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. The steady-state two-dimensional problem bf combined free and forced

h ¥
o

3
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laminar convection with upward flow in inclineL rectangular channels heated '

Ve
Ty T P

i L'
+

from below and cooled from above, has been investigated by numerical,, para-
: i

T oz

meter perturbation and experimental methods. e results ind:icate that

4

for air (Pr = 0.73), maximum heat transfer rates occur at the hotwall for

A . . o . i
inclinations between 30° and 60° to the horizontal. In addition, the ’
[}
perturbation analysis predicts the occurence of maximum bulk temperatures '

and minimum heat transfer rates at the cold wall |{for the same range of §

inclinations to the horizontal.

-

For the two cases of thermal boundary condit}ons.considered,‘the
maximum mean hot wall Nusselt numbers and the maximum bulk temperature
f¥QHithe perturbation analysis together with their torresponding optimum T
L v

inclinations in radians, appear to obey the following power laws,
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cold wall temperature.
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‘NOMENCLATURE
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FE ‘ de
Ly A, Dimensionless mean longitudinal temperature gradient, —
| : i : * , , . R , dTh
| ; : A, Dimensional longitudinal hot wall temperature gradient, o
- ;T“ . Gr
3 Ar, Archimedes number, 5
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i_ | Cp, Specific heat of fluid at constant pressure
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I
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Heat transfer coefficient, enthalpy
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,g K Thermal conductivity of fluid
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A i
L

INTRODUCTION \

The analys€s of flows with heat transfer in channels have been b i

restricted mostly to fully developed regions. This is usually done to :

-

reduce the complexity of the mathematical model of the physical problzﬁﬂ
The formulations usually start by considering three-dimensibnal thro&gh*\
flows bounded by a continuous rigid boundary subject to given thermal
conditions. By making plausible assumptions which conserve the physics
of the problem a set of governing equations are obtained. The analyses_
then proceed by considering remote sections from the inlet. At such' . ¥
sections the dependent space variables are assumed inva}iant with the '™
predominant direction of flow. The latter assumption further simplifies
the governing equations by reducing the problem to a pwo-dimensi;nalfonef :
Using an appropriate set of normalisation variables, the governing equationé
are reduced to izzé;?non—dimensional forms, resulting in the emergence of
known non<dimensional parameters. Tﬂese eguations are then solved by
gitlier a ﬁumerical scheme or any other suitable gimpQlytical method

for the prescribed boundary conditionms. : ' -

A numerical study of fully developed combined free aﬁd‘for;ed - o
laminar convection in inclified rectangular channels under the thermal
boundary conditions of axially uniform wall heat flux was reportéd by
Ou et, al:. {1]. The improved formulation used by these authors redefineé
the Reynolds and Rayleigh numbers in terms of the angle of inclination
‘to the horizontal, Because of the introduction of these modified

non-dimensional parameters, their formulation excludes the horizontal

case as a limiting orientation, Cheng and Hwang { 2] presented .numerical
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. . : .
results for fully developed combined free and forced laminar convection

e
Fgin

5 i &

|
in horizontal channels under the thermal boundary conditions of axially

g 1
i

Ry

!
uniform wall heatflux and peripherally uniform wall temperature,
~
and Hong |

Famn

|
Cheng

|
{3] reported a numerical study using a combination of bodndary

It RS
K

\
« . . . . . . i
vorticity and line iterative methods to determine free convection effects

. i

on fully developed laminar upward flow in inclined tubes with the angle
of inclination appearing explicitly in their formulation, The work of
Ozoe et. al, [4], showed the influence of inclination angle on heat !

|

transfer rates in inclined square channels heated isothermally from H
b

below and similarly cooled from above. The other pair of vertical
bounding sides were kept under adiabatic conditions. All the above

- i
s

it e

references were restricted to fully developed regimes where rigid '\
’ I,

. . . . . ‘. ‘
boundaries were considered as a contfinuous streamline to which a 51ng1q
value may be ascribed. \
!

1

:

5 g el

-
-

The present analyses pertain to the problem of combined free and

-
i
i
7

forced laminar convection in inclined rectangular channels heated from

———

below and cooled from above., The rigid boundaries involved are two

parallel streamlines whose values differ.  Two approaches have been

adopted: Numerical and Perturbation methods,

In the numerical solutions
90 general assumptions of fully developed regimes were made,

|

!

The \

1
numerical solutions include all regions of the flowfield, The perturbatiﬁn
. . . : }
analysis was based on pure forced convection solution. The two thermal |
' !

- A
boundary conditions of interest were: .

Case A:

Constant surface temperatures
Case B:

Constant Heatflux at the hot surface and arbitrarily-
!

varying cold surface temperatures,

—_
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In solving the present problem, the pressure gradient terms were‘
eliminated by cross-differentiation and subtraction of the momentum !
equations. - The resulting vorticity transport and energy equations were

normalised following Mori and Uchida [5] for case A, and Ou et. al.

—— e

(1] for case R,

The vorticity transport and energy equations were discretized

following Deniss [6], The numerical solution was carried out by u51ng

boundary vorticity method and the five-point Gauss~Seidel Lterative !

procedure, ?[

As a prelude to perturbation solution, it was estahlished by v

dimensional analysis using 'vector-length' approach that the pertlnentf’
.‘G |
parameter for the power series expansion is the Archimedes numher, L

o2
" Re™'|
The perturbation analysis was carrled out for case A only,

‘|t

To test the adequacy or otherwise of the mathematical model, an {

x1 x

I
expermental set-up was designeéd, constructed and run. It was found that

both numerical predictions and experimental results agree especially
in indicating the occurence of maximum heat transfer rates from the hoﬂ

»

wall at inclinations between 30° and 60° to the horizontal,

At this stage it must be stated that no works on cases A and K

approximates to case A. They investigated the phenomenon of forced

are  known to the author except that of Mori and Uchida [5] which E
convective heat transfer between horizontal flat plétes whose surfaces!
' }

were kept at constant. temperatures; the top plate being cooled and the’ ;

bottom one heated. However, their analysis was restricted to the fully

developed regime and they evaluated the heat transfer rates by way of i
' |




XX

entropy production technique. Therefore it has not been possible to

S

compare rigorously the present work with existing ones.

. The two-dimensional assumptlon madg must be complied with in-

constructing the eXperlmental apparatus. Since the aspect ratio determlnes

. 1
1

whether or not the effects of the vertlcal boundlng sides could be 1gnored

‘ |
%

an aspect ratio of about 10 was chosen., To ensure the 2-D claim, the -

channel was calibrated at a station x = 121,92 em from channel inlet for K

out :
.an isothermal: flow. Cheng and Hwang [2] carr1ediexten51ve investigation’

i
l.

on the effect of aspect ratio on the central core space variables for f

channels whose long sides are horizontal and the short ores vertical, It was |

Ea )

reported by them that for aspect ratios greater than 5, the central core” }.

r

Tt

r
i

ks

L 4
bounding sides. The present experimental set~up satisfies the requirement |

space variables are not affected by the presence of the short vertical '

[l -

for a two-dimensional flow.

"y
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CHAPTER QHE

PP . . . ‘. . - e PN -lh?. .
MATHEMATICAL FORMULATION OF THE PROBLEM

In formulating the problem, it is assumed

that the channel aspect ratio is large, that is, its width is several

"(‘Vnﬂ»*,* i w

L

times the magnitude of its height so that the lateral end effects ";f,;
.4; Py

B

are negligible when a longitudinal section, far-removed from the verﬂ-‘{
HNLA TR

tical bounding sides, is taken. For moderate temperature gradlents "

A ,-.”a..,.i 3
the problem reduces to a two-dimensional one. The channel can- there-

<n s

*, ‘:—4.

fore be regarded as an open domain bounded by two parallel surfaces

bt
kept at different temperatures., ' ;"

When the temperature difference between the surfaces ls

appreciable, buoyancy forces are generated and the resultlngtsecondary‘*

. .QIJ}"“
flow is superimposed on the pure forced convection. The mutual;inten}{

’ r r l) %‘
action of the hydrodynamic and thermal fields in an oriented gravxta

i,}
investigated by making the following 51mp11fy1ng %
s.""

tional field is

assumptions to reduce the mathematical complexity of the governlng
.p ':
equations, FlgurelJ-rEpresents, the physical model; coordinate,?ﬁ;

™

system and numerical grid. '

Basic assumptions:

(a) The thermophysical properties are consant, except for the i{
density variations with the temperature (Bnussinesq Appro§.).e¥ﬁﬁ

{b) The flow is upward, steady, laminar and incompressible. .“ "fﬁé
(c) The fluid is Newtonian and viscous dissipation is negligiblei .
. H ‘

t 1

(d) There is no internal heat generation, E :
- _r

%

Y f;'*TA
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and Numerical Grid.




1.2 Derivation of the governing: equations

The continuity and e&ergy equatlons are derived from the

;J ) control volume analysis. HJwever, the mnmentum equations, for u

]

the sake of brevity, have beln deduced from the Navie;—Stokes ”ﬂ5f,'

R ¢§‘ o equations for g two-dimensional incompressible boundary layer fléw;fi\
.#:‘ - % L A i ]

K
e e
P T
W,
o

T
e

B
TR s

. ) _ S
I.2!  Continuity equation _ RARY ?
' ¥
i

AR IR
S T g

s
V

ﬁ

R ]
R

e T

T L
-

g &

Fig.

Consider a two~dimensional flow in the X-Y plane, out of o

vhich a control volume ofiﬂ$¢hltefiwadimensions has been ecut,

Let AX, AY be the X- and y- dimensipns respectively of the element. j;,,
5 . . o
G, represents the mass flux and C GY represent the respective

l .

. ‘ ' =
.components of G in the X-and Y—dlrthlons, per unit length e

With reference to the above figure,

n

Mass inflow into element

GYﬁx . AY | - '\

3 .
\(‘*x 1 GX AR AY+ (G +_Gg
+o[(m()2 + (@y)2Y [

Rate of change of mass storage wilthin the control volume - : '

I

Mass outflow from element

o

!

. AXAY L N

3
d

T



- -r -~
| it
l 4
| L
‘ll
By the principle of mags conservation,’ 1
Mass inflow - mass gutflow =

Rate of change of ' mass storag
within control voluhe

e L 9G
CyBX * Goay - {(g, +

G b'ek N
X-8%) 4y + (6, +° Y.av)ax) = dpt * AXAY
X 2 . Y = . Bt
3 X . Y N
L] ?
.
Simolification yields| ‘ AR g
—— _2\_ _.._Y_ EE_E = 0 ’ 5 . f,T
9 X ay Jt t A
. i
ap _ R
For a steady-state flo\, 5E = T ﬂﬂhI .
BG +3 Y=0 4 'P ':p
X ] RSN
\ T o -‘.'K*__. t, ;
Substituting for @ =pm and G =P, V then the above ¢
equation becomes '#k;
.‘f;g:;
592 (o, U) +3 (ﬁrﬂ) =10 S
7Y e
b
P 3p ” A
m o 30U m v :_gz
Uax tmax v v BYH\H voe g
3,  3p !
a U 3 V ! m byt
mlsx 5y * ¢ ax\"V 57 © ¥
\8 P, 9P '!;
Since the fluid is 1ncompre351ble\,5—- = ﬁ =0 tn
The continuity equation becomes, l i
| ¥
ouU _dv q
a“"x" + é—— - O ..... H

--------------------

-
-
.
a
-
3
"
.
.
~~
—
—
S
S

Caa e o
Sy oD .
- .
e e
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omentym Equation

p (-a—‘ii_ +y E’i) =§|- 2P
m Jt J X, b1 3Xi
J s
! oy
: - “Ee e
- -g k ; . , ~ Jf B "’?
3 cija_—i(") } "....'-....(l..z,,),_i'-I"_. ;!.“'
o B R
where Uij, is the kronecker delta (i,j, k = 1{2,3) 1 *;f
and g,, = ] 1= j .
Nl f i#] ‘
Vs the velocity vector gnd B, the body force Per unit volume
Since k i

Since the
3 Vj
Steady, thep — =0.
. Y> It
In addition,aw‘ = B..V,i
, X dX,
; -x'k j ’
kS Hence for tha two~dimensiona4 case, i, j
B ST T
T %y X T3, 5%, .
il S N Ry
1 [ , T= 0 143
| S
’. :f;,:.
SIERoN
R
T

e

—_—



"Expanding the right hand side for a constant viscosity fluid

T TR T e

[

| = ¢ = | 8 E
11 22
. g = g = Q. ) s b
12 21 : i vy ) }
| ‘ i
) 3V, , BV v )
‘_ -_— Q -.._~.]._ = _— (_-._.1_ + -_2_) :
3 Tij BXj 3 "ax D¢

._;.
L

-

p

Since directiong i and 2 can be associated w1th the coord1nat
o 3 .
& -

axes of the Tectangular cartesian coordinate S8ystem, the above equa&%

—

n

L
+ L T SN

)
tion can be written ag

2 3}’;:3(9_24.@;1) o
3 L%, " 305% gy _

From the continuity equation (r.1),

2 ” o | o
R (1 T=h 2) | o

The generai Navier-Stokeg equation reduces to

av IV. " v,
. 0% 3P J _ i
P Vj 3;J - Bl ) i * ﬁ(J {M(B +8X1 )}

3V, 32‘.? aly
I - % _ 3P
n Vi g% = By - S CTHOSTEE sy
i i j A
v, 3% v, 3V,
. 1 _ % _ 3P N d j -
. “n VY5 a?(; = B axi*” {axjaxj *’a‘“‘x :axJ )} (1,5 =1,2

Again from considerations of continuity condition,

IV,

5%, < 0 (G=1,2 oo




Vi 4 ap 8° v, :
‘e pm VJ. 5‘?(-_‘-: Bi_ ﬁ. +“3X.3X. -(1,_]‘=l.2) aaveas teadas (1 .
] 1 J 1]

l

Noting that a repeated subscript indicates summation over the

-~
range of that subscript, the following equations result.

3
For i =i,j‘=1,2, '5
}
3V 3V 3P 32v1 aty
—-—1- — = - it 2 + 5 .‘-‘. l l‘
P (v13X * Vz g X ) Bl 9 U(QX. X ) |“(
1 2 1 1. 2 ;
For i =2, j =1,2, {
R v 3p 3%v 3%y
- —2 = -
o YV 5x YV, E) B -5 ¢ HOx D 0
1 2 2 1 2 {
If Vl’ B] and X

| are the components of velocity, Body-force per_g@it_

L
volume and displacement in the X-directions respectively and V2, 32"
their corresponding components in the Y-direction, then the |

and X2

following substitutions can be made.

V] =1

3 VvV, =V
XI =X, X, =Y

Equations (1.4) and (!.5) become

o
LN Vo u - p _0P 5 ‘

pm ( 3% + Y ) = BX 3 + uvV<u ..... ettt e (1.4b)

m ( % * Y ) = BY 5 + wev ,..... et iesaeeas (1.5b :

Equations (1.4b) and (1.5b) represent the X~and Y-momentum

equations respectively.

-~



N

The body force in this case can be expressed as follows:
The density at any temperature, ?5‘15 related to the mean

density by the Boussinesq approximation:
=~

oT = P (1-BAT)

Body-force ‘due to weight of element of mean density pﬁiSpmgaXﬁX

per unit length,

"

i

Body-force due to weight of element of nean density Pop k;pTg@XdX

per unit length, | '

Buoyancy force P8 axXey - P EBXAY . f-

1l

From the Boussinesq approximation, e Pp = meAT

.. Buoyaney force = BomanﬂX AT | ) Lo F

.+ Buoyancy force per unit volume = BpmgAT . : "

R, = Relp AT
i &ipm ‘

+ - 3 » [3 - - : -
where g; is the gravitational component in the i-direction.

]
]

Accordingly, Bl BX megCosuAT

and B2 = BY = pﬁ8g81na AT

The complete momentum equations are therefore

Uauy Vau 1 2P 2 ]
s o+ = - = o=+ WU + gBAT Sing crenresseaa(1.6)
5 X Y pma

U—g—-} + Vg¥'= —-:5 g-Y— + VW3V —gBATCosa .'J...........(}.?) 7

EMME’{ pﬂ : | L
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1.28  Energy Equation :
N AW S
fﬁéé%i _E(/ I;k,i4§ -
=S QD |
L e \f§f°
Bh N
N /"‘/5‘ M
!
* 1
" ;
N LA %
,E;P%g‘;ﬂggz\ I r
. Djh E_**K\F§F' - - -i; "
. ) .:A - D e N
\\‘S\Ié\ "\N\l“{is\ : SR |
\sz“_f"\'“¥ " \:ﬁ - i
P % | ( 25 ot
Fig. 1.1b Control! wvolume

for derivation of Energy differential, equation
;

P
The control volume shows the various components of ene?gy
entering and leaving

. 2
it. i
Energy entering the control volumaﬁength = . 3 !
hp_ UBY-K, AY 9T hp VvaX - « axgi{ i -;u
“n [ B S Y o )
_ . .
Al *
Energy leaving the control volume /length = ;
I
¥ a..... LK~ \ a_.'_r.. a - X 8_..1..‘. ‘I. ’
hp UAY + ax(hmeM)Ax K ¢ 5% * i ¢ KeAY S OX .

+ homVAX +§—-Y(hpmv¢x)n

9T 3 3T
T Kp XY gy (kX Ay
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§
Considering thermal energy balance for the control volume,

R
3 - I
hmeAY oy AY5—~ + hD VAX- Kk _%.= hp UﬁY + (hp UﬁY)AX
~ '
aT
K AYE;E

e

3 BT o,
+é_§( I<f &y 3)2)Ax" : !

" 3 .
¥ ho VBX + o (hp VAO)AY

aT 9 3 T
- K Axa—-?""a—-Y Kfﬁxay)d

Simplification yields

1
:
SR ;
3 3T, .9 , ar o E .
5% 5% * 57 59 (hp V) o+ "'(hp v RN
; ) ' ) .‘o t’ a
But h = Cp T. and since k% = constant, then Bl {» _
- , {l *S:
K. 92T 3 3 R
f ax? * “Egvy? T mep 3 X(UT) te Cp Y(VT) ‘ 'i s
Expanding the right hand side yields S '
2., . AT U 3T . . 3V b
= s P — —— " .
e VT o= e, ’”ax Tt Viy TaJ .
r . '
2 o aT | > "
ke V2T = pmcp'(uax )+T( +3—§J :
L v
From the continuity condition, %E %ﬂ = 0. : '
. 20 _ T 3T :
S Ke VT = mep (Ué——f Vo5

Hence the Energy Transport: equation is given by, . . '
3T 3T t o
Uéiz VB'Y AVST

................................. 0
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K ' ’ .
where } 5 c » the thermal diffusivity, :
mp

1]

|
Vorticity Traniport Lguation :
s hation

i
. . . . | + ]
terms in both momentum equations can be :@liminated by crosg-partial
differentiation.

¢
kY
DifferenLiating tquations (1,

6) w1th respect to Y and (] |

With respect to X and -subtracting the results, gives,

|
;
i

9wl , L0803 sy VAV L0 e d ity
svWUix * V59 ax‘”a‘i* aY)"“(:TYVUax- )”,,..

+ gB( Sanc +§-}TE Cosa)

=Cosq) T
a.’?,
Collecting and regrouping terms, yield |
. .
3% 3%y 32V 3ty 3U 33U _au v
Visy axay)*U(aan 5% * (5% - 5%

3Y "5% 53X ' 5%

r



B e

12,
9 (3L .2V, 2 U AV L 3u L av. L3y 3y
Vavlay iR vy 5wt (5t B)(BY 5%
-.a-p,. .
= v(ghy ASTIRS gx V2)+gB( Sma +g——- Cosa)
. , . . v . |
nvoking the continulty condition, ji.e. o= + 9V _ 0, vields
3X ayY
v2 B_U_@__}’_ 1N NUE S S .
3 ( 3Y ax)"'UaX(a——f ﬁ)* \J(BYVU"a VV)-!-gB(é—-Sln(! .
3
+'a—}-{-COSCL)
9 U _v oAU v 3%y 33y ply g3y
Vavlsy Taw tUSeGT 3% T Vidxay tiye 3%T Tav5 x|

gB( Slnu +3—}TE Cosa)

_ 32 32 aU av
B ax2( é"'f) YZ(BY a_f)]

gB( S::.n0£ + g—- Cosa)

Q2
Loy

By definition the vorticity, 'n—-g—}‘% -2

l

(=)
<

‘Substituting this inro the equation above yields ST
Vo - U == ( ; + : m) B( Sma 2T Cosq) .-
Y Tax T T Vigxz Tay 3 X '

The vorticity Transporet cquation is therefore given by,

o’ QJE - g2,e a1 . 3T
U3x+ 3y = Vv Vo g[&(ﬁs_ma-kaxt:osa) ............... o (1.9)

Boundary Conditions:

Two thermal boundary conditiens have been considered in R
conjuction with the no-slip hydrodynamic conditions at the rigid

boundaries.
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These are:

V.4 . Case A: Constant but unequal surface temperatures.

3.
i

R T T ‘

. i
1.42, Case B: Constant ticatflux at the hot surface and Qrbitrarily-
i s ' . e
'?,,fﬁ varying cold surface temperature., ok
e ’

L

}

In both cases the input velocity and temperature at chgnnel
. 5.

o et e N i nd

entrance are assumed uniform.
0

] At the channel exit the gradient,!
Ix = .

ri

boundary condition{is imposed on the flow. The applicable mathehaf

t

tical representalions of the boundary condltlons will be glven 1n the

Analysis of Numerical methods .

1.5 Normaligation of Governing equations

The goveruing equations in their present form would. be valld

Fat

for a given system of units. For the equations to be valld ln an%Fher

System of units, various conver

R
sion factors must be lntroduCed In
i
T

order to render the governing equationg independent of any system

of units, appropriate sols of normalising variables are 1ntroduced o

P L‘

The continuity and vorticily transport equations are considered flrst

followed by- considerations of the two cases of thermal boundary "

conditions. The following Substltutlons have been made for_the '

continuity and VUFLILlLy Lransport equations:

Y = U u 1
m
.
Vv = U v
m §
X = bx
Y = by t
P U w
W = m




3 et G
o N
-

B e i ' et v i
L ) B R A R N o T s S i it R : 1
I Pzp oy M i RS v, SR o P I e s YT A S k] P
- : R L e s AR N Lt 7 R s Ay o
> S A S v E S BIN e ECaNhaly

T o e - . = .
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b
;1.
For the energy cquution (he following subgtitutions are made for ‘°
. : '
cases A & B . .:
T~Te “
Case A: @ = _—__F

Toy o for constant but unequal surface temperature
e ‘ e .
{T=Ta)
Case B: ¢

“Roprazy Coustant Hegtflux at hot surface and, ¢
Crr arbitrarily

varying cold surface temperatur

1

1.5 Continuity equation

'

_— , . L .?
Substituting the above transformation coordinates into the N
. LS L]
primitive continuity equation (1.1) gives, ' - . '
. Ju v o -
Um —"S—X + Um b*j:)*- = 0 - “
Um  du Bv L -
—_— —_— - ) .
b (o 7y 0 e
‘-f{‘ "L{,. !
Since I #0,both sides can be divided by == Um . 5 :
The non-dimension] Lorm of the continuity equation ig therefore, e
.|
du v S
A + N = U ---------------- L N IR -oc-o-.‘cn-c----u . .
9 x dy 4 7351 10a)
PR
1.5 Vorticiry Transport "L equat ion '
Substituting the Lransformation coordinates into equation (1.9) gives
Case A. Ly
— \ L
(Unh) () (Ua) 3 (U 3 2 (Umw) 3 Q%@ g
b b b . - .
—— ———e . o
. By % b3 y b3 x2 ¥ b%) Y?_J .
T~ Tc) VA -
- gB [‘ Sina + 5;-Cosa:] .
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318 I 164 >l
1N ‘
it 1 4 2 |
e . BB(T, =T ) .
FAN: ) 9w de wm ., 30 .. 38
L) LSO yol - AL
L;%Q* ("T){U ay - Vo b (ay Sino + " Cosa)
i .
tfﬁﬁ:f ’ -
e - y?
u&u:‘ Dividing both sides by _M o yives
. ‘ ;‘-‘ b?'
R : T - - o
g, . 2w 3w v 9 gBb({ h c) .38
3 Rt u—"+ v = ) Vo - BPEL € —= ©4 30 !
§E 3 x 3y u b U; ( 5y Sing + 3% Cosa)
fifﬁr _
Aftgk Introducing Py H into the source term gives '
kTR
1S%f Bw + E’w = ! 2w - " b c ( Si +a 0 Cosa)
2N a‘—:‘::,-, a x a y Ulub pIiU;le 3 y ng 8 080 ;',
i I . . -
.ﬂ ' = Ny ' _
P -f‘!.‘ 5
‘ T,-T 3 S
= L. yz  _gBCh "o)b 36 .. 90 :
0% Vi VI Uab, ( 5;j81na + 4, Cosa) l
(-2) =0 |
v v §

y
[]I g@gTh-TC!gp 3

Recognising ~T}_ as Re based on the channel height and rE |
v

¥
= Gr based on the temperature potential between the two surfaces,
¢

then the vorticity transport equation in its dimensionless form is |

"

9w 9w | 2 Gr a8 . a8 : '

T, P VT om e Vo - o (52 O 4+ — I e '

U VBy e 2 i (3y81n +ax Cosg ) (‘ Obn

. 4

where 2 = Ar, the Archimedes number. . '
Re

.
' i
Case B:
For the constant hestflux at the hot surface and arbitrarily-varying .
cold surface temperature, the Grashof number is based on the dimen-

sional axial tewperature gradient, A*;along the hot surface.
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Accordingly, the modified Grashof and Archimedes numbers are:

NN Grm
Grm = L;%, ’ Al:m = "lgr .

Energy equation

Case A:
T - TC
8 = T
h c

m b 2x m b oy =
Vi g
U VR
m 36 28 A -
—— (u ‘-——- + —**) = v28 i ’-w"’l
b 3 x 3 b U
o l‘“l
Mg
a ——— - ‘!*
RS PN 1R W v »dAFy
3 x 3y Ub Ub )
m (=)
\v
) Ub
By definition, = — and - xRe
v P Y

r

The non-dimensional form of the energy equation is

30 J 0 1 2
u Y = A
% + v’By Rerr L (1.10¢c)
Case B:
'e (T=Tw )
RePrA*h

By a similar manipulation as done above, the final equation still

assumes the same form as (1.10c).
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CHAPTER TwO

ANALYSIS OF NUMERICAL METHOD - CASE A

The condition of no-slip imposed at the rigid boundaries
requires very high velocity gradients to stagnate Lhe flow at
such boundaries. As a result of the high velocity gradients, Lo
vortices are generated at the rigid boundaries and are éonvectéd
and dissipated in the fluid soeam. The problem.ia therefore a

boundary-value one and the success of the numerical computation
L
.

SR

w

depends on the correct determination of the boundary vorticities.

T

L

Considering the fact that in some regions of the flow field the >‘ ﬁ

Ll

1,

v
()

- T 2o
Spalding and Greenspan L 6 | may be used in discretising the qqnwl"¥

secondary effects may aid or oppose the forced flow, the method of .

[
bEol

linear terms in the governing equations for constant coefficients,

Héﬁ

k

As usual the non-convective components in the equations are dis~ : i

cretized using the central-difference approximation. 1

The reason for the one-sided differences of the non;linea? ;-’f

terms is to ensure that the matrix associated with the differenpgasf'ﬂ

ey

equations is diagonally-dominant. This is a necessary and euffi—__?'f;

cient condition for convergence of the Gauss—Seidel fterative .E

procedure adopted. 1In order to further accelerate convergence, i
an optimum relaxation parameter is introduced into the,goisson R

. . i

equation of the stream function.

gt S ' LT
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2.1 Discretization of the governing equations )
Let ¢ be a dependent variable which can represent one of a large
number of particular dependent variables. Thege include: : 5
~E
(a) The fluid velocity components u, v C Ly

{b) The vorticity, w _ L
(¢)  The fluid temperature, 8

{(d) The Stream function, ¢

b
1

(e) The dummy variable used in the convergence test. for numerlcal soluclc

In general, ¢i i

represents the value of ¢ at a grlda point (i,j) %
in the mesh system shown in figurefd. The value of ¢ at any of the fog;gﬁi
. 4".‘ :

neighbouring nodes to the grid- point (i,j) can also be represented by " -

R
¢i+l,j’ ¢i—1,j’ ¢i,j+1’ ¢i,j—l' Since ¢ is a continuous 8pace variablesyq

its Taylor series expansion about any of the nodal points can beaskﬁﬁﬁﬂd- *

TN
Thus: n pETY
] DA™ 3" LY
b5 i-1 = %55 +n3‘;" 5 330 (2 1)fw
i’j ' k‘?ff‘?’_:-
¢ = ¢ + E’(A¥)n aﬂ_@_ I (2 2) ’.:Ti
i,j+l - i’j n=| n. ayn ij ll-...‘.-.......‘-.'.'.. - A
o @™ 3" &
¢i+i’j ::(t)i,j +n£] o 3 %1 --......-.-......-.--oo--o(2-3) \ .
i,] : A
SR
,-')“f.';:"
= DOL]) (Ax)n ad) .........-.-..---.....(2'4). k:‘t
¢i-1,j dJi,j * n=l n. ax 1 A i ?h K
. l’J . H



on whether 1t 15 the bacLWard or’

By truncatlng the above
and second—order partlal derlvatlves

2 I I EEroxxmatlons Eo second*order
. il I

partial derlvatlves

© find approx1matlons to the second~
) the 1nf1n1te serles expan51

SRR, giv?fl ¥

In order t

ordey derivatiyeg
ons. are . N
NG

L3yt e |

. Equa;idh.(li)ff‘(212) yiélds R

- B e s . 3 n, . . '
".lw'”'¢f,j~{'f' $: . =2 b,

2D ™ a7 3 Wy 3% !
.'.],T’J-H. l’j +ﬁ='l a! ? yo i +nz] . J yn ' O(AY)
S : o 1,] n=

o R o
<l“Simp1ifyihg ard solyine for

557 I T, preduces

119J

K R B 1 N ’ o - B o :- | _ ,
ﬁ:§;%7i:j.?‘ (¢i;jfﬁ”_-2¢i,j_+ ¢i}jﬁl)/(ﬂy)g_4 P(Ay)g

Slmllally, from equatlons (2 3) and (2 4)

a - -
/ i " (¢1+1,J "2,

s R X

e,

=quat10ns (2, l) and (2 2) can be used deppndlng

{oqurd dlfference that 1s requ1red
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2.2

For the backward difference, equation (2

Thus 290
3y

.1) applies.

= (¢, . - ) /Ay

i ¢, -1 R ¢ 2 S B

1,)

Similarly, from equation (2.2) the fovward differemce is given by

1‘[! b
M .

Iyl . =@, .. =0, Dby .....

1,]+] Ly]

ﬂ.........................(2.]b)7 :

Equations (2.7a) and (2.7b) can be combined to obtain a more general

expression for %jh

Y11,

it

Thus, ;"Sd‘;

i J {Al (¢i,j+l_ ¢1,J) + A2(¢i,j = ¢i,j_lj}-‘./.Ay"'(2'8);"'*

where A, and A2 alternately assume values of | and O dependxng on th :f

local flow direction. Following Spalding and Greenspan [ﬁ{, when

Kl

the local flow velocity is negative, the fovrward difference is uged

&

£
so that A, = 1.0 and A, = 0. for this case. However for a positive

local velocity the backward difference is used and A and A2 exchange . . ‘i
. . i‘# i
values accordingly. gt

'
Since the flow is forced, the local velocity in the general

direction of forced flow is regarded as positive so that the backward

difference relation used throughout the computation is

4 #;

vy

: ol

28 (. . - )/ax(z 9)" 44

Bx . i,] 1—] 2] I,

’J ‘\. EEE N T

. YLy P’ﬂ'

, . . . : g "% Zen
Finite-difference Analogs of governlqg_equatlons ;1 15*

a.
At this stage, ¢ can be particularised for a chosen- dependentir

® »iw{

'i,l";

4. )
s

variables . _"ﬁﬁd,?

‘\-..h' »
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2.2.1

Energy Equation: 6 = ¢.

3%

2
= (ei""],j- zei’j + Bi-l’j)/(AX)

w

2
R U BRI

30
dy

! — —
P 1AJ(Oi'j+l ei,j) + Az(si,j Gi,j_l)]/Ay
, _

a8

— 6. . - 9. ) Ax
ax ~1,3

» ] 1

-

i,}

Substituting these approximations into the energy equation

(1.10c) gives,

u., . v. .
] _ ] _ .
a5 T e, R LIACH 81,1745 570y 50
- - +§, R ]
B A TS S 15 Mt T T LT TR T s T s YO O
RePr (8x)? (ay) 2

Simplifying and solving for 0. 3 yields the

discretized form of the energy transport equation,

}

(2,10)
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b

iy

2.22 Vorticity Transport equation

'1,?12-;
- ] *
¥ “i
] (81LJ+| i,j-1’ (61+I,J irl,]
RePr (4y)? (Ax)
ij " Yi, i
( —
+ -“1 i 1—|,J)/Ax + Ay (A2 Gi'._]
u, , (A,-A v,
i 2 7177, 2 .1 1
-—‘-lﬂx * Ay * RePr (Ax) * (Ayfz}
where i = 2, 3, ... M A = +1.0 4,
and An = 0.0 Yo,
i=2,3, ...n 2 |

.. . 4 'n'e‘vr‘da‘
By a similar procedure as above, the vorticity transpgrt qndgstream-zf F

4
function equations are obtained. The simplified results are stated
k. i .

below.

-
"
l-{(wi,j+l+mi,j—l) o rer, ity
Re (oYY (ax)
= [+(y. . w. ODfAx+ ., (A Hw.
9,57 1784, Yie1, 3 Vi,i T3

- Gr 15 — -
Rez| ¥y (O, 541785, %85 (0; -8,

- "94,578-1,5°

vi,j 2
[“i,j/“* (As-4,) T:fr‘l (Ax)2 TEF)“}
HE f‘,f( Wl

Y

w*i& G‘EF ‘«W g ‘“-? ‘ﬂ.ﬁv"‘
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1
<
<
=3
L]

o

where i = 2, 4, ... M A

The Poisson Equation of the Streamfunction:

The streamfunction is obtained from the equation w = - Vzw.

RS BT L T I SIS U
i, (Ay)* (A% '
. = v . Y ¢ )
15 .
7] I N - i=2,3..H
(A%° 7 (ay)? R

i=2,3...N8-]

For relaxation purposes in order to accelerate convergence the optimum
relaxation parameter, W, which lies between-1 and 2, is introduced

into equation (2.3) following Roache [jBu]' Thus,

G} i~
= -2 2 ‘ - -
ES I R RO NI I A R SER LIV S

2(1+B,2)wij e (2,714)

where W for a Dirichlet  problem in a rectangular domain of uniform

grid sizes Axand Ay, is given by

L 20-/ 1 -« ) |

0 - E “ % me oo ...-................-.....7(2-.]58)
Cos(1. ) 2 T2 )

where ¢ = it By Cos Ggep Y ¢ 1)
b Bl ' L,

- : A

A x ' B

and B = by ¢ the mesh aspect Ratio; J = N+1; T = M+l
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Near=boundary Condilions

Near the rigid boundaries where the flow is considerably retarded,
the Streamfinction values do not differ appreciably fromw its boundary
values. The near-boundary values are approximated as follows.

For the cold wall:(J=1). Considering two immediate nodal points to

the cold wall, the Taylor series expansion for these points are:

. S, e BN (2. %)
i,3j+] i,3 nl nl 3yn| .
i,]
_ e Qapaly
l‘bi,j+2 - lpi;j ! 11-)-2| Tayn i j """"""""""""""" (2'17)
Considering only the first three Lerms of each expansion, each
equation yields
- 2y (Ay)? 3% 3 ,
wi,j"'] I]Ji’j + Ay 3yl. . +——2'"t-—-- .a-'-—y-z* ' ."' O(Ay) ....... (2 88)
1,] 1,]
and
- LAY (ay)? 32 3 18b)
wi,j+2 wi,j + 27y By(. :+ 4—-%T— 8;¥ o O(dy)* ..., (2.18b)
1,7 1,]
For j = 1, (2.18a) and (2.18b) respectively become
2 a2
. , = . + Ay a.@’ + _(_Qy_)_é_% + 0 (Ay)?
132 l,] ay - 2 8y .
Il,l 1,]
Y (Ay)? azwi \3
= + + + 0
Vi3 T Vit 2y gy STy | (8y)
a2 -
Neglecting terms of 0(dy)® and eliminatingé; from both equations,
1,1

yields

+ 20y g;

1,1
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2.2.5

For the Hot wallh(J=ﬁ4f) The follow1ng Taylor serles expansxonb f"' ‘

ﬁapply for the p01nts near the hoL wall

w i

Thus, . . -

-+
.

Slnce the point- (1, 3 c01nc1des Wth Lhe ‘wal ]33thehiﬁhéqno§51ipl

1 '“’ndltlon there- demzmds that 2 L= (3",.- B :

.3y,

Hence Ayi 57 3 = 3, S el

3 1, 1,10

[

i Tne Streamfunctlon near the cold wall 1s approxxmated from o

B N

iy2

oy (3w ¢ )/ .;.,.i.;;.{..;;.f:ﬁ,iﬁﬂ..i,{;l.;.12§19)1__jv

i =.2?'3;,4 et N N+1 S B

- S (-1) ()" 3% | e o :
T T B T STTIE T
' oo B B L S PPy DRI I

R .

o ' ( Z‘H(Ay) 3 w Lo R,
l,j__.z":wi,.j ._. B n‘ 3 ....._..._...‘..."._......__-.-.,;_.,_‘(2_.,'21)

PR

s - . ot

4

"By a similér;)roécuiuré' as was done for the cold wall -thé'éﬁne;m‘lﬂﬁ -

functlon near the Hot hall lo approx1mated ‘rom the fln;terﬂiffeténcg,%.:

expre351on .

,'-_\\-.‘_. d}l’N = (ItA,J.’_'

—-

Velocity Components

The veloc1ty components are derlved from the Cauchy-Rlumann

| ! ) : r' j.xg_,';g {_jA_3J=*

i,j ST R S
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The finite-difference representations are simply,

Yi,i (‘*”i.jﬂ TV e 2y seeereenan.a(2.23)
i Wt Vi, P (20 2)

where i = 2, 3, ...M

2.3  Boundary Conditions

The normalised forms of the boundary conditions applicable are:

2.3d Thermal boundary conditions:

(a) @ = 8 - gi = 0 ..ii....(2.252)
X = 0 ¥y =0 x:.xI '
Oy < 1.0 0 X & ﬁ, O<y <1

(b) 0 = }.0

= ] .
YR O I 11
Oéx\(x]:‘
2.3@ Hydrodynamic boundary conditions:

{a) u = +}.0 (uniform flow at entrance)
L teereteriiieasaness(2.26a)
O<y<l!,0

v = 0

XxX=0 e e, Preeierireiaiiaaeeasasl(2.26b)
O<y<1.0



(b)

{c)

(d)

oo
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u v Y
= = = 0 ciieans (2.27)
y =0 y =0 y=20
0Lx & XL 0. x& xL 0x xx xL
But w #0 (No-slip conditions)
y =0
0 %< xL
u V] )
= e (2.283)
y = 1.0 y = 1.0
0x %< KL 0. %&£ xL
v |
e (2.28b)
y = 1.0 :
Osx&xL
But w #0 (No-slip condition)
y =1
\< .
0L x (xL

The gradient boundary condition at the channel exit where the

flow is presumed not to vary with the chanmel length is given by

Y - 3w =0 terean (2.29)
ar a3 x

X=XL X=XL

O<y<1.0 0 <y<li
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The discretised forms of the gradient boundary conditions are

GM#f.j = HM,j ............. e, ............(2.308)
wM+I,j = qﬂ,j ............ e tesieeeeaa...(2.30b)
wM+I,j = wM,j ..... AEERERS Crerseriiiiiiia. . (2.80¢)
UM+l,j = UM,j et e seenean.(2.30d)

where j = 2, 3, ...N.

Boundary Vorticity

The boundary vorticities at the rigid surfaces brought about

by the stagnation of the flow can be evaluated from the definition
of vorticity in terms of the velocity gradients.

In general for a two-dimensional flow,

ws= Y _ 24
3 x dy
t _ '
At the wall, = g—‘f -du
wall wall wall

Since the transverse component of velocity ¥ is always zero

at the wall, the contribution of v

- is obviously nil. The

wall
boundary vorticity is therefore determined solely by the normal

gradient of the longitudinal velocity at the wall.
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rae Thus, du

wall 9y wall

Consideration will be given to the cold wall firse.

3
{a) Cold wall boundary vorticity:
Considering u as a particularisation of the general dependent
- variable ¢, the Taylor series expansions about the boints (j+i)
Y
and (j+2) respectively give,
n .n
= 2oy 3u 2.32a
. ERTERELTRGOR - ayt | oo (2.320)
% 1,3
. n n
. a)® 3%
Ui,j+2 Ui,j + ['IEI n! ayn ................ (2-32b)
1,]
£

If each series expansion is truncated dier three terms, the

equations respectively becone,

) TR LI s
ll“:f Ui,j+l l-li,j + Ay ay 2: ay} . .+ 0 (AY) (2-33)
i,j 1,3
u = i + 240y du + 4_(£Xf azu. + 0(A )5 (2 33
ijv2 i 20 37 v s
P ' i’j i’J
3 . . . 3%y
Neglecting terms of 0(Ay)® and Ellmlﬂatlngsgp from both
i,]
“ equations, yields
p
_ . du
4‘ﬁ,j+l b, 542 = J“i,j + 2Ay 55
i,j
Solving for du_ gives
) g " 3y ’ g f
L,] '
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.
=¥
Q}_{ = (z,u - U ~ 3u .)/2[_\),
ay i)j‘*‘ i’j+2 l,J
i,j]
% At the cold wall, j = |
Q..‘i = (4u - u, - 3u }2hy.
9y i,2 i,3 it
L,1

invoking the no-slip condition at the walls, u; =0
-3

Ju _ -
3 5y = (80 o a9 2y
e i,!
The discretised form of the boundary vorticity for the cold wall is
\: wi,l = - (411],"2- Ui,3)/2Ay ........ ettt decaateireens vrea(2.34)
where 1 = 2, 3, .., N, N+I,
p : (b) Hot wall boundary vorticity:
The applicable Taylor series expansions are:
n n n '
- 2 (1) (Ay) 3 u
R By | eeneeeeseees (2. 35a)
:pcf ' 1:J
o3
n n o .n
T G2 R V.V2 R I 1T R (2..35b)
Y, -2 Yi,j  nft n. oyn
i,j
¥ ' By a similar procedure 35 was done in (a), the finite-difference

approximation for the hot-wall boundary vorticity at jN+1 is given by

w =
i,N¢1
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2.4 Treatment of Numerical Singularity:

Since the physical model discontinues as.shown in figure

2,187t x =0, y = 0 and x = 0, vy = 1.0 there is no justification

to assume that the derivatives of some 8pace variables are continuous
at these points. The streamfunction, velocity components and

temperature values present no Problem gince they have been specified.

However, the geometric singularity affects the vorticity only,

This is because while the other variables are specified by Dirichlet

conditions, the vorticity is specified by Neumann conditions based

on derivatives.

—_ t
Ce s o077 0
ay] |

]
J )
- o~
.b»{_gJuc
Aﬂ I &7
d} AT T N e waa v AN

YY)
e

Fig. 2.la. Notation for Vorticity at Points of Singularity.

To evaluate the vorticities at ¢ and a, the non-slip at wall

conditions can be applied. Only first-order formulations will be

considered for each point.
(i)  Point c:
The Taylor serijes expansion ahout (i,je+1) for the

stream function is given by
32y

377 () 2+0(ay) 3, (2,362)
y i,je

= +alﬂy +

1
Yijert = ¥iLie t 5y 3

ar



W For no-slip at wall, 112 =  u, , = 0 i
* dy 1,]c
i,jc
. 9%y L
ok ——— = ——
ay2 - ?y ..
1,]¢C 1,j¢
s ' _ dv Ju
By definition, wi,jc = 3% s;f |
a3 i,je i,jc
"
Since v = 0, always on the rigid boundaries, then
v -
f; 9x = 0.
i,jc
Therefore w, . = -
i,jec dy
. i,jc
¢
32
i.e e = -9
2] ay2
i,jc
-
Ax
From equation (2.36a),
2 2(yp. L) .
. £ - Rl L 4 olay)
i,je
. Neglecting terms of 0(Ay) gives
2, .,y Ve .
W = - 1,]edl l‘jC}au(ZJBGCI

(y)?
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A,

Ly

ﬂg

W,
i

2.4,1

Point a.

The Taylor series expansion about point - (i,ja~1) iz given

by

(8y)2 + 0(-4y)3. .. (2.364).

.

i,ja

i,ja=1 7 Y5 5.

2
== —-?—lBA + _].. u
v dy y 2 y2

i,ja

Following the procedure in the preceeding section for point c,_

2(y -

i,ja=l " ¥4 ia
(ay)?

(2.36e)

Application in Numerical Scheme:

The significance of the points of singularity arises when
the vorticities at these Points enter into computations of
vorticities at neighbouring points. Thus, whgn We 18 used
in a finite~difference equation about node (i ,jc+1), just
below ¢, then w, = Weg is used. When wa 18 uged in a
difference equation about the node (ia, ja=1}, just above

a, then w_ = y_ jg considered.
a ao

v
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2.5 Polynomial Temperature Profile:

In order to predict the heat transfer on a heated surface over

which simultaneous developments of the thermal and hydrodynamic ° :

boundary layers occur, a suitable statement must be made as to the

shape of the temperature profile in the boundary layer. Therefore,

an expression with g number of free functions is chosen. These

functions are determined such that the assumed profile aat1sf1es _

Since a numerical méthod
{a

the temperatures at two meedlate nodal p01nts W1th

a set of prescribed boundary conditions.

o me o

is being adopted, neh

another point coincident with the wall will be assumed given, Since

the normal derivative of temperature at the wall ig constant, then . ,

its second derivative at the wall may vanigh. There are therefore-

four condicions to be satisfied. These are,

(a) The hot wall,

e! S0 el e rereesee(2.378)

RS N | i

8 =0, b el el e (2. )
x,l‘-&y ’ i
o 1=28y = 05 Nt e, cerereeienen.(2.370)

-<-'.4:_

:

g—y{’ S0 e e (2. 970)
X,

According to these four conditions, a polynomial of four. functions will’

be used.




%

O,

i

T

[ %)

e

Thus

8 = A; + A}y + ﬂéy? + A3y3 R S (2.33)

where A;, NI’ Aé and AB are constants which depend on the longitudinal

distance x.

From (2.37a)

8i,N+I =9
x, |

ei,N+| = A 4+ A] + Aé + Aé ......................... (2.39)
From (2.37h),

i X, (1=4y)

8, = ALA (1-y) + £, (U-ny¥ + A'3 (1-8y)°  ....(2.40)
From (2.497¢)

| Oi’N_' - x, (1=2Ay)

PR A’O + A‘! (I-20y) + (K, (1-28y) + A’3 (1=-2Ay)% ....(2.41)
From (2. 374),

3%0
3y?

X, !

Hence differentiating (2.38) twice and equating y=] gives

.'a._z_g P r6A = 4
w7, 2E,46A, = 0 L, (2. 42)
X,
Also, g—g = 1(|+2A"2+3A’3 e e (2.43)
%, |
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Solving equations (2.39), (2.40), (2.41) and (2.42) simultaneously

shows that -
Fa O o1 " N o O 205 70 ey [U-byY (2+A3.7>-2:!(2,4'4
! by 28y [ O-by? (2+8y) (1% by) (1205 = T
and
@, . =28 +0, ) ,,
€ = L DN gt (2.45)
2[(1-0y)* (2+ty) - (1+ny) (1-24y)*-1]
From (2.42) and (2.43) it is clear that
9.0 = A -
) Ay Ay (2.46)

Since it is the normaj temperature gradient at the wall that ig of

interest, it is not flecessary to engage in additional algebra to t
4 /!

evaluate the constantg A and A2.
0

Substituting Aa and A; into equation (2.45) yields

961 - :
ayL | O nei™ 80,y + 78 Na 2 BAYY L (2.47)

(b) For the cold wall:

A similar expression as in (2.47Y can be deduced for the

temperature gradient at the cold wall

Thus,
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2.b.
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Evaluation of the lucal and mean heat-transfer and flow characteristics

Nusselt Number: ‘

The ultimate aim of this work is to determine the heat transfer
coefficient based on the characteristic linear dimension and the
temperature difference {between the hot and cold surfaces. Since the
flow is laminar, it can]be presumed that close to the wall, the mode
of heat transfer is pre?ominantly by conduction in the direction of

negative

highenﬁtemperature gradient; that is, the y-direction. Therefore, by
]

Fourier's Law of Heat counduction in one dimension,

aT : .

q = - k_— it e ceeaaans ................-....-...(2.48&) N

X fanal] |I L) ;

— , LI IF ' ":

But qx— h(]l]1 ) --o! ------- 484 e ar. ----..--o;on-ool-cdnu-(2.4_9-> 3
'
Hence :

P Y = - aT

hx(]h lc) kf Iy

wall

Introducing the norwalising variables yields

h b=l g_g :
* Ywali
Lo e
kg 9yl atl.
But by definition, hxb = Nux.
f

Nux = - P R R A % T1))
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2.6,2

The average or mean Nusselt number for a channel of x is given by

Nu = L {fl Ny dx +ovunnnnn.. G eeannaan P ¢ 5.1 B
m XL X

This mean value is obtained by the trapezoidal rule of integration.

t

i
Stanton Number ‘

y
The local Nusselt number has been defined by
_ hxb :
X
ke |

Nu

This equation can be represented in a different way that allows an
. ;

interesting comparison. The Stanton number is a non-dimensional
!

conductance defined by

h

SLx = = c&mmm That is, 'the ratio of energy conducted to that
oG '
W w vonvected:
st =(£5E5_ kf R (hxb) )
£ bmepUm L kf ( ue ) ( Umb
kf Eu )
St = mu . b
X Yx* PrRe
The local stanton number is therefore given by
Nu
se = X ' (2. 52)
X OREPET  TttTttrrreereeerieniiaiin... e vevesanaa{2.

The meanp Stanton number for a channel of length X is given by

-

1 x '
St = —— [L g :
o X © R ceveadn{(2,583)

An alternative expression for the mean Stanton Number is given by
Nu

T m
Stm " RePr

It is therefore casy to note the similarity in the form of the

corresponding friction coefficient, Cgy » for a given Nux, Pr,
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General Computational Procedure

The finite-difference analogs of the governing equations are

solved simultaneously using the Gauss~Seidel iterative procedure.

The type of integration steps involve<the following nested iterative

processes.

L

;

O, u, v, ¢, ard initialised for all interior, inlet and oulet

grid points. U%ing the initial values of u, the bouﬁdary vorti-

cities at the rigid surfaces are computed from equations (2.34)
|

and (2.15). Thu%eafter. the following quantities are evaluated

in the' order givﬁn using the most recently computed valﬁes of

other quantities.‘ However, it is important to note that the

iteration processlfor each variable is carried to completion

before proceeding ?o the next step.

0 at interior points from equation (2.11) and on the outflow

boundary frow equation (2.30a).

W dt interior points from equation (2.12) and on the outflow

boundary from equation (2.30b)

¥ at interior points from equations (2.13), (2.19) and (2.22)

and on the outflow boundary from equation (2.30¢).

u, V, are finally computed for all interior points and outflow

‘boundary from equations (2.23),(2.24) and (2.30d) regpectively.

Using the most recently computed values of @ and Y, the local "and
mean values of the Nusselt, Stanton numbers and friction factors
are computed from equations (2.50), (2.51), (2.52), (2.53), (2.3
(2.55) respectively. In!addition, the boundary vorticities are

computed from (2.3%) and (2.36).
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The above steps, two through six, constitute a stage or cycle of

the numerical computation. Starting from step two, the integration
process is repeated using the last computed values of 8,0,P,u,v as
fresh initial values, until convergence is achieved. The purpose of
carrying the computation over several stages ar; to ensure that the

computation is terminated when the fields cease to vary with stages

and to study the behaviour of the vortex field in respect of numeri-

cal instability discusséd:in Chapter Four.

The iteration criterion used in the computation is given by

k+1 k -3
€ = X, .I¢. . - . L) <10
1,1} ¢1,J ¢1,J

where k is the iteration counter dnd (b, a dummy vdria_bj'e‘-

and 1= 2, 3, ....M+]

Discussion of Results

Since three independent parameters are involved in the present

problem, a complete parametric study is not practical, hence only

representative cases for air (Pr = 0.73) are given to illustrate the"

inclination angle or body-force orientation effects. Since the flow
must be forced, the free convection is regarded as a perturbation

superimposed on the forced flow. The parameter which represents the

mutual interaction of the free and forced convection effects is %ﬁz, the

Avchimedes number. TIndividual effects of Gr and.Re are discussed first

and their combined effect on the heat transfer and flow parameters

later.



P

b

[ ¥-opa

Figure 2.] shows the systematic development of dimensionless'lqngituﬁ}nél

velocity distribution across channel with its length for an isothermal system.

Near the channel inlet, a square longitudinal velocity profile is obtained.

L 4

However, for distances gréater than X, = 0.04Re, the entrance lengqh,|theufloﬁ

is fully developed. The velocity profile is parabolic and symmetnicaifabou;_ .
et 1'
the channel axis. Since the entrance length, xe for Re = 150 is 6. 0 {then the %
RCR I

)

flow is already fully developed at x = 10.0, It is observed. that. the max1mum
value of the longitudinal velocity at x = 10.0 is one and a half Q1mes the;meggﬁ'
. i w' R

velocity, and agrees with theoretical fully developed flow predictionsf A

g 7
-
“

In order to compare the present numerical solution with those of previous -

workers, the centre-line velocity is plotted against the channel length for a

}"[.
Reynolds number of 150 based on the channel height. Figure 2.2 shows composite - -

predictions of Runchal, Wang and Longwell and Schlichting in Runchal et a}HLS} t

and the present analysis. The agreement is satisfactory.
Figure 2.3 depicts the systematic development of the temperature profile
across the channel along its length. In general, the temperature profile

flattens out as the channel exit is approached,

Figure 2.4 indicates the influence of Reynolds number on the temperature

]

[ ]
distribution across the chanmel for a given Grashof number for the horizontal

- kR
r N
case. It is clear that as the Reynolds number increases, the local temperatures

:\ 1

decrease accordingly. This reciprocal variation is aﬁti01pated since a decreasqa;

in the Reynolds number reduces the convected heat in the longitudinal direction

but promotes increased heat transfer by molecular conduction in the transverse

direction,
Figure 2.5 illustrates the effect of Grashof number on the temperature
profiles for a given Reynolds number. As expected, increases in heating must

naturally be accompanied by increased local temperatures,
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Figures 2.6 aud 2.7 represent respective influences of the
Reynolds and Grashof numbers on the velocity profiles. While
increases in the Crashof number generally enhance asymmetry of
the velocity profiles, increases in the Reynolds ﬂ;mber tend to
destroy such asymmetries.

Figures 2.8 and 2.9 respectively show the influencé of the
angle of inclination on the velocity.and temperature profiles.

At the channel axis of symmetry, the local veldcity is practically
ingensitive to changes in inclination as it is also shown in

fipure 2.8. A possible explanation could be that at this.,
point, the aiding and opposing effects of free convection counter-
balance each other. Near the hot plate the local velocity is higher
than it is near the cold plate. This is anticipated since energy is
added to the fluid near the hot plate and extracted near the cold
one. Figure 2.9 shows that the local Cemperatures increase generally
with increasing inclination.

Figure.2.10 shows the variation of the local Nusselt numbers
with channel length for a given Ar with the angle of inclina-
tion as a parameter.. It is found that the local Nusselt number
decreases asymptotically to its fully developed value at the channel
exit. This is expected since the local remperature within
the channel-increases with its length; hence the de¢rease in the

normal temperature gradient along the channel.
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Using Ar as parameter, the variations of the mean Nusselt and
Stanton numbers and Yriction factors with the channel orientations
are presented in figures 2.11, 2.12 and 2.13 respectively. Of parti-
cular interest is the variation of the mean Nusselt number with the
angle of inclination. A number of important observations can be made
in figure 2.1!'. At @ = 150, the mean Nusselt number ig the same for
all non-vanishing Archimedes numbers. Between o = 30° and.a = 600,
there is a critical angle at which the mean Nusselt number is a maximum
for a given Ar. This maximum varies proportiohatély with Ar'while the
corresponding critical anglé increases with decreasing Ar. For a given
Ar, this variation of the mean Nusselt number with o is similar to tﬁét
obtained by Ozoe et al [f 4 1 for the variation of the mean Nusselt
number with the angle of inclination for natural convection in a square
channel heated isothermally from below and similarly cooled from above.

It is recognised that Archimedes number can vary in two ways; Re
can be kept constant while Gr is varied and vice versa. Therefore the
mean Nusselt number and the frictien coefficient are each bound to varj,
in two ways. Figures 2.14 and 2.15 show the plots of Num vs Ar and fm
Vs.Ar respectively for the two modes of variation of Ar for a number of
channel orientations. A critical Archimedes number exists for a given
inclinaéion at which the meaﬁ Nusselt number assumes a single value.
The same is true for the mean friction factor. 1In both cases, the
critical Archimedes number y 0.5 and remains so for all inclinations,

but the unique values of Num and fm depend on the inclinations. This

is a very significant finding since it assures us that at this critical
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Archimedes number, there are single mean values of Nu and f associa;ed
with a. Since the results predict the existence of optimum inclination
for which maximum heat transfer occurs, it is of interest to derive
correlation relations.

Although scparation is predicted at the cold boundary, it is
obvious that the value of Ar for which separation occurs depends on
the inclination. No rigorous numerical compuation has been carried
out in this respect. However, at the vertical position at which
separation is most likely to set in, the maximum value of Ar = 1.00.

A more rigorous determination will be presented in the perturbation

analysis.

2.8, Derivation of corrclation gquation

The Numerical results for the mean Nusselt numbers at the hot
wall predict the existence of optimum inclinations for the range of
Archimedes numbers considered. That is

0.050 &« Ar « 0.50.

It is also evident that the mean maximum Nusselt numbers vary with

the optimum inclinations. Such a variation is tabulated below:

TABLE 2.1, MAXIMUM MEAN NUSSFLY NUMBERS AT HOT WALL

Ar Nu o (Optimum in
mH , OPT radiang )
0.050 1.7713 g
0.150 [.7813 197 ;
60
0.350 1.7850 7m
24
v L]
0.500 i.7880 T

ey g e
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It is pogsible tu express the dependent variable Nu .. in terms of

mH

the two other independent variables Ar and GOPT,by the equation.

n ! .
Nu g = C{Ar) I(QOpf 2 where C is a constant and n, n,

exponents to be determined.

Taking the logarithm of each side to base 10,

are (2.58)

logIO NumH = 10g]0C o log10 Ar - ¢+ n, IOgloaopm ,...(2:59)

If 10g10 NumH = z; 1og10C = CO; lOgIO Ar = x; logIO aOPTz ¥y, then

the above expression reduces to

2= +nx+n
o I

If z, x, y are the mutually orthogonal space coordinates, then (2,6H)=‘

A ereareereal (2,60,

represents the equation of a surface which cuts the z~y plane such that

z = Co. The physical significance of this is that it represents ji.e.

#

Z

true for low Ar's.

Co' the case of pure forced convection and this is approximately

In equation (2.60) the unknowns are three and three simultaneous

equations are adequate to determine these constants. Considering Ar =

-+

. iR
0.050, 0.150 and 0.500 the following set of simultaneous equations are

obtained.

It

For Ar 0.050

z = 1og10 1.7713 = 0.2480

-1.3010

x = log,, 0.050

0.0200

T
y = log 53

-

g s
LA

.
'
ek o,
e

®ooa
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The corresponding equation is

0.2480 = Cn - l.30|nl + 0.020n2 ............... (2.&2)

For Ar

n

2 = 1og!0 1.7813 = 0.2510
y = log,, %%F' = -0.0010
X = 1ogIO 0.150 = -0.8240

The corresponding equation is

L} . .

0.2510 = C, - o.az&on] - o.oom2 ceeriiitiaaniiael(2.62)
For Ar = 0.500

z = 10310 1.7880 = 0.2520

il

y = log]0 n = ~0.1040 .

X = loglo 0.500 = -0.3010
The corresponding equation is

0.2520 = €, - 0.30ln, = 0.104n, | ..............(2.63)

Solving (2.61), (2.62), (2.63) simultaneuously yields

0.008

=]
¢

0.029

=
[

0.2570 + C = 1.804

g
-t
[}
(9]
o
1

S

0.150 ’ "

b



- eapp————

. -

2,

9

Conclusion

48

The correlation therefore becomes

N - ! 804 (Ar)O'OOB (a )0.029

UrmH OPT (2.64)

for 0.050 £ Ar g 0.500

IF_ < < .T_I".
6 = %pr ¥ 3

For Ar = 0.350, the value of NumH obtained using the above equation
agrees with its value from numerical solution.
. '] f
. The mean hot wall Nusselt number is independent of non-zero H
Archimedes numbers when the angle of inclination to the
. . [a]
horizontal is 15",

2. For a given non-zero Archimedes number, the optimum Wb

inclination at which the mean heat transfer and flow ¢
coefficients are maximum, lies between 30° and 60°.

3. A unique solution to the thermal problem exists for a given
inclination when Ar = 0.50.

4.  The results of Ozoe et al |4] which they confirmed experimentally

further suggests the validity of the present solutionm.
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CHAPTER THREE '

ANALYSES OF NUMERICAL METHOD - CASE B

Preliminary discussion:

The previous chapter was devoted to investigating constant but
unequal surface temperature thermal boundary condition. 1In most
engineering applications other wall-temperature variations are often
ol interest. [For example in flat plate solar colleétors, the source
of heat is radiant cnergy. Technically, this constitutes a constant
heatfiux problem and the surface Lemperature variation along the hot
Plate is linear. For the cold plate, its surface temperature variation
tamot be determined a priori since it depends on the prevailing ambient
conditiqns on both sides of the plate. In particular, the ambient
Lemperature of the adjoining cooling medium will depend on the method
ol cooling. 1F the cold plate is exposed to the atmosphere, the prefer-
red mode of cooling is by free or natural convection. However, if rhis

cooling medium is accelerated by an external force, the mode of cooling
is obviously by lorced convection. In-a practical situation the cooliﬁg
may be achieved by mixed convection. it is elear that whichever of the
methods of cooling is adopted, the ambient temperature of the cooling
medium plays a significant role in determining the surface temperature
of the cold plate. Tn addition, the specification of this ambient
temperature becomes crucial for the completeness of the thermal problem.
Also, because of the variable surface temperatures, there is need to

redefine the dimensionless femperature difference.
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3.2

In this chapter, the dimensionless temperature difference has
been defined in terms of the dimensional axiai temperature gradient
along the hot-wall. The reference temperature ;s the ambient tempe-
rature of the fluid at entrance to the channel. Because of the slow
rate of convergence, the numerical computation has been carried out
by Successive-Over-Relaxation (SOR) method. This}ﬂone by introducing
the optimum relaxation factor, o into the poisson equation of the
streamfunction to obtain equation (2.34).

The Linite-difference analogs of the governing equations have the
same form as those in chapter two. However, the thermal bounda}y
conditions differ considerably, while the no-slip condition at the

walls still holds.

Thermal boundary conditions

Cold wall:
The cold wall temperature at a given location can be predicted
from considerations of the second normal derivative of the temperature

at that point. As stated previously in chapter two,

32T -0
d N .
7 y=0
. . . i - . . T_|Ttn -
Introducing the normalising coordinates, 0 = = and Y = by yields
' Rel'rA*b
%0
e |, 20
y=0

The finite-difference representation is given by,

(0 - 20, e ei,Z)

]'}
(Ax¥ =0

Simplification and solution for Ui | yields
»
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. = . + U .
Ul,! (ul’?_ y/2 o,

where i = 2, 3, ... M, M+!
Hor computational convenicnce,

Ox  is taken to be Zero,

Hot-wall

The constant heatflux imposed on this wall implies a linear

wall temperature variation in the longitudinal direction. This

variation can be expressed as

. it
Thw(x) = T + AKX+ oX) P € 1)

Differentiating both sides with respect to X, gives,

d_ [T, ()] d e, + A%
dx 2l dx _J
r 7 ?l .
. ﬂ_.l; x_r, = fﬂ.(j&)
dx dx

In the non~dimensional form,

a [ A
RePr Tﬂr[?hw(x) Ab, = (Abx)

de, (x)
hw
-—-—(-I-x_..__= I/Rel\r ............................. -oc---lo(3-3)

The discretised form of (3.3) is

(ei,N+1— ei—l;N+I)/Ax AL
6i,N+I =n£]):];+ 0i-],N+] ............................ 3.4

the dimensionless ambient Lemperature

the ambient temperature at channel inlet.

66
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3.3

Having specified the thermal boundary conditions at the walls,
it is necessary to have a tloser fook at the outflow boundary conditions

Outflow boundary conditions

Since the wall temperatures vary continuously %n the generél

direction of flow, it is anticipatud that continuous variations in

the velocity and temperaturc profiles may occur even at'remote distances
from the channel entrance. The simple gradient boundary Eonditions at
exit in chapter two are not strictly applicablg in this case. However,
at any grid point at remotc dislances from the entrance, the first
derivative of any space variable with respect to x has a constant value.
At this point, the second derivative of the space variable with respect
to x must therefore vanish. The following less restrictive computational

outflow boundary conditions have therefore been imposed.

39 | = 0 ... e, T € T
a:?—[ '
M, |
a?.
§j§ = 0 e e tesscieriaiane .. {3.5b)
22y
2 = 0 e (3.50)
=
x |M-J
52y |
5—;3} = 0 L. e e e (3.5d)
M, 3

where j = 2, 3, ...N

The finite-difference equivalents of the above equations are;
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(a) TFor Temperature:

2ip i (UM~!, - ZGM,J GM+1,j .
o Ax*
M,
Solving for QN '3 sives

0M+!,j = 2 GM,j M1, Tt T & N 7Y
By analogy,
(b) For vorticity:

QM+|,j = 2wM,j - wM—I,j ...................... .(3.6b)
{(c) Streamfuncrtion:

wM+i,j = sz,j - ¢M“l;j ettt e ere e e {3.6c)
(d)  Trangverse velocity:

VM*’:J = ZVM’j‘ VM—I,J ittt ceeea (3.64)

where j = 2, 3, ...N

Evaluation of heattransfer and flow parameters

Nugsselt and Stanton numbers

It is sufficient to mention that a cubic

polynomial in vy for

0 has been used, as in the previous chapter, to estimate the heat

transfer. However, the local Nusselt number is based on the mormal

temperature gradient and the difference between the local wall

temperature and the ambient. lence the local Nusselt number can be

represented by:
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(¢} For the cold wall:

The corresponding mean value ig given by

Nu = e fKL Nu dx
e 0 xe

(b) For the hotwall :

ve - o % et Yian=1 80 )
xh | 6Ay(0i,N+l-' 8 D))

and Nu = e L Nu dx
mh X &)

--------------

freeraeiaanl.(3.9)

e (3210)
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The corresponding local and mean Stanton numbers for the cold
and hot walls can be obtained from the following e¢quations.
Thus.
N My
- ‘.t = P P E s o-lol-o-oclttllsclo"o
S xc Relr (3.1a)
! Nu ¢
N = _..L ]
St ;{—T-{j’i S dx RePy~ <rnrreeeee(3.11D)
4 Nuxh
" S = . e tee i eaaaan R R T P . B
txh RePr (3.11¢)
- N“mh
. Stmh = RePp """t ctrereeienann. teresiaesnaL L (3011d)
;
3.4 Friction Coefficients
- The local friction coefficients are obtained from the relation
'¢
2 du
£ Teu? Ay e, e veeen (3012
mx wall
i
»
| The mean value is given by
!
|
by S5 LV Edx ceea(3.13)
m X
L
o
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3.5 General Computational Procedure

The iterative procedure is essentially the sam: ac that ¢f

chapter two, except for a fow additions. However, since the equations

-used in evaluating some boundary values differ vnnsxdcrably from those

of chapter two, it ig necessarv to state the various steps 1n the

. Computation,

(1) 8,

. ) _
Us ¥V, Y are initialised for all the interior, cutlet grid

poiuts. Using.the initial values of U, the boundary vorticitics

-__:are computed from equatlons (~.34).and (2.365 of ¢ -

. the previous
chapter.
(2) 9 is initialised at tne coid beundary where the temperature:

7 : )
variation is arbltrary. Us1vg equuLloﬂs (2. and (3.82)

'»ﬁeSpectively, 0 at. 1nter10r points and outflow bcundéry are'énmpu—'
:_'ted._ Nhen the Lemperature field has converged the cold wall

/tempcrature is re

~evaluated from equatlon {3. !)

(3)- w-is computed for all 1ntnr10r peints from equatﬁon {2.12) ang

*‘iﬁﬁ\ on - the outflow bouudary from equation (3. Gb) - | :i

vations (2. 4), f2 19)
\(g 12) after computlng the cptlmum relaxaticn faLtor W, frOm

equatlons (2 fSa) and (2.-5b) The out;]rw boundar values are

B obtalned from equatlon (3.6¢).

(5). u; v are recomputed for all interior points 1rom equations (2.13),
and (2 14) and the outflow values of v from (3.6&).
—(6)’_U51ng the . most recently cemputed values of 6 and 2, the local
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and mean values of the Nussell, Stanton numbers and friction coefficients .

are computed from equations (3.7), (3.8), (3.9), (3.10), (3.11a), (3.llb)f

(3.11e), (3.11d), (3.12) and (3.13) respectively. In addition, the
new boundary vorticities are computed from (2.34) and (2.36).
(7) Steps two through six are repeated until convergence is achiéved {or

each variable. The computation is terminated thereafter.

Discussion of Resules

Figure 3.1 shows rbe  wvarial ton of Lhe dimeusiunlgss hot-wall, cold-wall
and mean temperatures with the chuaone! Yength. The'hot~wa11 temperatuﬁe
varies linearly with the Longitudinal distance. The cold—wal} temperature
increases gradually with the channel length.  As anticipated, ‘the local mean
temperatures lie between the thot-wal!l and cold-wall values..wInﬁgen&ral the

. - yf
local non-dimensional .mean temperatures incresses with the longitudinal
distance. .

Figure 3.2 depicts the (emperature profiles across the channel at two'

different locatibns. Unlike the uunaLunL—surface-temperaturegsolution;

profiles do ot originate and terminate at the same points. The longitudinal -
1 -
.

.

variation of the wall tempevatures accounts for this.

On figure 3.3, the local cold-wall and hot-wall Nusselt-huﬁﬁgpé axe,

ry

K g
plotted as functions of the longitudinal distance. TFor the hotwwall, -

ey A
the local Nusselt number decreases with channel length while thap;df:the
'-‘:A.
cold-wall (its absolute value) increases with channel length. This ‘should
not come as a surprise since the fluid temperature near the cold-wall is

always higher than the cold-wall value at any axial lotation., ',

, 3
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3.6.1

Pigure 3.4 illustrates the variation of cold-wall and

v

‘hot~wall

Stanton numbers with the channel length. Their variations are”similar

to those of the respective Nusselt humbers from which they weré,eva}uated;“

Figure 3.5 represents the variation of the local friction 'fa

ctors along

v o

the channel. Figures 3.6 and 1.7 show the influence of channe] inelination

and the modified Archimedes number respectively on the velo

at remote distances from the channel inlet. Again, near,:th

city profiles

e chamel axis"

of symmetry, the velocity profiles are insensitive to bo}h;a~and_Armf-_

This could be attributed to the cancelling of the aiding and
effects of the free convection. The general latersl displac

the velocity profile results from the unsymmetrical heatlng

1gure 3.8 shows the influence oL channel ortentatxon ,on the mﬂan

hot-wall Nusselt number with the modified Archimedes numher,

+

parameter. There exists optimum angles of inclinationffor*which the mean

+

,asgthe-minoﬁ

opposing‘

ement of

.

hot-wall Nusselt numbers are maximum. For the range oflmmdmfled Axchlmedﬂ

R‘

numher considered, the maximum mean hot~w311 Nusselt. numbers and the ; 1

A

optimum inclinations (in radians) are well correlated. by»a$three~d1men-f"

- ' o
sional power Jaw derived later. ‘ These opttmumblnclxnntlonst“j
. o I\ Pt b i L‘v

lie between 45° and 82.5". ' Sk b L
N o 1"‘ v S I AN x

Figure 3.9 shows the variation of the mean cold*wall;NusselE'number }F,

L l',{ ‘"‘{:"t DR g

with chanpel 1nc11nat10n. Optimum inclinations exist iﬂor*whlch thc :
ﬁw s .y ' -t
B M b . .

absolute value of the mean cold-wall Nusselt numbers areimaxlmun? ;»ﬁ;l-.'-
T Mk e .

. ] e g vt :

Coreeldtion for the Mean hot—wall.NusseLE numbers. ,';f* }‘;~ o

The results for the Mean Hot-wall Nusselt numberishowx

g ¥
angles of inclination exist for which maximum Nusselt number
]

“F

e Tty

tha opt;mum

4

".,. b

s “are availabley

L]

. L.lij -!I, be
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Since it is the optimam angles of inclination that is of practical
interest, itg reiationship with the maximum mean Nugsselt .number for
the range of moditicd Archimedes numbers considered, can be expressed

by u three dimensional power Law. Thig,

r

R 3
N n I ' ' 1
N e i (R4 et Tt a it reasassranasald. .
U L(A:m) (QOPT) 2 a (3.26)
Z wherE(aHﬂ‘B the optimum inclination expressed in radiang, ﬁl’ n, are
exponents; C = const. .
;; Taking the logarithm of each side, we have _ . . .
g -
log, Nu = = log ~C+n log, . Ar + n log aﬁkf.'
10 mH “10 ! 10 m 2 10 Topt s
* (
2} 1f loglo meu = z
log,o c = CO ] B
=
‘*?:! 1‘0810 Arm T K *
! = ,
°€10 aovr Y .
gp Then we have a linear equation of the form
Pt
PR C0 toapoxos S A e i eeana. ...1.(3.27)
i
(a) For Arm = 0.025 T
- a ‘fa !
% T‘J‘i T ’ -,' i A
v WAl 0 SO e
Ot':EPT P TRREEEE SR
. o v
Nu = = 3.444 R 1
* mH A 4 l .!-&.
* z = log,y 3.464 = 0.5370 Co



f

&

(b)

G

The

(c)

X = luglo 0.025 = - 1,602
7 = - .
y = loglo 5, = 0.036

The corresponding equation is

0.53370 = ¢ - 1.602n - 0.036n_ .
o 1 2
For Ar = 0.050
m
H 0
UlO]_"_I' = i =45
NumH = 1,456
+ Z = loglo 3,456 = 0.5340
-‘.-:- T . = - !
X lq&to 0.050 1,301
= x H - 4
¥ 105!0 4 0.104

corresponding equation is

0.5380 = C - 1.4901n - 0.1
o l i
For Ar = 0.100
m
) 0 1y
D‘.o l?'.[:- 82.5 %
= A
NumH 3.499
-+ z = logio 3.499 = 0.5430
x = log , 0.100 = -1.00
y = log T L6160

°810 24

...........

P
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The corresponding cqual fon ig

0.5430 = CO - fOOnf + 0.I60n2 AR P AN < 1)

The solution of the three simultanueous equations yields

n,o= 0.006
n2 = 0.012 > n2 = 2n]
C0 = 0.5471 « - p = 3.520

Henee the threc-dimens fong] corrvelation ig

Nuw™ 3520 (ar a2 30-006

aH L Yopp for 0.025« Ar < 0.100 (303D

1o A
6 aol)'l' = 24

Figures 3.10 and 4.1t depict respectively, the uariafion of the
.

mean cold-wall and hot=-wall Stanton numbers with the angle of inclination
for a rvange of mddified_nrm. Figure 3.10 shows the existence of optimum
inclinations for maximum {absolute value) mean cold-wall Stantoun numbersy
to occur. Figure 3.1 exhibits an entirely different picture. For
inclinations up Lo 300, the mean hor-wall Stanton numbers are independené
of Arm and . For inclinations legs.  than 300, Stmh’ remains indepen-
dent of small values of Arm and . For Arm = 0.100, a significant increase
in Stmh is shown for o greater than 30°,

Figures 3.12 and 3.13 represent the respective variations of the
mean hot-wall and cold-wall friction facters. 1In figure 3.12, optimum
inclinations betweeh 30° and 82.5% exist for maximum values. of fnh to

occur. Figure 3.13 shows chat in general { . decreases with o and Arm-
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Again, this predicts separation at the cold-wall, especially near

the vercical position. Although no rigorous attempt is made to define
the criteria of separation for éach inclination, the general tendency
is that as the angle of inclination increases the cr%tical Arm required
for separation decreases. The minimum value of Arm occurs at the ver-

tical position, its value being 0.500.

One application that readily comes to mind is in the design of
flat-plate solar collectors where the hot plate is heated by solar
energy and the heat generated is convected away by forced flow for
various uses.

For instance, if air is rhe medium of convection, tﬁe heat

w
convected can be'used for drying grains. In view of the changing
position of rhé sun, the orientation of such a heat transfer
equipment with respect to the gravitational field becomes an important
factor in ﬁrédiuting the position at which heat transfer is a maximum{

if any. ;

Conclusions

Practically all conceivable chéuuels are finite in extent so that
fully déveloped regimes are harvd to come by. The problem is therefore
basically that of an entrance region and mean values of the heat
transfer and flow parameters are more representative of actual results
than those obtained for idealised fully developed regimes. In the light

of the assumptions made to simplify the mzthematical model, it ¢an be

concluded that optimum inclinations exjst for which the heat transfer is
maximum dt the hot wall-
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CHAPTER FOUR

STABILITY, CONVERGENCE AND Accuracy oF NUMERICAL

Preamble

SCHEME

To obrain a realistic simulation of a flow process from a

computer,

it must be supplied with a set of instructions (the

computer programme) which embodies the.implicationq of the

conservation laws of mass,

moving fluid,

momentum and energy appropriate to a

Since the laws governing the flux of mass, momentum

eénergy are established for laminar flows, the predictiong generated

by the computer prograhme, with due care,

LA
physical experiment,

may be as reliable as a

Therefore, the question of stability, con-

*

vergence and accuracy become crucial in obtaining a numerical scheme

whose results are comparable with physical experiment,

' Stabilitz:

Stability is usually associated with the growth or decay of

]

errors in numerical schemes. More generally, stability may be

defined as the requirement of a bounded extent to which any component

of the initial data can be amplified in the numerical procedure,

Two types of errors are associated with numerical schemes.

They are:
(i)
(ii)

N

Round-off errors,

Discretisation or Truncation errors,

L
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"Round-off" errors are due to the finite floating~point word length
of electronic computers, Round-off errors are difficult to analyze
because they introduce qualitative aberrant behaviour, e.g. floating-
point addition and multiplication are cumiulative, but not associative

or distributive. The computer generally does not randomly round up

or down as would be preferred.

L

"Truncation errors” refer,to.the errors incured by not retaining

all terms in the infinite Taylor series expansions or equivalentl}‘
by using finite grid-sizes Ax and Ay. These efrors are usually of
order (Ax), (ay), (Ax)z, (Ay)z, etc. and cah be reduced by decfeasing.
the grid-sizes in a specified manner.

Convergence

A convergent, finite-difference scheme is defined mathematically

@s one in which all values of the finite-difference solution approach
that of the continuum differential equation as the finite-difference '
mesh sizes tend to zero, A necessary and sufficient condition for
iteration comvergence is that for the Gauss—Seidel iterative procedure
used, the matrix of coefficients of the system of linear equatlonq:
generated from the flnlte—dlfference scheme must he dlagonally do~
minant [ 6 ]. It has been usual to approximate all derivatives of
flow variables by central-difference formulae. More rgcently,
Spalding (1967) and Creenspan (1968) suggested a method ﬁnﬂﬁhich.
the first derivatives of flow variables are approximated by vpwind'

or downwind differences depending on the local direction of flow at

any given grid-point, Investigations carried but by researchers



2
G

showed that at large values of Reynolds number, the central-
difference representation of first derivatives may fail to
produce a matrix of coefficients that is diagonally dominant.

Hence the solution diverges. " However, the matrix assocmated Wl*h

¥

the equations obtained by approx1mat1ng firgt derlvatlves by
upwind and downw1nd differences, depending upon the local
direction of flow, is giagonally dominant. It has beentdiscussed

in gome detail by Runchal et. al. | 9 ]. The disadvantage of thie
N - -I
method is that the truncation ertror may be’ higher than that

1.

obtdined when central-difference representations are used.. The
',

penalty is worth it, i

. L
Since convergence is intimately connected with grid-size.it
! LA

. . . . . N b i.‘f .
1s usefu¥ to still investigate the phenomenon of "Wiggles™ or
.t ' | ()
5
"Spatial oscillations" which can induce divergence evenggfger'

satisfying other conditions. "Wiggles" or spatial oscillations ..*

.'.
in & flow solution have been encountered in many'works.‘-ln;‘

supersonic flow, they are usually associated with post=shock ++ ..

L] f [

oscillations of methods using centered-space derivatives;,TWigéles
also arise in long-term incompfessible flow calculations.‘ Spatial
oscillations manifest themselves in numerical solutions, by alter-
nating signs, - or +, of flow variables near r:g:d boundaraes at
various stages of numerical iteration. This Patt§££&9$ﬁPﬁPEV&°HF
makes it impossible to determine with confidence,-theﬂstage-at{

which computation can be terminated. Some: .schools of thought have

associated spatial osc111at10ns with non-linearities’ or thh



linear instabilities. Other schools of thought are of the view that

wiggles are simply solutions of finite~difference equations. One fact is

1

obvious: wiggles can indeed prevent iteration convergence, especially for

the highly susceptible vortex field.
The condition required, from stability considerations, for wiggles

not to occur for a 2-D through-flow problem is that %% < 4 H£13?f8-1

where %% is the mesh aspect ratio and E%X is the cell Reynodsﬁnumﬁ

-yt

er...

Ax

.i' ' " ,
The non-dimensional form of the ine uality - is <+ < } . Re uAy.‘ How
9 - o UAY

Ay

this inequality affects the number of divisions in the X-andeJdiiéé

. !

+

i
needs further elaboration.

Thus, let, L

Non~dimensional channel length

1.0= Height of channel :
e LR O
M . ‘

v
hatl

Ay: -_—

Substituting these into the inequality yields, after simplification,

2 Re u M "
N

For the entraunce region, the channel length can .be approximated by the -
relation L = 0.04Re. For demonstration purposes, .suppose tHat the non-
dimensional longitudinal local veloeity, u = 0.20 near a rigid boundary,

Thus,

N2 . Re X 0,20 x M
2 x 0,04Re

il

.o N < 2.,5M

tions
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Suppose M = 10

Then N2 < 25, = N <5,

It can readily be seen that to avoid spatial oscillations, the number

-

of divigions, in this case, in the Y-direction must be less than half the

number of divisions in the X-direction. Throughout the numerical analysig,

this condition was rigidly adhered to.

To further accelerate ctonvergence, an optimum relaxation factor W

¥

was introduced into the equation of stream function'folloﬁing Roache {8].

4.4 Accﬁracz
The accuracy of a numerical solution cannot be considered in isolation;
it must be considered aleng with convergence and stability c;itgria. It
is posgible for a numerical scheme to be stable and convergent ‘but not

necessarily to its true solution. An accurate solution is that which

approximates to the continuum solution of the differential equation. This

can usually be achieved by refining the grid-sizes. But this requires

-
]

excessive computation time for convergence. It is not advisable!to pursue

.
this course for economic reasons. However, results obtained for several °*
finite grid~sizes can be extrapolated-to zero grid-size to offset dig-

cretisation errors as was done by Ozoe et. al. [4]. For analysgs which,

.

involve low Reynolds numbers, excessive grid-refinement for‘chanﬁelstwith.
narrow openinings, is not necessary. For instance, for Re = 150 a grid-
network of l1x6 for b = 1.0, the plots of centre-line velocity for an

1sothermal system compares favourably with that of Runchal et. al. (o]

¥

who used a grid-network of 2IxI5 for b = 2.0. as shown in flgure~2 2.,

-

™~
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In going from a grid-network of 1l1x6 to that of 22x3, the maximum deviatic

in heat transfer and friction coefficients was about 10%Z. The penalty

paid for grid-refinement was excessive computation time and comsequently

higher {indncilicosts.
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CHAPTER FIvE

PARAMETER PERTURBATION ANALYSIS - CASE A

Preliminary discussion:

-

In reality, pure forced convective heat transfer seldom occurs
since the density of ordinary fluids is dependent on temperature. In
fact, mixed convection, that is, combined free and forced convectien,
1s the most general type og phenomena. Thus, forced convection re-
presents a limiting approach for vanishingly small heat transfer, and
these solutions are valid approximately only within a very limited
range of flow and heat transfer conditions. The solutions do not,

in themselves, permit any estimate of the extent of range within which
‘ e
they are phyiipally realistic. To assess the effectiveness of forced
*

a

convection solutions experimental observations are necessary. However,

.

o .qi.i
for a two-dimensionail problem, a computer simulation is just as good

' _“4-“'
as an experiment,

a

One approach to jnvestigating problems of convection in which the
free.and forced effects are comparable is to use the fully developed
forced convection solution as a first approximation to both the velocity
aud temperature fields. The next approximation can be obtained from
the buoyancy-driven secondary flow and a secondary temperature distri-
bution due to the modified field gf flow. This perturbation of the
forced convection does allow for mutual interaction of the velocity and
temperature fields; an essential feature of thermal convection.

A number of authors have adopted this approach by obtaining




N solutions as power series in a chosen perturbation parameter. Faris

and Viscanta [10] used-—§, the Archimedes number, as their expansion

parameter for flow in a horizontal tube. Igbal and Stachiewcz [11]
used the Rayleigh pumber for the case of constant heatflux boundary
condition. Morton {12 ] used the product of the Rayleigh number and
a modified Reynolds number as the expansion parameter for a uniformly
heated horizontal pipe. The perturbation approach in general hﬁey_-
converge for sufficiently small values of the expansien parameter

. when adequate terms of the power series are considered. However,
ey
v’

on account of the labour involved in finding higher order terms,
most works have been restricted to the second-order term. Therefore

forced convection solution is bound to be 1n error.l Hence perturbatlon

D e A
Boluflons based on the fully developed forcedﬁconvectlon sclutlon, are
» i kY .. .
: ,i?‘ " S __v. A
"*‘ in general not stm'ctly correct However, the px:.mary metwc.Lmn is

2N F "rn' P
F'" l*‘\\ [

s ot "”E‘?‘;}&f " «

. r-"

‘!d ;

. “*“Y*ﬂto lmprove on the understandlng of the comblned process andito extenq

Wa¥ ‘13__,,* -
ﬁ? ” the exlstlng sdlutions to a wider range of condltlons so that thp-

t - I.
“r ot

analytical results may find direct phy51cal application.  ro . o '

The present analytical study is based on the fully deveieped'f :

E s)_..;'-ﬂ : . N
ﬁ? laminar forced convection in inclined rectangular channels heated

isothermally from below and similarly cooled from above. From e

dimensional considerations with vector-length approach, it: 19 establ:qhed

g that the relevant expansion parameter for the power series is EL33 the
‘Re
Archimedes number. Perturbation results are presented graphlcally for
modified Peclet numbers, RePrA, ranging from 0.088 to 0,350, ;Ngmerical
1 .
v

. x
. . Solutions are then compared with perturbation solutions for the case of
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v
W

constant wall temperatures only. It has not been possible to obtain
the perturbation solutions for the case of constant heat flux at the het

wall since the thermal boundary values are not specified,

Diwensional ‘Analysis

-

In convective heat transfer problems, there are two approaches.

These are:
b

(2) The use of the theory of dimensional homogeneity to obtain
. - , ° - » ‘
relations between relevant variables which affect the flow and

heat transfer. e
‘analysis

(b) The isolation of an element of the boundary layer and its
' re

using the mass conservation concept (i.e. control of volume approach).

to obtain the governing equations. _

Case (a) shall be considered. In doing so, consideration is;givenﬂto;
A
. . . .
(i) The traditional L, M, T, @, as the fundamental system of units
without regarg'to the direction along which the characteristic

linear dimension, L, is measured.

(ii) The 'Vector Length' approach which considers the linear dimension,

L, as a vector resolvable in three mutually orthogonal directions
s0 that the fundamental system of units becomes LX’ LY’ ﬁz,‘M,_T, e.
Since the present analysis pertains to a two-dimensjional flo@,'only
LX’ LY.are considered relevant to the problem. The advantage

gained is an increase in the number of independent fundamental units
from four to five; the total number of physical quantities remaining

unchanged.
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5.21 Traditional Approach: L, M, T, 8 {(fundamental units)

The heat transfer coefficient, h, per unit temperature difference
is given by the functional relationship

h = f(UIll’ My Kf’

.

C!) 38,'3,&
ppBg .)

F

where each of the physical quantities in the bracket has the following

dimensional representation.
U [=];lri /
v =15
Ke [ =] %‘5‘ .
c, '[=:l -]é—;

P [“j}%‘-“ y

Bg [=Il%; '
¢ [ =16

C=Tv P
C=Tgre
o [=7¢

o

=

If N is the total number of physical variables and n, the least number
i

of independent fundamental units, then by Buckingham's T-theorem [:li],

‘the function h = f(Um,]J, Kf, Cp, p, Bg, 8, b, ©) can be reduced - to

one involwing (N-n) non-dimensional groups. Hence for the present cace,

there are six possible non—dimensional groups to replace the above

Ed
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R functional relationship. By cancellation method [}4:] the groups
are:
Ub
A m oML LT m_-_
@ m 2o ledge 3on -]
N

where p%?h represents the Reynolds number for ,the forced flow.

Lo T = Re
1

)
= - A - o
) m, = Bgebsp? 3, M2 LZTZ ;
[ ]@Ta‘ 0. L - [ ]- ;
Beob '
where -——1—-—- represents the Grashof number, Gr
. T2 = Gr
‘A LCp M: L2 8
A M BT — - I,' ‘ ,‘ ‘
(C) — K [ j LT W m LnJ— . Y
@ j; ) o =. A
, where %ER represents the prandtl number, Pr, which-is purely

.. 3 = Pr '
A hb M or W
N (d) m, = E;l}ﬂ‘aF'L- o L=] - | .
& ]
where m, represents the Nusselt number, Nu. v B
TTH = NU- . _'=,:,'
& A Y Lz gr? | SR
ol el —m_-. ..._ ~ - . J _ —-- = —_—
[ 24 (e) TTS _— Cpe [:"“_l ,1.2 —]:}' - a l_ ] .Il .
where 75 represents the ¥ckert number, Ec. Since‘vfgcoué‘
)P dissipation is neglected in this analysis, Ec is. only ‘defined
;é-

here to satlsI) the requirements of Buckingham W-Thcorom. :

e
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(6) m L[] L=

The fundamental relationship can be expresseéd thus:

Nu = f(Re, Gr, Pr, e, a)

The above relationship merely states that heat ‘trangfer character-
istic is a function of Re, Gr,_Pr, Ec. and o. The expression does not
Suggest the mode of combination of Re and Gr for a given fluid. TIf
due consideration is gived to the direction along which the character-
istic linear dimerision, L, is measured, the so-called non-dimensional
groups may in fact be diwensional. By judicious combinationg of these
dimensional groups, a truely non-dimensional group may be obtained.

This leads to the problem of dimensional analysis with vector length

approach.
>

Dimensional Analysis - Vectror Length Approach following Huntley 135_]

two orthogonal directions, X aand Y, are Ly, LY respectively. If X is

-

the direction of forced flow and U is the longitudinal velocity, then .

the shear stress Ty 1s defined by
T
TX = U 45s so that o= —n |

U
-Qﬁ

Hence, the dimensional representation of § is given by

L
. 1 Y . — M
whedge o g r -] LT
X
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Since the dominant mode of heat transfer near the walls is
by molecular conduction, then from Fouriers Law 6f heat conduction

in one dimension,

3 .
hé = KX & == ,
£ oy wall
_ho
K. = 78 )
]
Y wall

£

L
—__ M - ‘@" --}{— = -...._Y
Kf I—‘] RE 1" 0 L :] oT 3

The relevant physical variables will therefore assume the

following dimensions,

LX
um [ =] T
=M
vl
X
ML
Ke [=]§T—§
L L
WY
% L=Jomr
M
h [=]'e—,1"3 v
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groups requlred 1s flve, 31nce the total number of phy51ca1 varlablea;'

2 "

isg ten and the lbast'number of 1ndependent fundameutal unlts 1s flve. ’
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where ,ﬁgﬁffgh'represents the Grashof number based on X
. LY
..'lT.Qv :Gr [: -__‘__

Gr_ L2 e (5 1)

.

: LY. F¥  : f'“;ﬁr!,f]‘ﬁf H.Ii{iﬁfkiﬂ.; “;:”

_&galn from Bucklngham s, ﬂ-theorem, the numoer of non-dlmen51on31: 
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(e) g K l' ]L TW  0T2 ML =]
I X Y
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where Rui-represents the prandt! number, Py

I
. Ny = v | =] - .. R C T T

p8 . _ L
@ ap A 0t gy

T Lo e —r
4 K or X ML - 1
. ; y
. 1X . ‘
whaere T represcats the Nusselt number based on X
AN .
¥ '

J R R I I U (5 T %

x Y
. L L
(L) I 5 (1 ] = X QU =
A Y B

An cxamination of equat ions (5.1a), (5.1h) shows clearly cthat

the Reynolds  and Crushof numbers are in fact dimensional! By

combining these two dimensional groups, a dimensionless group relevant

to the problem being considered can be obtained. Since the problem

is one of mixed convective phenonenon where the flow must be forced,

Rex#o, then there is only one out of Lwo possible combinations of

G, and Re » since Cr  can possibly vanish. From equations (5, la)
X

and (5.1b) the relevant non=dimensional group ig given by

Cr~ _ Py |Y

R I R A IR .
X = -

G
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;%% Lsed as the expanslod pa &in te1_£or the power series, R 'g::ﬂ:.~
- 5.3 "TheoretlcaT AﬁalYSiS- o )
5 3 1 Formulatlon of the Problem o _ " s ?_F”'lpf:‘f"{'*;* th'jﬂf‘
;@ o Con31d°r the conflouratlon deplcted in Flgtre1d 1nc11ned at :
X5 S
S . an angle q to the horlzontal ﬁeated 1sotherma1]y from below and
M"""‘"“' \
T 31m11arly cooled from above Let a steady pure fully developcd
_;‘\: \ . .
n ﬂ'forced flow parallel to the axis pass through the cﬁannel A As a’ result
o5 . - T e ]
- T of the establlshed temperature gladlent across the channel buoyancy
f forres are: generated and Superlnposed on the pure forced convectlon.:
T;' ‘ Slnce the temperature Fleld is not fully deverOped ‘a general longltudlnal

where ~__ X. ST S R AR
o .74 . represents the ArchlmEdes—number,:Ar. D enrvo

Hence the functlona] relatlonshlp, h = f(U u, f’ ,p 88’9 b, u).‘ﬁ 2

~can be expressed 1n the non-d1mensrona1 form as.'gipjr,}-f

NG = f(Pr, Ar, @) o V,T;ISQJe)'

. Equatlon (5. Je) shows rhat the’ husselt numoer 1s a functlon of X Pr,

_fAr and a when evaluated at the. walls.f The Prandtl number evaluated

-

-1mp11es that the Prandtl uumber 1s lndependent of the flow geometry

temperature grac1ent w1th1n the f1u1d becomeq constant ’ Thls analVSIS ;Al

is conflned to this reglon where both free and forced tonvectlon effect

are present, ' S ' S RS “’_.‘_';:frj o

']USLng Vector-Length' approach shows that it is dlmenslonless. thS Con

'and therefore 1t is purely a f1u1d property as stated earller Srnee-'\

. Gr Re are the governlng parameters for a gLven f1u1d the rat1o,£— is‘ ’

temperature gradient. results Fdr-ﬁﬁnlthe entrdnceregay\ the longltudlnal
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The Governing Lquations

The non~dimensionalised governing equations culled from Chapter
One are recast here for reference. For cage A thermal boundary
condition, the equations are:

{a) Energy lransporc:

uaf vad i 2
3% dy  TRePr vee

(b) Vorticity Transpgre;

udw o viw b Gr o0 . a0
et 5y C R Vew Eg(ggslna *ar Cosa)

Introducing the dimensionless strean function ¢ defined by,

ap diyp . . .
u = 3y VT T 3y ‘nto the governing equations yields che

following forms of the energy and vorticity transport equations:

CLI R T |- R e
oy’ Ix o' 3y " Repr V0 (5.24)

A3 Ay —-D—)v?fm
dy

9y" 3x ax’

. | Iy Gr 9_9(1 . 36
e O ;g(ayylnu * 3xlosa)  (5.2b)

Numerical solutions indicate that the dimensioness transverse
velocity component, %%3 is of order I0"6 while the longitudinal
counterpart, 7y’ 16 of order 1 for a fully developed flow,
Therefore, %% may be neglected in this case so that the flow
approximates to a parallel one, The left hand side of equation
(5,2b) then becomes a function of y only, Equation (5,2b) would
be valid only if the right hand side is independent of x, This

condition is clearly satisfied if the dimensionless temperature
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is given by

8 = Ax + Y(y) (5.2¢)

i
|
i
!

The form of equation (5,2¢) is commonly used as- the asympotic solution

to the energy equation |ref.16 ], FTor this problem it implies that

98
i A, constant,

The governing equations (5,2b) and (5,28) respectively become,

1 L - . ag .. i

e Al Ax(ay-b}na + A Cosqg) (5,2d)
. W L 2
ad gyt TR VO | (5.2¢)

The boundary conditions that must bhe satisfied are:

B,C. !: ] = 0 = O
y=0 y=0
.-
] = 0 = 1,0
y:] y:!
B.C, 2 3£ = %ﬁ = 0 (no-slip condition at the
y y=0 y y=1 rigid boundaries)

b

Perturbation Series

In order to obtaln the solutiom for the dependent yariables,

¢ ,0 in equations (5,2d) and (5;2e), these unknowns are expanded in

power series of Ar

(fl l—.
TS ngg(m) v (5.3)
8 = & (Ac)"e (5.4)
n=0 n

i
'
i
|



ty

)

e

S

&

W
e

J_"'

&

The postulated forms from (5.3) and (5.4) are introduced into equations

(5.2d) and (5.2e) to yield

LY I (Ar)“q,”

Re
=4

[}

]

3, w n
3;(1150 (Ar) U‘_n)

L A

- Ar

ARePr

s I )
5—-( X (Ar)nen)Sln1a+ACosa
n=o

v2| ¥ (ar)"e
n=o n

(5.5)

(5.6)
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For watlues!.of -Ar 1465 a few terms of the series expansion
will be adequate for convergence. The resulting terms are'reordeed
with respect to powers of Ar. From the requirement that the diffe-
rential expressions which multiply each exponent of Ar must vanigh
singly, a cascade of differential equations are obtained.

Equations of Zero order

V' =0 .......... (s7a)

—2 = L g2 U (-9 3

Jy ARePr 0

These are the equations describing the steady basic flow. The

applicable boundary conditions are

]'\
Iy awo
wo = 90 = ‘5?;‘ = 5;“' =
y=0 y=0 y=0 y=1
If 6
© = 0 = 1.0
y=1.0 y=1.0
5.4.2 ELEquations of First order
[ a60
4 P ¢ B .
Ha v wl e Sina + § Cosat) ..., srersasa(5.8a)
343 |
— = ———————— o2 .
3y P v Gn' ..... e ceeaan cveeanaaa (5.80)
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5.4.4

The boundary conditions are'préécribed such: t}

. contributions to the'fixed;boﬁndary values.

. “ A .

' 5;4.3 Eguatibns~of—the second order

-

'Thé-appropriate Bqundary condiﬁions'aré, '

— = ——2 . = o,
y .

Qs
«
Q.

y=0. - y=1.0

Equations of third order
1 TR

rm——— 4 = .- --—..; o .
e ? w} 5y Sina ...,

12t P and" 8 have zero "
R R DR

- : . ST Lo wes . EE . . L ) . . PRI . . . . . . . .
. R e P . I, . + . . v o - C - L 5
L w . T [ T S Lo e e . S i . . .. R
. e a

L B )
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5.5

“Results'and'Diseﬁssions

—_— - 'V"BAS; e e . (5 .]Ob) ) [T
3y ARePr T AP
Boundary.eondltlons .

. = '. ) = O A.:

ws‘l - .“’.3-, ;
y=0 - ly=1.0 )

8 , = 9 , =" 0

3 o 3 N

y=0 - y=] '

AW ey
—al .l - R TS
oy | - . dyp o T ¢ Lo S e T

it
o
)

w

f

Sy

Iewill be shown 1u appendlx A? that for- a valld solut:on 'éﬁsifzﬂ:ff :
e 5

condition 0<nePrA<2 must be. satlsfled Pcsurts have ueen Presented '

_graphICally for representatlve values of the modlfled Peclet number i,

.",_-

‘RePrA ranglng from 0. 088 to 0 350

e

Flgures 5 1 and 5.2 show the 1n£1uence of Ar and o resPectrvely

C on- the temperature proflles across the channel S1gn1f1canL ;7ﬂ: fiﬂ'.;fixn'”
— ‘ . . L.
dlstortlons of' these proflles near the hot wall are clearly lndleated

N

'The reasons for these 1nde1tat10ns of the temperature proflles are_ﬂﬁ;j

\

.;not far—fetched as they can be attrlbuted to the onset’ of longltudlnal
:vortex rolls. These cause the flow to degenerate from a two—dlmen51onal N
1phenomenon to that of three-dlmensions. Since the present analysls
>1s treated strictly as a two-dlmenSLOnal phenomenon, low values of

‘modified Peclet numbers have been used.
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Figures 5 3and 5.4 show the effects of Ar and o respectively
on the velocity profiles. These are clearly in agreement with the
é: predictions of Gill and Del Casal ETS:J. In either case, at the
proximity of the geometrical axis of symmetry, the velocity profiles
remain largely uninf]ﬁenced by Ar and . A possible explqgetion is
&F that the aiding and Oppoa}ng effects of the free convection annihilatq
each other. The general lateral displacement of the veloqi;x profiles
1s due to asymnetrical heating. .
%E' To further.investigate the nature of the perturbatioys, the "
v ' L
temperature and velocity fields are decomposed into their gomponenéﬁ,
That is, the zeroth, first,_and second-order effects, Figure §;5‘
%%’ illustrates*fhe“first and second-order pérturbations on the basic
S temperature figld. It is observed that the first-order perturbation
tends to increase the local temperatures near the cold plate. This +-
Q{ perturbation has no perceptible effect in the central region of the
channel. Near the hot plate, the first ;nd second—orde; p;rtu:bat%oﬁéﬂié
generally tead to decrease the local temperatures. 'The*fesgiténti.:. -W;
: W
éfﬁ ~ temperature field is obtained by éombining the basic field with its -
ordered perturbations.
Figure 5.6 shows the first and second-order petturbations on the =i
ﬁ# basic velocity field. These perturbations appear asiﬁp}ﬁ%Oi@f with
the centre of the channel as a node. While the firag;o;dgé.pertu;bgtiﬁnﬁ
produces noticeable effects near the hot and cold walls, tpe_second— ' _
ié: order effect produces minute réciprocal changes in the baéictvelobitx R

field. R
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! The first-order perturbation increases the local velocity near
the hot wall and reduces it near the cold one. Again, at the channel
axis of symmetry, the first-order effect does not influence the local

a :
-l

velocity. On the other hand the second-order effect collapsés in the
central region of the channel. %he vector sum of basic and pertur-

bation velocity fields gives the resultaunt unsymmeryical’ profile

e

@
across the channel.

F)

This analysis has previously investigated the individual effects

of Ar and o on the resultant fields. In actual fact, it is these

.
= perturbations which are being influenced. To demonstrate these effects,
only the first—order perturbations are considered for the velocity field.
In figure 5;7, the influence of Ar on the first-order velocity pertur-
L
B¢ bation is shown for the horizontal case. In general, the magnitude of
the perfurbati?p is directly proportional to Ar.
Figure %.8 shows the variation of the first-order velocity pertur-
i? bation with the channel inclination for a given Ar. Again, the magni-
tude of this perturbation is directly proportional to o. However, thi%
perturbation appears to be  more sensitive to changes in o than those:
%% of Ar.
Figures 5.9 and “.10 show the variation of friction factors
; with fhe channel inclination for a range of Ar. In general, the cald
25 wall friction factors increase proportionately with Ar but decrease

with a. This predicts separation at the cold wall. Though separation

ig not within the srope of this analysis, an attempt has been

wade to determine the condition for its occurence. However, at the hot
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wall, the friction factor increases proportionately with both Ar and o
su that there is no tikelihood of separaltion occuring there.

Figure S.t1 illustrates the variation of the computed critical
Ag with channel inclination for separation to occur at the cold wall
for a given Ar. Though this critical Ar for separation decreases as g
increases, it is alwaysvmuch greater than the input Ar. Therefore the
Curves represent the upper limits of Ar for a given inclination.

The dimensionless bulk temperdature variation with the channel
inclination is depicted in figure 5.12 for various Archimedes numbers.
As anticipated, the bulk temperature increases proportionately with Ar for
a given inclination. For the range of Ar considered, optimum angles of
inclination exist Lor which Uhe bulk temperatures are maxitum. These
opllnum incliJEEiqns, (e ) are proporti&nal to Ar; and in conjuction

Lpr
with the bulk temperature, ¢ , obey the ,fbﬂ0¢uh1g' " power Law

B
already stated in the abstrace,

o figure 513 the mean hot wall Nusselr nuwbeérs are plotted
agatost the angle of inclinatiun with Ar as the minor parameter. These .,
plots reveal chat optimum-angles of incIinatiﬁn exist for which the
mean hot-wall Nusselt numbers atLaiﬁ their maximum values. These maximum
values, and the cozrebpnndln& optimum inclinations (a opr in radians) are
well corre]uLLd by the three-dimensional power Law also stated in the ab-

stracitfor the range of Ar considered. These optimum inclinations lie

between 30° and 60" for both UB and NUBH.

Figure 5,14 shows the variation of the mean  hot wall Stanton

number with channel inclination for various Ar. Since these Stanton
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numbers are derived from the Nusselts and Peclel numbers it is not
- >
necessary to obtain a correlalion equation for them and their optimum

. . . Y . i) . o
inclinations which aguin lie between 30Y and 60",

Figures 5.15 und 5.16 zre cold wall equivalents of the figures

5.13 and 5.14 respectively. Tn particular figure 5‘l§ portrays a very

lmportant variation. VFor the same tange of optimum inclinations,

mininum cold-wall mean Nusselt numbers are predicted. The significance

L
of this variaciou is that it leads to a2 very important conclusion about

the net heat convected. Although the heat transported to the fluid is

. a0 0 : .

maximum for 0y between 307 and 607, the heat lost to the cold wall is
P

minimum. It follows therefore that the net heat convected axially must

be maximum since it is proportional te the numerical difference between

the hot and cold wall Nusselt nunbersg.

|- L)

Comparison of Perturbation and_sSteady-state Numerical solutions

e, " .
The parameter perturbation and the sLeady-state numerical analysis

are solutions to the same thermal problem. Therefore it is interesting

to know how well the solutiony aprec.  In order ro provide plausible
basis of comparison the following conditions must be met,

I. The heat transfer and flow parameters must be evaluated in fthe

region of fully developed roginme.,

2. These parameters must be cvaluared by the same method.

3. Since the perturbation analysis is valid for small values of

Archimedes number, only such values should be considered in the

numerical solution.

The perturbation analysis was patterncd along conditions 1 and 3.
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The heat transter parameter was Lhen evaluated on the basis of the
Bulk/wall tempecature ditference.  The following discussion pertains
to Lhe steady-state numerical solution with regards to the three con-
ditions. .

With respect to the firse condition, the channel exit approximates
Lhe region of fully developed flow. The second condition requires ‘that
the mean local Nusselt numbgr at the channel exit be baged Qn the bullk/wal
temperature difference as was done for the perturbation solution:. 1t wii
be recalled that a third degroee polynomial temperaLure profile was fitted
near the wall. By consideration of the relevant thermal boundary con-
ditions the normal temperature gradient at the wall was deduced. ITrom
Fourier's Law of heat conduction in one-dimension, it was .established
that the dimewsionless form of this temperature gradient at the wall
represented the local Nusselt nuvwmbor. Since the velocity field was
presumed fully developed, the local won-dimensional bulk temperature
was computed; ' To obtain the corresponding local
mean Nusselt Number based on the bulk/wall temperature difference, a

sample calculation, for o = 30° and Ar = 0.050, follows.

Gr = 500; Re = 100

The local Nusselt number at channe! exit, Nu = Jig = 1.2910
. L 3y
y=1.0

Study
Dimensionless local bulk temperature, U“ e H 0.387

£t udy

0
Dimensionless wall temperature, 0. = [.00

hw
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Dimensionless bulk/wail temperature difference
= 3 -0 ) = . '
(Ohw UH' 0.613

Local mean Nusselt number at channel exit,.

24l "
gy
y=1.0 1.29]

J = a = -

Mgy (0, =63 0613 = 2106

W B
. Ny

The corresponding Stanton number St

BH ~  TePr

_2.106
T 100%0.73

f

0.0288

From Lhe results of the numerical solution, the dimensionless

mean velocity, Vean® 26 the section considered is given hy
tE

. &:Udy
v . a .
mean I
d'
Loy
v = 0.913
mean

Using equation (4.34), for Re = 10O,
= pLs
Cf 0. 12490,
BAH
The following table illustrates the perturbation and Numerical
results for the Nusselt, Stanton numbers and friction coefficicnts
\

for Re = 100, Gr = 500 and Arv = 0.050.
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TABLE 5.

1. COMPARLSON OF PERTURBATION AND NUMERICAL RESULTS

Mean Nusselt Mean Stanton Mean Friction
Number, NUBH number, SEBH Factors, fBH
a —— -
. A LI - oy = g - " —
Numerical LL{%UE Numerical Pcf%ur Numerical Per?ur
bation bation bation
0° | 2.080 2.024 0.0285 0.0277 0.1240 {0.1200
BOQ 2.106° 2.038 ’ 0.0288 0.0279 0.1200 0.1242
. -
45° | 2.107 2,043 0.0288 | 0.0280 0.1319  |0.1260
60° | 2.114 2.047 0.0289 | 0.0280 0.1333 10.1280
90° | 2.118 2.051 0.0290 | 0.028] 0.1320 -[0.1280
—_—
Figures 517 and 5,18 depict respectively, the variation of

the Nusselt number and friction factors with o for Nu

However, because

s0lutions has

BH

and fBH'

of the choice of scale, the disparity between the

been graphically exaggerated.

From the tabulated

values, for any given «, the resulrs differ by about 5% for the

Nusselt numbers, 4% for St

and €

BH BH’

Computation of Physical quantities (Dimensional)

variables involved, it

In order to vrealise the physical magnitudes of the space

1s proper to translate the dimensionless

variables into their diwmensional equivalents. This will be done for

: . . . Y.
air whose physical properties at an ambient temperature of 357C are:

[
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Kinematic viscosity, Vo= 0.165 cm?/s

Thermal conductivity, kF = 0.233 cal/ch-hroc

Coefficient of cubical Exp.,f = 3.25x]0_3/0K
Density, p o= .14 kg/m®

The acceleration.due

N = . .2
to gravity, g 980 cm/s

Let the height of chgnnel be b= 6.0 em.

Mean velocity

For Reynolds number of 100, the mean velocirty at channel inlet

is given by
Um = R(.i\f

\‘.:[“2

100x0. 165 S5

=v'~ 6.0 cm - ?.75¢m/s.

(a) For the numerical scheme, the mean velocity at channel exit
= 0.913Um = 2.5tcm/s.
.
(b) For the Perturbation analysis, the mean velocity at section
considered = Um. = 2,75cm/s.
Hence the forced convection solution is in error by 0.24cm/s.

Mean Temperature )

For a Grashof number of 5000, the maximum temperature difference

. e
is obtained from Cr = wﬁglha Ie)b
Vv

r u2
T -7 . Gr.v

.l. h - C I.ngﬁ

: 2 cml'
5000 x (0.165)% o7

= 5]

1.25 x 107°7°C x 980 —Ei‘;x 2.16cm® x 102
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Simplification yielas

oo o,
lh 1c 0.1977°¢C

35.197%.

=3
]

The dimensionless mean temperature Um, ig defined by

Solving for Tm gives
T = T + O T~
c m( h u)
Since Bm varies with «, cousideration may be given to @ = 30°

(a) TFor the Nmmerical scheme,

]

m =+ 0.4650

a=300

o =T+ (0.4650 x 0.197) = 35.092°
a=30 ¢

{(b) For the Perturbation analysis,

0

m = 0.5113

a=30°

ST
m

L]

Tc + (0.5113 x 0.197)

=309

From the above rough figures it is clear that the forced
convection solution is inadequate even for small rates of heating of

slow flows.
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The results vt the present analytical study have been

presented graphically. Many restrictive assumptions which were made

in the forwulation and solution of the problem, render the results

obtained somewhat qualitative. The results obtained can therefore bhe

considered as a first approximation to the solution of the physical

I .
problem. However, these confclusions can be made.

The percurbation analysis proves conclusively that the maximum

heat transfer occurs when the angle of inclination lies between

30° and 60°. This behavioral pattern of heat transfer with

inclination compares favourably with the results of Lgbal and

Stachiewice l. 1] ! who used Lhe Rayleigh number as th;ir expansion.
BN

parameter for'a constant heat fLux problem for Pr = 0.73 for tubes.

The existends of optimum inclinations between 30° and 60° for which

the heat transfer to the «cold wall ig minimum, lends strong support

to the f}rst conclusion.

A rigorous comparision between the present analysis and the numerical

solution for Case A, shows that the former is sbvariance with the

latter by about 57 for the heat transfer and flow parameters

compyted.

The perturbation method when properly employed could be a useful tool

in solving the governing partial Jdifferential equations which

describe mixed convective plienomenon.
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CHAPTER SIX

EXPERIMENTAL INVESTIGATIONS

Aim;

The purpose of the experiment is Lo comparé experimental and
predicted numerical results fo% the constant heatflux at the hot
surface,

Experimental Set-up:

The set-up comprised various units which perférmed distinctive
roles. The description, design and construction of each unit are
presented as follows.

Intake Unit
E

The function-of this unit was to draw stagnant atmospheric
air and propedl’ it down the chaanel. The intake unit consisted
of a 38.10 cm. dia. axial blow Ffan mounted on a square iron
framework. This was welded onto the square end of the intake duct
made of galvanized steel sheet 0,16 cum. thick., The duct construc—
tion was such that the top and bottom faces sloped symmetrically
about the longitudinal axis towards each other in the flow direction.
The iﬁciuded angle of 20° between these faces was selected in
accordance with the requirements of optimum flow in ducts of
rectangular cross-section (Ref. 17). The top and bottom faces also
flared out in the flow direction, thus increasing their respective

widths from 38.10 em. at fan end to 121.92 cu. at channel inlet.
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The lateral plates of the intake duct were appropriately cut
and bent at the top and bottom edges so that each side plate
laped externally, cthe bottom and top edges of the top and
bottom plates. The side plates were then rivetted and welded ,onto
the bottom and top plates to ensure proper sealing. To prevent
the resulting trapezoidal intake duct from distortion, it was
flanged at the channel inlet with iron properly positioned so

1
that it could be bolted onto the channel frame. Since the £low
emanating from the fan may spiral in the longitudinal direction
a fine wire gauz moupted onm a 12.0 em x 121.92 em  wooden ffame
was sandwiched between the channel and intake duct. The wire gauz
diepersed the flow entering the channel.

Channel Frame .

The channel frame was made of two equal%y dimensioned rectangular
metal frames 1:é3|2m X 1.4624m.  These iwo frames were placed one
directly a?ove the other and werve appropriately oriented so that
the cold and hot plates could be nuunted conveniently without falling
off laterally. The two rectangular frames were then connected by
0.127m flat iren bars welded at cath of the four cormers. The
resulting channel frame then appeared as a rectangular parallelopiped.

Further rigidity was provided by mesns of welded-on extra spacers.

Top and Side Plates

The two vertical side and top plates were made of transparent
perspex sheets 6,00 nm. thick. The side plates measured 0,12m x 2.462m.

They were firmly secured to the channel frame by means of bolts and



nuts.

113

The top plate, because of its flexibility, was provided with '

transverse stiffeners at three longitudinal positions to guarantee

a flat surface.

423

6.2.4 Heating Unit

It consisted of the following parts:

(a)

&)

',

(b)

()

Y

Reated Surface:

The hot surfac? was an electrically, iudirect1§ heated
aluminium sheet 6.00mm thick, 1.2312m wide and 2.4624 m
long. This sheet was provided with a hole slightly offset
from each cormer. Along the longitudinal mid-section, nine
equi-spaced 0,!16mm dia, x 3.00 mm deep holes were drilled
for thermocouple insertions.

The Electrical Heater:

The electrical heater was an aggregation of eight
-

smaller units measuring approximately 30.48cm x 30.48cm.
The heating element was Nichrome 3 wire. 1In constructing
the heaver, it was desired that only owe side of the high-
temperature resisting asbestos be wound Lo conserve
Nichrome wire and to reduce the overall resistance for &he
unit. The resistance of each unit was about 124.00. If
these resistances were connected in séries a total of
about 992.00 would result. From Obms Law, for an imposed
voltage of 240.0V, the current produced would be 0.24A.

From Joules Law of electrical heating, the heat produced

would be small for this case, Since the medium of heat
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transport within the channel was air, the need to use guite
high beat rates was obvious as the thermal -conductivity of
air is very low. Twe possibilities existed for procuring
higher heat rates. One was to step—up the voltage and the
other was to reduce the effective resistance in the circuit.
The latter possibility was chosen, The eight satellite
heating units were connected in parallel so that tﬁé net
resistance in the circuit became approximately 16,00,

The eight satellite heating units were sandwiched hetween
asbestos sheets and placed on the lower rectangular frame.
Nine equidistant holes are made along the mid-plane for
thermocouple wires to pass through after the Aluminium sheet
had been placed on the heating unit. To improve proper
thermal Lontact and check the movewent of the Aluminium sheet
it was bolted down at the four corners. Figure 6,! shows‘the

electrical circuits.,

Support Unit:

This consisted of two reinforced triangular stands each carrying
a ball bearing at its apex. Two short metal pipes each 6.0cm long
were placed transversely and welded onto the two long sides of the
Llower rectangular frame. These pipes were placed closer to and
equidistant from the fan end. This ensﬁred that there was adequate
ground clearauce wheﬁ the assembled unit was inclined at Targe
angles to the horizontal. An iron rod 1.905 em. diameter, with its

ends reduced in diameter over different lengths, passed through the
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pépes. The reduced projecting ends passed through the eye of the
béil bearings on the apex of the trianéular stands. Since the
system was free to swing about the horizoutal transverse axis, it
Was necessary to devise a means of checking the rotation.

i

Adjustment Mechanism:

This mechanism was primarily used to check the rotation of the
system about the transverge axis and to select a desired éhannel
inclination to the horizontal. The mechanism consists of a long
iron rod threaded all through. One end of the r;d was flattened
and a hole centrally punched to accommodate freely, a partially
threaded bolt. Aun iron bracket was bolted onto the centre of a
cross~member on the underside of Lhe heating unit. The protruding
arm of this“bracket was provided with a hole and connected to the
punched end of .the threaded rcd by means of the loose-fitting
partially threaded bolt and a nut. To check the lateral movement
of the damgling rod, a horizontal guide made of T-shaped iron bars
was provided. The T-bars were gapped so that their separation was
greater than the diameter of the threaded rod. One end of the
I-bars was welded onto an L-bar thch iﬁ turn was bolted - -
at both ends to approximately the mid~section of a pair of opposite
sides Qf the triangular stands. The threaded rod was provided with
two nuts which carry extension arms to facilitate easy turning.

In operation, the nuts were situated at opposite sides of the guide;
one below, the other above. Metal washers were provided. By turning

the nuts using the extension arms in the appropriate directions the
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channel can be made to assume any desired inclination. Once this
was achieved the channel was held in position by turging the nuts
in opposite directions until they bewe:! tightly on the horizontal
guide. The assembled diagram of the experimental apparatus is
shown in figure 6.2 with the various units clearly identified.

Measuring Devices:

The measuring devices consist of the following: the voltmeter
and ammeter for measuring voltage and current respectively. These
had a reading accuracy of +0.5%. The temperature measuring devices
included the thermocouple potentiometer for measuring surface
temperatures and the Wallac Thermo-Anemometer which measured both
velocity and temperatures of the fluid. Copper—constanpan thermo-
couple wire?“wege used at nine equidistant positions along the
hot wall and fiye along the cold wall. The copper wires were soldered
onto a bank of terminals of multipole electrical switches mounted on
a cardboard, while the constantan wires woere soldered onto the
appropriate terminals of the opposite bank, By turning the switch
to a chosen position the temperatures on the surfaces were obtained,
The reading accuracy of the thgrmécouple potentiometer was :O.OSOC.
The anemometer probe was mounted on 2.0m long iron rod and
it is driented in such a way that it faced the flow directly.
Before using the anemometer which was graduated both in m/s air-speed
and °C air temperature, the zero-error was notedlfo; air velocity.
The angle of inclination to the horizontal was obtained by means

of a protractor and a simple pendulum, The pressure drop at the

v
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channel inlet and heace the inlet air speed was obtained by means
of a boundary layer probe and an inclined manometer.

Experimental Runs:

The channel was first calibrated for air speed at inlet using
the boundary layer probe installed at the inlet and connected hy
means of flexible tubiﬁg to an inclined manometer, The initial
manometer reading was noted. TFor a known variable trausfo¥mer
(DISA 55 D42) settring, the new manoweter reading is noted, The
procedure is repeated for other transformer settiﬁgs. Using‘potential
flow theory and Bernoulli's equation, the corresponding velocity at
inlet can be estimated. Plots of Pressure drop and intake velocify
ve. Varistle Transformer (DISA 55 D42) setting in wm/s air -speed are
obtained. Héﬁte“for very low settings of the transformer it‘uﬁs
possible to obtain by extrapolation the inlet velocity and pressure
drop from figure 6.3.

For a given fan speed and voltage, the system was allowed to run
until steady state was achieved. To ascertain this, surface tempe—
rature readings at chosen locations were taken at intervals of 15
minutes until no appreciable changés occur, It was found that 2 to
3 hrs elapsed before steady state was achieved. For each angle of
inclinafion,.starting from 0° to 75° at intervals of ]50, three
experimental stations 5,6,7, were cousidered. At each station,
velocities and temperatures at specific points across the channel,
were measured using the thermo-anemometer. Three experimental runs

were made. For some practical Pe@SOnS , it was not possible to
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conduct the experiment for inclinations greater than 75°, Also,
it was not possible to use currents higher than 12.50A, This
limitation was imposed by the maximum current load of 13.0A which
the fuses could safely accommodate.

Analysis of Experimental Data

A common method of é6btaining derivatives from experimental data-
is to fit an analytical function with free pafameters to the mesh-
point values, and then to agalytically differentiate the function.

By so doing it is possible to obtain the finite-difference expressions
for the required derivatives. This procedure which was adoptéd

in the numerical scheme will be used in estimating the local heat
transfer and friction coefficients. The merit of this method is

that it provides an acceptable basis for comparing experimental

results with numerical predictions.
o

Sample computations of relevant non-dimensional parameters

such as the Reynolds, Grashof numbers, etc., are given in appendix B.

‘Discussion of Results

The experimental and predicted numerical results are displayed
both in graphical and tabular forms for the purpose of comparigon,
Figure 6.4 represents a calibration of the channel to show the
spatial distribution of longitudinal velocity over the cross sectiomal
area at x = 121.92 cm for no heating. Cledrly, for gj.'.'gi\lén‘-:f}:(}-'CQOrd'inatG
the varidtion of the local longitudinat veloci:ty,w‘a\th'zis-..n.eg!igibie-
‘Henee the dssumption ¢f two=dimensiond fHouiis justified.

~
1
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From the recorded pressure drop, the mean inlet velocity to the
channel is computed from potential flow theory. It is clear from
figure 6.3 that it is relatively easy to read-off velocity values
for a given pressure drop. Since the transformer settings for the
three runs are known, their corresponding air-speeds at channel inlet
can be obtained. These mean velocities are used in estimatiné the
input Reynolds number, The modified Grashof number is estimated from
the average longitudinal temperature gradient along the hot wall.

Fig. 6.5 depicts typical non-dimensional loﬁgitudinal velocity
distribution across channel for a given station, inclination and
set of non-dimensional parameters. It is observed that near the
cold wall the predicted local velocities are smaller than those
measured, Siggé the temperature potential between the cold and hot
walls is significant, radiant heat exchange between the walls comes
into play. Part of the radiant heat absorbed by the cold wall is
invariably transferred to the cold fluid my mechanism molecularx
conduction, thus increasing its local velocity. This could account
for the disparity in the results since numerical prediction did not
take cognisance of radiation effects in its mathemarical formulatien,
Near the hotwall the predicted local velocities are higher than those
measured, However, both curves show that the local velocities near
the cold wall are generally lower than tlose close to the hot wall_*

a situation anticipated.

157
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Fig. 6.6 shows typical non-dimensional temperature profiles
acrogs channel for the same station and set of parameters used in
preceding paragraph. It is clear from these graphs that numerical
predictions indicate lower local temperatures than those measured
except near the hot wall. The reasons aduced in the preceding,
paragraph to explain poésible causes of higher measured local
velocities mear the cold p%ate, are also applicable here. .It is
interesting to note that in consonance with numerical results in
chapter three, the cold wall temperature at the-stétion considered
is greater than the ambient temperature.

Figs. 6.7, 6.8 and 6.9 are plots to show the variations of
predicted numerical experimental mean hot wall Nusselt numbers
with channel ﬁncl%nation for three Power input runs. In fig., 6.7,
the numerical predictions are higher than the experimental values

-
for all inclinationms, except the horizontal position, Here, the
Nusselt numbers are very close. There appears to be maximum Nusselt
numbers for the experimental results and numerical predictions when

- . . . 8] . - . .
the inclination angle is about 30°. For inclinations greater than

0

457, the Nusselt numbers for both results appear to be insensitive

to changes in inclination. In figure 6.8 the experimental Nusselt
numbers exceed the predicted numerical values for inélinations
between 0° and 25.5°. Thereafter the predicted numerical values
are higher than the experimental ones. TFor; both curves, maximum

Nusselt numbers occur between 30° and 60°. Fig. 6.9 exhibits the

game pattern of variation with inclination as does fig. 6.8, except

N
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that in the former, the difference between the experimental and
predicted numerical results are more pronounced between 0° and

25.5°, Again max 1mum Nusselr numbers occur for 1nc11natxons

between 30° and 60°. A thorough scrutiny of figures 6.8 and 6.9
shows that the disparity between the experimental ané theoretical
results increases as thé Archimedes number decreases, for inclinations
between 0° and 25.5°,  The jmplication is that as the pure'forced
convection component becomes strong, the impact of free convection

is minimized for this'range of inclination conéide&ed. At inclinations
less than 7.5° ¢he experimental cuvves turn upwards, This could ﬁe
due to possible changes in the mode of circulation, a phenomenon
predicted numerically, .

Figs. 6.10; erl and 6.12 show the impact of channel o¥ientation
on the mean fr%spion coefficient and Stanton numbers at the hot wall,
For purposes of comparison, the friction factors and the Stanton
numbers have been plotted on the same graph using the sawe scale.

The experimental and predicted numerical friction factors exhibit
peak values at roughly 15°, 7The probable cause is the change in mode
of circulation as stated earlier. In fig. 6.10, the predicted numerical
friction factors exceeded the experimental values for inclinations
from Oo‘to 60°, Thereafter, experimental values are higher than the
predicted numerical ones. The experimental and predicted numerical
Stanton numbers are very close though the latter values are higher.
Both results show that maximum Stanton numbers exist for lncllnatlons

between 30° and 45° to the horlzontal
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In fig. 6.11, the experimental friction factors are less than
the numerical predictiens for inclinations_between_oo and 27°.

For inclinations greater than é?o, experimental results are highe?
than the predicted numerical ones. However, the friction factors
in both cases sliow lack of appreciable sensitivity to changes in
inclination. As ' expected, the Stanton numbers show similar
trends in variation with channel orientation as do the Nusselt

'
numbers in fig, 6.8,

In fig. 6.12, the predicted numerical friction factors are
higher than their experimental COunteréarts for most inclinations.
Again, the respouse of the Stanton numbers to changes in inclination
is similar to that of the preceding paragraph, It is generally
observed in the results that the Stanton number i& approximately
half the frictioﬁ factor.

-

Conclusion

Experim?ntal resultg and numerical predictions for the mean
heat transfer and friction coefficients at the hot wall have been
compared graphically for a range of modified Archimedes numbers.
Both results strongly suggest that 'the heat transfer rate goes
through maxima at inclinations between 30° and 607 to the hori-
zontal for the range of Archimedes numbers considered,

As the degree of inclination decreases helow 7.50, multiple,

stable states are apparently possibie. At 0° a stable mode is

eventually obtained. Thus the heat transfer rate was observed
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both experimentally and theoretically to pass through a minimum

when the angle of inclination is about 7.5°, For the range of
inclinations at which maximum heat transfer occurs numerical and
experimeﬁtal predictions differ by 4.61% - 11.37%. Bearing in

mind the various sources of experimental exrors td bels discussed later
and numerical errors (Truncition or discretization an& rounéhoff)

the discrepancy between the two results are tolerasble. Therefore

it can be concluded that the experimental and numerical predictions

are reasonably in agreement. .

r
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CHAPTER SEVEN

7. SOURCES AND ESTIMATION OF EXPERIMENTAL FRRORS

7.1 Sources of Errors

* Although exact errors cannot be evaluated, clasaifiggtign of
errors provides a useful means of dealing with them, "~ .

7.1.1 Systematic Errors

[

Jhese originate from faulty apparatus or instruments, their .

calibration, experimental conditions and persunal equation._ These ;
1, ! A -
errors are usually biaged and often cumulative,

LR “9 "*-s 1y

._“

Possible causes A E

are: wrong calibration of instruments, change in external condltlona

'

such as the atmospheric temperature and pressure affecting the _ i

U""’ "~

operation of the instruments. Constant errors which bglgng to

'

this category.influence measurement of a particular varigble by

the same amount in the same direction. This clags of ervors axe

determinate and can always be rectified,

7,1.2 Random Errors:

» W

These are usually unbiased. lhey are therefore leaasarlous than
the -biased errors since their equal chances of _being positlve or '
negative tend to counter balance one another. andgm g:@oxg consist

of two types: reading and repeatability errors, The f1rst~are

] _' - I' l;

direct consequences of limited reading accuracy of the vg;ﬁous

T ‘ ok :
instruments, These errors are inherent in the FHSFF“WQPF335?4'5§§j |
v . L W “;a. W -
E unavoidable unless more precise meaguring devices are.uaéd.- .This
i ]

class of errors pertain to this experlment gince it was only posslble
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»)

: to read the graduations of the temperature and velocity measuring instrument to
ahalf of the smallest graduation.
The repeatability errors originate from fluctuating conditions aud
2; minute disturbances. Examples are changes in the A.C. supply frequency
affecting input voltage and fan speed, and deteriorating conditions of
dry cells used in the potentiometer. bDisturbance errors are due to the
e physical pressence of measuring’units wi#hin the flow region. The
J measuring devices include the probe and probe carrier assembly which

interfere with the flow.

d 7.2 Estimation of Heat Losses

The heat loss can be estimated by considering the various modes

by which thermal energy is transported, these are conduction, convection

- and radiation. .

7.2.1 Conduction Heat Losses

.

These occur through the perspex sheets, asbestos insulations and

) metal structures which carry the heating unit, Heat loss through metal
& ‘ '
structures and insulated thermocouple wires are considered negligible,
Using the data for the second experimental run, the heat loss through

tT? - the asbestos and perspex are estimated below using Fourier's Law of heat

conduction.

(a) For Top Perspex:

Length, Lp A 2,4384 m
Breadth, BP = 1.2192 m
Thickness,tp = 0,006 m

Thermal Condu-

ctivity, kg 48,9x107 W/ o

m K

k)




A

i

¥

Estimated Temperature diff,, ATp = (30-29.2) = 0.8%

A
From Fourier's Law, Q, = |k —LEL 3
Po P ot PP

Substituting the above data and cvaluating, yiclds

Qp = 19.3839x10™° Ku

T
This represents 1.21% of the total input.
[

(b} For Two Vertical Side Perspex Sheets:

L = 2 4384 m
p

B = 0.12 m
p
t = 0.006 m
P
AT = 0.8%
P
i Y
. o AT
.. st ‘-"_ 2 k_ T:—.l)' :L B
p PP

a

3.8763x107° Ku

£
H

Pg

This represents 0,2427 of Total Input.

(c) For Asbestos Sheets (3 layers)

L, = 2.4384 m
B, = 11,2192

ta & 0.006m

=
3
i

-3 ]
110.5%10™ w, ok

AT, = (53.11-52.0) °R
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aTa
= —= I |
Qa, [ka 1 "aia
d
Q, = 0.112 Ku

This represents 7.037 of the total input,

7.2.2 Heat losses by convection;

Convection heat losses from the asbestos and perspéx sheets
#
which are exposed to the atmosphere can be estimated’ using
established empirical relations. These depend on the mode of
thermal convection, configuration and geometry., Since tﬁé
atmospheric air is not accelerated the mode of heat loss is
by natural convection. From the heat transfer data beok (18],

the following relations for the surface heat transfer coefficient,

h, holds for air. Thus for;
ot

Horizontal plate, heated surface facing up: h = 2.49(AT)0:?? (7.1)
Horizontal plate, heated surface facing down:h=l.31(AT)0'?§. (7.2)
Vertical plate for height H<0.3m: h = l.37(%§50:?§ (7.3)
where AT = Tw - T,

H = channel Height.

Again, using the data for the second Power Input Run, the above
relations will be applied to the relevant surface.

(a) Cold Top Perspex sheet

Geometry: Rectangular plate
Configuration: Horizontal plate, heated surface facing -up.

Hence equation (7,1) applies.



A

(b)

(c)

1770

From the previous dimensions, the area can be computed directly,

AT = (30.0 - 29.2)
. h_ = 2.49 (0.8)9-%5

P

Qp &

0.0056 KW

[}

= 0.8%

0
w/mz K

(2.49(0.8)0+2 W2 OK) x 0.8% x 1.219 x 2.43802

This accounts for 0.35% of rhe total input.
’

The two side Perspex sheets

Geometry:

Configuration:

Rectangular plare

Vertical plate for height H < 0.3m,.

Hence equation (7.3) is applicable

H = 0.12nm

:' N
AT = 0.8%
L= Y
D 1
= 1,76 W/l

For the two plates

p

Q, = 0.01024 Ku

i
FAURAN T

)
Q = 2x1,76 N/m2 x 0012 x 2.64384 m~

This accounts for 0.64% of the total input,

Bottom plates (Asbestos)

Geometry:

Configuration:

Rectangular plates

Horizontal plate, heated surface
facing down,
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Hence, equation (7.2) applies

L. = 2.4386m
a
B = 1.2192m,
a
AT = (52.0 - 29.2)%k = 22.8% )
Loohy o= 1312 P % x 22.8% x 2.4384 x 1.21920°
SoQ = 0.194028 Ky

This represents |!.4% of total input.

Radiation Heat Loss

of
In engineering applicatlonS/radiation, it is common to have

—

a gaseous medium separating solid bodies. This gaseous medium

which is often air may be assumed to have neither abao%p;;vity
nor reflectivféy; that is its transmissivity is unity, &hiﬁ vag
the case inizge experimental set-up. However, since thg.&ggic
ingredient, high temperature potential between surfaces, that
promotes radiant heat transport is present, it is worthwhile to
congider the effect of radiation. When two surfaces exchange
hea£ by radiation mechanism, the net amount of heat tranaperted
in the direction of smaller surface temperature is a function of
the disposition or geometric arrangement of the areas concerned.
The disposition is usually specified by the configuratiqﬁ factor.
Rectqngylér planes are considered in the present problem, Two

dispositions are relevant.

(a) Disposition i Perpendicular Rectangles

Radiation heat transport between finite perpendicular
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rectangles with a common edge occurs between the het plate
and each of the vertical bounding sides. -From Heat and Mass
transfer data book [ 18 ], the hemispherical emissivity, €,

of a grey body = 0.725

configuration factor, F1-2 e 0.047

Average temp. of hot surface, T) = 53.[{00
Average temp. of veytical surface'T2 = 30.0°%

Area A], of hot surface = (1,2192 x 2.4384)m2

) ' ' a8 0,4

Stefan - Boltzmann constant, @ = 5.7 x 10 W/mZ K

Thus Net heat exchange, Q = 2A eF. (T 4 - T 4)W
-2 1 1-2%1 "2

Since the side plates are transparent only part of the net
s
incident radiation is absorbed and this isaQ]“z. Assuming the
absorptivity :

 highest valueﬁBf/a = 0.97 for real materials, then the net heat

absorbed is given by

*

il 4y
Q, = 24 eF ,00(T," - T, )W

"

i

2 x 2.4384 x 1.2192 x 0.725 x 0.047 x 5,7x10™°

x 0.97¢53.11% = 30,109

Simplication yields Q,_, = 0.0080W
This represents 0,0005%7 of the total input, ,;

Disposition 2; Parallel Rectangles,

With reference to the hot surface, the relevant ‘data are:

Normal emissivity, €, = 0.760

Configuration factor, F, o = 0.90499
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T, = 53,11%
. (8]
T, = 30.0%
A= 12192 x 2,4384 m?
. ~ b 4
. Q]_3 = ZAl enPI_3ca(T| T3 W
= 2x1.2192x2.4384xo.760x0.90499x5.7xlo"§g§;97
(53.11% = 30.0%w
Simplication yields Q'_3 = 0,1616 W

This accounts for 0.0!01% of the total input.

Summarz

Frﬂp.the on-going analysis of errors, it is clear that most
of the losses incurred are through the asbestors. The least
heat loss is through radiation. Hopefully these loases account

for the disparity between predicted numerical results and the

* L]

experimental ones.
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TABLE 6.1

CALIBRATION OF CHANNEL FOR AN ISOTHERMAL

FLow
AIR VELOCITIES AT STATION, 5 %

= 121,92 ¢m

2.4Q

4,80

F

7.20

na(o/s)
..0.000 .

u(m/s)
0.000

u{m/s)
0.000

0.185

0,186

0.187

Y
9,60 j?
u(ﬁf@) L
0.000

%:‘]i."! '}l'i.,';. :7.: ':‘i;\_” ‘:‘:‘.

0.185

- 0.188

0.188

174

R TR R §
Ech 2 gt [ T

L | T
0.18547 "7 - ¢

¥

R

0.186
-y

0.189

0.189

T
0.187,

420,32

0.185

0.188

.0.188

- RS T J-iz"ll 1 ..i
+40., 64 0.186 0.187 0.186 .. 0,186 .
I"

- +60.96

0.000

0.000

0,000 .. |
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TABLE 6.2
EXPERIMENTAL DETERMINATION OF INLET AIR§PEEb

Initial Inclined manometer reading, h0 = 3.40 mm H2

Inclination angle of manometer, y = 15°

!

Air density p = 1.18 kg/m3

Actual Inlet

Yariable Transformer| Inclined Pressure Drop -
Setting manometer across chapnel | Airspeed
(DISA 55D42) Reading a1/w?) u_ =1, 37AF w/s
(m/s) K, mm H,0 _ : s
- 2 PP = pglhy-h)Siny
0.0 - 3.40 0.000 0,000, |
15.0 3.30 0.254 - o
20.0 3.25 0.381. . . 2
.
25.0 3.10 0.762 ’ -
30 3.05




A

EXPERIMENTAL AND NUMEPICAL RESULTS FOPR FIRST POWER INPUT RUM

Input mean Air velocity, U

Channel height,

Input current
Input Voltage

Input Power

I

Ambient Air temperature, T

b

Channel Aspect Ratio, AR

7.554
120.8vV
0.91204KW
0.064 w/s
27.5 °c
0.12m
10.0

TARLE 6.3  Measurep YaLL TEMPERATURFS For FirsT Power InpPUT PuN
HOT WALL COLD WALL
STATIONS T -1
T c o
ALONG T, (°C) Th - T= o .
CHANNEL h eh RePrA*D Tc( c) ec RePrA*h
|
] 458.0 0.43361 30.0 0.05288
2 50.0 0.47592
3 50.0 0.47592 30.0 0.05288
4 48.0 0.43361
3 50.0 ° 0.47592 30.0 0.05288
6 48.0 0.43361
7 49,0 0.45477 30.0 0.05288
8 50.0 0.47592
9 52.0 0.51822 li 30.0 0.05288

Estimated mean longitudinal Hotwall temperature gradient, A* = 1.230%m
Operative fluid properties (for air}: v

K

Bf

Computed dimensionless parameters: Re

Gry
Pr
A Tm

B |

Fn 0 Tl_

1,688 X 10 ° m2/s
2,722 X 10™2 KW/mPK
3,3277 X 107370k

454,98
29221.,90
(.704
0.1412
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TABLF 6.4-6,9: EXPERIMENTAL RESULTS AND NUMERICAL PREDICTIONS FOR VELOCITIES AND

TEMPERATURES

AT SELECTED STATIONS FOR FIRST POWER INPUT RUN AT
VARIOUS INCLINATIONS TO THE HORTZONTAL

TaBLE 6.4
(¢ = 0°)
STATIONS
. 8 7
NUMERICAL NUMERICAL NUMERICAL
t( Y EXP. VALUES o pEbIcTIONs | EXP. VALUES PREDICTIONS EXP. VALUES PRYDICTICKS
cm)
LONG. | pp.7ONG, |TEMP, [LONG. e, | LONG. o, | LONG. e, |LONG. |TEME,
(m/s) (afs) (m/s) (m/s) (m/s) {(m/s)
jo,o 0.000 ) 30.0 10.000 | 29.02 | 0.0 30.0 1 0.000 [ 29.02 { 0,000 | 30.0 0.000 129.02
2.4 }ok067 32.9 10.040 | 30,54 | 0.067 | 32.0 0.036 | 30.54 { 0.065 32.0 | 0.025 }30.54
la.a 1 0.070  132.0 )o0.084 35,42 }o0.073 32,0 0.081 { 34 29 . 0.070 | 31.8 } 0.069 {33.07
7.2 {0.170 {32.0 {0.103 39.20 10,175 §32,0 |o0.106 [ 36.05 0.172 } 32,0 Jo.114 134.72
' | r
9.6 10.170 }33.0 0.066 {43.44 40,173 [33.0 |a.070 42.35 1 0.165 32.5 §0.085 [40.52
| S
12.0 10.000 {50.0 jo.000 }s0.¢ 0.0 . F48.0 }o.000 f48.0 {0.000 49.0 {0.000 li9.00
P 5 = s O 5 15y




i

TABLE 6.5

(2 = 150)
I ’ STATIONS
S 6 7
NUMERICAL | NUMERICAL NUMERICAL
Y EXP, VALUES !PREDICTIONS EXP. VALUES |} ooPDICTIONS EXP, VALUES PEYDICTIONS
 cm) '
f > .
LONC. | yomr [PONe, [TEMP, |LONG, e, |10 oo | Lo, me, 10N |TEMP,
VEL. o0y | ELo | ogy  |vEL. ooy |VEL- | Toes VEL, | iont |VEL, ©c)
(w/s) {m/s) (m/s) (m/s) (m/s) (m/s)
o0 |0.000 30.0° 10.000 1 29.26 [ 0.000 | 30.0 | 0.000 | 29.26 | 0.000 30.00 | 0.000 | 28.83
2,4 }0.065 1310 fo.180 §31.02 f0.065 |31.0 {o0.167 | 31.00 | 0.073 32,0 |0.137 | 30.17
4.8 1 0.070 }31.0 Jo.120 § 35.70 ) 0.070 31,0 10,090 | 34.32§ 0.075 | 31.5 0.069 | 32.22
7-2 o175 [31.50{0.259 | 40.25 | 0.170 | 315 0.256 § 36.13 | 0.173 | 32.0 { 0.231 | 35.00f
o6 | 1526
9.6 1o.167 1330 [0.325 [ 42,87 | 0.175 | 33.5 0.292 J 41.38 | 0.163 } 33.0 § 0.263 | 38.26
hz.o )0.000 50.0 10.000 | s0.0 | 0.0 48.0 1 0.000 } 48.0 | 0.000 } 49.0 } 0.000 } 49.0 ,
. o - [e 0 i - o .S T, 5T
e, e o D (i, & [
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TABLE 6.6

(@ = 30°)

STATIONS

. NUMERICAL NUMERICAL - NUMERICAL
Y) “XP. VALDES ppEprcrions | EXP. VALUES PREDICTIONS EXE. VALUES PRYDICTIORS
cm
. T, . - . . . N . .
LONG TEMPT,| “ONG. | TEMP. | LONG TEmp, | LONG. |oop, | LONG TEMP, |LONG ?EHP
VEL. (o¢) EL, ) VEL, ¢ocy | VEL. (°c) VEL. ©c) VEL, 0y
(m/s) (m/3) (m/s) (m/s) (n/s) (m/s)
{ 0.0 0.000 30.0 |o0.000 | 28.9 | 0.g00 30,0 G.000 [28.29 0.000 | 30.0 |o0.000 {28.14
0.070 30.5 |0.250 29.08 | 0.065 } 30.5 0.248 129.06 | 0.070 30.5 0,222 f28.79 |
0,170 30.80 J0.147 [ 31.19 | 0.170 ° 30.8 ) %.157 30,07 | 0.170 30,5 10,144 }29.94
: - i . - T
0,270 31.0 10,318 | 32,48 } g.270 31,2 0.314 §32.10 0.27¢ 1§ 31,5 J0.292 {31.12 |
, ; : X .
40,170 32.5 10.369 |'37.31 ] 0,175 | 32.5 0.379 137.24 lo0.167 {32.5 l0.359 {36.61
0.000 50,0 10.00a¢ {50.0 | o.000 48.0 1 0,000 }48.0 0.000 | 49.0 [0,000 [49.0
. . - . A
i i (i i, e 4 3
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./f
/-' e " TABLE 6.7 -
o \ (x = 43%)
L STATIONS .
'-5"7.. 6 . .. ?'
' | NUMERICAL o : - KUMERICAL .y NUMERICAL
Y EXP. VALUES  loreprcrionNs | EXPe VALUES PREDICTIONS EXP. VALUES PEYDICTIONS
(cm) : - \_,‘ .‘ ! ‘ -
- 3 . frove. | . - |rowe, .| Long, | LONG, " {TEMP,
N b el Al el B S o R b Sl e
w/s) | O Ny | €O oy | co [ @) {U ey |
09 0000 "}30.0 f0.000" | 27.56| 0,000 30.0°| 0.000. 27,561 0.000 ! 30.0 | 0 000 27.56
2.4 }0.070 131.0 fo.110 | 27.64): 0:070] 31.0 0.136 | 27.641" 0.073 | 320 0.151,}27.64
4,8 10.170 '3'0.5 0.049 | 28.31 o0.170" 30,5 fo0.061 8.1 0.175 | 31.c, .| 0i072 |o3.
7.2 [0.205 31,8 o211 | 28.99) q.210 30.5 Y0.227. } 28,92 0,032 $310 0.244 28,95
9.6 ~10.173  }32.0 -o.23 - 32.314 0.170 1320 {0.254 1} 32.591 0175 132,00 Jo.270 32.59
A’f'b Eo.ooo 50.0 . fo.000 . 50.0 § 0.000 {48.0. |9.000 48.0 | .0.000 [49.0° }o.000 49.0

73
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- ' TABLE 6.8

G = 60°)

T e e

SOUSPEATIONS

- —~ ..4';.;. e e e RS 6' ; -
;) EXP, VALUES -;m—lfg;: E'X_P VALUES ngggs EXP. VALUES m%%:s
| e e e T e T [ e o o
@ |0 Jaiw [ @y | CO [T ool | B g |@e [€O
0.000 | 30.0 |o0.000 | 28.50 } 0.000 30.0 | 0.000 |28.50 0.000 { 30.0 }0.000 |28.50
0.070 | 31.0 {0,076 | 28.51 | 0.067" 30.5 § 0.095 J28.51 | 0,063 } 31.0 [0.126 28.51
0.073 30.5 f0.020 | 28.52 | 0.075 3g;2 10.030_ 28.52 | 0.070 310 0.046 [ 28,52
‘ .0.175-- 30.5 1 0.187 | 29010 } 0.220 30;5 - 0.201 lEQ:IQ 0.169 31.0 }0.227 29.83.
j fo | 0.174 32.0 }'0.199 731,49 ] 0175 32,0 } 0.213 31.76 | 0.175 | 33,0 |0.237 F31,§a
| 'lif'o' 0.000 so;o 10.000 | 50,0 } 0.000 | 48.0 } 0.000 }48.0 0.000 | 49.0 }0.000 }49.0
6 . e (o (i D de %




el M mi s dme

L3 J'
:}; -TABLE' 6.9 A
. ...(a-=.75_\°):
T T stsTIOomSs
| ' " NUMERICAL™ |  NOMERICAL NUMERICAL
| LONG.  tvovpr.|"ONG, | TEMP, | LoNg. o, | LNy} DoNe, [ o fLoKG, TEMP.
Am/s (m/s) {m/s) | (mn/s) | - (n/s) /sy |
0.0} 0.000 ; 30.0f a,a00f 27,59 | g '3¢.q A , 27
‘ <00 1 30.a | 0,000 | 27,50 9,000 | 3¢, | 0.00Q | -27.50
2.4 | 0.065 3 31,04 0.074f 27.51 | 0,070 ] 30.5 0.089 | 27.52 } 0.070 | 31.0 [o:.121 | 27,52
';4.3 } 0073 F 30,5 | 0011 { 27,56 0.075°1 30.5 Y.019 2756 10,073 | 31.0 | o.042] 27.54
il . £
7.2 0.165 | 30.8 0.187} 27.77 §o,170 31.0 }0.198 27,78 | 0.170 } 315 } 0.224f 27,76 |- :
Fos b o1rs Ri 32,0 § 0.190 | '29.55 |o.175 32,0 10.202 {2060 | 0.180 |30 | 0.226{ 29.97}
hi2.0 ’ 0.000 { 50.0 | 0.000§50.0 [0.000 48.0 £0.000 }48.0 lo0.000 f49.0 | 0.000 49.0 |
T e, e . - e b . - ﬁ—L_ . ‘h
. . @, % <) » R P
g ¥, ﬂ_a {:ﬁ T
D K T
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2
TABLE 610 Exp. LocaL HeaT TRANSFER AND FRICTION COEFFICIENTS
o For FIrsT Power INPuT Run
- ' . 4 - ' ' o -
: STATIONS
' a : ' —~
(Degrees) : T S
o |- e 2 { 2 | 2 2
% Ny | £, X10 St, XI0 Ny | £,X10 | §¢,X10
0 4.370] 2.911 1.364 | 4,228 3,827 { 1.320 | 4,451 3.852
~ | 15 | 4.352] 3.81 1,359 |4.245 | 1,070 | 1.263
30.. | 4.481[ 1.559 1.399  |4.358 [ 1,560 { 1,361 | 4.43 3,313 :[i1t38eiz]:
. 45 4,659 | 2,242 1.455 4,492 | 2,150 1,402 | 4.5 2,742 | 1,428 |
i 60 4,611 3,780 ° 1,440 4,492 | 2,955 1,402 ) 4,264 4,104 | 1,331
' - 95 4,622 | 4,127 . 1,489 4,512 | .3.881 1,409 { 4.283] 3.119 1,337

i
&
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TABLE 6,11 CompARISON OF EXPERIMENTAL RESULTS AND. NUMERICAL
PREDICTIONS oF THE Mean HoT WALL HeaT TrRansFER
owsn Ineut PuN

AND FRICTION COEEFICIENTS FOE

......\

184

. EXPERIMENTAL VALUES NUMERTCAL ?nz?%crxous‘
(Degrees) Nh | £ ¥ 102 st X 10 Humi | £ XI; s:ﬂnklo
0 4,352 "3,530 1,358 4,213 4.1202h;.'1.320
15 4,293 v;lBII 1,322 5,171 9.636 . Jield'j;
P 4,426 1,560 1,382 5.235 4,910 -1,636
45 4.576 | 2,380 1,428 5.163 | 3,910 1610
60 4.456 © 3.614 1,391 5,084 5;210 _fJ.Séé
75 4,472 3,709 1,412 5,070 | 2,950 51.580
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11
EXPERIMENTAL AND NUMERICAL RESULTS FOR SEcOND Power INPUT Run

Input current = 10,00A
Input voltage = 160,0V
Input Power = 1.600KW
Input Mean Air Velocity, u, = 0.189 m/s
Ambient Air temperature, T o= 29.2%
Channel height, b = 0.12m,
Channel Aspect Ratio, AR = 10.0

TABLE 6,12 Measurep WALL TEMPERATURES FOR SECOND Power InpuT RuN

| HOT WALL COLD WALL .
STATIONS — — e
ALONG T, (°C) . h = Tw 0 3 udc e
;. CRANNEL h - 8 RePrA%h 7.0 ac,fggpgagy
Pl 52.0 0.16475 30.0 ~0.00578 ||
: - - Y — - bt 3
2 53.0 0.17198 ' '
. . ] 1 ] . . i
3 54,0 ~0.17920 30.0 0,00578
6 - 51.0 0.15753 3040 0.00578
5 54.0 - 0.17920 " 30,0 £ 0.00578
6 ©52.0 0 16475 o
7 - 53.0 017198 - 30.0 £ 0,00578
8 54,0 0 17920
- . m————r——] ¢
9 " 55.0 0.18643 . 30.0 © 0.00578
' ' —~r

Estimated mean longitudinal hot wall temperature gradient, A* = 1,230 °K/m

Operative fluid properties (for air): v = p?

= 1.703 x 10 ~ m“/s _
Kg = 2,733 % 10™5 KW/moK
B = 3.3090 x 10-3/%k
Computed dimensionless parameters: Re = 1331,76
' Grp = 28547,90
Pr = 0.704
Arm = 0.016]
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TABLE 6,13-6-18: ExPERIMENTAL RESULTS AND NUMERICAL PREDICTIONS FOR VELOCITIES AND
TEMPERATURES AT SELECTED STATIONS FOR SECOND Power INPUT Run AT
VARIOUS [NCLINATIONS TO THE HORIZONTAL -

TaBLE 6.13
(¢ = Oq)
STATIONS
5 6 7
NUMERICAL NUMERICAL NUMERICAL
1( Y) EXP. VALUES  lppeprcTioNs | EXP. VALUES | oo CTTONS EXP, VALUES PEYDICTIONS
cm
LONG. 1.0NG, . | Lowe. : . )
— TEMP ONG e, | LN Jopp, | LONG. |po  (LONG. | TEMP
(/s)- (m/s) (nfs) (m/s) (m/s) (n/s)
0.0 10.000 30,0 [0.000 | 29.72 | 0.000 | 30.0 | 0.000 | 29.75 | 0.000 30,0 | 0.000 }29.78
2,4 §0-120 | 31,0 }0.160 § 30.25 { 0.120 | 31.5 { 0.153 30,31 f o0.115 | 32.5 | 0.148 {30.37
Jas JO.210 {310 Jo.253 | 33.40 | 0,210 | 32,0 »0.249 § 32,91 | 0.278 | 32.5 } 0.246 |33.21
7.2 10.405 1315 }0.267 | 37,33 } 0.400 | 33.5 0,273 1 36.26 { 0.415 }33.0 | 0.277 !36.00
yo.6 10.210 33,0 lo.180 {42.76 }0.210 }35.0 {0.185 §42.14 10.310 34.5 }0.189 143,30
Ez'o io.ooo 54.0 10.000 }s4.0 Jo.000 §s52.0 {o.000 |52.0 {o0.000 53,0 ] 0.000 }53.0
- e o N D W 8
el e ) e
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TABLE 6. 14
(a = 19*)
STATIONS
5' . é 7
NUMERICAL NUMERICAL NUMERICAL
. s

H( Y EXP. VALUES  )opEpIcTIONS | EXP. VALUES PREDICTIONS EXP. VALUE PRYDICTIONS
cm)

S ONG, ONG . .
LONG, | oo ["ONG, | TEMP, | LONG, e, | LN fone. | LONG Temp, | NG TEMP
(m/s) (m/s) (m/s) (m/s)} | {(m/s) (n/s)

*0.0 0.000 } 30.0 10.000 | 29.88 { 0.000 | 30.0 | 0.000 | 29.5 0.000 30,0 | 0.000 | 29.62
2.4 0.073 1 31.50 ] 0.048 | 30,56 | 0.120 | 32.0 0.012 } 29.81 | 0.073 31.5 0.039 | 30.44
4.8 }0.310 32.0 10.145 [ 32,90 }0.210 | 32.0 {0,135 32.59 { 0.310 32.0 |} 0.140 | 31.86
i Y . » + . .

7.2 }o0.355 32,0 ]0.345 | 37.14 [ 0,400 | 32.0 0.354 { 36.49 { 0.355 32.0 }0.352 | 35.21y

Jo.6 10.265 34.0 10.315 | 43.62 | 0,221 | 34.5 0.328 | 42.93 | 0.265 34,0 § 0.323 AI.BII
12.0 'o.ooo 4.0 10.000 {54.00 f0.000 |52.0 1} 0.000 52.0 10.000 }53.0 ) o0.000{ 53.0 ’

| | i

" AN 5 I X
, o o} CIp (N (¢ ]
vy Ut 43
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TABLE 6.15

{a = 300)

STATIONS

IS P 5 . SR 6 . , 7
- 1 ‘ {UMER] NUMERICAL
NUMERICAL - NUMERICAL s
Y EXP, VALUES | pEDICTIONS EXP. VALUES | o eDICTIONS EXP, VALUE PEYDICTIONS
Kcm) -

LONG. | ..o [TONG, |TEMP, |LoNG. o, |LO%. (e | Lone. [ LOEG. TEMP,
VEL. o * EL' [w] VEL. (oc) VEL. (OC) VEL. (oc) VE » (OC)
@s) | Y 1€ @ | (/8 (a/s) /)

‘o 0 | 0.000 }30.0 | 0.000f29.38 |0.000 |'30.0 |0.000 |og. 3g 0.000 [30.0 }o0.000 | 29.36 |

2,4 } 0,025 31,5 {0,038 129,55 0,120 [31.5 0.031 29,55 10,120 32.0 g.021 29,52

6.8 [ 0.265 1315 0,156 [30.04 0,215 1320 10150 129,93 fo.215 [31.5 Jo.1s4 [29.70

7.2 }0.320 7{32.0" "} 0.358 }30.79 [0.310 32,0 .kd:363 }30.79 0.310 31,5 }0.,371 |30,63

9.6 0.228 33,5 0.307 34,60 10.237 34,0 0.314 134,94 }0.262 33,5 G.324 134,98

1{3.0 0.000 [54.0 0.000 54,0 0.000 §52.0 ¢.000 {s52,0 0,000 53.0 0,000 fs3.0

Cid N
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TAELE 6,14

e o

(@ = 45°%)
STATIONS
51 6 7
| NUMERICAL : NUMERICAL NUMERICAL

) Y) EXP. VALUES  )oceprcTroNs | EXP. VALUES PREDICTIONS EXP. VALUES PEEDICTIONS
cm - -

LONG. TEMPT.‘”OHG' TEMP, 1} LONG, TEMP, LONG, TEMP, LONG, TEMP, LONG, TEMP,
.(m/s) . i(m/s) (m/s) (m/s) (m/s) (m/s) :

'0.0 0.000 30.0 § 0,000 29.22 |0.000 | 30.0 | g.000 29,22 0,000 |30.0 | 30.000} 29,22
2,4 }0.142 31.0 1 0.038}29.24 [0.072 [31.5 [o0.010 | 29.24 0.025 | 32,0 | 0.024 | 29.24
4.8 lo.172 31.0 1 0.174 129,43 fo.120 13135 |a.160 | 29,35 0,215 | 31,5 }o,138 { 29,29

e -
7.2 }0.310 31.5°1 0.362 ) 29.71 }0.315 {32.0 0.385 129,73 | 0,310 §32.a }a.411 29,697
_ _ ; ,

.’9.5 0.262 33.0 1 0.289 132,19 Jo0.147 [34,0 Ja.310 §32.49 0.262 33,5 }o0.340 { 32,65|
Ilz.o 0.000 54.0 } 0.000 §54.0 fa.000 |52.0 |o.0aa 52,0 [o0.000 |s3,0 fo.00¢ }53.0 '
Y R ™ (52 e ? SRY
g ) T i < .
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TABLE 6.17

o =

60°)

STATIONS

6

5. 7
NUMERICAL NUMERICAL NUMERICAL
Y EXP. VALUES  oeeprcrioNs | EXP. VALUES PREDICTIONS EXP. VALUES PEYDICTIONS
cm)
LOKG. TEMPT.| “ONG, | TEMP, | LONG, TEMP, | LONG. TEWP, LONG, revp, |LONG. |TRMP,
} VEL, (°c) EL, °c) VEL, coc) | VEL. (°c) VEL, °c) VEL, °c)
(m/s) (m/s) (m/s) 1. (wm/s) | - (m/s) (m/s)
6.0 0.000 30.0 | 0.000 29,20 0.000 |{30.0 0.000 (29,20 {0,000 30,0 0.00a 1§ 29,20
2.4 0.072 30.8 10.032 |29.20 {0,072 |31.0 0.013 29,21 0,072 31.5 0,026 {29,721
4.8 0.117 31.0 }0.170 §29.24 {o0.310 |30.8 0.161 129,24 {0,31¢ 31.0 0.139 }29.24
Jod . ]
[?.2 0.357 31.5 '} 0.367 129.37 40,405 {32.0 0.383  29.39 0,403 31.5 0.414 }29,39
A,g;s 0.310 33.0 10.294 131,08 {0.215 {34.5 0.308 }31.34 {0,310 34.Q 0,340 [31.53
}
12,0 ¥ 0.000 54.0 10,000 |54.0 0.000 }§52.0 0.000 |}s2,¢0 a,00a 53,0 0,000 {53,0
- . . LoEN
Sy =4y CA (W (}} » ) &

cih
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TABLE 6.18

“(a = 75°

)

STATIONS

. :
L( Y} EXp, vaLUEs | WOMERICAL [ pxp, vALUES Pmﬁgs EXP, VALUES pgg%%s
cm - .
T, ONG, LONG. |[TEMP,
mo T ey e | e 12 fme, | Lo B0 | o
(m/s) (m/g) (m/s) (m/s) | (m/s) | | (m/s) {°
0.0 ]0.000 | 30.0 |a.000 29.20 10,000 [30.¢ |o.a00 |29.20 [0.000 |30.0 0.000 29,2
2.6 }o.072 | 0.5 0.014 [29.20 l0.072 EL; 0.0 129,20 [d.125 30,5 {0,033 29,21
4.8 0.225 | 30.0 0.166 |29.21 lo.215 30,9 65159 29.2¢ {0,239 31,0 Ja.139 29,27
7.2 10.255 31,0 ‘f0.383 [39.25 lo.33q 31,5 Jo.393 |og.49 o225 32.5 0.4éa 129,28
’;;5 0.215 33.5 0.303 B30.47 Jo.215 fas.q 0.313 f30.71 Jo.210  [34.5a }a.353 quso
llj.ﬂ 0.000 {54,0 }o.0aq 54..0 000 Pb2.a fao.000 52,0, [0.000 53.0 |o.00a 53’.0,
4P & 4y B (N o 9 <&
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TABLE 619 Exp, LocaL HeaT TRansFer AND FRICTION COEFFICIENTS

For SEcoND Power INPUT Run

STATIONS
a
5 6 7
(Dagrees)

2 2 2 2
H ) ]
ul| £ X0 St,X10 N, | £, X10 S6,X107 Ny £ X109 sy, x10°
0 4.889 | 0.864 0.521 4.295 | 0.879 0.458 |4.4820 1.3851 0.478
15 4,6371 1.319 0.495 4,386 | 0.955 0.468 |4.587 1.319} 0.489
s -
10 4,772 | 1,326 | 0.509 4.532 | 1.358 0.483 |4.709 1.527 0.5021
45 4.889 | 1.s64 | 0.521 4.532 | 0.784 0.483 Y4.727 1.706 o.soaj
60 4.889 | 1.936 0.521.  |4.386 ] 0.852. 0.468 4.5690 1.4291 0.487
75 4,738 | 1.481 0.505 4.2211 1.272 0.450 V4464l 1.445 ) 0.476
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TARLE 6. 20 COMPARISON OF FXPERINENTAL RESULTS AND MUMERICAL

PREDICTIONS nF THE Mcan Mot “Q

HEAT TRANSFER

, AND “RICTION COEFFICIENTS FOR, owEn Input PuN
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EXPERIMENTAL VALUES

NUMERICAL PREDICTIONS

a
(besrees) Nh f X 102 St X 102 Nu | f X102 St x102
mh mh” . mh mh wh” ', mh
w

0 4,555 1.043 0.486 4,000 | 1,047 0.430
15 4,537 1,198 0.484 4,140 | 2,307 0.440
30 4.671 1,404 0.498 4.796 | 1.147 0.510
45 4,716 1.351 0.503 4.944 | 1,053 | 0.530
60 - 4,615 " 1.406 0.492 '5,008 | 1.090 0.530
75 4.474 1,399 0.477 5.045 | 1.140 | 0.540
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ExPERIMENTAL RESULTS For THIRD Power INPuT Run

"
=A
g Input current = 12.50A
Input Voltage = 200,0V
Input Power = 2.500KW
& Input mean Air Velocity, Uy = 0.400 w/s
" Ambient Air temperature, T, = 27.5%
Channel height, b = 0.12 m
Chanmnel Aspect Ratio AR = 10.0
“  TABLE 6.21 - MeasureD VaLL TEMPERATURES For THIRD Power INPUT Run
, © HOT WALL COLD WALL
STATIONS . :
N ALONG .00 | ¢ . Wh-Te T (%) 0 « Tc‘T:ﬁ
W . CHANNEL h RePra¥*b c c RePrA™y
{ o |
' ] 62.0 0.04548 31.0 0.00461
2 66.0 0.05075 '
Z . .
3 . 65.0 0.04943 31.0 0.00461
4 69.0 0.05471
& 5 62.0 - 0.04548 31,0 0.00461
6 69.0 0.05471
é%? . 70.0 0.05603 . . 31.0 - 0,0046] -
8 69.0 0.05471
5 ' 70.0 0.05603 : 31,0 0.00461
W - o
L Estimated mean Longitudinal Hot wall temperature gradient, A* = 3,281 “K/m
Operative fluid properties (for air): v = 1.759::10'-5 mzls
K = 2.778x10"3_KW/mOK
8 = 3.3277x10™3/0K
& Computed dimensioness parameters: Re = 2728,82
Grp = 71710.10
Pr = 0.704
Aty = 0.0096
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TABLES 6-22-6-27:

EXPERIMENTAL RESULTS AND NUMERICAL PREDICTIONS FOR YELOCITIES AND

TEMPERATURES AT SELECTED STATIONS FOR THIRD Power INPUT RUN AT
VARIOUS INCLINATIONS TO THE HORIZONTAL

TABLE 6.22
@ o= 09
‘1; STATIONS
; 3 7
Lo | EXP, VALUES Pmlfgﬁs EXP. VALUES | ~RICAL 1 Exe. vaues il
m. | O e | e 00 (me, | 0 |me, (iore. T
o/s) (m/s) (m/s) @se (0 | @ [ |@e |9
Jo.o |o0.000 | 31,0 }o0.000| 28.18 ] 0.000 31.0 | o0.000 | 28.04 | 0.000 | 31.0 |a.000 |28.37
2.4 1 o.500 | 33.2 [ 0.344 28;87 0.3:0 | 33.5 | .0.341{ 29.94 [ 0.310 | 33.5 0.341 | 29,24
4.8 10,500 } 34,0 | 0.525 | 34.42 } 0.405 3%.; f’o.sza . 34301 | 0,500 34;0 0.527 §35.14 |
7.2 1 o.s00 | 34.57) 0,558 | 44.06 | 0.595} 34.0 } 0,562 [ 42,77 | 0,690 "34.2 0.562 [ 44.70
196 Jo.s00 | 37.5 | 0.389'} 49.60 0.405 ) 37.0 0.388 | 50.06 | 0.500 | 36.5 §0.388 P55.22“_
i:g.o * 0.000 | 62.0 | 0000 62.0 | 0.000 | 63,0 | 0.000 | 69,0 | 0.000 | 70.00 0,000 | 70.0
T G 3 op (N 2 & &8 B

BT i
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LA

TABLE 6.23
{a = 150) _ _
[ 1 - STATIORS
‘ o 6 7
- ’ NUMERTCAL NUMERICAL NUMERICAL -
k Y EXP. VALUES |opeDrcTIons | EXP. VALUES PREDICTIONS EXP, VALUES PEYDICTTORS
| LORG. | . pvpr [TONG, |TEMP, | LoNG. me. |1 oo | Lone, v, |LONG. |TEMP.
F (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) .
*o.o 0.000 ¢ 31.0 { 0.000 | 27.84 | 0.qua 3.0, 0,000 2717 o.000 | 31.a 0,000 | 28,13
2.4 1 0.400 | 33.0 ) 0,325 | 28,18 0.310 33.0 1 0.3334 28,04 0.310 | 33.0 0,299 | 28,72
a8 | 0,690 | 33.0 0.509 | 29.19 1 0.595 | 33.0 }0.512 28,90 | a.69¢ | 33,0 fq.48 |30.15
x
7.2 1 0.795 [33.5°1 0,573 | 31.89 } 0,690 | 33.5 0.566 } 31.54 | @500 | 34,5 fa.sea |33,4 |
37.0 10.410 | 40,09 | 0.500 | 37.0 | g.405 40,05 } a.500 | 37,5 ba.44 +42.81
62.0 }0.000 §{ 62.0 | 0.000 69.0 | 0,000 §{ 69,0 { a.qqq 70,0 fa,q0e §70.q
Y ey -
. %, ~ ot
* ey P 2 o e+ “Ter Y
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TABLE 6,24
@ = 30%)
Th__T o STATIONS
5—? 6 !
L(- Y) EXP, VALUES \pmlfg;s EXP. VALUES nggrlgg;s EXP, VALUES Pﬁ;‘fg%
cm
ol et el Bl ool P oy 7 vy g
@s) |9 Jam [CO Ty | o [E fea” |- e @) |9
0.0 | 0.000 31.0 | 0.000{ 27.54] 0.000] 31.0 | 0.000 27.54 | 0.000 | 31.0 | 0.000 | 27.55
2.4 | 0.595 32.5 | 0,220 27.571 0.4001 33.0 }o.141 { 27,57 | 0.405 | 33.0 | 0.187 | 27.61
boe § 0690 | 330 0.057) 27,74 0.595) 33.0 |'0.435 27.64 ) 0.630 | 32.8 | 0,402 | 28.16]
" .
7.2 1 0.790 | 33.0 | 0.654 28.26 | 0.780¢ 34.0 | 0.690 !"2,8.21 - 0.785 7. 33.5 | 0.681 }28.72'-_.«‘
9,6 io.sgo 3.0 ) 0.487 32.10] 0.690 %5 10.520 }32.33 | .0.690 | 36.0 fo.527 | 33.73 : .
12.0 ‘o.ooo 62.0 1 0.0001 62.0 f 0.000§ 69.0 {0,000 |69.0 | o0.000 § 70.0 | 0000 § 700
. ety @Y L) o2 K + %

¢3S
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f@h

TABLE 6,25
(o = 45°)
l -' STATIONS
5 6 7
NUMERICAL NUMERICAL ' SUMERICAL
L Y EXP. VALUES ) EDICTIONS SKP. VALUES | peprcrions | EXP. VALUES PEYDICTIONS
cm) , . .
LONG, } TEMPT, L.ONG, TEMP, LONG, TEMD, LONG, T’ .LONG, TEMP, LONG, .TBHP'
(m/s) 1 (m/3) (m/s) (m/s) | (m/s) (m/s)
| » , - : : :
0.0 Q.00Q 31.a | a,@mo 27,50 ) q,quo | 31,40 aq,aua” | 27.50 g,000 31, {0,000 27.50
2.4 0,595 32.0 g,078 27,51 0.41Q 32,0 U.037 27.51 0,595 32,0 g,06qQ 27.51
4.8 10.785 32,0 Jo0.381 | 27,50 | g.595 32‘,0'_ %355 §27.52 | q.69q 32,5 }0Q,355 §27.52
7.2 10.870 f32.0-10a.772 § 27.70 } 0,880 | 33.q 0.804 27,70 | 0,785 | 13.0 a.783 f27.70 |
{9;6 !0.595 35.5 l0.600 29,99 } 0,595 36,0 {J.636 30,22 - J.595% 34,0 4,630 }31.q07 -
32.0 &0.000 62,0 0.000¢ 62.00- a.0ag 69.0 §d,0q0 69,0Q a,aao 70,0 taq,aqq 7a.4Q
. &4y e e, O ] &y ¥
oy % bt
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/ 7/5 Lo .
AL TABLE 6,26.
S 60°)
/ A i N ’ T
. ; - — —
S o STATIows . T

KUMERTCAL

' NUMERICAL - NUMERICAL ' '
. - | - .
Y - EXP. VALUES S VALUES | nrorrons | Exe. UES 1 beeprerzons

PREDICTIONS

LONG, TONG. | TEMP, - LONG,
VEL, TEMPT. EL, (%) VEL,

TEMP, LONG, TEMP, LONG, [TExp, Loyg, TEMP, |
(oC) \
@/s) NV mss) (w/s).

VEL, "VEL, ocy - {VEL, Oy
(o (m/s) (éQ) i (m/s) ( C)..' (m/s) ( C},

0.0 | 0:000 {310 | 0.000] 37.50 0.000 }°31.0 J0.000 |27.50 0.000 | 31,0" 5000 | 27 5

2.6 10.405 | 32.0 |o.04; 27.50 1 0.405 | 32,0 10:010 127,50 | ¢.405 32.0 {0.010°] 27,50

4.8 |0:690 | 315 0.359 | 27.57 0.595 1 21,8 | 0.329 f27.52 0.600 | 32.2 bfazg,';27,513

= 4

7.2 -1 0.880 | 33,0 0.802 | 27258 ) 0.785 § 3.5 0.841 f27,60 | qlsgo*"133;0‘-'6.§31Li'27¥67

b

(e

B =
= v

9.6 .1 0.690 | 380 --0}650.-:29{16" 0.500 | 37.0 [o.674 29.37 | 0,595 | 36,5 ° 0.671.. { 79,

‘tiz 9 4 0.000° 62,01 0.000 62,01 0,000 :69.0 - }o.000 69,0 | 0,000 70:0 1e.000 700

r'_.a_a T

e e e R S AR
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ro
Lo
S T N 1ARE 6,27
B " . ) .. _' N ¢ 5y “ ‘ "
[T Cas 75°1"
.. A e . N S -
3 J L S . : o - ~—
= J S . . STATIONS |
: : : ‘ NUMERICAL ‘-J NUMERICAL KUMERICAL
1(1’ | EXP. VALUES [PREDICTIONS Exe, VALUES PREDICTIONS EXP. VALUBS | o rnrcTrons
} cm) T
LONG, | .. TONG, | TEMP. | LOWG, ‘ LONG, p. | LONG, | LONG, |TEMP,
VEL, EEgT' EL, °c) VEL. %gg VEL, ffg’ * VEL, ?3“5‘ VEL, ¢°c)
Jwis | (m/s) sy 1O o | sy (U9 Harg (€O
9.0 ] ©.00c y31.a lo.000 | 27,50 | 0,000 | 3 O %000} 27,50 0io00r | 31 | 0009 27,50

24 19310 430 fo.oi0 | 27,52 {9405 {31i2 [0lose | 27057 b glong 3.5 Vome a5

X . ] . - - -

4.8 { 0.500 Is1.2 lgasg 27,53 710,595 1312 L a,299 kv

293 ¢ 0,500 31.8 G.297 127,523

7.2 1 0.592 }31,5 ‘io,837 }27;35 7690 132,00 10,880 | 27,55 §0,595 | 3z.0 0.874 §27.59 |

- §2.6 10,500 %_34.5 0,691 28,86 10,500 [36.0 !0,716 129,05 0,500 {34,5 fo.716 29,43

itz.o 50.000 rsz..o, 0,000 62,00 10,000 }69,¢. | ¢ ouo 69.¢° 10,000 [70,6 | 0.00

70,0
1 | b ;
(' __A\.%‘ T {t:g:?\ . {_‘-‘5‘; ' I o E — . o

T \"

* .
Sm M EBS ML i ke e e ez b r e e e
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TABLE 6.28Exp, LocaL Heat TransFer AND FRicTion COEFFICIENTS
FOR THIRD Power INPUT Run B
STATIONS
a 5 6 177 ‘
{Degrees) - ) Er—
‘ ‘ 2 : 2 2 el 2
Huh thIO SthXIO Huh thIO SthXIO Ngh fhKIO ‘SEtho ‘
0 4,070 0,687 J,211 4,438 | (0,548 Y (0,230 14,553 0.60&1 Q,236
15 4.043] 0.586 .| 0,215 [4.028 [ "@s573 | o229 o402 0,687 |a,228
30 4,324 Q,653 #;224 4,538 | 0,736 - {0,235 |4618) 0.704 10,240
. 45 4,396 | 0,486 | 0,228 4,578 { @556 | 0.238 |a,922} 0,568 o255
60 3,937 0,646 a. 204 008 | 0.487 | a.220 I sa3f a.676 0,251
© 75 4,577 ‘Q,676 " (,238 4,558 | “@0,5%48 0,548 237 % 4,824 0.256
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TABLE 6.23 CompaRISON OF FXPERIMENTAL RESULTS AND MUMERICAL
PREDICTIONS oF THE "can Mot %@%L HeaT TRANSFER
AND FRICTION COEFFICIENTS FOR| Power INPUT PUN

202

EXPERIMENTAL VALUES

NUMERICAL PREDICTIONS

* 2 2 2
(Degrees) Nh £ X 10 Stmhx 10 Nu fmhxm, St X10
0 4.354 0,612 a,226 2,460 | 0,480 | 0,130
15 4,324 0,615 0,224 2,685 | 0,940 | 0,140
30 4,487 0,698 7,233 4.716 | 0,830 0;240
45 4,632 0,529 ¥, 240 4,932 1 0,640 0,260
60 i4.3% 0,603 0,228 4,932 | 0.660 | 0,260
75 4,653 0,646 0,242 4,916 6.%60 '_quao_
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APPENDIX A

SOLUTIONS OF THE ZEROTH, FIRST-AND SECOND-ORDER PERTURBATION
EQUATIONS

It is important to note that by cannot be zero, as would
have been the case if itr were defined[purely by secondary flows.

In this case, it is a consequence of pure forced convection upon
’ |

which the perturbation equation rests.
i

Al, Solutions for Zeroth-order Equations

\
From equation (5.7a),
y -
Vl,bo 0 } -

Expanding -the LHS gives,

! 4 nly
d 'ﬂbo . 23 lflo ) B tbd -
ax dy2an? oy

-

Since wo is a function of y only,

a2y
32 ¢
D (—Y
ax?  ay?

= 0

The partial differential equation can then be replaced by the

total derivatives.

y
- dd}O

dy



Integrating, we have

W e
o
v
I~

]

O

e

+

o

R

- b #
ay Cy" {
. o} . Cereiees .
Sl = _3"_ + Cay + (s (A, 12)
Gy’ Coy? B
»« A U’O = "‘6_“ + T +  Cyy +fCl¢ ......... ........(ﬁ’]b)

where Cl’ CZ’ C3, C& are integration constants to be determined

' i

» from the bofiidary conditions.

For no-s4lp conditions (Neumaﬁn B.C.) using egn ( A,la)

4 dy
$ a“il‘ =O, -+ C3=0- |

y y=0

!

dl’fo Cl
) —_— = O’ -3 ] ="""—‘+_C2_’
l dy y=1' 2 !
‘ i.e € =-2C, vererereeean (A2 )
f
kj From the Dirichlet Boundary Conditions, using equation ( A.1b)

= 0, +Cq=0.
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L
. | o
Ol =1, + = %L +-%1 ................. ceirenreeee (84-3)
y=I ' '
If we subgtitute (AZ) into (A3) we obtain
| 26 + 5
C o
I = Ca(} - %) = ?2 ‘
| |
i.e. C = 6 and G = ~ 12
Substituting CI’ Cys C3' C4 back into egn (A,1b ) we have
. ¥
'w\.‘ ]
Y o= =2yd 4 3y¥ i .y
o ; <
-t ; i
> = 3y? - 2y? Ah
wo y y LR R I LR R R R L R I I R P clocol( llt)

x

This is a solution describing pure forced convection.

4 aq)O 2
From(“»-").a—r = 6y - 6y° = 6y(i-y)
. f
i.e. Ug = 6y(l-y) E
Bwo
Substituting ggf'into equation (4.7b) gives,
. 329 3%e
. _ - 1 o] +* O)
YU = Repe (a2 oy .
2 | i
360 ] 80 . |

Since —=
3

" A, >, 5::5— = (.
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! 3260 2 i .
Rebr  y7 - SAOTYY) |
i
378 d%e L .
Replacing ~é-—*2-0~ by - 20 » the above equation can be integrated
y y
directly.
d?e

A 2
RePr ayz - SAUTY%)

#
b

i 0 2 3
o 99y _ o yR
! DS AN A
RePr Oy = BA(% 17 T Dy +D;

where D1 and D2‘are constants éf integration.

From the Boundary Conditions, |

) o ) _
o,y;o =0, » D =0

2

6

) _ ] l_
'Y=1 ' Repr T (g g D
A
=—2—+D1

| a
M DI = ( RePr 2)

Substituting for D] and D, in( A,5)gives,

[p%]

3 "
0 . Y o_y 1 _ A
A -1 * (o 5 Y
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g ' RePrA y : .
- 6RePrA(—- - X_) ty s = RePrA(y’ - %{" %)+y
=y RSPr 0 APTURY e veee (ALE)

for First-order Equations

.
eO
3]
o}
Solution
Subs

to solve for i and 6 .
1

titute woand Bojingo equations (5.8a) and (5.8b) respectively
b
\

30 -
1 o - NP F
e v wl lé;f%lna+A Cosa-J

1 RePra .
S Re V"%_‘ﬂ - [{l-. g #(1- 6y?+4y* )}Sing + A Cosa]
- d*y - [ RePrA ;
! = Rel|{1- —~—(146y2+4y*)lsina + A Cosa
4 2 |
dy
&y RePra |
E;%* = =-Re| {y- (y = 2y*+y")}Sina+A 'yCosa | + k,
|
a2y - RePrA A y?
o W 2 PRI ARV AP
"> } Re| { 5 5 (2 = % )}Slna+TCOSG +kly+k2
ay B RePRA _; Ay?®
sy . - Yo AR ol x._

g ’
4%-'? +k2y +k3 ""'(A.?ﬂ}



Y
a1

4
- - Y
= - Re {2 i

2

RePrA

"oy

® 6 7 4
Y2 .Y _ Y \as Ay
(24 +;€ﬁ ETD)}Slna T EZ- Cosqg,
ky®  k,y?
teT t + ksy + -kk

where ks k2, k3, k4 are constants of integration.

(A 7b)

For no-slip conditions at the rigid boundaries, using eqn ( A.7a), gives

3
0, » 0 =
k

w1 -

etk =

6 20

| RePrA,l 1 | . A
S (g ST ﬁ)‘}Sma} T Cosa

 _ RePrA

6

k
2

}Sina+s Cosa |+t + k (A.8a )

. . { .
From the Dirichlet Boundary Conditions, using equation (5,7,.), yields

= 0,+ k = 0
Y

= =Re

i.e 0=-Re

24 1680

- —

{ 1 25RePrA}Sinu+ A

2

4Coau +§% +

24

+ —lm)}sina+ éCosé%

Ky
»t
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- k
1 25RePrAq L A 1
= - - ‘ b + + K L.
+ 0 Re‘:[l2 340 }Sina + lzCosa 3 k2 (A.8b )
|
l Subtracting equation @8b) from equation (A.8a ) yields
i
1 17RePrA ‘A k
= - - - Loet Il aina - L
o Re {.|2 BRI }Sina * Fosa | +
'{3
Transposing, gives +
k ve | ] .
S - i
’ 3 g0 | 70-17 RePra}Sina + 70ACoso.
|
Re . ‘ Y
> kl = 0 (70-J7RePrA)51na.+ 70ACosa
i "
Kk o I
+ Lo 280 {(70-17RePrA)Sina + 70ACosc
2 280
3 .
Substituting into equation ( A ,85), produces
Re . .. Re .
0 = Z0 (10-3RePra)Sina + 10ACosx +2_§6 (70-17RePra)Sina
v |
i + 701\008%'* k2
. . =14Re A AT AN G _ll}_e_:._ _ .
' : o k2 840 |f10 3RePrA)Sing + IOACosoi] 840'[(70 1 7RePrA)Sino

+ 70ACos0
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= 8*2% [(MO-&ZRePrA-ZlO *+ 51RePrA)Sina + 140ACosa ~ 210ACoso,

!

855% (=70 + 9RePrA)Sina -~ 70ACosq

'

—
|

;

+ k = Re (9RePrA - 70) Sino = 70ACO80 |everen tavena cesisasal (A9 Y
2 840 ;

‘ r -

Having determined the constants k , kz, k3, ka, substitute these into

1
equation (A.7b ) to obtain the expression for Y
1

Y 7
- Y _ RePrA 1_ y
. wl REIV{M 5 ( 60 210)}Sma + "1—24 Cosq

= (70 I7Re1’rA)Slna + 70ACosq ya + o

.'.‘

- _Re
1 k80

{70yl'-RePrA(35y“‘-“—l4y6+4y7) }Sina + 70Ay“Cosq

r

Re ’ . ' s Re _ '
+1680 (l40-34RePrA)Sma+l£»0ACosu ¥y + 1680 [(ggepm 70)Sina

-

- '70ACosaJy2

~70A(y%~2y3+y*) Cosa

1 )28 {(9REPrA-70)y +(140~ 3£‘R9PrA)Y —70y +RePrA(35y —Idy "’4}?7)}3111

TR = D T .‘._——-—ﬁ-—..'l'—_l

7 680 (9RePrA-70)Sino-70ACosq y

|
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L v = 1230 {(9RePrA-70) y*+(140-34RePrA)y *~70y" +RePrA(35y - 14y +4y7) }Sina ;
T - fo2onod pub -
. 70A(y“=2y" +y ' )Cosa ](A‘IO)
& Consider equation(5.8b) given by;
ay
S I N
A'ay Repr | U1
o . |
‘-» i déﬂj ReA ‘ 2 3 | 3
RePr ~dyf * ﬁﬁijI{iBReIrArlhO)y+(420-l02RePrA)y -280y “+RePrA(140y
1_ .
*84y5+28y5)}Sinu—?OA(Zy-6y2+4y3)Cosa :l |
a Integrating,
oo ! 9, _  Re {9RePrA-70)y 2+ (140-34RePrA)y *~70y " +RePra(35y"
RePrA dy 1680 - yoroy Atdoy |
N . ’ -14y°+4y7) }Sina ~70A(y2~2y 3+y“)Cpsa]+Gl |
1% . . ‘
0 A . Re’ oean70y _ PR 5
] - Repra ®° 680, {(9RePrA ?0)3 + (140 34RePrA)£‘ 14y +RePrA(7y
) . - ' li 3 M 5
* - ~2y7 ) 18ina~70A (5 - L +X3Cosal+G,y+6
.o 2 3.2 5 17772
ks ',.‘ V I ‘ " .
L. (AL
4 ' '
Th‘?im‘A;‘f where G!, G2 are constants to be determined using the Dirichlet boundary
e Conditions. Using equation (A,11),
[ ) ‘e
! = 0, » 0=G6,
y=0 B
8 I .
Re (9RePrA-70),  (140-34RePrA)
1 - - - 14
" = 0, + 0= 16801} 3 + A 144RePrA(7

‘ . - |
*2+5)}Slna-70A(%- % +§jcga%]+cl
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- Re_ | ((70-9RePrA) _ (140-34RePraA) _x
+ G, = 1680{‘ 3 — ¥ lé,ReP‘;j.A(J

-2+5)}Sina+70A(% - -;- + -;-JCosoi

;Re T TA
= ma[(381na + 3 Los,a)]

[}
]

Re .
| = '7—56(51110‘. + ACOSU.)V

On substituting G, and G, into equation (A.l1},

y*-14y°+RePra(7y°®

% _ _Re | (9RePra-10) s, (140-34RePra)
RePrA 1680 3 Y 4

8 .
—2y"'+y-iﬂ ) }5ina- %(|0y3-15y“+6y5)gosa :l

-t Re .
+ 756($1na + ACosa)y

On simplifyjing,

0
1 . _Re - 3 - 4e168yS
REPTA 30160 {28y+(36RePrA 280)y*+ (420 IOZRePrA)y_.{GSy

+RePrA(84y°-24y '+6y %) }Sina+28A(y-10y+15y"

—Gys)CosaJ

\ - 20160

2 | '
g = SIARe l{28y+(36RePrA—280)y3+(420—I02RePrA)y"-I_68__ys+RePIA(34y5

=24y 7 +6y®) }Sina+28A (y=10y +15y"-6y°) Cosa:l (A.12)
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*
g?' P A3 Solution for Second-order Equations
L Having found the expressions for Vo 80, Wys. 0, proceed to
i substitute into equatioms (5.9a) and (5.9b) to find expressions for
& - ¢,, O, respectively.
- 27 72
H % | a B
. From equation (5i9a) Re V“wz = - §§—-Sina
%? . . Expanding the LHS gives
¥
134y RN aty
—_—(Y2 2 2 .
Re 3 x* dx% y? * 3--1—) = —g—l—g Sing
:}‘- ™ . ) '-)'*
b Sinc %;;§== §~$%2 = 0, the above equation reduceS'CO .
§§ Re ary 5

Also, singe Y, and'G} depend on y only, then express the

above equation in total derivative forms.

f’ ' -.!. - _qil"[iz_ - ,..-Ju b 1in
o ) . Re day" dy ¢
] d*y APrRe?

> o E—‘z 0160 {28+ (108RePrA-840)y*+(1680-408RePrA)y

~840y" +RePrA(420y"-168y°+48y™) }Sino,

+28A(I-30y2+60y3-30y")Cosai]Sina

1 a3y APrRe? . 3 4
_— « - APrRe” - - P
‘TG E;?l- 55150 {28y +(36RePrA-280)y" +(420 l?ZRe TA)Y
L ~168y >+RePrA(84y°~24y +6y®) }Sino,

a

+28A(y-10y° +15y"-6y° ) Cosa :]Sina +E
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1 d*, _ _ APrge’ 2 vk, (420-102RePrA)y®
¥ Re dy? 20166 {14y°+(9RePrA 70)y.+ 0

-28y5+nepm(14y°-3y°f§&9)'}sm2a

o . 2 L) ‘ ) ; .
& +MA(%— - ~IOZ + 3y5—y5,)si‘n2]+E] y +E,
1 dy, _ _ APrRé? {Iaya + (9RePr§:]0)y5+ (4201!02R¢PrA)16
L , Re dy 20160 | = 3 5 30
4 ; te
5 -4
9 10
~4y " +RePrA(2y - %T:+ zﬁgJJSinzq
S ' 5 g 7 '
% +14A(z‘:~~ 12" + y:,a- - %*)Sian:I'
LY :
+ =% + Ezy + E3 ....... . .(é.}:!a)
% | : LY amprge? (Ly» + (9RePrA-70)y® _ (420-102RePra)y’ _ y°®
Re 20160 30 ' 210 R
B 10 11 4 6
Y X+ ¥ yain? y_ .Y _ .
. F + RePrA(A 55 * 165151n atldA(5; I3 4
/ 7o i E v’ Ey* o :
tag t ‘s,‘“)s”‘z‘”il+ g Ty v Ey B (A
e Where EI, E2, E3 and E& are constants of integration to be determined
7 ' ‘

from the B.C. For No-slip conditions (Neumann B.C.) at the rigid walls,

using equation (A, 13a) yields,

d¢2
= 0, +E,. =0
dy y=0 3
dp i
o
Y |y=1
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) AP 2 - -
re . rRe”| (14  (9RePra-70)  (420-102RePrA)_ RE
> 0=- 5o &3 5 30 4+RePri(2-;
L) }sinZarl4A(r - + + + = Yysing +L:1"-+E (.1
5)iSinTarldA(y = 5 + 5 = )Sin2a 4o + By (L 14)
r%‘g From the Dirichlet Boundary conditions, using equation {(A,13b),
{1
2 =0, + E, =0
y=0 N
o
7
‘1’2 .

_ APrRe?| 7 (9RePrA—70) (420=102RePrA) _
=0, >0 70160 [ * ¥ 210 :
y=1

£
& b
+RePrA(4 55t 165)}Sm a+14A(
E E .
- L Lsine|et + 22 A45)
12 4 56 6 2 e
s .
R v
Equation {4.15) reduces to:
- APrRe” £2-+ 2REHA}S + 45500 +E-+ E. =0 (A 158
3 " 20760 | 3 15 o+ g ®1*3 2 TP e et
Also equation G.|3@reduces to:
5 ' : E
_ o " 55160 [{3+—--——-770 }Sin 351n2a+3 +E2 0 vonene. (ALY

Equation (A,15a) from (A,I5h) glives,

E
APrRe 137RePrA.. 2 L -
~ 20160 [ 7310 Sm% * 0
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APrRe” 274RePra Sinzu)
20160 ° 770 :

From (A.15a) E2 becomes

. o APrRe*| 2 2RePra,.. , A, APrRe” 137RePrA Sin’u
By = So160| § * 5 ISin a*r3SIn20) - ares( 770 )
;o APrRe*} 2 103RePrA A i

Ey = 55760 '{ 3 23IO =}8in’q + 5 Sin2o

Substitute b

Y
Re

W

+ ek =

Re

v Mo, B 1nbo cquacion (AL 13
r 12, 43 [4 tilto cquation (A.13b)

_ APrRe’ [y L(URePrA=70)y" - (420-102RePra)y”  y° oa oy
20160 30 * 210 7 * RePrA(y
10 il [ 7 B8
, Y, Yo / 1_._ AN AN AR
> ) i) EG,.)}Enn o+ u'\( 17 + 1% 56)SJ.nh

Al’rRL 137ReLrA Sin‘a, 5 APrRe? ¢l _ 103RePrA

i ariae 4ot MAneria - 2
20160 © 2370 Y+ To1607| B T 7630 sin’e
+ % SinZOtHJy2
APrRe®| 1 103RelrA, ; ,)37RePrA 3_7y" _(9RePra-70)y*®
507160 | (3~ “aea0 Y oy )y T PR D
(420—102RLPrA)y y' - y;__ A . 2
510 5 RePrA( 30 + Iﬁs)}Sln o
Ay? y! y? }si
+{'6— - IhA(z' ?‘ 'h 56) SinZa
APrRe? {1 103RebrAy » | 137RePray’ | 7y* _ (9RePrA-70)y®
30160 3 4620 2310 6 30
_ 620-102RekrA)y” | yE _ VA I
510 7 RePrA( 30 165)}5111 «
AyE ot oyt o, t
*T?(6 5+ 3 y' o+ . Y8inl2a



Aw

ey

&

219

v = Aereilf__F 103RePrA, -z, (137RePrA, 3 Ty" _ (9RePrA-70)y*
éblsﬁ“[;%

2 2626 )Y 7310 3 30

‘ 7 8
- (420-102RePra)y’ y°
710 2

8 10
- Y- ¥ _
RePrA(4 )

11 .
+ L) I8inta + Eo(2y2-7y 414y 512y 743y %) Sina

®.16)

Now substitute wz into equation (5.9b) given by
3y
R
3y RePr Z
| d?0 dy
2 2
ARePr dy? dy
9% apere? (L - 103RePra, o 137RePray’ _ 74"
APrRe dy 20160 | 3 4620 2310 %
oy _
. _ (9RePra-70)y® _ (420-102RePrA)y’
30 210
a8 ] 1¢ 11 !
: bAR Y Y e X yisin?
5 RePrA(A T 165)}Sm o
+ %5(2y2-7y"+14y5-l2y7+3y8)Sin2é]+F]
] . 2| D | 3 | 4 s - 7
L2 _ APrRe {(l - 103Relrn)z_‘+ |37RePrAy” _ 7y® _ (9RePrA-70)y
APrRe 20160} 3 4620 3 9240 30 210
. (420-102RePrA)y®  y° - RePrA(xi
680 18 36
1 12 3 5 B
eV v Y YiginZa + A (2 LIy 7. 3y
T30" Togo) 15in"e + (5 RS A
I '
+ %—)SinZa:l‘F Fly + F2 ............... “.17)
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Ty
j}' where EFI and F2 can be determined from the boundary conditions .
From the Dirichlet Boundary conditions, using equation (A,17), yields,
I 8
= z =0, + F, =0
? 2
y:
-~ 8 3 . .
%:4 2 - . APrRe 1 _ 103RePrA 137RePrA .7
o 00 0 S| Y9 T “isee 0t o240 - 39
_ (9RePrA-70) ' (420-102RePrA)
' 210 1680 .
3 .
v + 1. RePrA(—]-— - + -—-l-—)}Sinza
18 36 330 1980
A2 7 3 | N
+]—2(':_3'- T 2-—2-+§)Sln2a+F]
. . _ APrRe 3
+ PI = = 5o {60 —=}Sinq +|2081n2a
)‘ _ . APrRé® A .
4 - FI = < 20160(60 Sin’q * 58 Sin2a)
Now substitute Fl and F, into equation (A.17) to obtain
"
v —
2 _ APrRe’ {(.1_ - IO3RePrA) 3,137RePray” _ 7y° (9RePrA—70)y
APrRe 20160 | 9 ~ 713860 Y "T924p 300 T 20 -
> - _ (420-102RePrA)y®  y® _ vyt A a2
- 7680 * Tg ~RePrAlyy - T3p*ygge) ISinte

APrRe? Sm "0
. 360(20y ~42y5+60y7-45y%+10y?) Sin2a |- 30760

A .
170 Sin2)y
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APrre? ((1540-103RePrA)y’ , J37RePray" _ + (9RePra-70)y’
20160 13860 9240 30 210
. 5420-!02Re?rA)y xi, RePrA(55 9
1680 18 1950
- 6y"+y'2)}sin%y +36é20y3—h2y5

+

. 2
603("'--!|5y£’+|Oys)S:'Lr120t.~-(§-£%b--(1

+

A .
Ti—d Smga)yjl

n 6 = AZPr®Re" AN (1540-103RePrA)y? +l3JRePrAy“ _ Iy (9RePTA-70)

2 20160 60 13860 9240 30 . 210

_(420-102RePra)y’® | y® _ RePrA
1680 18 719

5(55y°-6"y')} sin’a

+'§%5("3Y+ZOY3“42Y5+60y7-45y8+5Oy’)SinZa:]...(A.ia)

IR
A4, Solution for Third-order Lyuations

Substitute._e2 into equation G.10a) and replace the partial derivatives

by their total counterparts.

. | 807
R P
From (5.10a) 7S v wa 5y Sing
| d"wq db
g 'Ii"e—" —-; = = ~—£ Sing
Integrating,
_l__'faw3 e - A*pPrige” }f _v,.{1540-103RePrA)y* N 137RePrAy" _ 7y°
Re  dy’ 20160 60 3860 9240 30
. (9RePrA-70)y’  (420-102RePrA)y® | y°
210 1680 18
ReprA(SSy -6yl+y!2 ) }sinda + u~—(—3y+20y3

1980 360

— 42y5+60y7-45y%+10y®) Sin2a sm] +H
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gy
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+

l d2$L _ _ APer f -y* , (1540-103RePra)y" . 137RePray®
Re dy 20150 170 " 13860x4 9240x5
_ 7y® _ (9RePrA-70)y® _ (420-102RePrA)y®
180 1680 1680x9
] 10 12 13
Y0 _ RePra 11y1® 12 220 . g
Y180 T Tes0 Cz - T gty lsinie
Al 3T b_006, 13y 3
+ 360( 7t S5y =7y + S5y
~ y'%8in2q Slna:} +tH)y +H,
e _ _ A%pPrlRe* C } , (1540-103RePra)y® . 137RePray® _ y’
Re dy 20160 360 13860x20 9240x30 180
_ (9RePrA-70)y° _ (420-102RePra)y'® y"
. 1680x%9 1680x90 1980
_ Repra y! oyl gt o -y}
.. 550 O " 75 * e isin’e + g F
599 0 B H y*
vty Tl - Ly )Sln2a Sing |+ ——
. 6 2 2
+ l|2y + [13 ...................... (A, 19a)
Yo -A%prie’ [y, (1540-103RePrA)y® = 137RePrAy’ _ y®
. Re 20160 1440 13860%120 9240%210 1440

(9RePrA=70)y'"  (420-102RePrA)yY

1680x90 1680x%990

12 14 15

Y . REPI‘A,Y Y
1980x12 1980 24 364 2730)}81n o

¢ 2 -
AR AN AN ‘yl

360( 8 7% gt T )SanQSLnu
0y Hy?

7%r-+ —%—--+ Hyy + H, Loiiiinins (AL 10D)
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where H], Hz, HB’ H4 are constants of integration.

For ne-slip conditions (Neumann B.C.) at the rigid boundaries, using

equation (p ju,), gives

v
-3 0, H. =0
d¢g =0, +0 = ;AzPrzggi o, (1540-103RePrA) +137RePra
dy g=1 ’ 20160 | 360 277200 277200
_ 1 _ (9RePrA-70) _ (420-120RePrA
180 15120 151200
| _ RePraA 1 _|__ . 3
* 980" 1980 3 " 36 tTe2Sine
- a0 7 e
_ | "
" . 1 Sln2&Slna:]+ 7+ H,
The above equation reduces to
-A%PrRe" 6l | . 3 ASinZaCoso
20160 | 2395 T Taorgog RePra)Sin’a 7376
H
ot H, T 0 et (AL 20a)
P 2

From the Dirichlet Boundary Conditions, using equation (A, j9p) gives

= 0,> K = o0
y_
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20160

5940 34927200

. Ar’Re"l . 1 (1540-103RePrA) , 137RePrA _ |
20160 1440~ 13860x120 9240x210 1440
_ (9RePrA-70) _ (420-102RePrA) l _ RePra, 1
1680x90 1680x990 1980x12 1980 24
L I\ yesodn o A1 1.1 L
T i R T Al I i T R Y
. H: H
+ TEE)SinZa Sing |+ 7%‘+ 7%—
A*PriRe” | 664 1Rel’rA ASin2aSing i H
1 {- - ~2)ginto - - + 7% + ?f =0

" AZpriRe*|

1 664 |RePrA, .. 3

20160

-2(

5940 T 34527200 oM™ % T 1880

If we substract gﬁ¢20b) from (4, 204) to give,

! . 664 1 RePrA !

23760 .

2ASin%aCo

s0 HI

*Hy =0 (A,200)

- A’PriRe” 6 1REPTA, 1o: 3
20760 [%ngno 34927200 )~ 7376 * 1801800’ 1517 ¢
+ AGigs - 5 )SinzaCosa_- + EL =0
11880 ~ 2376 3
. 6A%PriRe" i 664 1 RePTA 1 6 1RePTA .3
> H = %160 l_K 7570 * 17463600 )¢ 7376 * 7807800 Sin e

1

* A S T
_ A%pr Re" (L., 864iRebra, . 1 6IRePra
= 20160 495 © 7910600 396 = 300300
+ AC*L- —-ﬂL-")Sinza Cosa
990 396
. JBI6TASTREPXA o0 g A
1 20160 1980 874053180000 660

2 2 LA 1
4 o A’Pr’Re [}_

1 <2
5376 YSin aCosu:}

ylsinta

SinzaCosa:]'
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Substitute into equation ( A.202 and solve for H2,

_ A*Pr?Re" 1 6 IRePTA, .. 3 A s
T By ® o160 |~ 3376 * Teorson) Sit @ - 335g Sin“aCosa
2 2 hr
_ A°Pr°Re J 18167457RePrA, . 3, _
70160 | 3960 * 1748106360000 o1 @ 132051“ a Cosa
4 = A’PriRre” o, 61RePrA+.18167457RePrA)S. ]
2 20160 [ 1485 ' 1801800 1748106360000 ’5t™ @
2970 $in? o Cosa)

Substitute for Hl’ H2, H3, H4 into equation (A.{9Rto obtain

Azyp Re” (. -y* L {1540~ 103RePrA)y® . I37RePrAy’ ; yb

Y, =~ %160, |\ Tiz0 T 13860 % 130 9240 x 210  T440
_ (9RPra-70)y'" _ (420-102RePra)y? _ y'2 _ RePra y'?
T680x90 T680%990 T980x13 _ 1980 ‘34

14 15 4 6 .8 _10 11 .12
_ Y ¥ ;3 A -y ¥y ¥y .y _y Yy .2
3% * 77300 18in’a Cosa _}36& 55 g e ) Sina Gosa

A’Pr?Re®! 18167457PrePra _ 1 . 3 A . 2 ]
* " 70160 | 874053180000x6 ~ 11880 2 SiM @ - 35¢p Sin“aCosaly
.
A’PriRe®l 1, Rep e (b N 18167457 Y1513
20160 | 2570 PA 8018002 * T748106360000%2

+ ggza-sinza COSGil(AJl)

Proceeding to substitute wainto equation ( 5_jquy yields the

expression for 6 by successive integration and application of the
3
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T} Dirichlet Boundary conditions. However, the complexity of equation
4
(A.21) demonstrates the compex nature of the computation. Hence,

the contributions of @ , Y which are temperature and streamfunction
a3

,E? perturbations respectively, can be neglected. The analysis henceforth
'is restricted to the solutions of the zero, first and second order
equations.

;%ﬁ Substituting wo’¢1”% into equation (§.3) yields the expression for (-

Thus,

b= (3y2-2y° )+Aﬂlggd {( 9RePrA-70)y2+(140-34RePrA)y® ~70y" RePrA(35y"

I e
= -
S
v

~14y®+4y S in0a~70A(y2=2y® +y*) Cosa |}

+Ar

(APrRe® | 4 103RePrA, 2 137RePray®_ 7y" _ (9RePrA-70)y°®
,30160 %’ 4620 'Y T 772310 6 30

133;)

- 7 8 8
- (420-102RePra)y” |y | RePrA(L- - X—- bl )}sin?a

210 2 4 30 165
3. . %(2y2-7y“+l4yﬁ—l2y7+3y8)5in2a }
. .o ) . longitugdinal
Differentiating the above equation w.r.t.y yields the/veloc1ty
g% ~ distribtuion across the channel.

‘. a.%. by (| y)+m{]—g§5{( 18RePTA-140)y+(420-102RePrA) y?-280y°

+ReprA(|40y3~84y5+23y6)}Sina-IAOA(y—3y2+2y3)COsa:]}

ﬁBrRe {Qg _ IO3RePrA) +'l37RePrAx? _ Idysl -
20160| *3 2310 *Y 770 3
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_ (9RePraA-70)y®  (140-34RePra)y®
5 0

+ AyT-RePrA(ZyT- Y ~T§J}Sin2a

+ %Q(ﬁy-28y3+ 84y5 - B4y® + 24y7) SinZQ—J

By Definition, the Longitudinal velor:Ly u 18 given by = —E.

= 6y(}—y)+'ATT§§3 {(l8Re1’rA-MO)y+(420—l02RePrA)y2'-280y3

+ RePrA(146y3-84y5+28y5)}Sina-lhOA(yr3y2+2y3)Cosa

42 APLRE- &% 103RePra,  137RePray’_ 14y’ _ (9RePra-70)y’
20160 L_ 2310 " T 770 3 . B

Al e 6 _
- 40 - -ISAR(&U—{QL + 4y’ - Rerra(2y’- X L)})Sm G

S g4y + 24y7) Sinhx] coen(A22)

A5. Determination of Wall Friction Ficlors
o

Since the fluid under consideration is Newtonian, the wall shear

dU
stress Tw, admits the representation r =p T

wall

The coefficient of friction Cf is defined by:
21

m mean

c. = —__ wall = mean velocity at cross—-section.
£ R mean



228

N -
A -
Introduce the usual normalising coordinates for vmean and Y.-fThgs,
= Vmean
Vmean U
- m v
= X
Y b
&,
M Um ‘du du |’
2y Y Iy A e
wall y wall - = = . .
-+ Cf = ; " 1 = 5 ; § - 1 8
Poln Vmean P ﬁb Vmean

o

du
dy wall Prlp? " .f? e
ﬁ}, + C; - where can be recognised as the
¥ "memb ) H Reynolds number: Re
: ; L
o _,.‘ U )vﬁean '
‘ 2 du | "
») c ‘o dy wall (A . )
. f Re v;lean -------------------------- YRR .. &‘23

Since the rigid boundaries are kept at different but constant tempe-
ratures, the Galues of Cf differ for each wall. Therefore, consider each

wall separately.

ASade Cnld wall:

Differentiate equation (A.29) w.r.t.y to obtain
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iy 3 >

@
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3

020

du Re
E% = 6(1-2y)+ Ar €80 [}lBRePrA—I40)+(840-204RePrA)y-840y2

+RePrA(420y2~420y" +168y°) }Sina-140A(1-6y+6y2) Cosa

3 "
2 APrRe 1((2 _103RePrA, 274RePrAy _ 1492

T VT AN )

- (9RePrA-70)y - (420—|g2RePrA)

y5+28y6-Re[I’rA(14y6

- 3y% + %y“)}Sinza + %5(4-84y2+420y"-504y5+l68f)Sin2%J

(A, 24)

A5.2 The Mean Velocity, Vygean

L}

1 : 1y =
Voean - {)udy since {)dy = 1.0.
Loy

substituting for u, yields

_ 1 2 A__rRe IIM _ _ \ 2
= 6{)(y vy )dy+ %80 &)[f(lBRePrA 140)y+(420-102RePrA)y

v
mean
-280y° +RePrA(140y° -84y +28y®) }sina

-140A(y=-3y*+2y° ) Cosa de



, ACAPrRe® fl{}( _ 103RePra, 137RePrAy? _ 14y®  (9RePrA-70)y°
T20160 7310 Y 770 3 5
.y 6 | 10
b _ (140-34RePrA)y 7. ¥ LY . 2 A ool
5 + 4y -RePra(2y’- &- + |5)}Sm o + T5(4y-28y
P +84y°-84yS+24y7) Sin2a:!dy
. . 1 -
Xf. y3 A!.'Re .
/ 6|5 - 3 €50 {(9RePrA—70)y +(140~34ReprA)y -70y" +RePrA(35y

y? y*
= 14y®+4y7)}8ina - 140A(5 - ¥y o+ ) Coso

(8]
%ﬁ . ar
LAT?APrRe? {( - J03RePrA, o 137RePrAy®  7y* _ (9RePra-70)y®
~ 20160 |.Y3  T4s20 Y 2310 6 30
h _ (140-34RePra)y?  y°® ‘ y® _ yl0 oyl
_‘?‘ - <70 + 5 - REPI‘A(T - 30 + ’1—6'—' }Sl.ﬂ o+ -—(2y "7)7

i

+ 14y® - 1297 +'3ya)Sin2a:} ‘
o]

Ar‘le .
= | + 1880 {9RePrA =70 + 140-34RePrA-70+RePrA(35-14+4) }Sina

_-MOA(l2 -1+ —;—)Cosa il

Ar APrRe3[' 103RePrA _ 137RePrA _ 7 _ (9RePrA-70)_ (140-34RePrA)

20160 L_ 4620 2310 6 30 70

+ -;- - ReP A(— - .1136 " )}S:.n o+ —-(2 7+14=-12+3 )Sm20]

=1 +0
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The mean temperature merely reduces to

Bm = {;uﬁdy which can be approximated by the expression

N
ijUJBJAy.

At the cold- wall, y=0.

N

Substituting this into (A.24), gives

du

Re-
s = 6 +Ar]_=2_ - .
35|y 6 + r{gseo{(ISRePrA 140) Sina IaOACOSa{J

APrRe®, 2 103RePrA, .. A . ;
o FATR | IRE el 2 A |
v +_. 20160{(3 5310 ) SinTa + 3 Sin2a}

LK
S

Hence the cold wall friction factor Cfcoldis given by

= %E{6+h{}2§6{(l8RePrArl40)Sina-l&OACosa}

Ceold

3
wat%_.,ggg' (& - 1038eBrhy oo sy -qﬂ} e Ch)

A5.3. Hot wall

At the hot wall, y = 1. Substituting this into equation .

(A, 24) gives,
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du = ~6+Ar —r=~|{ 18RePrA=140+840-204RePrA~840+420RePrA
dy 1680 )
y=1
. - +168RePrA}Sin o |}
2 ~
2 APrRe’| 2 103RePrA _ 274RePrA _ ., _ _
+m-{20160 £§ 5310 =5 14-9RePrA+70-84
I r
5 . 02§ePrA . 28—35R§PrA]Sin2a *.l% (4=84+420
«504+168)Sin2a |}

A Simplify to obtain,

du

E? 6+AT 1680 (I40+18RePrA)Slna 140ACosa}
L:"-;i B3
» .

p a2 APrRe? g 103RePra A
+ A S0TE0 {(3 5310 YSiny + 3 SinZa}

%n Hence the hot wall friction factor is given by

Cf = { -6 {_680{(]40+l8RePrA)Slna+I40ACosa£]
0 . hot
rd
L

. AR ELPrRe {( IOgI;TgrA)S 204 3 SanQﬁ N W)

NOTE: The absolute values of the friction factors L%cold and CfHot are of

physicai significance. They are measures of wall velocity gradients
(vorticities at the walls) for a given set of parameters,

g
TR L

vy = 0, then these are the conditions for separated
dy y=0 dy y=1
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flows at the cold and hot walig respectively. When this occurs, the
Navier stokes equations no longer hold.
However since spearation is most likely to occur earlier at the cold wall,

the requirement for separation thire is considered in the next section.

AS5.4 Criterion for separation at the cold watl

k3

From the foregoing analysis it appears that separation may occur

at the cold rigid boundary. For separation to occur, the ndrmal velocity

4

gradient must vanish at such boundary. That is,
%E. = 0 .
Y y:o b
. C 2 Ar.
e = e e ‘ PraA- [ 11 - :
fcold ol 6+ 1680{(]8Re].1A 140)Sinn~140ACosa) }
o
2 APrRe® | 2 103RePrA AL
{20160 (5- ——3376*-)51n eyt 3 Sin2¢} |
If Cpooqq = 0» then,
Aere 103PrReA, .. | A, Re - ., .
Al‘ —--._....._._..._._} ot =4 ) -1 PrA-
1_20]60{ 5310 YSin‘a+ FoinZet |+ A T {(18RePrA-140)Sing
- B B

~140ACos0}} + 6 = O ..(A.2%a)

W R s gl ks v e

The above equation is clearly a quadvacic in Ar, the Archimedes number.

The equatiom can be reduced to the fovm,
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2
a Ar + 1 Ar-

where a =

By completing the square,

APrRoalkz

20160

3

[03RePrA

T T30

YSin%y + % Sin2a

.

_Re PrA=-140Y8iny —
IGBOJ(lBRL}rA 140)8inw 140ACos0 :[

from the following formuela

Ar =

The values

LIRS s
Ta
of Ar

[

..... L R R Y
1

the roots of the quadratic can be obtained

veeee o (A,26D)

thus . obtained are the critical Archimedes numbers
f

. N .
at which separation ensyes.

not hold fur tpe

horizontal case, the condition for

substituting g =

Ar

For non~z¢yg e
From numerical solol fon,

the vertical pusition.

Ar

C

C

72

A

- b -

By inspection the above relation does
+

horizontal position for which o=

. -1
suparation Ls de
]

0" ditectly into equalion (A.262)

4 - kL
Livations, 0

e et

b* - 4ae

0°. For the
termined by

to give

ST T equation (A,26b) is valid.

.

Lid

.................

Lor Ae >0.5, sepuration is noticed near

Thus the acceptable root of equation (A,26b) is
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A5,5 Determination of Nusselr numbers based on ‘the normdl Temp . Grddlent

——— ——— . s e . N ot ———— —

Substitute 00, 0 and 82 into the equation (4.4) to obtain the
1

expression for O

Thus,
R 3y
8 = y- elIA(y 2y° +y*)
+ AT APrRe? - 3 u; ]
{20I60 {28y+(36RePrA 280)y" +(420-102RePrA)y*-168y
+RePrA(84y5—24y7+6yB)}Sinq +28A(y-10y3+15y“-6y5)Cosa
ar? A2PriRe" €. (1540-103RePrA)y® | |37RePray" _ 7y°
20160 0 13860 9240 30
_ (9RePra-70)y” _ (420- |02RePrA)y®, y°
210 1680 18
',v‘\
_ RLer

(55y°-6y' 1 +y! *y}5in?y *350 ( ~3y+20y°®

19

- 42y°+60y7-45y%+10y®)Sin20 |} vuvrnnn... (A.27)

Equation (A,27) represents the temperature distribtuion across the

channel. Differentiate (A.27) Ww.r.t.y.

O _
pree | RePrAa{i-6y° + 4y*)
-
+ {5 Re” | 28+ (108RePrA-840) y2+(1680~408RePTA) y° ~840y"

20160 |

+RePra(420y“~168y°+48y7) YSina + 28A(1-30y>

+60y” -30y*) Cosa| )
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+Ar{

s A?PriRre" (- | +(1540—103Re?rA)y2 I137RePrAy®  7y" _ (9RePrA-70)y°®

70160 G0 7670 T30 T 6 “T30
_ (420-102RePra)y” y® _ RePraA
710 2 1980

* 3‘23“3+60y2—210y"+420y°-360y7+9oy8) Sin?aJ} (A.28)

At y = 1, the value of a9 is given by

dy
(_c}?_ - - ReirA(] ~6+4)
Yiy=1
APrRe?
+Ad§6735—- {28+ 08RePra-840+1680-408RePrA-840+RePrA(420

—|68+48)}Sina+28A(l~30+60-30)Cosa:]}

> " AR {A prire" -.I__ + (1540*!03RePrA)+l37RePrA _7

20160 60 4620 2310 6
- _ (9RePra-70) (420-I02RePrA)+ 1
" 30 210 2

_ Rebra

- . 2 A -
1980 (495-66+12) }Sin’a + 360( 3+60-210

+420-360+90)Sin2a A' }

On simplication,

bl
dfy _ ., RePra AI rRe’ {2881na+28ACosa}} +AIZIE‘\ PriRe!

dy = Iv=

(- ~
y=1 20160 20160 60

Relra A .
T ~2)Sinlq - 150 ban(x}‘l

e (495y 8-66v10 +12y2 ) }Sid o
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Since pArd Ezz substitution in the above equation yields,

i.e. - -
d0 = RePrA  Gr |APrRe?
dy gel b T Y et 20160 0~ 28 (Sina+ACosa) }
2
Cr _|a?prire*,, | , RePra A . .
- Cr APrPRe 1 A o
[QOIGO {( 365 —===)Sin%q + 76 Sin2a} (A.29)

Although the normal temperature gradient at the hot wall is of
primary importance, it is also of interest to evaluate the normal
temperature gradient at the cold wall.

At the cold wall, y = 0. Substituting this into equation {A.28)

yields
db RePrA APrRe?
“é‘;l = 5 : 20|eo {285ina+28acosa)
[y=
- _ N
2(A%PriRet oz A,
. +Ar 20!60 { g0 Sin‘a- 555 Sin2a)
Again
49, = RePrA _ Gr (|APrRe?
& y=0— I+ == ReZ|5GTEe (28 (Sino+ACosa) )

+ S [A%Pr2Re! (25in%a + ASinZa)y| (o
20160 720 )AL

The aim of this analysis is to determine the heat transfer
coefficient based on the characicristic linear dimension and the temp-
erature difference between the hot and cold walls. Since the flow is

laminar,it can be.samed that near the rigid boundaries, where the fluid
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is substantially slowed down, the mode of heat transfer is essentially
by conduction. Also, assume that this heat transfer is predominant in
the direction of higher temperature gradient, that is in the direction
normal to the rigid boundaries.

In general, if Q = Heat transfer per unit area

h

Heat transfer coefficient per unit area
per unit temperature difference, .

The "= W(T, =T ) vuun... et iaeteetaaaeeas .- :
hen Q | h(rh Tc) (A.3L)

If kf is the Thermal Conductivity of the fluid, then by Fourier's

Law of heat conduction in one dimension,

. 9T i .
Q = - {+k,. ) = + k_ oT since at the hot wall aT __ 3T
fan y=b £faY Y=b : an E]
"7 and n is the outward
w o
normal to the wall

"AT
i.e. Q = + kf FE| e (ALY

O y=b
Equating (4.31) and (A.32), gives,

T
h(T,~T ) = + k, ~—
h ¢ fovy v=h
@)
Again, introduce the mormalisation variables, i.e. 6 = (T_:T—);
h "¢
) : (r, 1
Y - . LI — _jl_‘-_.L_ EI_Q
y =% to obtaln h(lh TC) = + kf 5 ayly=!
k. .
-> h = + ..Ei.-_ _%_9
Yiy=1
. _E.L_). = +g_?_
f Y y=1
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Ab

But %E Q Nu, the Nusselt Number.
£

. . ; J
Since § is y-dependent only,then%§-= dé
Yy

dg

' -
4 * NuH = 4 a;

y=1
Equation (A,33) represents the hot wall Nusselr Number.

. . d . . .
Substituting Eg from equation (A.2Y9), equation (A.33) becomes,

y=1
. RePrA Gr APrRe?
N = 1 4
Uy 5 Re2 20I60 {28(Sina+ACosq) }
z T Zy b N
r [APr°Re’. 1 RePrA . 2 A .
. —_— AL 34
JRe* 770160~ (Cgg * T3es) Sin'e + 335 sza}.’ (-39

Similarly, for the cold wall Nu, = ld

y=0
| RePrA Gr | APrRe? ]
b = - ——
Nuc ) 7 * 20T60~ {28(51na+ACusa)}
_ r |A*PrPReY ((28incq + A Sin2a
— 20]60 { 36 A N (A.33)

Detepgjnation of the mean Nusselt Number

It is customary in most heat transfer problems to specify the

convection conductance h in terms of the difference between the Bulk

Ltemperature and the wall temperature

1
GB -/ uedy‘
Ymean
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The mean hot wall and cold wall Nusselt numbers are therafore

respectively,
Nu CYRS =LY (A.36)
BH (6. - 8))
hw B
(%l )
Nu - —y=0 (A.37)
BC .
B - 9,)
cw B

Validity of Solution

For the perturbation solution to be valid, the dimensionless
1ongitudinaf Eemperature gradient A must be independent of the
power series expansion parameter, Ar and the angle of inclination, o

to the horizontal. Clearly, the basic temperature distribution,

RePra . , .
8, = y(r- 5 Fossatisfies the above requirements, For realistic

temperature distribution across the channel, the values of 90 must
always be positive. Thus, 0<RePrA<2. For small rates of heating.
considered, A could be quite smali for fully developed flows.
Consequently, the range of modified Peclet numbers used is given
by |

0.088 g RePrA g 0,350,
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A8 Correlations by three-dimensional power laws

The priﬁary objective of this analysis is to investigate the

i' : o _ ex1sfence, 1f any, of’ optlmum angles of 1n011ﬁdt10n to the nor125ﬁbal
for which the heat transfer and 1on-01mhnblona1 bulk t;mpcrature are
max1muﬁ. The 1nvest1gatlon has yielded resulis whlch predict the -

_ehlsgence ‘of such optimum inclinations. It 15 therefore proposed that

S0

. these ‘maximum heat transfer parameters and their cozvcsp0ﬁd1ng op timum

J T '-1nc11natlons (1n radlans) be properly corralated by a set of three -
7 : ’ ’
] dlmen51c1d1 pow b Laws.
i o . o
N Thus for the mean hot,wéll Nusselt Mumber, . - - o
S . . - oy . . - . : ’ ’ 3
L - Y X . . - : .
- - 1 LY i o o
N . NUBH_C(Ar) (ao ) oo---c--rl---oca:---occc‘--.u'(Al38) . -
o - UPT L
. : 4/ A. : - N ' ' . ) . . -
k_ ) - and for thé dimemsionless bulk temwperature, ° e o - ",Q'E
”.-“‘\‘\._‘___‘___ -, ’ e A= C (Ar)n3 (Cl )nr{".....—'.'.'F.-.-.e'.-‘;'c._."(A ')J)
S L X B-:. | “Oprp : : o
e - \\‘ . o . . : :
.f\‘ﬂ whefe‘ce Cl are proportionality cdnstants and nl, ﬁ?, 53, n‘,\t are
exponenus to be determlned )
N These equatlons will be considered sep rately, starting with (4.39) -

T - _ lry ny
. - a .
A .eB ¢1 (Ar) ( _QPT)

The table below depicts extracts of appropriate values of BB and

O. ’ -l 7
aOPT from figure5,12
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TABLE A, 1. MAXIHUM BULK TEMPERATURLES

Ar 0, Yopr
Degrees Radians
0.0313 0.455 30.00 .%
0.080 0.477 37.50 %ﬂ
0.125 0.486 45.00 -g
0.222 0.499 52,50 AU
24

Equation (A.3Y) can be linearised by takiug the logarithm to
base 10 of each side. Thus,
¥ = N +
10510 3] lOgIO LI n

10g10Ar +u, log

B 3 4 10 Ctop'r

Writing lOgLONGB as z, 10@,10(2l as C s lugroAr as x and loglo aOPT as vy,
then, 2 = a N, %4 DY e e s (ALGD)

Equation (A.40) represents the equation of a surface defined by
points in the preceeding table. Since there are three constants to

be evaluated, three equations are adequate:

(1) For Ar = 0.0313%
z = 1og|0 0.455 = - 0,342
X = loglo 0.0313 = =~ 1.504
y = log,o ¢ = - 0.280

Hence the corresponding equation is

0.342 = 1.504 n, + 0.280n, - C ............. fh e (A4
3 4 o}



p: (ii) For Ar = 0.125

z = 1og10 0.486 = - 0.313
X = log10 0.125 = - 0.903
5 y = 1og|014'i = - 0.104

Hence the corresponding equation is

0.313 = 0.903n3 + O.I()im[+ - Co ................... (A42)
£
) {(iii) For Ar = 0.222
z = 10g10 0.499 = - 0.302
x = log, g 0.222 = - 0.654
& y = log, %%— = - 0.037
Hence the corresﬁonding equation 1is
0.302 = 0.654n, + 0.037n, = C ... iireennaniarnnns eee (ALG3)
3 4 0
£ The solution ®o" these simultaneous equations yield
n, = - 0.00286 = - 0.003
‘ n, = + 0.175
g c,6 = ~0.2974, > C; = 0.504

Hence the three-dimensional power Law for BB and & o is

PT
-0.003 0.175 ‘
= 0.504 (AT) (o )T e 4h
6, = 0.504 (Ar) CA | (A.48)
0.03i3 < Ar x0.222

il rkis
- < X —n

1f we cross check for Ar = 0.080, the above correlation yields

UB = 0.473.

The error involved is 0.477-0.473 = 0.004. This is an error of about

0.8%7. The correlation therefore appears to be satisfactory.
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i
B. The following power Law is for the mean hot-wall Nusselt number.
Again, the following table depicts extracts from figure 5.13.
X
TABLE A.Z2. MAXIMUM NUSSELT NUMBERS AT HOT WALL
o
Op
Ar Nupy
{ Degrees | Radians’
0.0313 2.1650 30°.00° z
- 0.080 2.1275 37.50° 20
¥ 24
0.125 2.1225 45.0 7
o 3w
0.222 2,1375 54.0 —
; - 10
Equation (A.38.can be linearised as before to yield
z, = C0 + Al X, + Az Y s e (A.45)
ﬁ: ;

where Co = loglot; z, = 10[;]O NUBH;_XI = 1og]0Ar; y, = loglo GOPT

Since GOPT is the same as before, Y, =Y in equations (A,41), (A.42)

and ('A.42. Also X, = x in these equations.
(1) For Ar = 0.0313
z, = IOg]O NuBH = {.3360

The corresponding cquation is

0.3360 = CL = 1504 A - 0.280 Ay ceiiiniiiiiiiils ( A.4E)
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g.
(ii) For Ar = 0.125
Z] = log]O NUBH = 0.3270
8
> 0.3270 = C7 - 0.903x, ~ 0.104), (A.47)
(iii) For Ar ='0.222
{_.
21 = 1og]0 Nup, = 0.3290
> 0.3290 = C* - 0.654\.~ 0.124%  (A.48)
I%‘ 0 1 2
Solving the above equations simultaneously gives
A, = 0.005
[
| A, = 0.038
C; = 0.3275, » C = 2.120.

Hende the three—-dimensional power Law is

-

(¢.005 )—0.038

NuBH = 2,120 (Ar) (GOPT' (A.49)
;'.l .
provided that, 0.0313 ¢ Ar 5 0.222 J50§Res400
) where { }
m In
7§ %prS 5 0 gGrg5000

Cross~checking for Ar = 0,083 indicates that equation (A,47)

is satisfactory,
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APPENDIX B

SampLE COMPUTATIONS FOR ANALYSIS OF EXPERIMENTAL RESULTS

B Input Mean Velocity, U

m

If the recorded pressure drop at channel inlet is Ap(N/m?),
¥®, the angle of inclination of the mancmeter, it can be shown

that for air, the corresponding induced mean velocity is given by
J

U, = 1.3/APSiny (m/s)
From the calibration curves in fig. 7.1, for a setting of the

fan variable transformer at 5.0 w/s, the equivalent mean input

velocity for the second power input run is estimated to be 0.189 m/s.
>

B2 Reynolds number, Re

U = 0.8 m/s
n
b = 0.12 m
v o= 1.703 x 107° m2/s
Ub.
'. Re = l
v
0J89{§x 0.12 m
= 5 m

1,703 x 10 7 ~—
s

Simplication yields

Re = 331,76
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Modified Grashof number, Gr

The estimated longitudinal hot wall temperature gradient A%

is given by

-

i
1 .
A* = _— ¢ where M = number of stations
M 1=1i Ax
along channel.
AX = Distance between two

. consecutive statiouns.
From table 6,12 , substituting for ‘1‘h in the above equation yields

£

1.230%/,,.

n

B = 3.3090 x 107379
g = 9.8] m/s2
g
But Grm = Eﬁ_;__
V2

Substituting the above values in the equation yields

Gr_ = 28, 547.90
m

Modified Archimedes number, Ar '

The parameter which represents the combined convective phenomena

is the Archimedes number given by,

Grm
Ar T e———
" R&

28547.90
(1331.76)2

]

L. Ax 0.0161
m
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BS Evaluation of Local ‘and Mean Nusselt numbers

The local Nusselt number which is based on ‘the normal temperatﬁre
gradient at the wall is obtained from the following expression.

Nui'N+] = (78, -89,  +80 I)/

i,N+1 i,N i,N~ (GAyGi ®.1)

LN+1)

Consider the case of o = 0°, From table 6,137, for station 5,

the experimental temperatures are:

o
TS,N+] 54.0°C
)
TS,N = 33.0°C
_ 0
Tg gy = 31.5%
Ay = 0.2.

T o= 29.2%

«w

The non-dimensional equivalent temperatures are

. (

4 . s~ T
5,541 RePr A%b
. -1
5,N RePr A%
Ty oy = 1)
o 5,1 7 Lo

5,N-1 ° RePr A*b

Substituting these into equation (B1) yields

N [7T5;N+]

f 6ay (T

- 8T ]

5,8 " Ts -

s, -1 ]
5,8+1 e
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) Substituting for Ay, TS,N+!’ TS,N’ TS,N—I and T and simplifying
yields
NUS,N+1 4,889

.

The average hot wall Nusselt number is that obtainéd for the three

experimental stations.

. Bb6 Local and Mean Stanton numbers
! Nu
The local Stanton number is obrained from =—— .
RePr
Thus for NUS,N+] . o= 4,889
& Re = 1331,76
Pr = 0.704
e _ 4,889
5,N+1 ~ T337.78x0. 704
5 LA = 0.521x107°

. The average Stanton number is that obtained for the three

experimental stations.

B? Local and Mean Friction Factors

The local friction factor is given by

5

. T e (u, -4 u, )/

i,N+1 Reuz. i,N-1 i,N"" 28y
mi

£

Since we have dimensional velocities in the experimental results,
the above expression will be transformed to contain dimensional

velocities,
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1. N
u. =__1..'.L—
1,N U
m
U,
. u i,N-]
4 i,N=1 U
m
" Substitution into the expression for fi Né1 gives
2
Um [:
B, s By -4u.]
i,N+] Re Uz.Ay i,N-1 i,N
mi
5
For station 5 from table §,13
Um :
£, = U - 4u '
5,N+1 ]:SN-I SN]
-y » . ] »
> R .Be Uid,Ay

N
E™

where Um = 0,189 m/y

Umﬁ = 0.198 mfs

Us N1 =0.405 m/s

US,N = 0.210 w/s

Re = 1331.75

Substitution of these velocities yields .fS Nl C 0.864, x 10_2
»

The mean value is computed from the those of the three stations.
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COMBINED FREE AND FORCED LAMINAR CONVECTION IN
INCLINED RECTANCULAR CHANNELS HEATED FROM BELOW
AND COOLED FROM ABOVE

*
V.A. AKINSETE and F.L. BELLO-OCHENDE'

DEPARTHMENT OF MECHANICAL ENGINEERING, LAGOS UNIVERSITY,
LAGOS, NICERIA.

Abstract - Steady state numerical results for the solutio& to the
non-linear thermal pro?lem of combined free and forced laminar convection
in inclined rectangular channels with comstant but unequal surface
temperatures are presented for an incompressible, viacous fluid whose
Prandtl number, Pr = 0.73. Fluid properties are assumed constant, excep:
for density variationa with temperature. Maximum values exist for the

mean hotwall friction factor, Nusselt and Stanton numbers when the inclina-

tionlzé‘the horizontal lies between 30° and 60° for a given Archimedes

: number.:ﬁg. Also, for any given inclinstion, a unique solution exists

vhen Ar = (.50,

NOMENCLATURE

Ar, Archimedes number Gr/Re2

b, ™ height of Rectangular channel

Cp, specific heat at constaat pressure
. 2
£, friction factor, Zg'ffmum
fmh wean friction factor at hot wall
£ gravitational acceleration *
¢r, GCrashof number, g8 ('l'h - Tc) b3lu2

*  Professct, Depattment of Mechanical Engincering, Lagos University,
+  Graduste Student, Department of Mechanical Engineering Lagos

University.
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Ax, Ay,

local heat tranafer coefficient st hot wall

thermal conductivity of fluid

nunbar of diviatons in X and Y - directions respectively.
local hotwall Nusselt number

means hotwall Nusselt number

Paclét number, RePr

Prandtl number, A/V -
local dimenaionaliprqssure

local non-dimensignal pressure p‘/iq‘u,rz,.

Reynolds number, Umb/v

h
.

local hotwall Stanton oumber '/pleqn

mean hotwall Stanton oumber

local dimensional temperatu;e

dinensionai velocity components in X and Y - dlrectio;s resp.
:;;-dimenaional velocity components, (U,V)/.Um

Reglangular cartesian coordinate axes

Non-dimensional distances, (X,Y)/b

dinengional channel length
non-dimensional channel length

dimensionless grid sizes in x -~ and y directions respectively,

(x/X, y/N)

Greek Symbols

angle of {nclinetion to the horizontal
L ]
volumetric coefficlent of expansion with temperature
T - Te
dimensionless temperature difference, —————
(T. - T)
h c
Dummy variable
iteration ¢convergence criterion
thermal diffusivity of fluid

Coefticient of dynamic viacoaity

Coefticient of Kinematic viscosity %}-

e

—
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T, ’
I,‘.‘
N
b -
. 0, " local density of fluid
= ; . f . mean fluild dengity
fl . ! . m .
| ' T, shear stross
[ i
v, dipensionless stream function
. !
. w, dimensionless vorticity, - Vznp
& . .
‘ 1 Vz, dimensionless Laplacian operator in rectangular
. . . .
~ 1 \ coordinpgtes, (ﬁ + ﬁ) ' "
cod ' ‘ nd oy .
.. . ‘n - ‘
% . v, Laplacian of Laplacian in rectangular coordinates,
-
1 - axz 3y2 x2 3y2
{
* . Bubsecripts: '
s P S
. ~ ! - & cold wall value
S ' h, kot wall value -
Y J -
* . ' "
R L. mh, mean value at bot wall 3
R;, ' . A * ' v, wall vaelue . !
- | . + 4 - -
. . _:\ LN 1.3, locetion of e grid point inm x - and y - directlons resp.
- .i . ) '
’ w i 8Super Script. '
s { B )
E . ' k, iterstion counter
o SRR ~ |
.- » i -
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v ; 1. INTRODUCTION

When in non-isothermal flow demstty variations which arime as

a result of tesperature gradients are sufficiently large to produce

bouysnt forces ip & gravitatiousl ficld, the buoyant force terms must

a———

be retained in the governing equatiocns of Navier-Stokes. The relative

s magnitudes of the forced and free convectioo effects nfe obtained by

\ nornalising the partial differential equations which describe the flow

-

/

and by examining the relative magnitudes of 'such parameters as the

b
.

Reynolds, Grashof and Prandtl cucbers. Of particular significance in

4

\ ) the case of combined free and forced laminar convection in rectangular
channels, is the orientation of the gravitational field. The purpose

of this paper 18 therefore to present the heat and flow results for

—_—— e e

[; i .- Edibiqed free and forced leminar convection in inclined rectangular

cﬁangals with constant but unequnl.-nr!nce temperatures for Pr= 0.73.

B -y v il

- The combined effect uf the mutually interacting flelds can be

X
)

repreaentéd by an emergent parameter, giz‘ in the non-dimensional form

-,

y . of the vorticity transport equation. The existerzcze of optimum inclina-

- _—’. -
0

tions, i1f any, at which heat transfer rate is maximum is of considerable
Pl " . ° .

importance in som¢ areas of application. For example, in flat~plate

‘Q_.”ﬂ:—.-‘
-

- Bolar collectors, convection must necessarily occur in an oriented
gravitational field.
Numerical studies of fully developed conbined free and forced laminar

convectior in inclined rectangular chaanels under the' thermal boundary

S - P N

conditions of axially uniform wall best-flux has been reported by Ou et

all [1] .

[ SO

'
13
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bk N

el The improved formulation used by these authors redefined the Reynolds

' end Rayleigh pumbers in terms of the angle of inclination to the

f‘- * . - -
' . . . horizootal. Because of the introdution of these modified non-dlmcna1onal

L

parameters, their formulation failed to recover the horx:onlal case a8 &

! limiting orientation. Cheng and Hwang [2] presented numerical :esulta for

fully developed comblned free and forced laninar convection in horizontal

' I rectangular channels under the thermal boundary condxtxons of axiafly

’

uni form wall heat-flux and prexpherally uni form wall temperature, while

Cheng snd Hong [51 reported a numerical study uping & combination of

the line jterative methods to determine free

SA

boundary verticity and

\ _
: coavection effects on fully developed laminar upward flow in inclined tubes

S . Loeve i ehed .
with the angle of inclination appearing cxp1c1:1y in their formulation.

Y , _ .
;. . Igbal and Stach;eucz Eﬂ obtained theoretical cesults of variable density
: ' T * w

- effects fn fully developed combined free and forced laminar convection in

\  ipclimed tubes. Al8O 1qbal and Stachiewcs EJ reported the atudy of the

l gsme phenomenon in clined tubes and showed that for a given set of non<

- ' . .dimensional parameters, their exists a particular tube inclination that

- ' -\ .
) . . : produces & max imum weat transfer rate. The work of Ozoe et al [5],though

) on pure natural convection, showed that a critical angle exists at which

, : ’ ' . . .
E> . . the heat cransfer is & maximum.

.f ) E- ' . N .
. : - in all the foregolng references the formulations, except the first,

T e : . have the orientation of the grnvitatianal field appearing explicity.

v - ' Houever, they all have the same thermal boundsary conditions ond their

¢ : nnnlyses are restricted to only the fully developed gegimese In the preser

. ‘ ‘ | .
wotk, 8 steady - etate analysis 18 cacried out aumerically for the two~

dipensional problem.
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o ; ,
4 t
* : No general assumptions of fully developed régimes are made

except that at remote distances from the channel entrance, the

T

hydrodynamic and thermal fields are sssumed not to vary with distance.
) g' In solving the problem, the pressure ‘radlent terms are eliminated
| by cross-differentiation of the momentum equations. The combined
s CER moxentum and energy equations are them normalimed tol%oving Mori and
Uchida [6]. - The voriticlty transport equation is &erived froa the

v 1 combined momentun equation with the amgle of inclination appearing

explicity in the formulation. The vorticity transport and energy

et
0

equations are discretized folloving Dennis [7]. Tuese equations are

solved simultaneously using the boundary vorticity method and the

v five-point Gauss-seidel iterative procedure for the prescribed

-
L)

Lt - " jnhemogeneous thermal boundary conditions. For computational
) . convenience, the inlet conditions are those of unifom velocity and

l : N -t
temporature equal to that of the cooled surface.

A 1; 3. MATHEMATICAL FORMULATION OF THE PROBLEM

In formulating the problem, it im assumed, a priori, that the -

‘-~ channel mspect ratio is large and its width is several times the

. Id .
—‘ . - magnitude of 1ts height so that the lateral end etfects are
gegligible when a longitudinel sectiam, far-removed from the vertical
! . : - bounding sides, ls takem. For moderate temperature gradients, the

j- problem reduces to a two-dimensional one. The changel cen therofore

be regarded ms an open doaain bounded by two parsllel surfaces kKept ot

gonatant but unequal temperatures.

.
\
- I s e S e i Al -
,
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When the tempersture difference botween the surface i8 upprccihblc.
buoyant forces are generated and the resulting sacéndary flow L8 8uper-
teposcd on the pure torced convectian. The mutual interation of the
hydrodynamic and thermal fielde in an oriented grnvitntlonnl field ig
investigated by mgking the following simplifying assumptions to reduce
the mathematical complexity of the governing equations.

(a) The thermoppys{cal properties are congtant, except tor

the denaity variations with temperaturs
{Boussinesq approximatiou).

{b) The flow is upward, steady, laminar and 1ncompressible.

{c) Viscous dissipation is negligible.

{d) Thefe {s no internal heat geheration.

‘w§p addition, the final copbined momentum equations, 18 recast
1n-;erms ‘3¢ the vorticity functlon, W, in order to avoid the use ot
the bikermonic equation, 1o Y and to employ the recently developed
Boundary Vorticity Method.

+ The governing equations in rectangular cartesian coordinate

lyaiem are:

Qqntlnuity:
®, L e e e e 1)
[) 3 3y

Momentum (or Navier - atokes) Egquation i X~ and Y- diroctions

reapectively:
yau vou _ L LN UVzu . gfMT _ Te) Sn a .. t2)
=YY W o
. n
2 T - Te) Cos © )
vav vav _ 1. 1 WY eBT ¢} Cos 00 .. 3
O
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Energy Equation:

wr . vt o= W e (4)
X 3y

Equation‘of State (Boussineq approximation)}:
b = 9, [1-B(r-T)] .. o . o (5)
Boundary Conditions:
{a) Thermal Boundary Conditions:-
(i) A; entrance, T = Tc, for X = 0, 0<Y<d

(ii) At exit, T ’
* ext 5% =0 for X=X 0.<Y<b‘

(iii) At the cold wall, T = Tc for ¥ » 0 and &ll X

(iv) At the Hot wall, T = Th for Y= b and all X
(b) Hydrodynamic Boundary Conditions:-
_w {i) At entrance, U ™ Un.(Uniform flow) for

! X=0and 0¥<D

(ix)’ At exit, %% - %% = ( {fully developed

flow) for X = <Y <b
r XL‘
(iii) At the Rigid boundaries, U = V = 0
(No-Slip Condition) for all X.

The pressure gradient terms in the momentup equations can be elioinated

by cross - differentation of equations (2) and (3) to yield the following
equations:

Vv 3 au - _a_! +* u3 au - .3_!. Y 31 %‘l - .a.‘.’.-l e 3_1- -.g. - .‘a_v.]
™ 5y X ;) |3y ax MW XK VNI X

+ gB [%% sinc + %% cosa.} L. (8
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The above equation and the energy equation con be reduced to

their non-dimensional forms using the tollowlng fransformation

coordinates,
v = U.u )
Y = Uv
Y = by
I =  bhx

8 = T - T¢
' Th - T¢

W = 3v - du =-9
Ix 3y

where u, v and ¥ are connected by the relations

u = 3y
By i
'«I"‘ B - g.?.
- . dx

. The non-dimeasional forms of the governing equations are:
{a) Continuity:

du du :
o + E = . .. ' . .. .o N

'(b} Yorticity Transport:

udw viw 1 Yy Gr (30 L) }
- Tom = = = - T g 2= 8
3z 3y Re. fol Sy sina + 3= cosa (8)
{c) Energy Transport:
udd vag =1 Voo . L. L. L. (9)

FIE dy  RePr
The normallzcd forma of tdw ‘houndary conditions are
A. Thernttal boundary conditons

0 = 0 a A0 = 0; O = 1.0

x=0 y=0 dx ye1
X = X

0<y<1.0 [|o<xsxy, igey<1 0<x <X,
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‘ 10
.
o
R B. Hydrodynamic bouandary conditions:
(1) u = 4 1.0 (uniform flow at Entrance)
x= 0 -
i-rd--
& 0<y< + 1.0 .
i
' . v = 0
I
x=0
i, . 0<y< + 1.0
j .
~ . ), = vl = ¥ = o
t s
* . y=0 y=0=
z
® Q<x<x < <x<
<x < 0<x< x, 0<x x,
, \
) But [ ) 0 {(No - alip condition)
.{_ y = o
- i
- F 1
. <
A - - e et
. . (111) u| = v = 0
- y=+1.0 y=+ 1.0
1
' x
G oo 0<x< T 0ox <Xy
- ) '. -
. i R ¥[ = + 1.0
v y =+ 1.0
l - N
t} ¢ ; ‘ 0<x < x,
~ ’ . But W # 0 (No -~ slip condition)
" i y = 4+ 1.0
EY - - -
r 7 ¢ K
N P
. 1 L]
% (1) %% = %% = 0 {Condition for fully
' x=¢L x = xL developed hydrodynamic
_u regime)
' i O<yes1 . 0jCy + 1.0
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3. ANALYSIS OF NUMERICAL METHOD

Considering the fact that in some regions of the flow field the
pecondary effects may aid or oppose the forced flow, the pethod suggested
by Spalding and Creenspan Bﬂ may be used in discretizing the non-linear
terms in the governidg equations for constant coefficients. As usual, the
non-convective components in the equations are discretized using the central-
difference approximn:ion.‘ The finite-difference analogs of the governing

equations are:

(a) Energy transport Equation:
+ +
T (5,501 ®5) o (0501, %30, )/(m‘

* (.ui,j ei-l,j) /Ax * i, ("zei,j-i Alei,jﬂ)‘ /Ay

_a
9. . .. (1
,) * (10)
u. .
. i,j + {AiA v. . 2 (l 1 )
&x ————%;—1*3 Y Rerr \(Ex)? ¥ (By¥?
vhere i = 2,3, . . . M '
o N . and A =4 1.0
j=2.3, . . .. N . '- 0.0 vi.j<0
2 .

Al = 0.0

Vv, -
A= 1.0 1,320
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Vorticity Transport Equatioa:

- r - ‘\ -
Re ?46’1,34 91,3} * ‘3%1,3 o

._(ei.j -9 ) Cosa

1-101 AI

1,3+

e
+iu, W lp -
\1.3 1 1.1)/& + 1'3(“:“’14-1 “4“’1,-.1+1)/Av

_ \ o
%— (“1«1.1 ¥ “1-1.3}‘ /mn’ +(“’ :
v

Ny

“1.1-1\ /(lisv)2 i
/

Sinn

A3

Ad

T

Ay

A
4

-

analog of the Poisson equation, uw= —Vzu_

-~

{c) Stream function Equation:

#

+1.0

+1.0

0.0

WRILI A A “’1.:—1)/¢Ly)2 :

} ¥1,3<0
} Yi,5%0

The stream function 18 obtoained from the finite - difference

+
(“’m.s "‘i»l.:)llmx)”
\

whore + = 2,3, . . . N

§= 3,4, ..

2
)

(11)

(12
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The near - boundary valucs are spproximated ns follows:

gt W W DM LY
Vin T Y e . L. . )
where 1 = 2,3, .

The velocity coﬁponents are given by :

w

ui.J = ‘¢1,j:1 ¢1'j_1)/2Ay F U & 1)

Vig =t Wy Jhg p /. (8)

whore { = 2,3, . . . M
3=22,3, .. .N
The boundary vorticities are given by iy
= -
(ui'a 4“1.2) / 24y R e Y

1,1

W gy T D2y A

S _ where 1 = 2,3, . . . N, M+}

At the channel exit, the following less restrictive computational
o .

outflow boundary conditions are invoked.

1L}

en+1_3 = eH,j e gt V)
o,y = G5ttt (28D)
v = lpIl,j Y § 1-1-3

Mel, §

where =2, 3, . . . N

Treatment of Numerical singularity at (x*O,y=0); =0 ,y=1.0):
The streamfunction, velocitylcomponentu and temperaturo values
‘present no problem sinco they have beecn specified. Thpro!ore
the geometric singularity affects the vorticlty only since it
doponds on dorivatives of some apace variables, To evaluate the

vorticities st those singular points, the no-siip wall condition
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can be applied for s first-order fornulation using Taylor

sories expansion for the stream function.

Y

Thus at x = 0, y = O:

[

]
= -2 -
‘ | - Yy a Wy g3~ ¥ ) 7 (&y) e s (19s)
K
' t. &t x=Q,y=1.0:
. | w P S YN (Y s LEPURPRN TS S
*; 1,N+1 1,N 1,N+1
! , w and w are .approximated s above when they enter into
\ i,1 1,8+1
Y
¢ computations for evaluating vorticities at neighbpuring points.
. - )
4. GENERAL COMPUTATIONAL PRCCEDURE
' \ ]
s - The coupled vorticity tramsport and energy equations are golved
= simultaneously using the Gauss-Seidel iterative procedure. The type
. . L N
l ‘ " '
%; . . of 1Q$¢rgration step involves the tollowing nested iteretive processes.
. T e e ’
-1
.4 \ .
. ? . 1, 8,, v, ¢ are initialized for all interior, inlet and outlet
N 1 \ )
{ - ’ L . grid points. Using the initial values of u and v, the boundary
:-.-*w o
. ;- * ygorticities &fe computed from equations (17) ‘and (18). Thereafter
] i _} . i
B . ' the following quantities are evalusted in the order given using the
. 1 .~ .0ORt recently computed valuea of other quantitiea.
ik - H .
t5

3. 8 at interior points from’ equation (10) and on the outflow
boundary from equation {18a).

w at interior points from equation (11) and on the outflow

R
i ¥
~.
i :
S S A SRS
.
Ca

. boundary from (18b).

‘¢ at interior points from equations {12).(13),(14) snd on the

autflow boundnry from (18¢).

.
.

L u, v, are tinnlly computed for all interior points snd outtlow

poundarios irom oquatiune (13) and (18} rcepuctively.
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6. Using the values of u,v, obtained in atep 5 as fresh initial
values, newv bhoundary vorticities are computed using equations
‘£11) and (13).

7. The sbove stepa, starting from step 2, are repeated until
convergence 18 achleved. ’
The convergence criterion used in the computation is the same
for 8ll variables. This is so in order to compare the'rntas [+34
convergence of the fields.

k+1 k -3

€ = Ii¢ -¢1'j <19

where i = 2,3,... M

3. FLOW AND HEAT TRANSFER RESULTS

hY

.Ahe local and mesn hotwall flow and Meat transfer coefficlents are

based on the normal velocity and temperatare gradients respectively.

e . 2 39 R ¢ a P ¢
I N A
. Nux = - 38 )
a LR L Mo ™ 1 *L lNu dx .
v fo x ,

8t = Nu
x x

P
RePr RePr

Since threg indopendent parameters are involved in the present

- problem, & complete parametric study id mot practical, hence only

represcntative cases for air (Pr= 0.73) are given to illustrate the
inclination angle or body-force orientation effecta. Alaso, since the
flow must be forced, the fres convection i2 regarded ms 8 perturbaticon

superposcd on the forced flow. The parameter which ropresents the mutual

interaction of tho free and forced convection elfects ig Gr_, the
Re

4

.

Archimedes number.
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% 6. DISTLECION G HLLRICAL RESATS
s ' . f i
“ = Figures 2- and 3 rospectivaly show the ioilumnce of the angle o
4' {nclination an the wslocity ard Lu:,;‘z‘r‘ucu:'\.i. ticldu. AL the r.:h..;r.s.ul
t . ' of, synwtry, the local velocity iu piactically insensitiva to ehungen Lo
3 . a0
i::;clinution. A possible explanaticn cuald .b..- that at this poliv, U
. { j _
' alding and oppessing effects of fiue wveetion counter-bolanc. cacn ...
X MNear the hat plate tha local. vizlooit) .i:-. high while it is low wuor the
IS ; ' i .
= ] '1 colc plata. This is anticipated ;i:.cu vty y is ocudea to Lhe rloid ot !L.H..
.\ ' hot plate and entracted near tha cuta plute. Figume 3 siitm. thal U i
! :. tanpumtureslganarally increase with increwsing inclipation.
..; ‘ | Figure 4 shows the varistic. or the local ilué:-.ult nuBtut L it
: channel langth for a givan Archimeses runtuce wi_th ther arg le of 0 icnin
, '_‘ aB‘para.Teter. It is found that the lacal Nusselt runber decrels .o
- s agynptotically ot its f'uily Cuvilopud value,  This i3 anticipoond ob
l‘-t e :_.J the tarpanature f*tflbi‘st.r_llln.xt:i..m withure the chann:l incivases with 12 do 6o
. M?CB the dacnsasad’_ir‘l the noroal L atory grodient along tin o,
‘ e I . Us.ing Ar as paramater, the variations of the mean Nussell .. U. .ot
. -
J‘::\ l numbars and friction factor with cnannil orientstion are prusai g in
4
M } -"figt.;res-s, 6, and' 7 respecuively. Jr porticuler interest, is o w0
. - { of tha muan Nusselt rwmbar with Lhe angle of inclination. A noieeoe .
E' i, y ?nportant ubséwations can 'bu e in Hip .‘- Aba « 159, thy .
- ’ . mnbﬁr is tha sane for all no. -vo cubie Ardduiedus canbais.,
o . : ] @ = 30°% und a = 50°, theru is a ot L o by U wheddt Gt b
‘: ? 'nuubur is gmbium Fur o i e G teer e v dum e
' ' u.iih A while the Cartusponcio s ool oL Wt i edben st )
» ; ‘ 1 Fn'x.* a plven Ar, this varialion wv tne o a lacil ound: N e
’ i . to that bbl.ainuﬂiby Joog ut yl [b b b vt stion ot Ui ot s
| "] numbur with the arglu of ifnclination . TS1EVEINT SOMWECLALIL bh .y e .
. o channal buated isothummally Frum b bov and sinvilacly coclbed viue ww ..
.
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=, gravitational field, bccanes an iv;

_golution to tha themmal Lrot.us i

" fully duwulopud reginas

{7

[t {8 rucognisuC thal ACSRL Cles FUiBel CaN waly in DWa -
can bo kipt constant whila Gr is wuried ard vice-versa. Therotuu U
mean flussalt numbor ana friction fact are each bC!-.Lr‘d L vary in Lwd wayb.
Figures 8 and 9 show tha plots of Hu vs Ar and f, Vs Ar reapLotiva.; 1
the two nodas of variation of Ar for a nutber of channgl ericntation.,
A critical Archimedes nuber exisis tur a given inciingtiun ai whidn e
maan Nussalt nunbur assuius a 8inlu vulue.
friction factor. In both couus, thin critical Arch.inudes mumeci -
and ranaing so for all inclinaticas, but the unigue values of L. ar
de;:aand on tha inclinations.

-

_essures that at this cr1t1ca1 Archinencs nunbzr, there are sic Sl

values of Nu and f associated witn a piven o,

This is a very signifizant fintlire cire Lo

APFLICATIONS: '

Owe application that mur:u,» counes tomind 18 in tha o.Lign o

~

flat-plata Solar ccllectors whbre the hot plate is huateﬂ by bulae Ly
W ALY
and the heat genarated is convecteu away by forced flow for various

et 4w

for instanc:a if air ig'the mediun of c;onvectmn. the heat corwactad Lun

ba used for drying greins. In view of the changing position 3F the ..,
the orie;ntation of such g twaet trasior cquimment witn m:p;act Lot
: artanl factor in powcictin: !i:.;: o
at which heat': transfer i\s a racimr., iU oav. Algo, s‘incu uni.edfwiss o
| . A shettewhen A - SR, Lol 1

1

design. factors can be predv.condice oo LT dnclinotions Lube s6o00” L0

o 7. CONCULLICie.

L ]

Practically all concaivable chunrals are finite in walist oo o o0

+t

ary hont! tu Coow by, Tho probloo de Lo

basically that of an untrance tygiun ard maan veluey of the bt tr. o
Tiagne Tl

and flow pargralers are more ropicusonrativa of actaal resotte

obtalned for idaelised fully duvelupad poglnes,  In e Light or The

-

The saw 16 true ror L, o
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e bl T Lo _:_..!;.7..3, Cuowl doice]l wamled LM ;u.".-.n‘u.f"

can be mada,

1.

2.

3.

Tha maan Mussalt nunber is inc.pundent of thu r;ur.-z..-nq ArShitud. .
numbers when the angle of inclinotion to the bocizontsl is 1.7,

For o glven non-zerg Archinele, IIJ'ID‘L;I‘. thu crivical argle ai whic.
tho moan Ausselt number ond friction facturs ary maximium liv. C.te.
30% and 60°.

A uniqus solution to the themusl problem exists for a given
inclination only when the Arcuimed.s number, Ar = 0.50.

Tha resylts of Ozoe et ol [E], wnich have e confirmed o gk ensoa.
by the cuthars, lend suppurt to tha validity cf the p'n::unL Lobabiog

and the conclusions arriveu at.

270



{9
. REFEREMNECEZS
=, 1. JENH - Wl OU, K.C. CIENG ana RAN-GIAU LIN, conpined frea icrcu
A :
5‘ ’ laminar convaction in inclined rectargular chanaels, Int. J. Heut
| Mass Trunsfur, 19, 777 - 283 (19/6).
d |
) 2. K. C. OENG and CUANG-J7H HWA'L, tumarical Solution of cuonc.nudd
' | ' frea and forced lamirar convection in horizontal rectangular che ..ot
' -
J. Heat Transfer, 59 « &6 (1353).
! - K. C. CHENG and S. W. BONG, Effects of tuba inclination of luamir..
AY
h ‘l . convection in uniformly hueated tubes for flat plate solar culleo ..
. | R
_ ° " Solar Energy, 13, 363 - 371 (31972).
1.
V . .
4, M. I0BAL and 1. W. STACHIEWICZ, Varisble wensity offzcts ta
i - combingd frea and forced corwoction in inclined tubes, Int. S,
T .
) Heat Mass Transfer, 10, 1625 - 1629 (1967); alsa, Influenc: wh ..o
< — -] * oriantation ¥n conbined free and forcod laminar convectior raat
‘11 ' . teansfer, J. Heat Transfer, 140 - 116 (Feb. 19E3).
Y - g
| .
| ‘' 8.  HIROYUKI OZ0E, HAYATOSHI SAYAYA ano STUART W. CHURCHILL, Latara.
g + ' *
- . . . g
¥ ; ] ; convection' in inclinad square chanral, Int. J. Heat ilass Transt o,
4 -\ . . .
‘ 17, 401 - 405 (1974).
1 -~ ' ~ .
£ o 6. YASUO MORI and YUTAKA UCHIDA, Furved convective huat trencier
g : ot -
* butween horizontal paraliel plates, Int. J. Heat Macs Trenaicr,
; 9, 623 ~ 817 (1566).
4 l. ! ‘
v 7. S. C. R. BEINIS, tumericol soluticn of vorticity btrenspor .. .
‘ '} ' Proc. of Thirg Inty Conrcsies an S arical Aatrods in ¥l
A vechanica 18, Vol. 11, .o - 121 7.1y, /2D,

NI
[

-—— AT

TP S T T i [ S e

e s e S5 e AR Ay T S A g b T S T R Ty IR e

—— .

vy



sl

A

4,

*1

Fhysical fodul, Courcinate Syitun ang huserical grid,

Influsnca of channal crivntution on dimunsionless longitudina

g lat_:ity praofilas. ,

Influenca of channel aricntution on dumensionless temperatuty
Profiles.
Variation of the local Hucuult nunber with dimunsionleus

lengitudinal distance, with a as parareter,

Influenca of channel oricntatiun on thg mean Hussalt nuilers

with Ar as pargmeter for Pr 5 0.73,
Variaticn or the muan Stuntun nurber with a tar Pro= 0,75,
Influence of channal orientution on the mean friction fact.r

with Ar as paramater fur Pr = 0.73.

<

i
.

Variation of mean Nusselt nuiber with Ar, with o as patawie:

for Pr; = 0.73.

Variation of mean friction foctor wicth Ar, with g o3 parun Lo

for Pr'e 0,73, -
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Fig.l.-f.PHys':cal model, coordinate syste}n
and Numerical grid.
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Fig. 2. influence of channel orientation - on
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Fig.3. variation of ma2an Nusselt number o
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Fig-9. Variation of mean friction factor
with Ar,with & as parameter’ for p =0.73-
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