergo substantial level of plastic deformation giving rise 
to impact energy values comparable with standard values of 20 J (minimum) for steam turbine 
blades. This is similar to the report of Dowson et al. [6].
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Fig. 8: Variation of impact energy with silica particles addition

4. Conclusion

The mechanical characteristics of silica particles reinforced carbon matrix composite have been 
investigated.  The composites best mechanical properties namely: hardness, compressive strength 
and impact energy were obtained at 20 wt. % silica particles (SP) addition. Hardness of 178.4 BHN 
exhibited by the composite at 20 wt. % SP addition is adjudged sufficient to prevent any surface 
dysfunction in service. Under compressive loading, the composites ultimate strength performance 
of 187.8 MPa influenced significantly by matrix-reinforcement ratio are within the values 
recommended for ceramic composites. At an average of 7:1 of matrix/reinforcement ratio, the 
composite is conferred with the requisite ability to undergo substantial level of plastic deformation 
culminating in 28.7 Joules impact energy. The carbon matrix also served as an effective wetting 
agent which significantly reduces the inherent brittleness of the ceramic composites. In view of the 
above mechanical performance indices, the ceramic composite produced has a huge potential for 
application as power plant turbine blade and steam plant bucket. 
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