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Abstract:  
Remote sensing data is another possible option for mapping chlorophyll-a (Chl-a) present in all 
phytoplankton species. This study estimates chlorophyll-a concentration in Lagos Lagoon using Landsat 7 
(ETM+) and Landsat 8 (OLI) data. Landsat data were first geometrically corrected. The techniques used 
were band rationing and regression modelling. The brightness values were converted to reflectance 
through the radiometric correction process, while the regression models, logarithmically transformed 
chlorophyll-a was used as the dependent variable. The single bands, band ratios and logarithmically 
transformed band ratios were used as the independent variables. Subsequently, the R2 values were 
computed and calculated using the results generated from regression models. The Chl-a concentration 
generated showed reasonable results but the concentrations across the study lagoon was impacted by the 
ocean current with distance from Atlantic Ocean. The study concluded that the Landsat 7 and 8 images 
were effective in estimating chl-a concentration and producing chl-a spatio-temporal map.  
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Introduction 
Photosynthesis in green plants including algae is 
the critical process in which the energy from 
sunlight is used to produce life-sustaining oxygen; 
it is brought about by chlorophyll ‘a’ which is the 
primary molecule. Algal communities possess 
many attributes as biological indicators of spatial 

and temporal environmental changes (Wan-Omar, 

2010; Stevenson, 2014, Wehr et al., 2015; Ezat, et 

al., 2016; Friederike et al., 2016) and 
phytoplankton can be used as an indicator 
organism for the health of a particular body of 
water while monitoring chlorophyll ‘a’ levels 
which is a direct way of tracking algal growth.  
Measuring chlorophyll concentration is also a step 
in the process of monitoring nuisance algal blooms 
that may influence the taste and odor of drinking 
water (Kudela et al., 2015; Anderson-Abbs et al., 
2016; Otten et al., 2016). These blooms may 
actually create conditions that are toxic to fish, 
wildlife, livestock, and humans. Thus, chlorophyll 
measurement can be utilized as an indirect 
indicator of nutrient levels. Surface waters that 
have high chlorophyll conditions are typically high 

in nutrients, generally phosphorus and nitrogen. 
These nutrients cause the algae to grow or bloom.  
 
According to Hestir et al. (2015), freshwater 
ecosystems underpin global water and food 
security, yet are some of the most endangered 
ecosystems in the world because they are 
particularly vulnerable to land management change 
and climate variability. It is widely noted that, 
surface freshwater ecosystem are among the most 
anthropogenically modified ecosystems on earth 
and are exceptionally vulnerable to climate change 
(Woodward et al., 2010; Carpenter et al. 2011; Xia 
et al., 2016). The lack of spatio - temporally 
representative water quality data to monitor these 
activities which can damage the species diversity 
and undermine the ecological stability has become 
a problem in many water quality monitoring 
programs. For instance, land-based runoff into 
Lagos lagoon resulting from anthropogenic 
eutrophication and human activities have remained 
the most common ecological problems about 
coastal water and therefore enrich water bodies 
with nutrients, which often degrade the water 
quality and at the same time destroy water 
ecosystem (Lohrenz et al., 1999; Kim and 
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Montagna, 2009; Arismendez et al., 2009; Novoa 
et al., 2012; Oribhabor, 2016). These ecological 
problems intensify the pollutant effects of the 
quality of the water and the impacts on human 
when used for domestic purposes. The pollutant 
loading into the Lagos lagoon is mainly from non-
point source which is difficult to measure and 
quantify using traditional water quality 
measurement methods. In particular, eutrophic 
conditions have become a recurring threat to 
coastal waters in the Lagos lagoon, largely owing 
to human land use and nutrient loading (His et al., 
1999; Vandeweerd, 2006; Solidoro et al., 2010; 
Burkett, and Davidson, 2012; Oribhabor, 2016; 
Osunla and Okoh 2017). These anthropogenic 
impacts, combined with projected changes in 
climate, may have significant impacts upon the 
health and characteristics of lagoon ecosystems 
along the Lagos coast. Even when eutrophic 
conditions are not prevalent, primary producers 
form the base of the food web and changes in 
abundance result in altered productivity and 
biomass at higher trophic levels (Kim and 
Montagna, 2009; Alberti et al., 2017; Ullah, et al., 
2018). Given the importance of primary 
productivity to lagoon ecosystems, it is thus 
important to understand what the controlling 
factors are and to monitor current and past 
concentrations. Thus, there is the need to determine 
methods to retrieve water quality parameters 
accurately using satellite estimates. 
 
Yang, 2005 and Hestir et al. (2015) stated that the 
potential of satellite remote sensing for freshwater 
inventory and monitoring has long been recognized 
by the scientific community and found widespread 
application, especially in marine and aquatic 
studies. Optical satellite datasets have been used to 
detect freshwater systems for decades however 
traditionally, satellite remote sensing of freshwater 
systems has been limited by sensor technology as 
well as its current and past missions have not 
provided the measurement resolutions needed to 
fully resolve freshwater ecosystem properties and 
processes (Hestir et al. 2015; Kudela et al., 2015).  
 
Nevertheless, integration of earth observation 
products derived from satellite imageries that may 
improve water quality monitoring is one of the 
feasible methods (Vignolo et al., 2006; 
Vandeweerd, 2006; Guzinski et al., 2014). With an 
improvement in sensor capabilities over the years, 
the use of earth observation products in monitoring 
water quality has become an increasingly popular 
and promising technique as well as a major 
component that can now accurately estimate water 
quality variables (Harkvoort et al., 2006; Barrett 

and Frazier, 2016; Vihervaara et al., 2017; Zheng 
and DiGiacomo, 2017). This is because of lack of 
comprehensive and reliable in-situ datasets 
generated from the inadequacies of traditional 
methods. The earth observation (satellite imagery) 
data allows for synoptic estimates over large areas 
including water quality in remote and inaccessible 
areas as well as estimation of historical water 
quality when laboratory and in situ measurements 
are not performed.  

 

Studies by Kishino et al., (2005), Werdell et al., 
(2005) and Gholizadeh et al., (2016) demonstrated 
the relationship between optical properties 
(reflectance) of water to other water parameters’ 
properties such as suspended sediments, 
chlorophyll concentrations, dissolved organic 
matter, pigment load, temperature, Secchi disc 
depth and other laboratory based water quality 
results. Satellites sensors can measure the amount 
of solar radiation at various wavelengths reflected 
by surface water, which can be compared to water 
quality parameters for instance, total suspended 
solids which constitutes an alternative means of 
estimating water quality. 
 
 Remote sensing therefore, offers a credible means 
of estimating water quality measurement. In a 
comparative study to assess the ability of satellite 
based sensors to monitor suspended sediment 
concentration, Secchi disc depth, and turbidity, it 
was discovered that predictions based on optical 
measures of water quality are slightly better when 
using earth observation data (Harrington Jr et al., 
1972; Hua-Dong 2017). In addition, apart from 
extremely demanding time and capital investments 
of traditional methods, its monitoring also requires 
sequential laboratory and unreliable in situ 
measurements and analysis (Wang et al., 2004; Al-
Fahdawi et al., 2015).   
 
Nonetheless, remote sensing application is limited 
to its ability to distinguish among the various water 
constituents; the problem of depth which is limited 
to surface, uncontrollable and varies with water 
clarity, and finally, the spatial and temporal 
resolution could be inadequate and difficult to 
control. Since conventional and satellite estimates 
approaches have their merit and demerit, this study 
uses satellite imagery to extrapolate and 
complement ground measurements to areas and 
times with little or no coverage. This will reduce 
the number of ground samples and increases the 
spatial and temporal coverage of the assessment.  
 
It is based on the aforementioned that this study 
aims at assessing Chlorophyll-a concentrations in 
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the Lagos Lagoon using satellite data (Landsat-7 
ETM+ and Landsat-8 OLI/TIRS) and field 
observation / laboratory methods. 
 

The Study Area 
The Lagos Lagoon is a lagoon sharing it name with 
the city of Lagos, Nigeria (the second fastest 
growing city in Africa and the seventh fastest in 
the world). Lagos lagoon cuts across the southern 
part of the Lagos metropolis and empties into the 
Atlantic Ocean via Lagos Harbour, a main channel 
through the heart of the city – 0.5km to 1km wide 
and 10 km long in the southwest of Lagos State. It 
lies within longitudes 6°25 and 6°43E and latitudes 
3°22 and 3°40N, and covers an area of about 
589.sqkm (Figure 1). The lagoon provides places 

of abode and recreation, means of livelihood and 
transport, a dumpsite for residential and industrial 
discharge and a natural shock absorber to balance 
forces within the natural ecological system.  The 
untreated domestic and industrial wastes from the 
Metropolitan Lagos are discharge into the Lagos 
lagoon through the following 13 points (Ibeshe, 
Egbin, Oworoshoki, Makoko, Okobaba, University 
of Lagos (UNILAG) front, Iddo, Ijora, Apapa, Five 
Cowries Creek, Commodore Channel, and Tincan 
Creek) of which the main 7 (Ibeshe, Egbin, 
Oworoshoki, University of Lagos-UNILAG front, 
Ijora, Five Cowries Creek, and Commodore 
Channel) form the focus of the study and sampling 
points (Figure 1). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
             Figure 1: Lagos Lagoon showing sampling points 
 Source: GIS Lab, Department of Geography, University of Lagos       

 

 

 

Methodology 

Estimation of chlorophyll-a from the 

laboratory 
Chlorophyll ‘a’ was determined using a 
Fluorometer equipped with filters for light 

emission and excitation (Golterman, 1975). Water 

sample measured 200ml was filtered through a 
0.45µm fibre membrane filter, after which the 
residue on the filter was transferred to a tissue 

blender, covered with 3ml of 90% aqueous acetone 
and macerated for 1min. the sample was then 
transferred to a centrifuge tube, capped and 
allowed to stand for 2hr in the dark at 4˚C (in a 
refrigerator). Thereafter, it was centrifuged at 
5000rpm for 20mins and the supernatant was 
decanted. Volume left after decanting was noted. 
Different readings were taken from the 
Fluorometer (which had been pre-calibrated with 2, 
5, 10 and 20µg standard chlorophyll solutions) at 
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×1, ×3, × 10, and × 30 sensitivity settings and 
noted. The calibration factors to convert 
fluorometric reading for each sensitivity to 
concentration of chlorophyll-a was derived as 
follows: 
 Fs = Ca 
 Rs ………………….  Equation 1 
 

Where;  

Fs = Calibration factor sensitivity settings 

Rs = Fluorometer reading for sensitivity setting 

Ca = Concentration of chlorophyll-a 

 

Image data processing 
In this study, the Landsat 7 ETM+ and Landsat 8 
Operational Land Imager (OLI) of paths and rows 
191 and 055/056 covering Lagos Lagoon were 
used. 
 
Landsat-7 ETM+ image is superior to its 
predecessors (e.g. Landsat -5), with significant 
improvement of on-flight geometric and 5% 
absolute radiometric calibration, and consist of 
improved panchromatic band with 15m spatial 
resolution (band 8), visible (reflected light) bands 
in the spectrum of blue, green, red, near-infrared 
(NIR); mid-infrared (MIR) with 30m spatial 
resolution (bands 1-5, 7), and a 60m thermal 
infrared (band 6) spatial resolution.   
 
Landsat 8 Operational Land Imager (OLI) and 
Thermal Infrared Sensor (TIRS) images consist of 
nine spectral bands with a spatial resolution of 30 
meters for Bands 1 to 7 and 9. The resolution for 
Band 8 (panchromatic) is 15 meters. In addition, it 
also has two Thermal IR bands with a spatial 
resolution of 100m (later resampled into 30 m). 
Since the spectral bands of Landsat ETM are very 
similar, this study used similar methods for of 2007 
and 2010 imageries. Using the image metadata, the 
radiometric calibration was conducted to convert 
digital numbers into top-of-atmosphere radiance 
(Watanabe et al., 2015; Center for Earth 
Observation, 2016). The surface reflectance 
retrieval was  accomplished using the Fast Line-of-
sight Atmospheric Analysis of Spectral 
Hypercubes (FLAASH), an atmospheric correction 
module, implemented in the ENVI software. This 
tool adopted the MODerate resolution atmospheric 
TRANsmission (MODTRAN4), an atmospheric 
radioactive transfer code (Richter, 1996; 
Atmospheric Correction Module, 2009; Liu et al., 
2003; Fernanda et al., 2015; Center for Earth 
Observation, 2016; Ayeni and Adesalu, 2018) 
 
Image preprocessing and subset: The Landsat 7 
and 8 images were imported into the ArcGIS 

environment and a shape file covering the Lagos 
lagoon was superimposed on the images and used 
to extract the Region of interest (ROI). The 
extracted images were then stretched using the 
histogram equalization technique and filtered to 
remove haze, cloud cover and noise using the 
Quick atmospheric correction tool in Envi 5.0 
software (Richter, 1996; Gitelson et al., 2003; 
Mathias et al., 2007; Ayeni and Adesalu, 2018). 
 
Landsat ETM+ data pre-processing followed 
standard specification including radiometric and 
geometric calibration and terrain correction (Irish 

2000; Yang et al., 2003); conversion from digital 

number to at satellite reflectance (for six 
reflectance bands) or at satellite radiance 
temperature (the thermal band), and referencing to 
the National Albers equal-area map projection and 
resampling using cubic convolution to 30m 
resolution. After initial pre-processing, tasselled-
cap brightness, greenness, and wetness were 
derived using at satellite reflectance-based 
coefficients (Huang et al., 2002; Yang et al., 2003) 

 

Estimation of chlorophyll-a using Landsat 

satellite imageries: Two different Landsat 7 
images with acquisition dates of November 08 
2007 & November 06 2010 and Landsat 8 with 
acquisition dates of November 11 2015 image used 

for this study were acquired from USGS Earth 

Explorer. The data were in GeoTiff format with 
16bit radiometric resolution (ranges from 0-
65535).  
 
Landsat 7: The band ratios among the first four 
ETM+ bands as proposed and tested in the 
literature were computed (Gitelson et al., 1996; 
Chavez1996; Baban 1997, Woodruff et al., 1999, 
Braga et al., 2003; Jensen 2005; Ayeni and 
Adesalu, 2018). In the regression models 
established, the logarithmically transformed 
chlorophyll-a concentration was used as a 
dependent variable (Chang et al., 2004). The three 
types of independent variables were tested: 
reflectance of a single band, logarithmically 
transformed band ratios, and ratios of 
logarithmically transformed single band. 
Subsequently, R2 values were computed and 
calculated using the results generated from 

regression models (Han and Jordan, 2005). The 

results were used to generate maps of chlorophyll-a 
distribution and concentration in Lagos Lagoon. 
 

 

 

Conversion of Landsat 8 DN values to top of 
atmosphere (TOA) reflectance: The Landsat 8 
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DN was then converted to TOA reflectance using 
the Landsat 8 processing toolbox of ArcGIS 10.3.  
Radiometric calibration and atmospheric correction 
for Landsat 8 required to achieve the purpose of 
chlorophyll a concentration retrieval (Chengkun 
and Min, 2015; Ayeni and Adesalu, 2018) were 
conducted using the ENVI software in for this 
study. After radiometric calibration, the un-
calibrated digital numbers (DN) were converted to 
radiance values through the formula: 
 

Lλ= MLQcal +Ai , ………… Equation 2 
 

where  

Lλ is the top-of-atmosphere (TOA) spectral 

radiance, ML is band specific multiplicative 

rescaling factor from the metadata, Ai is the 

band specific additive rescaling factor from the 

metadata, and then the dimensionless top-of-

atmosphere reflectance ρTOA can be calculated 

as: 

 

 

 

… Equation 3 
 

Where  

Lλ is the spectral radiance at the sensor, d is 

the Earth-sun distance in astronomical units. 

ESUN is the mean solar exoatmospheric 

irradiance for each band and θcos is the 

solar zenith angle in degrees and all the 

parameters can be acquired in the header 

files (Chengkun and Min, 2015).  

 
Band Ratio using band 4 and band 5 reflectance: 
The reflectance band 4 (NIR) and band 5 (MIR) 
were divided to correct for atmospheric distortions 
in the images and to obtain a band ratio of the both 
images.  
Estimation of chl-a content: The band ratio 
(3_4.tif) was then divided by π to obtain the 
chlorophyll-a content using the raster calculator in 
ArcGIS and the regression method. The FLAASH 
module subsequently outputs a bottom-of-
atmosphere reflectance value for each pixel and an 
average scene visibility and water amount were 
therefore estimated (Tebbs et al., 2013; Ayeni and 
Adesalu, 2018). The images used in this study 
were processed with FLAASH atmospheric 
correction which produced Landsat image 
individual bands with reflectance values (Ayeni 
and Adesalu, 2018). 
 

Results and Discussions 
 
Landsat 7 and 8 images were used to study Lagos 
lagoon chl-a concentration for 2007, 2010, and 
2015. Their results showed that the images spatial 
resolution and signal noise ratio was suitable to 
study the Lagoon chl-a concentration. The findings 
of the analysis are shown in Table 1 and Figures 2 
– 5 (Ayeni and Adesalu, 2018). 

 

 

 

Table 1: Remote sensing  and Laboratory estimation of Chl-a. 
 

Locations’ information Landsat Imageries 

(µg/l) 

Laboratory 

(µg/l) 

Latitude Longitude Locations 2007 2010 2015 2015 

6o25’14.5’’ 3o24’25.7’’ Commodore Channel 0.45 0.48 0.25 0.32 

6o26’17.4’’ 3o23’48.0’’ Five Cowries Creek 0.51 0.32 0.24 0.44 

6o27’54.0’’ 3o22’37.3’’ Ijora 0.32 0.32 0.23 0.22 

6o30’37.5’’ 3o24’14.1’’ Unilag Water Front 0.24 0.32 0.20 0.014 

6o32’54.0’’ 3o24’24.6’’ Oworonshoki 0.21 0.21 0.19 0.02 

6o’32’48.9’’ 3o28’36.1’’ Ibeshe 0.35 0.32 0.23 0.16 

6o25’37.8’’ 3o35’55.1 Egbin 0.33 0.29 0.21 0.13 
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       Fig. 2: Comparison of Chl-a estimation of 2007, 2010 & 2015 Landsat data  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Fig. 3: Chlorophyll-a distribution in the Lagos Lagoon, 2007 

 
 

 

 

 

 

 

 

 

 

 
 
      Fig. 4: Chlorophyll-a distribution in the Lagos Lagoon, 2010 
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          Fig. 5: Chlorophyll-a distribution in the Lagos Lagoon, 2015 
 
 
 The results revealed that the concentration of 
chlorophyll-a was highest at the Five Cowries 
Creek in 2007 and Commodore channel in 2010 
and 2015. The lowest concentration of Chlorophyll 
a was observed at Oworonshoki for the whole 
period. The inter-annual variabilities of 
chlorophyll-a in Lagos Lagoon between 2007 and 
2015 are shown in Table 1 and Figures 2 – 5. 
Concentrations decrease predominantly with 
distance from Lagoon to Atlantic Ocean. These 
findings may indicate constant yearly patterns of 
chlorophyll-a distribution, even though data from 
the rainy season are not included in this study. The 
results of chlorophyll-a estimation from the 
Landsat 7 and 8 revealed that there was correlation 
with laboratory result of 2015 with r2-value of 0.79 
(significant at p < 0.05). This indicates that the 
Landsat and laboratory results generated for Lagos 
Lagoon were positively related.  
  
The highest value of Chlorophyll-a observed at the 
Five Cowries Creek in 2007 and Commodore 
channel in 2010 and 2015 could probably due to 
their closeness to Lagos harbour which eventually 
showed in the depth of the lagoon (Adesalu et al., 
2010; Nwankwo et al., 2012). In this case, there 
will be less mixing of bottom sediments which 
aggravate turbidity and eventually affect the rate of 
light penetration for photosynthesis to take place 
(Adrie et al., 2008; Pedersen et al., 2013). The 
lowest concentration of Chlorophyll-a was 
observed at Oworonshoki for the whole period and 
this may be attributed to the fact that Oworonsoki 
and other locations (Ijora, Unilag Water Front, 

Ibeshe, and Egbin) are shallow water body which 
allow the mixture of the bottom sediments 
(Zakonnov et al., 2007; Adrie et al., 2008; 
Kogelbauer and Loiskandl, 2015; Mimier and 
Żbikowski, 2016). In addition, most of the 
domestic wastes from settlements around these 
locations find their way directly into the water 
body thereby increasing the surface water turbidity 
and decreasing the light penetration which then 
resulted in low photosynthesis rate (Nwankwo and 
Akinsoji, 1989; Ajao and Fagade, 1991; Adesalu et 

al., 2010; Nwankwo et al., 2013; Uwadiae, 2016). 
Considering the fact that Lagos lagoon is used for 
so many things in which transportation of man and 
goods is the most common, this can also bring 
about the mixture of the bottom sediment due to 
the shallowness of these parts of the lagoon 

(Nwankwo et al., 2013). 

 
It should be noted that the effects of large amounts 
of suspended sediment or coloured dissolved 
organic matter (CDOM) on the remotely sensed 
data in these areas were not considered in this 
study. For detail understanding of the Lagos 
Lagoon chlorophyll-a concentration and 
distribution pattern for various years, data from the 
rainy season may be needed but unfortunately the 
Landsat data for rainy season for the study region 
are always hindered with cloud cover. 
Furthermore, errors may originate from haze and 
cloud during the rainy season which may shadow 
parts of the lagoon (Liu et al., 2003; Sass, et al., 
2007). Increased knowledge on the Lagos Lagoon 
temporal chlorophyll-a distribution may help for an 
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improved description of the main features of 
annual nutrient cycling in the Lagoon. The study 
finally observed the coastal waters of the study 
area have a high trend of eutrophication during dry 
season but appear to be normal during rain. Also, 
the effect of ocean current was noted to have had 
impact on Chl -a distribution.  
 

Conclusion 

Chlorophyll-a is an indicator of the abundance of 
phytoplankton, which make an important 
contribution to overall primary productivity of 
coastal water bodies. The in-situ results used in this 
study were limited by spatio-temporal samples 
sizes. As a result, using remote sensing techniques 
to estimate and map chlorophyll-a concentration is 
quite significant for improving the monitoring and 
assessment of water quality in water bodies. This 
study estimates and map Chl-a concentration using 
Landsat ETM and OLI images with linear 
regression methods. The result of OLI 2015 
showed high accuracy when comparing with the 

in-situ measurement of December 2015. The 
distribution map of Chl -a concentration could be 
useful in analysing the Chl-a source, as well as the 
transport processes. It is therefore concluded that 
as Lagos is continuously under the influence of 
rapid economic development and pressures on 
aquatic resources continue to increase, future 
monitoring of eutrophication trends of Lagos 
Lagoon should continue to be cause of concern to 
researchers and more effort should be towards 
analysing of spectral characteristic and the water 
quality parameters for future comprehensive 
sampling examination. 
 
The one season and 6 sampling stations of in-situ is 
the limitation to this study while the spectral 
resolution of Landsat 7 ETM+ is relatively low in 
estimating chlorophyll-a compared Landsat 8 OLI. 
Nevertheless, the estimation from the ETM+, OLI 
and in-situ are comparable and justifiable for real 
time chlorophyll-a assessment and mapping.  
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