
Afrika Statistika
Vol. 16 (4), 2021, pages 2993 - 3007.
DOI: http://dx.doi.org/10.16929/as/2021.2993.192

Afrika Statistika

ISSN 2316-090X
A Log-Beta Rayleigh Lomax Regression
Model
Nofiu Idowu Badmus (1,∗), Mary Idowu Akinyemi (1) and Josephine Nneamaka
Onyeka-Ubaka (1)

(1) Department of Mathematics, University of Lagos, Akoka, Nigeria

Received on October 16, 2021; Accepted on November 20, 2021

Copyright © 2021, Afrika Statistika and The Statistics and Probability African Soci-
ety (SPAS). All rights reserved

Abstract. For the first time, a location-scale regression model based on the log-
arithm of an extended Raleigh Lomax distribution which has the ability to deal
and model of any survival data than classical regression model is introduced. We
obtain the estimate for the model parameters using the method of maximum like-
lihood by considering breast cancer data. In addition, normal probability plot of
the residual is used to detect the outliers and evaluate model assumptions. We use
a real data set to illustrate the performance of the new model, some of its sub-
models and classical models consider in the study. Also, we perform the statistics
AIC, BIC and CAIC to select the most appropriate model among those regression
models considered in the study.
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Resume (Abstract in French) Pour la première fois, un modèle location-scale
regression base sur une extension de la distribution de Raleigh Lomaz ayant la
capacité de modéliser tous les types de regression (classiques et non-classiques)
données de survie est proposé. Les estimations de paramètres sont faites et
appliquées aux données sur le cancer du sein. Avec des données réelles, le modèle
est evalué ainsi que certains de ses sous-modèles. Entre autres outils de décision,
les critères AIC, BIC ad CAIC pour la sélection de modèles. L’étude graphique
des résidus est utilisée pour détecter les valeurs aberrantes et pour évaluer les
nouvelles méthodes.
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1. Introduction

Classical distributions (Weibull, Rayleigh, Lomax, log-normal etc) do not have the
ability to capture the behavior of a lifetime data that exhibits excess skewness,
kurtosis and a bathtub-shaped failure rate curve. These classical distribu-
tions are only good in modelling monotone or unimodal failure rate functions.
Silva et al.(2009) stated in their work that distributions that exhibit bathtub-
shaped failure rate are usually complex and, at the same time difficult to model.
For this reason, there is need to propose/develop that can model this type of
excess skewness and kurtosis, and failure rate. Several distributions have been
introduced to model survival data, but a few number of regression models have
been proposed with this objective, among them, the log-generalized modified
Weibull model Ortega et al.(2009), the log-beta generalized half-normal regression
model Pescim et al.(2013), the log-exponentiated-Weibull regression model for
interval censored data was introduced by Hashimoto et al.(2010) and log-modified
Weibull Carrasco et al.(2008) regression models.

In this paper, we propose a new regression model using the logarithm of the
extended Rayleigh Lomax distribution by Kawsar et al.(2018) in a bid to model
certain real life phenomena. The modification of the existing distribution leads
to a location-scale regression model suitable for fitting censored survival times
with bathtub-shaped hazard rates referred to as the log- Beta Rayleigh Lomax
(LBRL ) regression model. In Section 2, we define the LBRL distribution and derive
its moments. We propose a LBRL regression model of location-scale form, obtain
the maximum likelihood estimates and provide normal probability plots of the
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residuals to detect the outliers in section 3. Also, we show in Section 4 that the
proposed model is more adequate to fit the breast cancer data analysis than
its sub-models and some classical regression models by checking the residual
plots for the models and discriminating between the models using three different
statistics. Section 5 ends with some concluding remarks.

2. The log- Beta Rayleigh Lomax distribution

In the recent past, many works have been done which extend both Rayleigh and
Lomax distribution, for instance: Weibull-Lomax (WL ) distribution introduced by
Tahir et al.(2010), Gumbel-Lomax (GL ) distribution proposed by Tahir et al.(2016),
Exponential Lomax (EL) distribution by El-Bassiouny et al.(2015), Exponentiated
Weibull Lomax (EWL ) distribution was initiated by Hassan and Abd-allah (2018),
the Beta-modified weighted Rayleigh (BMWR) distribution by Badmus et al.(2017),
the Gamma-Rayleigh (GR) distribution by Akarawak et al.(2017). The Rayleigh
Lomax (RL ) distribution with three parameters proposed by Kawsar et al.(2018)
based on the combination of Rayleigh distribution by Siddiqui (1962) and Lomax
distribution by Lomax (2018) which they intend to fit several kinds of survival data.

Here, we are going to present two important classes of distributions. First, we in-
troduce Beta Rayleigh Lomax (BRL ) distribution using the logit of beta function by
Jones (2004) on the Rayleigh Lomax law. The result gives the following non-negative
distribution with probability distribution function (pdf )

f(t) =

{
1− e−

α
2 (

θ
t+θ )

−2α}a−1 {
e−

α
2 (

θ
t+θ )

−2α}b−1

B(a, b)

× αλ

θ

(
θ

t+ θ

)−2α+1

e−
α
2 (

θ
t+θ )

−2α

1(t>0), (1)

where B(a, b) = (Γ(a)Γ(b)) /Γ(a+ b) is the beta function. We call as a Beta Rayleigh
Lomax (BRL ) distribution any probability law of pdf 1.

The parameters a and b govern the weight tails of the distribution, α and λ control
the shape of the distribution, while θ take cares of its scale. Furthermore, the
important characteristic of the new distribution is that it consists some known
special sub-models such as: Exponential Lomax distribution when a = b = 1 ,
Rayleigh distribution if a = b = θ = λ = 1, Lomax distribution as a = b = α = 1
and RL distribution if a = b = 1. The new distributions emanate from the propose
distribution are: Lehmann Rayleigh Lomax (LRL ) distribution when a = 1 and
exponentiated Rayleigh Lomax (ERL ) distribution if b = 1.

Secondly, we introduce the log-transform of the BRL to get the log-beta Rayleigh
Lomax (LBRL ) distribution Y = log T with T ∼ BRL. The paper mainly focuses of
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the second class, the LBRL distribution, which gives the solution of problmes we
cited above. Direct computation lead to the following facts about BRL ’s laws. The
reliability function of T is

R(t) = 1− ℓ{
1−e

−α
2 ( θ

t+θ )
−2α

}(a, b)

= 1− 1

B(a, b)

∫ 1−e
−α

2 ( θ
t+θ )

−2α

0

ka−1(1− k)
b−1

dk (2)

where, ℓx(a, b) = Bx(a, b)/B(a, b) is the incomplete beta function ratio and
Bx(a, b) =

∫ x

0
k(a−1)(1− k)

(b−1)
dk is the incomplete beta function. Silva et al.(2009).

Also, the hazard rate function of T is
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The pdf of T can be re-written the distribution in another Rayleigh version as
follows

f(y) = λ
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Then, for easy verification on the density function Y can be obtained by replacing
y = log(t) that is t = ey, θ =

1

σ
and µ = log(α) i.e α = eµ which becomes, for y ∈ R,

f(y; a, b, λ, µ, σ) =
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, (5)

where −∞ < µ <∞, σ > 0, λ > 0, a > 0 and b > 0. Therefore, Equation (5) is refer
to as the LBRL distribution, say Y ≈ LBRL(µ, σ, λ, a, b) where −∞ < µ <∞ is the
location parameter, σ > 0 is the scale parameter and λ > 0, a > 0 and b > 0 are
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shape parameters. Hence, the new LGBRL distribution contains some well-known
and unknown distributions as special sub-models. These are: log-Exponential
Lomax distribution when a = b = 1, log-Beta Rayleigh (LBR) distribution if
λ = 1, log-Beta Lomax (LBL ) distribution as µ = 1, log-Lomax (LL ) distribution if
a = b = µ = 1, log-Rayleigh Lomax (LRL ) distribution if a = b = 1, log-Rayleigh (LR)
distribution when a = b = λ = 1. The new distributions emanate from the propose
distribution are: log-Lehmann Rayleigh Lomax (LLRL ) distribution when a = 1
and if b = 1 we have log-exponentiated Rayleigh Lomax (LERL ) distribution.

Fig. 1. The LBRL density curves: (i) As some values of µ increasing and a increasing
with σ = 1, λ = 5 and b = 1.7. (ii) Also, for some values of σ increasing and a
decreasing with µ = 2.5 and λ = b = 2

The LBRL-reliability function is

R(y) = 1− ℓ{
1−exp(−2λexp( y−µ

σ ))

}(a, b), (6)

Furthermore, the random variable Z = (Y − µ)/σ has the following pdf

f(z) =

{
λ

σ
exp (z)− 2λ+ 1 (exp (z)) exp (−2λexp (z))

}
B(a, b)

× {1− exp (−2λexp (z))}a−1 {(−2λexp (z))}b−1
,−∞ < y <∞ (7)

We obtain two simple formulae for the distribution function (cdf) and density
function (pdf) of the LBRL distribution depending if the parameter b > 0 is real
non-integer or integer.
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Fig. 2. The LBRL density curves: (i) As some values of µ increasing and b decreas-
ing with σ = 1, λ = 5 and a = 1.7. (ii) Also, for some values of σ increasing and b
decreasing with µ = 2.5 and λ = a = 2

Theorem 1. Let Y ∼ LBRL(µ, σ, λ, a, b) with a > 0 and ¿
¯
0 being non-integers. Then,

we the following facts.
(1) Its cdf is given by
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where

Kj , w, r(a, b) =
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.

Proof of Theorem 1. Let us proceed by parts.

Proof of (i). By differentiating (8) under Theorem 1, yields
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The proof of Part (1) is finished. □

Proof of part (2). By using (9) in (10) for a > 0 real non-integer and its expand as:
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After some algebra, we obtain
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. The proof of Part (2) and of

the theorem is now complete. ■
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2.1. Properties of the LBRL distribution

Here, we present some properties of the standardized LBRL random variable de-
fined by Z = (Y − µ)/σ are studied and expressed in (7). The pdf of Z becomes

η(z;λ, a, b) =

{
λ

σ
exp (z)− 2λ+ 1 (exp (z)) exp (−2λexp (z))

}
B(a, b)

× {1− exp (−2λexp (z))]
a−1

[exp (−2λexp (z))}
b−1

,−∞ < y <∞. (14)

The associated cumulative distribution function (cdf ) is

Fz(Z) = 1− l{1−exp(−2λexp(z))}(a, b).

The condition a = b = 1 is associated with the standardized Rayleigh Lomax
distribution.
Hence, we expand the expression in (14) using binomial expansion;
Ortega et al.(2009). This gives

η(z;λ, a, b) =
1

B(a, b)

∞∑
i=0

(−1)i
(
b− 1
i

)
×

{
λ

σ
exp (z)− 2λ+ 1 (exp (z)) exp (−2λexp (z))

}
{1− exp (−2λexp (z))}a(i+1)−1

.(15)

Also, the density function da = (a− 1) [1− exp (−2λexp (z))] for greater than zero
yields Lehmann type II Rayleigh Lomax; and its corresponding cumulative function
is

D(z)
a = 1− {exp (−2λexp (z))}b

Fortunately, η(z;λ, a, b) =
∑∞

i=1 φida(i+1)(z) where the coefficients are

φi =

(−1)i
(
b− 1
i

)
B(a, b)a(j + 1)

.

The LBRL distribution function also can be written as a linear combination of LRL
densities when equating some parameters to 1 (one). Those distributions have
been written immediately after (5).
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2.2. Moments and Generating Function

We obtain the sth ordinary moment of the LBRL distribution (14) as follows:

µs
z = E(Z)s =

1

B(a, b)

∫ ∞

−∞
Zs

{
λ

σ
exp (z)− 2λ+ 1 (exp (z)) exp (−2λexp (z))

}
× {1− exp (−2λexp (z))}a−1{exp (−2λexp (z))}b−1

dz.

By expanding the binomial term and setting v = es , gives

µs
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(
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)∫ ∞

0

logvs

×
{{
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exp (v)− 2λ+ 1 (exp (v)) exp (−2λexp (v))
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v

}
dv.

l(s,(i+1)) =
∂

∂p

s [
(a(i+ 1))

−p
Γ(p)

]
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(see Pascoa et al.(2013)). Thus

µ
′

s =
1

B(a, b)

∞∑
i=0

(−1)i
(
b− 1
i

)
|s,(i+1). (16)

Equation (16) becomes the moments of the LBRL distribution. Wherefore, the
measures are being controlled by parameters a and b. In the same vein, the
moment generating function (mgf) of Z is given by

M(t) = E(etz).

It can be written from (14) as

µs
v =

1

B(a, b)

∞∑
i=0

(−1)i
(
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i

)∫ ∞

0

logV s

×
{{

λ

σ
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v
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and

M(t) =
Γ(t+ 1)

B(a, b)

∞∑
i=0

(−1)i
(
b− 1
i

)
[(a(i+ 1)− 1)]

−(t+1) (17)

Using differentiation method, moment (17)) can be derived from (14).

3. The Log-Beta Rayleigh Lomax Regression Model (LBRLRM )

Practically speaking, regression model consists of two different/kinds of variables
namely response y and explanatory x(s) variables. The explanatory variables
such as blood pressure, cancer, heart problem, weight and others affect lifetimes.
Therefore, parametric models have been used for estimating univariate models and
censored data regression problems are widely. The advantage is that, the paramet-
ric models always provide good fit to the lifetime data set and give more precise
estimates of the quantities of interest. Let x = (x1, ..., xp)

T be the explanatory vari-
able vector associated with the response variable yi = log(ti), that is, yi is the
logarithm of the survival time ti . Now, based on the LBRL distribution, a linear
regression model linking the response variable yi and the explanatory variable
vector xi can be defined by

yi = XT
i β + σzi, i = 1, 2, ..., n (18)

where the random error zi has density function (14) with parameters
β = (β1, ..., βp)

T , σ > 0, a > 0, b > 0 and λ > 0 are unknown parameters.,
and XT

i = (xi, · · · , xp) is the explanatory variable vector modelling the linear
predictor µi = XT

i β. The linear predictor vector µ = (µ1, · · · , µn)
T of the LBRL

regression model is written as µ = Xβ, where X = (x1, ..., xn)
T is a known model

matrix.

Hence, consider a sample (yi, xi), ..., (yn, xn) of n -independent observations,
where each random response is defined by yi = min{log(ti), log(ci)}. We assume
non-informative censoring such that the observed lifetimes and censoring times
are independent. Let F and C be the sets of individuals for which yi is the
log-lifetime or log-censoring, respectively. The log-likelihood function for the model
parameters γ = (λ, σ, βT )T follows from (14) and (18) as

l(γ) = −rlog [log(σ) + log{B(a, b)}]

{∑
i∈F

λ

σ
exp (zi)− 2

∑
i∈F

(λ+ 1) (exp (zi)) exp (−2λexp (zi))

}
+ (a− 1)

∑
i∈F

log [1− exp (−2λexp (zi))] + (b− 1)
∑
i∈F

log [exp (−2λexp (zi))]

+
∑
i∈C

log1− l{1−exp(−2λexp(zi))}(a, b), (19)
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where r is the number of uncensored observations (failures) and zi = (y −XT
i β).

The MLE γ̂ of the parameters vector γ = (a, b, λ, σ, βT )T of the LBRL regression
model can be obtained by maximizing the log-likelihood function in (19). The
computation process is easy and we used R programming language (maxLik)
to estimate γ̂. After Model (18) is fitted, the reliability function for Y say
P (Y ≤ y) = S(y; a, b, λ, σ, βT ) can be estimated as

S(y; â, b̂, λ̂, σ̂, β̂T ) = 1− l1−exp

−2λ̂exp

y −XT
i β̂

σ̂





(â, b̂). (20)

The asymptotic normality is a useful tool for testing goodness of fit of some sub-
models (known and unknown) and for comparing some special sub-models using
the likelihood ratio (LR) statistic. The LR statistic for testing the null hypothesis
H0 : γ1 = γ2 versus the alternative hypothesis H1 : γ1 ̸=γ2 is given by ψ = 2{l(γ̂) −
l(γ̆)} where γ̂ and γ̆ are both the estimate under null and alternative hypotheses,
respectively. The statistic ψ is asymptotically as (n→ ∞) distributed as χ2

q, where
q is the dimension of the subset of parameters γ1 of interest Silva et al.(2009).

3.1. Diagnostic Residual Plot

In regression model, it is very important to know the nature of the variables in
the model especially the response variable considering in the analysis and the
distribution must follow the distribution of the response variable. For example,
suppose the response variable is normal it will be normally distributed but in this
study, the response variable does not follow normal distribution therefore a more
robust distribution is required like LBRL distribution. Diagnostic residual plots
Figures 3 and 4 show the nature of the response variable consider in the study.

4. Breast Cancer Survival Data

We put in practice the proposed methodology by using breast cancer data set refer-
ring to time spent (t) and the explanatory variables : age x1, occupation x2, marital
status x3, event status x4 and type of treatment x5. The data contain n = 623 ob-
servations and follow model:

yi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + σzi, i = 1, 2, ..., 623 (21)

where, • y = time spent by each patient

• x1 = Age (1 if 19 – 28, 2 if 29 - 38 8 if 89 – 98)
• x2 = Occupation (1 if Accountant, 2 if Administration 99 if Unknown)
• x3 = Marital Status (1 if single, 2 if married and 3 if divorced)
• x4 = Event (0 if dead, 1 if alive and 9 if unknown)
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Fig. 3. Diagnostic Plots: The line Scatter, Boxplot, Histogram and Density plot of
Response Variable

• x5 = Types of Treatment (0 if none, 1 if surgery, 2 if radiotherapy 5 if unknown)
and βs are regression parameters

4.1. Results

We fitted the BRLRM, LRLRM, ERLRM, BRRM. BLRM and RLRM regression models
to breast cancer data. Table 1 contains the estimates, Standard Errors (given in
parenthesis) and the probability values [given in braces] of the parameters for
regression models. Then, selection of the better model among those considered
in the study based on the values of the statistics (model selection criteria) AIC,
BIC and CAIC. The statistic gives the values of AIC, BIC and CAIC in Table 2
below. The values of the BRLRM are the smallest values compare to other models
and these statistics indicates that the ERL regression model is more adequate to
explain the data set than other models. In addition, we carry out the LR test of
non-nested models and the generalized LR test statistics gives TRLR,NN = 206.720.
Therefore, TRLR,NN > 1.96, it implies that this fall in the rejection region and we
reject at significance level 0.05 the null hypothesis of equivalence of the BRLRM
and RLRM models. Fortunately, the value of this statistic is in line with the previ-
ous result and helps in selecting the BRLRM regression model Silva et al.(2009).

The estimates of the regression parameters are so close for the models but their
standard errors are different., and the conclusions may be different for the mod-
els. Also, the residual plots are presented in order to detect possible outliers in
the response variable observations. Figure 4 shows the plots of the residuals, con-
tains residual vs fitted, Normal QQ plots, scale-location and residual vs leverage of
normal plots. Meanwhile, the fitted BRLRM model is stated as
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Table 1. MLE ’s of the parameters from the baseline, proposed and special cases
of the proposed distributions fitted to the breast cancer patient data set, the cor-
responding Estimates, Standard Errors (given in parenthesis) and the probability
values [given in braces]. Abbreviation: p/d (Parameter/distribution)

p/d BRLRM LRLRM ERLRM BRRM BLRM RLRM
0.200 2.500 2.500 2.500

a (0.009) 1 (0.138) (0.133) (0.124) 1
[ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***]

1.500 2.500 4.500 4.500
b (0.118) (0.127) 1 (0.253) (0.241) 1

[ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***]
0.500 1.500 1.500 1.500 1.500

θ (0.021) (0.073) (0.078) (0.085) 1 (0.073)
[ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***]

1.500 0.200 1.200 1.200 1.200
λ (0.002) (0.008) (0.009) 1 (0.002) (0.008)

[ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***]
0.300 0.600 0.600 0.800 0.800 0.600

β0 (0.172) (2.112) (1.113) (1.337) (0.134) (2.112)
[0.081] [0.776] [0.590] [0.550] [ <2.2e-09***] [0.776]
1.300 1.200 1.200 1.200 1.200 1.200

β1 (0.013) (NA) (NA) (1.443) (0.637) (NA)
[ <2e-16***] [NA] [NA] [0.405] [0.060] [NA]

1.300 1.500 1.800 1.500 1.500 1.500
β2 (0.023) (0.029) (0.022) (0.087) (0.038) (0.029)

[ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***]
1.200 0.200 0.200 0.200 0.200 0.200

β3 (3.479) (2.042) (NA) (1.127) (0.911) (2.042)
[0.730] [0.922] [NA] [0.859] [0.826] [0.922]
0.500 0.500 0.500 0.800 0.500 0.500

β4 (0.019) (0.008) (0.004) (0.001) (0.006) (0.008)
[ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***] [ <2e-16***]

1.500 2.500 1.500 1.500 0.500 2.500
β5 (0.532) (0.102) (0.590) (0.020) (0.372) (0.102)

[0.500] [ <2e-16***] [0.011] [ <2e-16***] [0.180] [ <2e-16***]

Timespent(y) = 0.300 + 1.300(Age) + 1.300(Occupation)

+ 1.200(Marital − Status) + 0.500(Event) + 1.500(Types) (22)

5. Conclusion

In the study, we properly derived a new distribution using the transformation
method on Rayleigh Lomax introduced by Kawsar et al.(2018) to what we called
log-Beta Rayleigh Lomax distribution, which is able to accommodate lifetime data
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Table 2. The log-likelihood and model selection criteria for the models

Model -2Log-lik AIC BIC CAIC
BRLRM 289.110* 600.220* 649.000* 650.000*
LRLRM 386.620 793.240 837.586 838.586
ERLRM 381.290 782.580 826.926 827.926
BRRM 470.640 961.280 1005.625 1006.625
BLRM 359.590 739.180 783.526 784.526
RLRM 392.470 802.940 842.851 843.851

Fig. 4. Residual Plots: Residual vs Fitted, Normal QQ, Scale-Location and Residual
vs Leverage of Response Variable

that skewed in nature. Some of its properties are obtained such as reliability
function, binomial expansion, moment and moment generating function even
transformed to model called the beta Rayleigh Lomax regression model and so on.
Based on the new distribution, we develop a BRL regression model to compete
with known and unknown regression models like BRLRM, ERLRM, BRRM. BLRM
and (RLRM, Silva et al.(2009)). A breast cancer real data set is analyzed to show
the performance of the proposed regression model. We even show that the BRL
regression model has better performance than other regression models ERLRM,
BRRM. BLRM and RLRM for these data.
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