A SIMPLIFIED NETWORK-LEVEL PAVEMENT INFORMATION AND MANAGEMENT SYSTEM (PIMS) FOR FEDERAL ROADS IN NORTH-CENTRAL NIGERIA

BY

OLUTAIWO, ADEWALE OLUKAYODE

B.Sc. Hons. (Ife), M.Sc. (Lagos)

Matric No: 019042016

A THESIS SUBMITTED TO THE SCHOOL OF POST GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY (Ph.D.) IN THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING OF THE UNIVERSITY OF LAGOS

JUNE 2011

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that the Thesis:

"A SIMPLIFIED NETWORK-LEVEL PAVEMENT INFORMATION AND MANAGEMENT SYSTEM (PIMS) FOR FEDERAL ROADS IN NORTH-CENTRAL NIGERIA"

Submitted to the School of Postgraduate Studies University of Lagos

For the award of the degree of **DOCTOR OF PHILOSOPHY (Ph.D.)**

is a record of original research carried out By:

OLUTAIWO, ADEWALE OLUKAYODE In the Department of Civil & Environmental Engineering

AUTHOR'S NAME	SIGNATURE	DATE
1 st SUPERVISOR'S NAME	SIGNATURE	DATE
2 nd SUPERVISOR'S NAME	SIGNATURE	DATE
1 ST INTERNAL EXAMINER	SIGNATURE	DATE
2 ND INTERNAL EXAMINER	SIGNATURE	DATE
EXTERNAL EXAMINER	SIGNATURE	DATE

SPGS REPRESENTATIVE

SIGNATURE

DATE

DEDICATION

This thesis is dedicated to GOD Almighty, the Invincible, the Omnipotent, Omniscient and Omnipresent, the Giver and Taker of Life, My ever-present help in times of trouble, My Sustainer and the Preserver of my soul.

To You, I give all the glory and adoration.

ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge the support and encouragement of my major supervisor, Professor A. S. Adedimila, who inspired me to develop the desire for excellence in technical writings and presentation. He is my chief role model. You are greatly appreciated sir.

I wish to appreciate the love and support of my co-supervisor, Professor M. A. Salau. His constant challenges contributed greatly to the timely completion of this research. The invaluable support and encouragement of Professor F. A. Falade are also greatly appreciated.

I will like to accord special recognition to Kehinde Orolu, who greatly assisted me in the programming works with unparalleled commitment. I pray that God will richly reward his labour of love.

I cannot but appreciate the following people, who in no small ways contributed to this research: Engr. T. B. Eyo, Head of Research Dept, FERMA for his interest in the work and Engr. Chuckwuma, Head of Pavement Evaluation Unit, Kaduna.

I also wish to specially acknowledge Engr. Felix Atume and Engr. Ezemenari, formerly of the Department of Civil Engineering, Ahmadu Bello University, Nigeria, whose pioneering works in the adaptation of probabilistic prediction modelling to pavement deterioration in Nigeria gave the background information on the research.

I will also like to appreciate the love and support of all the academic staff of the Department of Civil and Environmental Engineering of the University of Lagos, while not undermining the love and support of the secretarial staff.

Finally, I would love to appreciate the support and encouragement of my two lovely kids – Timilehin and Tomiwa Olutaiwo, throughout the duration of the study. I love you so much.

ABSTRACT

All over the world, the importance of prediction of pavement performance to aid long term scheduling of maintenance and rehabilitation (M&R) activities and budgetary allocation, has been widely recognized. Pavement deterioration modelling, based on historical record of performance variation with time, requires regular measurement of the condition rating of pavement sections over a period of time. Based on the generated model curves using historical data, future condition rating could then be predicted. Since such information and record are absent in the country (Nigeria), this method cannot be used and the alternative is to use probabilistic modelling.

Some attempts have been made to develop deterioration model using the Markov probability matrix method with a constant transition probability matrix (TPM). However, with this approach, the two important effects of pavement age and traffic volume were not reflected. As an improvement over these limitations, this study attempted the development of a more realistic and dynamic pavement deterioration prediction by modelling a series of TPM that incorporate the effects of age and traffic volume on pavement deterioration. Road user costs model was also developed to determine road intervention maintenance costs, and evaluate benefits of reduced vehicle operating cost upon improvement at network level. Detailed analyses of road deterioration and incurred road user costs were performed for a case-study road over a period of twenty (20) year.

A simplified but computerized pavement information and management system (PIMS) was developed, within MatlabTM and Visual BasicTM environments. The PIMS is capable of storing, analyzing, modifying, reporting and displaying pavement and traffic information for individual and entire network of federal highways in Nigeria. Results can also be displayed in charts and themes.

Visual condition surveys were carried out for twelve selected road sections in the North Central part of Nigeria. Condition evaluations were performed for the surveyed roads using manual and automated PCI-based method. The results showed that the developed PIMS is quite suitable for use on Federal roads in a developing country such as Nigeria.

TABLE OF CONTENTS

Title Page	i
Certification	ii
Dedication	iii
Acknowledgements	iv
Abstract	v
Table of Contents	vi
List of Tables	xi
List of Figures	xiii
List of Plates	xvi

CHAPTER ONE: INTRODUCTION

1.1	Preamble	1
1.2	Overview	1
1.3	Condition of the Federal Highways	4
1.4	Maintenance and Rehabilitation of Pavements	5
1.5	Pavement Information and Management Systems (PIMS)	7
1.6	Problem Statement	9
1.7	Research Goal and Objectives	9
1.8	Scope and Limitations of Work	10
1.9	Significance of Study (Research Contributions)	11
1.10	Operational Definition of Terms	12
1.11	Presentation (Dissertation Layout)	13

CHAPTER TWO: LITERATURE REVIEW

2.1	Overview	14
2.2	Beginning of Pavement Management Systems	14
2.3 Data Collection Activities for PIMS		15
	2.3.1 Generating Digital Road Network Maps	15
	2.3.2 Referencing Systems	15

	2.3.3	Manual Field Data Collection	16
	2.3.4	Automated Pavement Data Collection	17
	2.3.5	New Developments in Data Collection Technologies	17
	2.3.6	Benefits of Automated Data Collection	20
	2.3.7	Integration of GPS Data into GIS-PMS	20
2.4	Pavem	ent Condition Rating Systems	21
	2.4.1	Present Serviceability Index (PSI)	22
	2.4.2	Pavement Condition Index (PCI)	23
2.5	Develo	opment of Pavement Performance Models	24
	2.5.1	Empirical Models	25
	2.5.2	Mechanistic Models	25
	2.5.3	Mechanistic-Empirical Models	27
	2.5.4	Bayesian Models	27
	2.5.5	Survivor Curves	27
	2.5.6	Markov Models	28
	2.5.7	Semi-Markov Models	28
2.6	Applic	ation of Expert System to Pavement Management	29
2.7	Profes	sional PMS Software	31
	2.7.1	Micro Paver® Pavement Management System	31
	2.7.2	Dynatest PMS	32
	2.7.3	TRRL Road Investment Model for Developing Countries (RTIM2)	32
	2.7.4	The World Bank's Highway Design and Maintenance Standard Model	
		(HDM-III)	33
2.8	Pavement Condition Evaluation 3		33
2.9	Visual	Pavement Condition Survey in Nigeria	34
2.10	Adopted Methodology for this Research Work35		35

CHAPTER THREE: DEVELOPMENT OF PCI-BASED PAVEMENT EVALUATION

3.1	General	36
3.2	Operational Framework of the Developed PIMS	37
3.3	The Pavement Management Process	40
3.4	Basic Road Branch/Section Information	43

3.5	Performing the Visual Pavement Condition Survey	49
3.6	Manual Determination of PCI Value	51
3.7	PCI Calculation for the Selected Surveyed Road Sections	54
3.8	Automated Distress Data Entry and PCI Calculation	55
3.9	Generating Strategies for M&R Actions	58
3.10	Generating Thematic Reports	62
3.11	Referencing System	64
3.12	Thematic Display Capabilities of the Developed PIMS	64
3.13	Procedure for Pavement Performance and User Costs Prediction Modelling	66
3.14a	Markov Approach to Predicting Pavement Performance	67
3.14b	Proposed Markov Modelling	67
3.15	Development of Models for Case Study	68
	3.15.1 Basis for Categorization	68
	3.15.2 Definition of Different States of a Road Pavement Using Road Roughn	ess
	Measure	68
	3.15.3 Development of Transition Probability Matrices	70
3.16	User Costs Modelling	72
	3.16.1 Vehicle Speeds	73
	3.16.2 Fuel Consumption	74
	3.16.3 Tyre Consumption (Tear and Wear)	75
	3.16.4 Spare Parts Consumption	75
	3.16.5 Maintenance Labour Hours	75
	3.16.6 Crew Hours Cost	76
	3.16.7 Depreciation Cost	76
	3.16.8 Lubricating Oil Consumption	77
	3.16.9 Overheads	77
3.17	Evaluation of User Cost Model	77
	3.17.1 Vehicle Speeds	77
	3.17.2 Fuel Consumption	78
	3.17.3 Tyre Consumption (Tear and Wear)	79
	3.17.4 Spare Parts Consumption	79
	3.17.5 Evaluation of Maintenance Labour Hours	79

	3.17.6 Crew Hour Costs (Applicable Only to Trucks)	80
	3.17.7 Depreciation Costs	80
	3.17.8 Lubricating Oil Consumption	81
	3.17.9 Overhead Costs	81
	3.17.10Contribution of Different Components of Vehicle Operating Costs	81
3.18	Maintenance Intervention Modelling	83
3.19	Application of User Costs Analyses to Case Study Road	84
	3.19.1 Maintenance Option 1 – Deferred Maintenance	85
	3.19.2 Maintenance Option 2 – Repair Failed Sections Only	86
	3.19.3 Maintenance Option 3 – Repair All Sections	88
3.20	Benefit-Cost Analyses of Maintenance Investments	90

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1 Manual PCI versus Automated PCI Results for the Selected and Surveyed		
	Road Sections	92
4.2	Automated PCI Computation Results	94
4.3	Generating Condition Reports	96
4.4	Generating Predicted Report	103
4.5	Thematic Map Display of Historic PCI, M&R Actions and ADT	104
4.6	Results from Analyses of Maintenance Option 1 (Deferred Maintenance)	108
4.7	Results from Analyses of Maintenance Option 2 (Repair Failed Sections Only)	111
4.8	Results from Analyses for Maintenance Option 3 (Repair All Sections)	113
4.9	Combined Deterioration Profile Results	113
4.10	Results from Benefit-Cost Analyses	115
4.11	Discussion of Results	116

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1	General Summary	121
5.2	Conclusions	123
5.3	Recommendations and Further Research Work	123

5.4	Contribution to Knowledge and Practice	124
REFE	RENCES	125

APPENDICES

Appendix A1	Typical Sample of Excel Worksheet Result for Visual Pavement Condition Survey using the OECD Method	n 130
Appendix A2	Visual Basic Windows and MATLAB Applications	132
Appendix B	Flexible Pavement Distress Types, Severities, Measurement and Repair Options	134
Appendix C	Deduct Value Curves for Flexible Pavement	153
Appendix D	Correction Curves for Asphalt Surfaced Pavement	161
Appendix E1	Manual Calculations of PCI Results for Jebba-Mokwa-Kotangora (Section I) Road	162
Appendix E2	Chi Square Distribution Table	169
Appendix F	Capturing the Road Network Centreline and Challenges Encountered	171
Appendix G	Road Map of Nigeria (Showing Old Federal Route Numbering System)	174
Appendix H	Road Map of Nigeria (Showing New Federal Route Numbering System)	175
Appendix I	Macmillan Road Map of Nigeria	176
Appendix J	Roughness Data Collected for Kano-Maiduguri Road	177
Appendix K	Typical Questionnaire for the Development of Transition Probability Matrices	180

LIST OF TABLES

		Page
Table 1.1	Distribution of the National Road Network as at 1996	2
Table 1.2	Appropriations for Road Maintenance (1999 – 2002)	5
Table 2.1	Comparison of Manual and Automated Distress Data Collection Results	20
Table 2.2	Pavement Condition Ratings and Pavement Condition Index Ranges	24
Table 2.3	A Comparison of Performance Models	30
Table 3.1	Network-Level Sampling Criteria Used by Some Agencies	48
Table 3.2	List of Highway Pavement Sections Selected for Visual Condition Survey	50
Table 3.3	Asphalt Concrete Surfaced Pavement Distress Types	52
Table 3.4	States of Pavement Based on Roughness Measurement	68
Table 3.5	Proportions of the Case Study Road under Different Condition	
	States	70
Table 3.6	Maximum Safe Range of Application for Each Variable	74
Table 3.7	Range of Variables for Estimating Vehicle Fuel Consumption On	
	Paved Roads	74
Table 3.8	Average Figures for Total Oil Consumption	77
Table 3.9	Vehicle Speeds	77
Table 3.10	Fuel Consumption for Cars and Trucks	78
Table 3.11	Tyre Consumption Costs for Cars and Trucks	79
Table 3.12	Spare Parts Consumption for Cars and Trucks	79
Table 3.13	Maintenance Labour Costs for Cars and Trucks	80
Table 3.14	Crew Hour Costs	80
Table 3.15	Depreciation Costs	80
Table 3.16	Lubricating Oil Consumption Costs	81
Table 3.17	Overhead Costs	81
Table 3.18	Contribution of Different Components of Vehicle Operating Costs	
	for Cars	82
Table 3.19	Contribution of Different Components of Vehicle Operating Costs	
	for Trucks	82
Table 3.20	Estimated Costs of M&R Activities	83
Table 4.1	PCI Results for the Surveyed Jebba-Mokwa-Kotangora (Section I) Road	93

Table 4.2	PCI Results for the Twelve Selected and Surveyed Road Sections	94
Table 4.3	M&R Strategies and Corresponding Estimated Costs	95
Table 4.4	Deterioration Profile for 'Deferred Maintenance' Option	109
Table 4.5	Cost Computations for 'Deferred Maintenance' Option	110
Table 4.6	Deterioration Profile for Maintenance Option 2 (Repair Failed Sections Only)	112
Table 4.7	Cost Computations for Maintenance Option 2 (Repair Failed Sections Only)	112
Table 4.8	Deterioration Profile for Maintenance Option 3 (Repair All Sections)	114
Table 4.9	Cost Computations for Maintenance Option 3 (Repair All Sections)	114
Table 4.10	Deterioration Profile Data for All the Three Maintenance Options	115
Table 4.11	Derived Results from Benefit/Cost Analyses for Case Study Road Option 1 – Repair Failed Sections Only	117
Table 4.12	Derived Results from Benefit/Cost Analyses for Case Study Road	
	Option 2– Repair All Sections	118

LIST OF FIGURES

		Page
Figure 1.1	Pavement Deterioration and Recycling Rehabilitation versus Time	6
Figure 1.2	Pavement Deterioration versus Time	7
Figure 2.1	Asphalt Surfaced Roads Survey Using Frames	19
Figure 2.2	Typical Regression Curves	25
Figure 3.1	General Components of a Typical PIMS (Compiled)	38
Figure 3.2	Operational Flowchart of the Developed PIMS	39
Figure 3.3	Broad Tasks in the Proposed PIMS	40
Figure 3.4	Created Road 'Section Information' Page of the PIMS	44
Figure 3.5	Searching for an Existing Road Section to Load into the PIMS	45
Figure 3.6	Display of Data Information for a Selected (Case Study) Road Section	46
Figure 3.7	ASTM D6433 Flowchart for Performing Pavement Condition Survey	50
Figure 3.8	Created Sample of Condition Survey Data Sheet	51
Figure 3.9	Flowchart of the Procedure to Calculate Section PCI (Compiled)	52
Figure 3.10	Flowchart for Automated PCI Computation	56
Figure 3.11	Entering Current Values for the M&R Options	57
Figure 3.12	PCI Distress Data Form Interface	57
Figure 3.13	Maintenance Activity and Time for Each Level of Service Based on	
	PCI	60
Figure 3.14	Suggested M&R Feasible Actions for Flexible Pavements in Nigeria	62
Figure 3.15	Digitized Federal Road Network of Nigeria using ArcMap	63
Figure 3.16	Locational Referencing of a Section of the Federal Rural Road Network Showing Nodes and Section	65
Figure 3.17	Flowchart of the Procedure for Pavement Performance and User Costs Prediction Modelling	66
Figure 3.18	System's Flowchart to Generate Po from Known Roughness Data	69
Figure 3.19	Ranges for Parameters Considered in TPM Development	70
Figure 3.20	User Costs Parameters Form (with Current Default Values)	78
Figure 4.1	Automated PCI Calculation Results Page	95
Figure 4.2	Display of Images and Videolog of Distresses Captured On Site	96

Figure 4.3	Accessing the Condition Report Module	96
Figure 4.4	Section Condition Report Interface for All Roads in the Network	97
Figure 4.5	Section Condition Report for Roads Surveyed in a Selected Year	98
Figure 4.6	Section Condition Report for Roads Surveyed in a Selected State of the Federation	98
Figure 4.7	Section Condition Report for Roads Surveyed According to PCI Category	98
Figure 4.8	Section Condition Report for Roads Surveyed According to Geopolitical Zone	99
Figure 4.9	Branch Condition Report for a Selected State	99
Figure 4.10	Accessing the Historic Information Module	100
Figure 4.11	Selection of the Range of Years for Historic PCI Report Display	100
Figure 4.12	Historic ADT Report Display for a Selected Road and Range of Years	101
Figure 4.13	Historic PCI Report Display for a Selected Road and Range of Years	101
Figure 4.14	Combined Historic Report Display for a Selected Road and Range of Years	102
Figure 4.15	Historic M&R Costs Report Display for a Selected Road and Range of Years	102
Figure 4.16	Accessing the 'Predict ADT' Menu	103
Figure 4.17	'PREDICTION DATA' Dialogue Box	103
Figure 4.18	Results for Predicted ADT	104
Figure 4.19a	Example of Thematic Map and Pie Chart of Historic PCI	105
Figure 4.19b	Example of Thematic Map and Bar Chart of Historic PCI	105
Figure 4.20a	Example of Thematic Map and Pie Chart of Historic M&R Actions	106
Figure 4.20b	Example of Thematic Map and Bar Chart of Historic M&R Actions	107
Figure 4.21a	Example of Thematic Map and Pie Chart of Historic ADT	107
Figure 4.21b	Example of Thematic Map and Bar Chart of Historic ADT	108
Figure 4.22	Tabular and Graphical PIMS Display of the Deterioration Profile for 'Deferred Maintenance' Option for the Case Study Road	109
Figure 4.23a	Full Graphical Display of the Deterioration Profile for 'Deferred Maintenance' Option for the Case Study Road	110
Figure 4.23b	Extracted Full Graphical Display of the Deterioration Profile for 'Deferred Maintenance' Option for the Case Study Road	111
Figure 4.24	Tabular and Graphical PIMS Display of the Deterioration Profile	

	for 'Repair Failed Sections Only' Option for the Case Study Road	111
Figure 4.25	Tabular and Graphical PIMS Display of the Deterioration Profile for 'Repair All Sections' Option for the Case Study Road	113
Figure 4.26	Effects of the Three Maintenance Options on Case Study Road Deterioration	115
Figure 4.27	Graphs of User Costs and Benefit/Cost against Time (Years of Analysis)	119
Figure 4.28	Tabular Displays of Predicted Results for M&R Actions and Costs,	
	User Costs and Benefits for Deferred Maintenance Option	119

LIST OF PLATES

Plate 1:	Data Collection Vehicle for 35mm Analogue Continuous Film	
	Technology	18
Plate 2:	Data Collection Vehicle for Digital Camera Technology	18
Plate 3:	Data Collection Vehicle for Digital Line Scan Imaging Technology	18
Plate 4:	Continuous Image Viewer for Digital Camera Technology showing	
	Pavement Distress	18
Plate 5	Pavement in Excellent Condition	61
Plate 6	Pavement in Fair Condition	61
Plate 7	Pavement in Very Poor Condition	61

Page