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Abstract. In this research work, some results on the existence and approximation of common coupled fixed points

of contractive maps in cone metric spaces are unified and generalized based on a new method.
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1. Introduction

Ever since the re-introduction of cone metric spaces by Huang and Zhang [1], Banach-valued

metric spaces have been extensively used in the study of the existence and convergence of

fixed points of different contractive-like mappings. From the contraction condition to more

general conditions of two, three and four maps with the weak compatibility, researchers have

established various fixed point theorems on contractive mappings in normal cones (e.g. [2-6])

and non necessarily normal cones (e.g. [7-12]). The following two classes of self-maps, studied
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by Abbas et al. [13], generalize the contractive conditions in [2-11] :

(1) d( f x,gy)≤ pd(Sx,Ty)+qd( f x,Sx)+ rd(gy,Ty)+ t[d( f x,Ty)+d(gy,Sx)],

where (0 < p+q+ r+2t < 1) and

(2) d( f x,gy)≤ kux,y, ux,y ∈
{

d(Sx,Ty),d( f x,Sx),d(gy,Ty),
d( f x,Ty)+d(gy,Sx)

2

}
,

where 0 < k < 1. One observes that both classes are unified and generalized in the following

mappings of Ciric-type,

(3)

d( f x,gy)≤ p(x,y)d(Sx,Ty)+q(x,y)d( f x,Sx)+ r(x,y)d(gy,Ty)+ t(x,y)[d( f x,Ty)+d(gy,Sx)]

where p,q,r, t : X×X→ [0,1) satisfy 0 < sup{p(x,y)+q(x,y)+ r(x,y)+ t(x,y)}= λ < 1. The

case of one map ( f = g and S = T = Id) was introduced and studied by Ciric [14] in the usual

metric space context.

Following the results on coupled fixed points in partially ordered metric spaces by Bhashkar

and Lakshmikantham [15] and Lakshmikantham and Ciric [16], Sabetghadam et al. [17] and

Abbas et al. [18] extended some special cases (cases of one and two maps) of the conditions

(1.1) and (1.2) to the study of coupled fixed points in cone metric spaces by considering the

following inequalities on maps F : X×X → X and g : X → X :

(4)
d(F(x,y),F(u,v)) ≤ a1d(gx,gu)+a2d(F(x,y),gx)+a3d(gy,gv)+a4d(F(u,v),gu)

+a6d(F(x,y),gu)+a6(F(u,v),gx),

where ∑
6
i=1 ai < 1 and

(5)
d(F(x,y),F(u,v))≤ kU +mV,

U,V ∈ Sx,y
u,v = {d(gx,gu),d(gy,gv),d(F(x,y),gx),d(F(x,y),gu),d( f (u,v),gu)},

where k+m < 1. The similarity between fixed points and coupled fixed points suggests that

some coupled fixed points results are obtainable from existing fixed point results.

Recently, Samet et al. [21] noticed that a coupled fixed point of a map F : X×X→X is exact-

ly the fixed point of the associate map F̃(x,y) = (F(x,y),F(y,x)) while Olaleru and Olaoluwa

[19] observed that a common coupled fixed point of two maps F : X ×X → X and g : X → X

is a common fixed point of F̃ and g̃ defined by g̃(x,y) := (gx,gy). Their methodology stands
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when a transfer of the topological structure of X to X ×X is possible by inducing a metric on

X ×X , mostly D((x,y),(u,v)) = d(x,u)+ d(y,v) and D((x,y),(u,v)) = max{d(x,u),d(y,v)},

and when the coupled fixed point inequality in X , say d(F(x,y),F(u,v)) ≤Fd(F,g,x,y,u,v),

can be transformed to a known fixed point inequality in X × X , say D(F̃(x,y), F̃(u,v)) ≤

F ′
D(F̃ , g̃,(x,y),(u,v)). This methodology works with some coupled fixed point inequalities

such as (1.4). However, it does not work for inequalities of the type (1.5) since they cannot be

transformed to the product space X×X .

In this work, we provide a novel technique of tackling coupled fixed point inequalities of type

(1.5), which also works for inequalities of type (1.4), without the use of the classical concept

of Cauchy sequences. It should be noted that this novel technique deals with the problems of

existence and approximation. For this purpose, we study the fixed points of Ciric mappings

(1.3) which is a simple way of unifying and generalizing inequalities of type (1.1) and (1.2).

First, let us recall the following basic definitions.

Definition 1.1. [1] Let E be a real Banach space. A subset P of E is called a cone if and only

if:

(a) P is closed, non-empty and P 6= {0};

(b) a,b ∈ R,a,b≥ 0,x,y ∈ P imply that ax+by ∈ P;

(c) P∩ (−P) = {0}.

Given a cone P, define a partial ordering ≤ with respect to P by x≤ y if and only if y−x ∈ P.

We shall write x� y for y−x ∈ intP, where intP stands for interior of P. Also we will use x < y

to indicate that x≤ y and x 6= y.

The cone P in a normed space E is called normal whenever there is a real number k > 0, such

that for all x,y ∈ E,0 ≤ x ≤ y implies ‖x‖ ≤ k‖y‖. The least positive number satisfying this

norm inequality is called the normal constant of P.

Definition 1.2. [1] Let X be a non-empty set and let E be a real Banach space equipped with

the partial ordering≤with respect to the cone P⊂E. Suppose that the mapping d : X×X −→E

satisfies:

(d1) 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and ony if x = y;

(d2) d(x,y) = d(y,x) for all x,y ∈ X ;
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(d3) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a cone metric on X and (X ,d) is called a cone metric space.

Definition 1.3. [1] Let (X ,d) be a cone metric space, {xn} a sequence in X and x ∈ X . We say

that {xn} is

(c1) a Cauchy sequence if for every c ∈ E with 0� c, there is some k ∈ N such that, for all

n,m≥ k, d(xn,xm)� c;

(c2) a convergent sequence if for every c ∈ E with 0� c, there is some k ∈ N such that, for all

n≥ k, d(xn,x)� c. Such x is called limit of the sequence {xn}.

Note that every convergent sequence in a cone metric space X is a Cauchy sequence. A cone

metric space X is said to be complete if every Cauchy sequence in X is convergent.

Definition 1.4. [22] Let P be a cone and let {ωn} be a sequence in P. One says that ωn
�−→ 0

if for every ε ∈ P with 0� ε there exists N > 0 such that ωn� ε for all n≥ N.

Note that a sequence {xn} converges to x if and only if d(xn,x)
�−→ 0.

Definition 1.5. [15] An element (x,y) ∈ X ×X is called a coupled fixed point of mapping

F : X×X → X if x = F(x,y) and y = F(y,x).

Definition 1.6. [18] An element (x,y) ∈ X×X is called:

(g1) a coupled coincidence point of mappings F : X ×X → X and g : X → X if g(x) = F(x,y)

and g(y) = F(y,x), and (gx,gy) is called coupled point of coincidence;

(g2) a common coupled fixed point of mappings F : X ×X → X and g : X → X if x = g(x) =

F(x,y) and y = g(y) = F(y,x).

Definition 1.7. ([18], [23]). The mappings F : X×X → X and g : X → X are called:

(w1) w-compatible if g(F(x,y)) = F(gx,gy) whenever g(x) = F(x,y) and g(y) = F(y,x);

(w2) w*-compatible if g(F(x,x)) = F(gx,gx) whenever g(x) = F(x,x).

The w*-compatibility condition is less restrictive than the w-compatibility condition.

We prove the following lemma, crucial in the establishing of some of the results in this paper.

Lemma 1.8. Let X be a cone metric space with respect to a cone P in a Banach space E, with

int(P) 6= /0. Let {un}, {vn}, {wn}, {zn} be sequences in P and {an}, {bn}, {cn}, {dn}, {en},
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{ fn}, {a′n}, {b′n}, {c′n}, {d′n}, {e′n}, { f ′n} be real positive sequences satisfying for all n ∈ N,



un+1 ≤ anun +bnvn + cnwn +dnzn

vn+1 ≤ a′nun +b′nvn + c′nwn +d′nzn

wn ≤ enwn−1 + fnzn−1

zn ≤ e′nwn−1 + f ′nzn−1,

where an +bn + cn +dn ≤ λ , a′n +b′n + c′n +d′n ≤ λ , en + fn ≤ λ , e′n + f ′n ≤ λ , with λ < 1.

Then un
�−→ 0 and vn

�−→ 0.

Proof.

(6)

un+1 ≤ an[an−1un−1 +bn−1vn−1 + cn−1wn−1 +dn−1zn−1]

+bn[a′n−1un−1 +b′n−1vn−1 + c′n−1wn−1 +d′n−1zn−1]

+cn[enwn−1 + fnzn−1]+dn[e′nwn−1 + f ′nzn−1]

= [anan−1 +bna′n−1]un−1 +[anbn−1 +bnb′n−1]vn−1

+[ancn−1 +bnc′n−1 + cnen +dne′n]wn−1

+[andn−1 +bnd′n−1 + cn fn +dn f ′n]zn−1

= a1
nun−1 +b1

nvn−1 + c1
nwn−1 +d1

nzn−1,

where 

a1
n = anan−1 +bna′n−1,

b1
n = anbn−1 +bnb′n−1,

c1
n = ancn−1 +bnc′n−1 + cnen +dne′n,

d1
n = andn−1 +bnd′n−1 + cn fn +dn f ′n,

a1
n +b1

n + c1
n +d1

n = an[an−1 +bn−1 + cn−1 +dn−1]+bn[a′n−1 +b′n−1 + c′n−1 +d′n−1],

+cn[en + fn]+dn[e′n + f ′n],

≤ λ [an +bn + cn +dn]≤ λ 2
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and

(7)

un+1 ≤ a1
n[an−2un−2 +bn−2vn−2 + cn−2wn−2 +dn−2zn−2],

+b1
n[a
′
n−2un−2 +b′n−2vn−2 + c′n−2wn−2 +d′n−2zn−2],

+c1
n[en−1wn−2 + fn−1zn−2]+d1

n [e
′
n−1wn−2 + f ′n−1zn−2],

= [a1
nan−2 +b1

na′n−2]un−2 +[a1
nbn−2 +b1

nb′n−2]vn−2,

+[a1
ncn−2 +b1

nc′n−2 + c1
nen−1 +d1

ne′n−1]wn−2,

+[a1
ndn−2 +b1

nd′n−2 + c1
n fn−1 +d1

n f ′n−1]zn−2,

= a2
nun−2 +b2

nvn−2 + c2
nwn−2 +d2

nzn−2,

where 

a2
n = a1

nan−2 +b1
na′n−2,

b2
n = a1

nbn−2 +b1
nb′n−2,

c2
n = a1

ncn−2 +b1
nc′n−2 + c1

nen−1 +d1
ne′n−1,

d2
n = a1

ndn−2 +b1
nd′n−2 + c1

n fn−1 +d1
n f ′n−1,

a2
n +b2

n + c2
n +d2

n = a1
n[an−2 +bn−2 + cn−2 +dn−2]+b1

n[a
′
n−2 +b′n−2 + c′n−2 +d′n−2],

+c1
n[en−1 + fn−1]+d1

n [e
′
n−1 + f ′n−1],

≤ λ [a1
n +b1

n + c1
n +d1

n ]≤ λ 3.

Repeating the process, we have

un+1 ≤ an
nu0 +bn

nv0 + cn
nw0 +dn

nz0,

where 

an
n = an−1

n a0 +bn−1
n a′0,

bn
n = an−1

n b0 +bn−1
n b′0,

cn
n = an−1

n c0 +bn−1
n c′0 + cn−1

n e1 +dn−1
n e′1,

dn
n = an−1

n d0 +bn−1
n d′0 + cn−1

n f1 +dn−1
n f ′1,

an
n +bn

n + cn
n +dn

n = an−1
n [a0 +b0 + c0 +d0]+bn−1

n [a′0 +b′0 + c′0 +d′0],

+cn−1
n [e1 + f1]+dn−1

n [e′1 + f ′1],

≤ λ [an−1
n +bn−1

n + cn−1
n +dn−1

n ]≤ λ n+1.

Thus un+1 ≤ (u0 + v0 +w0 + z0)λ
n+1. Given 0� c, choose τ > 0 such that c+ {y ∈ P : y <

τ} ⊂ P. Since λ n+1→ 0, there is N ∈ N such that λ n+1(u0 + v0 +w0 + z0) ∈ {y ∈ P : y < τ}
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for all n > N. It follows that λ n+1(u0 + v0 +w0 + z0)� c for all n > N. Thus, for all n > N,

un+1� c and so un
�−→ 0. Similarly, vn

�−→ 0.

As explained earlier, the Ciric classes of mappings are one of the widest generalizations of

contraction mappings in literature. In this section, we prove the existence of common fixed

points for four maps useful in the proof of our result on coupled fixed points even though it is

of independent interest in that it generalizes most common fixed point theorems in cone metric

spaces.

Theorem 1.9. Let f ,g,S and T be self-mappings of a cone metric space X with cone P having

non-empty interior, satisfying f (X)⊂ T (X), g(X)⊂ S(X) and

(8)
d( f x,gy) ≤ p(x,y)d(Sx,Ty)+q(x,y)d( f x,Sx)+ r(x,y)d(gy,Ty)

+t(x,y)[d( f x,Ty)+d(gy,Sx)]

for all x,y ∈ X, where p,q,r, t : X×X → [0,1) satisfy

(9) sup
x,y∈X
{p(x,y)+q(x,y)+ r(x,y)+2t(x,y)}= λ < 1.

If one of f (X), g(X), S(X) or T (X) is a complete subspace of X, then { f ,S} and {g,T} have

a unique point of coincidence in X. Moreover if { f ,S} and {g,T} are weakly compatible, then

f ,g,S and T have a unique common fixed point.

Proof. Given that f (X)⊂ T (X) and g(X)⊂ S(X), one can define sequences {xn} and {yn} such

that y2n−1 := f x2n−2 = T x2n−1 and y2n := gx2n−1 = Sx2n.

d(y2n,y2n+1) = d( f x2n,gx2n−1)

≤ p(x2n,x2n−1)d(Sx2n,T x2n−1)+q(x2n,x2n−1)d( f x2n,Sx2n)

+r(x2n,x2n−1)d(gx2n−1,T x2n−1)+ t(x2n,x2n−1)[d( f x2n,T x2n−1)

+d(gx2n−1,Sx2n)]

≤ p(x2n,x2n−1)d(y2n−1,y2n)+q(x2n,x2n−1)d(y2n+1,y2n)

+r(x2n,x2n−1)d(y2n,y2n−1)+ t(x2n,x2n−1)d(y2n+1,y2n−1)

≤ [p(x2n,x2n−1)+ r(x2n,x2n−1)+ t(x2n,x2n−1)]d(y2n−1,y2n)

+[q(x2n,x2n−1)+ t(x2n,x2n−1)]d(y2n,y2n+1).
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Hence d(y2n,y2n+1) ≤ δ (x2n,x2n−1)d(y2n−1,y2n), where δ (x,y) = p(x,y)+r(x,y)+t(x,y)
1−q(x,y)−t(x,y) . Note that

λ < 1. From p(x,y)+λq(x,y)+ r(x,y)+λ t(x,y)+ t(x,y)≤ λ , we have δ (x,y)≤ λ . Hence

(10) d(y2n,y2n+1)≤ λd(y2n−1,y2n).

d(y2n+1,y2n+2) = d( f x2n,gx2n+1)

≤ p(x2n,x2n+1)d(Sx2n,T x2n+1)+q(x2n,x2n+1)d( f x2n,Sx2n)

+r(x2n,x2n+1)d(gx2n+1,T x2n+1)+ t(x2n,x2n+1)[d( f x2n,T x2n+1)

+d(gx2n+1,Sx2n)]

≤ [p(x2n,x2n+1)+q(x2n,x2n+1)+ r(x2n,x2n+1)

+t(x2n,x2n+1)]d(y2n+1,y2n+2)+ t(x2n,x2n+1)d(y2n,y2n+1),

i.e. d(y2n+1,y2n+2) ≤ δ ′(x2n,x2n+1)d(y2n,y2n+1), where δ ′(x,y) = t(x,y)
1−p(x,y)−q(x,y)−r(x,y)−t(x,y) .

Note that λ < 1. From λ [p(x,y)+q(x,y)+ r(x,y)+ t(x,y)]+ t(x,y)≤ λ , we have δ ′(x,y)≤ λ .

It follows that

(11) d(y2n+1,y2n+2)≤ λd(y2n,y2n+1).

From (10) and (11), we have d(yn,yn+1) ≤ λd(yn−1,yn) for all n ≥ 1. Repeating this argu-

ment n-times, we have d(yn,yn+1) ≤ λ nd(y0,y1). For any n,m ∈ N with m > n, it follows that

d(yn,ym)≤∑
m−1
i=n d(yi,yi+1)≤∑

m−1
i=n λ id(y0,y1) = λ nd(y0,y1)∑

m−n−1
j=0 λ j ≤ λ n

1−λ
d(y0,y1). Giv-

en 0� c, choose τ > 0 such that c+{y ∈ P : y < τ} ⊂ P. Since λ n

1−λ
→ 0, there is N ∈ N such

that λ n

1−λ
d(y0,y1) ∈ {y ∈ P : y < τ} for all n > N. It follows that λ n

1−λ
d(y0,y1)� c for all n > N.

Thus, for all m > n > N, d(yn,ym)� c and {yn} is Cauchy. Suppose that S(X) is complete.

Then there exists u ∈ S(X), say u = Sv, such that Sx2n = y2n→ u as n→ ∞. In fact, yn→ u as
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n→ ∞. Let us prove that f v = u.

d( f v,u) ≤ d( f v,gx2n−1)+d(gx2n−1,u)

≤ p(v,x2n−1)d(Sv,T x2n−1)+q(v,x2n−1)d( f v,Sv)

+r(v,x2n−1)d(gx2n−1,T x2n−1)+ t(v,x2n−1)[d( f v,T x2n−1)+d(gx2n−1,Sv)]

+d(gx2n−1,u)

≤ p(v,x2n−1)d(u,y2n−1)+q(v,x2n−1)d( f v,u)

+r(v,x2n−1)d(y2n,y2n−1)+ t(v,x2n−1)[d( f v,u)+d(u,y2n−1)+d(y2n,u)]

+d(y2n,u),

d( f v,u) ≤ [p(v,x2n−1)+ t(v,x2n−1)]d(u,y2n−1)+ [q(v,x2n−1)+ t(v,x2n−1)]d( f v,u)

+r(v,x2n−1)d(y2n,y2n−1)+ [1+ t(v,x2n−1)]d(y2n,u)

≤ [p(v,x2n−1)+ t(v,x2n−1)]d(u,y2n−1)+λd( f v,u)+ r(v,x2n−1)d(y2n,y2n−1)

+[1+ t(v,x2n−1)]d(y2n,u),

which, on taking n→ ∞, yields d( f v,u) ≤ λd( f v,u). Since λ < 1, we have that d( f v,u) = 0,

i.e. f u = v. Since u ∈ f (X)⊂ T (X), there exists w ∈ X such that Tw = u. Now we shall show

that gw = u.

d(gw,u) ≤ d( f x2n,gw)+d( f x2n,u)

≤ p(x2n,w)d(Sx2n,Tw)+q(x2n,w)d( f x2n,Sx2n)+ r(x2n,w)d(gw,Tw)

+t(x2n,w)[d( f x2n,Tw)+d(gw,y2n)]+d( f x2n,u)

≤ p(x2n,w)d(y2n,u)+q(x2n,w)d(y2n+1,y2n)+ r(x2n,w)d(gw,Tw)

+t(x2n,w)[d(y2n+1,Tw)+d(gw,Tw)+d(Tw,y2n)]+d(y2n+1,u)

≤ p(x2n,w)d(y2n,u)+q(x2n,w)d(y2n+1,y2n)+ [r(x2n,w)+ t(x2n,w]d(gw,Tw)

+t(x2n,w)[d(y2n+1,u)+d(u,y2n)]+d(y2n+1,u)

≤ p(x2n,w)d(y2n,u)+q(x2n,w)d(y2n+1,y2n)+λd(gw,u)

+t(x2n,w)[d(y2n+1,u)+d(u,y2n)]+d(y2n+1,u),

which, on taking n→∞, yields d(gw,u)≤ λd(gw,u), i.e., gw = u. If the pairs { f ,S} and {g,T}

are weakly compatible, then f u = f Sv = S f v = Su = w1 (say) and gu = gTw = T gw = Tu = w2
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(say).

d(w1,w2) = d( f u,gu) ≤ p(u,u)d(Su,Tu)+q(u,u)d( f u,Su)

+r(u,u)d(gu,Tu)

+t(u,u)[d( f u,Tu)+d(gu,Su)]

= [p(u,u)+2t(u,u)]d(w1,w2)≤ λd(w1,w2),

which implies that w1 = w2. Therefore f u = gu = Su = Tu. Next, we show that u = gu.

d(u,gu) = d( f v,gu) ≤ p(v,u)d(Sv,Tu)+q(v,u)d( f v,Sv)+ r(v,u)d(gu,Tu)

+t(v,u)[d( f v,Tu)+d(gu,Sv)]

= [p(v,u)+2t(v,u)]d(gu,u)≤ λd(gu,u)

and gu = u. Thus u is a common fixed point of f , g, S and T . The uniqueness of the common

fixed point is an immediate consequence of the generalized contractive condition.

If the functions p,q,r, t in the previous theorem are constants, we have the first main result in

[13]. The second main result in [13], which is a generalization of many results in literature, is

retrieved as follows:

Corollary 1.10. [13] Let f ,g,S and T be self-maps of a cone metric space X with cone P

having non-empty interior, satisfying f (X)⊂ T (X), g(X)⊂ S(X) and

(12) d( f x,gy)≤ hux,y( f ,g,S,T ),

where h ∈ (0,1) and

(13) ux,y( f ,g,S,T ) ∈
{

d(Sx,Ty),d( f x,Sx),d(gy,Ty),
d( f x,Ty)+d(gy,Sx)

2

}
for all x,y ∈ X. If one of f (X),g(X),S(X) or T (X) is a complete subspace of X, then { f ,S}

and {g,T} have a unique common fixed point of coincidence. Moreover, if { f ,S} and {g,T}

are weakly compatible, then f ,g,S and T have a unique common fixed point.

Proof. If

ux,y( f ,g,S,T ) ∈
{

d(Sx,Ty),d( f x,Sx),d(gy,Ty),
d( f x,Ty)+d(gy,Sx)

2

}
,
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then

hux,y( f ,g,S,T ) = p(x,y)d(Sx,Ty)+q(x,y)d( f x,SX)+ r(x,y)d(gy,Ty)

+2t(x,y)[d( f x,Ty)+d(gy,Sx)]

where p,q,r : X ×X → {0,h} and t : X ×X → {0, h
2} are chosen such that for each (x,y) ∈

X×X , one and only one of p(x,y),q(x,y),r(x,y), t(x,y) is non null. With such choice, p(x,y)+

q(x,y)+ r(x,y)+2t(x,y) = h < 1. It follows that f ,g,S and T satisfy the contractive condition

of Theorem 2.1. Hence, they have a unique common fixed point.

Example 1.11. Let E = C1([0,1],R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0,1]}, X = [0,∞) and d :

X×X → E be defined by d(x,y) = |x−y|ϕ . The space X together with d is a non-normal cone

metric space. The self maps of f ,g,S,T : X → X defined by f x =

 x
3 , x ∈ [0,1]
x
4 , x ∈ (1,∞)

, gx = 0,

Sx =

 3x, x ∈ [0,1]

2x, x ∈ (1,∞)
and T x = x satisfy the conditions of Theorem 1.9. with q(x,y) = 1

8 and

p(x,y) = r(x,y) = t(x,y) = 0. The four maps have 0 as common fixed point.

2. Coupled fixed points in cone metric spaces

In this section, we study the existence and approximation of coupled fixed points of four maps

of Ciric-type in cone metric spaces. The method used is unique and differs from the existing

ones in literature.

Theorem 2.1. Let (X ,d) be a cone metric space, f : X×X → X, g : X×X → X, S : X → X and

T : X → X be four mappings such that f (X×X)⊂ T (X), g(X×X)⊂ S(X) and

(14)

d( f (x,y),g(u,v)) ≤ p1(x,y,u,v)d(Sx,Tu)+ p2(x,y,u,v)d(Sy,T v)

+q(x,y,u,v)d( f (x,y),Sx)+ r(x,y,u,v)d(g(u,v),Tu)

+t(x,y,u,v)[d( f (x,y),Tu)+d(g(u,v),Sx)]

for all x,y,u,v ∈ X, where p1, p2,q,r, t : X4→ [0,1) and

sup(x,y,u,v)∈X [(p1 + p2 +q+ r+2t)(x,y,u,v)] = λ < 1.

(1) If one of f (X ×X), g(X ×X), S(X) or T (X) is a complete subspace of X, then { f ,S} and
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{g,T} have a unique coupled coincidence point in X. Moreover, if { f ,S} and {g,T} are w*-

compatible, then f , g, S and T have a unique coupled common fixed point (x∗,x∗) ∈ X×X.

(2) For every (x0,y0) ∈ X ×X, there exist a pair of sequences {(un,vn)} not necessarily lying

on the main diagonal, such that {un} and {vn} converge each to x∗ ∈ X.

Proof. (1) Existence: Let x = y and u = v be in the contractive condition. From Theorem 1.9,

the functions x 7→ f (x,x), x 7→ g(x,x), x 7→ Sx and x 7→ T x have a unique common fixed point

u∗ ∈ X . The element (u∗,u∗) ∈ X ×X is a common coupled fixed fixed point of f , g, S and T

since u = f (u,u) = g(u,u) = Su = Tu. It is the unique common coupled fixed point of f , g, S

and T that lies on the main diagonal {(x,x), x ∈ X}.

Uniqueness: Let (x,y) be a common coupled fixed point of f , g, S and T . We have x = Sx = T x = f (x,y) = g(x,y)

y = Sy = Ty = f (y,x) = g(y,x).

From the contractive condition,

d( f (x,y),g(y,x)) ≤ p1(x,y,y,x)d(Sx,Ty)+ p2(x,y,u,v)d(Sy,T x)

+q(x,y,y,x)d( f (x,y),Sy)+ r(x,y,y,x)d(g(y,x),Ty)

+t(x,y,y,x)[d( f (x,y),Ty)+d(g(y,x),Sx)],

i.e. d(x,y)≤ [p1(x,y,y,x)+ p2(x,y,y,x)+2t(x,y,y,x)]d(x,y)≤ λd(x,y). Since λ < 1, d(x,y) =

0, i.e. x = y. This shows that every common coupled fixed point of f , g, S and T belongs to the

main diagonal and so, the common coupled fixed point of f .g,S and T is unique.

(2) Convergence: Let (x∗,x∗) be the unique common coupled fixed point of f ,g,S and T .

When no confusion is possible, we will simply denote it (x,x). For any (x0,y0) ∈ X ×X , the

conditions f (X ×X)⊂ T (X) and g(X ×X)⊂ S(X) guarantee the existence of sequences {xn},

{yn}, {un} and {vn} such that

(15)



f (x2n−2,y2n−2) = T x2n−1 := u2n−1,

f (y2n−2,x2n−2) = Ty2n−1 := v2n−1,

g(x2n−1,y2n−1) = Sx2n := u2n,

g(y2n−1,x2n−1) = Sy2n := v2n.
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From the contractive condition, we have

d( f (x2n−2,y2n−1),g(x,x)) ≤ p1(αn)d(Sx2n−2,T x)+ p2(αn)d(Sy2n−2,T x)

+q(αn)d( f (x2n−2,y2n−2),Sx2n−2)+ r(αn)d(g(x,x),Sx)

+t(αn)[d( f (x2n−2,y2n−2),T x)+d(g(x,x),Sx2n−2)],

where αn = (x2n−2,y2n−2,x,x),

d(u2n−1,x) ≤ [p1(αn)+ t(αn)]d(u2n−2,x)+ p2(αn)d(v2n−2,x)

+q(αn)d(u2n−1,u2n−2)+ t(αn)d(u2n−1,x)

(16)

d(u2n−1,x)≤
(p1 + t)(αn)

1− t(αn)
d(u2n−2,x)+

p2(αn)

1− t(αn)
d(v2n−2,x)+

q(αn)

1− t(αn)
d(u2n−1,u2n−2)

and

(17)
(p1 + t)(αn)

1− t(αn)
+

p2(αn)

1− t(αn)
+

q(αn)

1− t(αn)
≤ λ .

d( f (x,x),g(x2n−1,y2n−1)) ≤ p1(βn)d(Sx,T x2n−1)+ p2(βn)d(Sx,Ty2n−1)

+q(βn)d( f (x,x),Sx)+ r(βn)d(g(x2n−1,y2n−1),T x2n−1)

+t(βn)[d( f (x,x),T x2n−1)+d(g(x2n−1,y2n−1),Sx)],

where βn = (x,x,x2n−1,y2n−1),

(18) d(u2n,x)≤
(p1 + t)(βn)

1− t(βn)
d(u2n−1,x)+

p2(βn)

1− t(βn)
d(v2n−1,x)+

q(βn)

1− t(βn)
d(u2n−1,u2n)

and

(19)
(p1 + t)(βn)

1− t(βn)
+

p2(βn)

1− t(βn)
+

q(βn)

1− t(βn)
≤ λ .

Hence, from (16)-(19), ∀n ∈ N, ∃an,bn,cn ≥ 0, such that

(20) d(un,x)≤ and(un−1,x)+bnd(vn−1,x)+ cnd(un−1,un)

with an +bn + cn ≤ λ < 1. Similarly ∀n ∈ N, ∃a′n,b′n,c′n ≥ 0, such that

(21) d(vn,x)≤ a′nd(un−1,x)+b′nd(vn−1,x)+ c′nd(vn−1,vn)
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with a′n +b′n + c′n ≤ λ < 1. From the contractive condition, we have that

d( f (x2n−2,y2n−2),g(x2n−1,y2n−1))

≤ p1(γn)d(Sx2n−2,T x2n−1)+ p2(γn)d(Sy2n−2,Ty2n−1)

+q(γn)d( f (x2n−2,y2n−2),Sx2n−2)+ r(γn)d(g(x2n−1,y2n−1),T x2n−1)

+t(γn)[d( f (x2n−2,y2n−2),T x2n−1)+d(g(x2n−1,y2n−1),Sx2n−2)],

where γn = (x2n−2,y2n−2,x2n−1,y2n−1),

d(u2n−1,u2n) ≤ p1(γn)d(u2n−2,u2n−1)+ p2(γn)d(v2n−2,v2n−1)+q(γn)d(u2n−1,u2n−2)

+r(γn)d(u2n,u2n−1)+ t(γn)d(u2n,u2n−2)

≤ p1(γn)d(u2n−2,u2n−1)+ p2(γn)d(v2n−2,v2n−1)+q(γn)d(u2n−1,u2n−2)

+r(γn)d(u2n,u2n−1)+ t(γn)[d(u2n,u2n−1)+d(u2n−1,u2n−2)]

(22) d(u2n−1,u2n)≤
(p1 +q+ t)(γn)

1− (r+ t)(γn)
d(u2n−1,u2n−2)+

p2(γn)

1− (r+ t)(γn)
d(v2n−2,v2n−1)

and

(23)
(p1 +q+ t)(γn)

1− (r+ t)(γn)
+

p2(γn)

1− (r+ t)(γn)
≤ λ .

From the contractive condition

d( f (x2n,y2n),g(x2n−1,y2n−1))

≤ p1(δn)d(Sx2n,T x2n−1)+ p2(δn)d(Sy2n,Ty2n−1)

+q(δn)d( f (x2n,y2n),Sx2n)+ r(δn)d(g(x2n−1,y2n−1),T x2n−1)

+t(δn)[d( f (x2n,y2n),T x2n−1)+d(g(x2n−1,y2n−1),Sx2n)]

where δn = (x2n,y2n,x2n−1,y2n−1).

d(u2n,u2n+1) ≤ p1(δn)d(u2n,u2n−1)+ p2(δn)d(v2n,v2n−1)+q(δn)d(u2n+1,u2n)

+r(δn)d(u2n,u2n−1)+ t(δn)d(u2n+1,u2n−1)

≤ p1(δn)d(u2n,u2n−1)+ p2(δn)d(v2n,v2n−1)+q(δn)d(u2n+1,u2n)

+r(δn)d(u2n,u2n−1)+ t(δn)[d(u2n+1,u2n)+d(u2n,u2n−1)],

(24) d(u2n,u2n+1)≤
(p1 + r+ t)(δn)

1− (q+ t)(δn)
d(u2n−1,u2n)+

p2(δn)

1− (q+ t)(δn)
d(v2n,v2n−1)
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and

(25)
(p1 + r+ t)(δn)

1− (q+ t)(δn)
+

p2(δn)

1− (q+ t)(δn)
≤ λ .

Hence, from (22)-(25), ∀n ∈ N, ∃en, fn ≥ 0, such that

(26) d(un−1,un)≤ end(un−2,un−1)+ fnd(vn−2,vn−1), en + fn ≤ λ < 1.

Similarly, we have

(27) d(vn−1,vn)≤ e′nd(un−2,un−1)+ f ′nd(vn−2,vn−1), e′n + f ′n ≤ λ < 1.

The equations (20), (21), (26) and (27) yield the system

ūn+1 ≤ anūn +bnv̄n + cnw̄n +dnz̄n,

v̄n+1 ≤ a′nūn +b′nv̄n + c′nw̄n +d′nz̄n,

w̄n ≤ enw̄n−1 + fnz̄n−1,

z̄n ≤ e′nw̄n−1 + f ′nz̄n−1,

with c′n = dn = 0, an+bn+cn+dn ≤ λ , a′n+b′n+c′n+d′n ≤ λ , en+ fn ≤ λ , e′n+ f ′n ≤ λ , λ < 1,

where ūn = d(un−1,x), v̄n = d(v̄n−1,x), w̄n = d(un−1,un) and z̄n = d(vn−1,vn). From Lemma

1.8, we have that ūn, v̄n
�→ 0 and so, by implication {un} and {vn} converge both to x.

We have the following corollaries which extend the results of Abbas et al. [18] to four maps

with w-compatibility replaced with w*-compatibility thus improving their results.

Corollary 2.2. Let (X ,d) be a cone metric space, f : X ×X → X, g : X ×X → X, S : X → X

and T : X → X be four mappings such that f (X×X)⊂ T (X), g(X×X)⊂ S(X) and

(28) d( f (x,y),g(u,v))≤ h1U +h2V, h1 +h2 < 1,

where

(29)
U,V ∈ {d(Sx,Tu),d(Sy,T v),d( f (x,y),Sx),d(g(u,v),Tu),

1
2 [d( f (x,y),Tu)+d(g(u,v),Sx)]}

for all x,y,u,v ∈ X. If one of f (X ×X), g(X ×X), S(X) or T (X) is a complete subspace of

X, then { f ,S} and {g,T} have a unique coupled coincidence point in X. Moreover, if { f ,S}

and {g,T} are w*-compatible, then f , g, S and T have a unique coupled common fixed point
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(u,u) ∈ X×X and for every (x0,y0) ∈ X×X, the sequences {xn}, {yn} , {un} and {vn} defined

by

(30)



f (x2n−2,y2n−2) = T x2n−1 := u2n−1,

f (y2n−2,x2n−2) = Ty2n−1 := v2n−1,

g(x2n−1,y2n−1) = Sx2n := u2n,

g(y2n−1,x2n−1) = Sy2n := v2n,

converge each to u ∈ X.

Proof.

U,V ∈ {d(Sx,Tu),d(Sy,T v),d( f (x,y),Sx),d(g(u,v),Tu),
1
2 [d( f (x,y),Tu)+d(g(u,v),Sx)]}

implies that

h1U +h2V = p1(x,y,u,v)d(Sx,Tu)+ p2(x,y,u,v)d(Sy,T v)

+q(x,y,u,v)d( f (x,y),Sx)+ r(x,y,u,v)d(g(u,v),Tu)

+t(x,y,u,v)[d( f (x,y),Tu)+d(g(u,v),Sx)]

for all x,y,u,v ∈ X , where p1, p2,q,r : X4→{0,h1,h2} and t : X4→{0, h1
2 ,

h2
2 } are chosen such

that [(p1 + p2 +q+ r+2t)(x,y,u,v)] = h1 +h2 < 1.

It follows that f ,g,S and T satisfy the contractive condition of Theorem 3.1 , hence, they have

a unique common fixed point.

Corollary 2.3 Let (X ,d) be a cone metric space, f : X×X → X, g : X×X → X, S : X → X and

T : X → X be four mappings such that f (X×X)⊂ T (X), g(X×X)⊂ S(X) and

(31)
d( f (x,y),g(u,v)) ≤ p1d(Sx,Tu)+ p2d(Sy,T v)+qd( f (x,y),Sx)+ rd(g(u,v),Tu)

+t[d( f (x,y),Tu)+d(g(u,v),Sx)]

for all x,y,u,v ∈ X, where p1, p2,q,r, t ∈ [0,1) and p1 + p2 +q+ r+2t < 1.

If one of f (X×X), g(X×X), S(X) or T (X) is a complete subspace of X, then { f ,S} and {g,T}

have a unique coupled coincidence point in X.

Moreover, if { f ,S} and {g,T} are w*-compatible, then f , g, S and T have a unique coupled

common fixed point (u,u) ∈ X×X and for every (x0,y0) ∈ X×X, the sequences {un} and {vn}
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defined by

(32)



f (x2n−2,y2n−2) = T x2n−1 := u2n−1

f (y2n−2,x2n−2) = Ty2n−1 := v2n−1

g(x2n−1,y2n−1) = Sx2n := u2n

g(y2n−1,x2n−1) = Sy2n := v2n

converge each to u ∈ X.

A weaker version of this corollary was proved in [19] via product cone metric spaces.

Remark 2.4. (a) The substitutions made to obtain the existence results were also made by the

authors in [20] and [21] for two maps satisfying a less general contractive condition.

(b) The importance of the use of Lemma 1.8 should be stressed. The existence of a common

coupled fixed point of the four maps in Theorem 2.1 is guaranteed when the case x= y and u= v

is linked to Theorem 1.9.. However, such substitution restricts the iterative schemes considered

in (15) to lie in the main diagonal, from a starting point x0 ∈ X . Indeed, the sequences {un} and

{xn} defined by 
x0 ∈ X ,

f (x2n−2,x2n−2) = T x2n−1 := u2n−1,

g(x2n−1,x2n−1) = Sx2n := u2n,

would then converge each to x∗ ∈ X , where (x∗,x∗) is the common coupled fixed point. The use

of the lemma of convergence gives a higher degree of freedom to the iterative scheme and the

initial point (x0,y0). By the lemma, it is shown in the proof of Theorem 2.1 that the sequences

{un}, {vn}, {xn} and {yn} defined by

f (x2n−2,y2n−2) = T x2n−1 := u2n−1,

f (y2n−2,x2n−2) = Ty2n−1 := v2n−1,

g(x2n−1,y2n−1) = Sx2n := u2n,

g(y2n−1,x2n−1) = Sy2n := v2n,

where (x0,y0) is any element in X ×X , converge each to x∗ ∈ X , despite the fact that the se-

quences {(un,vn)} do not belong to the main diagonal.

The following example is given to stress the theorem and the remark.
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Example 2.5. Let E = R2, P = {(x,y) ∈ E : x,y ≥ 0}, X = R and d : X ×X → E defined

by d(x,y) = (|x− y|, |x− y|). Consider the maps f ,g : X × X → X and S,T : X → X de-

fined by f (x,y) = g(x,y) = x+2y
3 and S(x) = T (x) = 2x. These maps satisfy the conditions of

Theorem 3.1 with p1(x,y,u,v) = p2(x,y,u,v) = 1
3 and q(x,y,u,v) = r(x,y,u,v) = t(x,y,u,v) =

0. Their common coupled fixed point is (0,0). The sequences (15) which can be written

1
2u2n−1 = x2n−1 = 1

6 [x2n−2 +2y2n−2],

1
2v2n−1 = y2n−1 = 1

6 [2x2n−2 + y2n−2],

1
2u2n = x2n = 1

6 [x2n−1 +2y2n−1],

1
2v2n = y2n = 1

6 [2x2n−1 + y2n−1],

converges to (0,0) for any x0,y0 ∈ X .

A MATLAB script yields u26 = 0.0000 and v26 = 0.0001 for x0 = 41 and y0 = 7.
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