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ABST E‘A CT
This thesis serves o dual purpose, First, a method is
presented vhich simplifies the integration of the governing éteady
gtate oquations of an incompressible viscous fluid with vanishing
body and inertia forces. The method takes advantage of potential
theoery to reduce any fluid problem to that of differential
operators acting upon hormonie functions, This is in contrast to

the conventional stream-function approach which employs a fourth-

|
|
|

order partial differential equation, By this approach, the formulation:

for singularities in the interior of one of two immiscible fluids
becones straight. forwamd,

Secondly, using this new approach, we are able to show in
two selected examples that from a previously determined solution
for & fluid occupying the entire three~dimensional space we can
deduce the velocities and stress conpeonents for the case in which
the entire three-dimensional space is occupied by two immiscible
dissimilar fluids with a spherical interface. The selected examples
are those in which the flow field in the honogeneous fluid can be
described by a harmonic function nancly, the case of a source
in an unbounded fluid space (an axisymmetric flow problem) and the
case of shear flow (which is non-axisymmetric). Also in chapter three

an attenpt is made to develop a theory for the flow field of a

thin jet in an unbounded viscous fluid,
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CHAPTER ONE.

1.1 Iptroduction' :

Allot of Work had been done on thé flow fields of an
inviscid fluid., Attempts have been nade to compare the
flow field of the disturbed streen with the flow field in
the absence of obstacles. In 1940; Milne~Thomson (18) put

forwvard his fanous circle theoreh viz: in a two dimensional

 irrotational flow of an incompressible inviscid fluid in the

z-plane, with ro rigid bounderies, if the complex potential is

£(z) (the singulerities of f£(z) being all at a distance greater

than 'a' fron the origin), then on introduchng a circular
cylinéer.]zj,z a into the field the complexipotential becones
£(z) + F(a2/z)

In 1954, E, Levin extended the eircle thedfem to
include the case in which rigid boundaries are present. 1In
1944, Weiss (29) considered the case when thelobstacle is g
gphere and he gave a theoren that if there be irrotational
flow, of incompressible inviscid fluid with no rigid
béundaries, characteérised by velocity p;tential:¢(r,e,w),
all of whose siggularities are at a distance gr;afér than 'at

from the origin,_then the introduction of a sphere r = a

into the field changes the veloczty potentlal to
r

a?
#(z,6,0) + & N BRI
2 0

where R = aﬁﬁr.
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Then in 1953, Butler (7) considered the same problen using
the strean function instead of the velocity potential and showed
that if the original stream function in an axisymmetric irrotational
flow is Yo(r,8), then the introduction of a sphere r = a changes
the streen function to Vo (r,8) - g I (a®/1,6) .

The results of Mile-Thomson, Levin, Weiés and Butler in a |
nutshell can be stated that the flow field in the presence of a
cylinder or o sphere can be written directly from the known field
without obstacles in the case of homogeneous inviscid fluid,
Unfortunately, no fluid is perfectly inviscid so that these
theorens are nainly of theoretical interest,

In a viscous fluid flow, nost of the work done is centersd
round the case when the obstacle is a flat plate particularly after
Prandtl {21) who in 1904 gave the theory of the boundary layer, The
works in 1961 of Roshko (22), in 1963 of Bloor (6), Catheral and
Mangler (8); in 1964 of Pearson (20) and Srivastava (24) and in
1969 of Talke and Bgrger (251 are a Tew typical efforts based
nainly on the boundary iayer %hgorem,

In 1906 and 191.1‘, Einstein (9) did some work on the viscosity
of a fluid in which small solid spheres are suspended and his work
was extended by Jefferys (12) in 1922, Attenpt was nade by Adeboyé

’

(1) in dealing with flow in the presence of obstacles of regular

1

shapes, (solids with circular, elliptical and parabolic eross-

%
sections), involving fluids of low viscosity,
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Vot much work has so far been done on problems involving !

two-phase flows, that is when the solid obstacles are replaced|
by fluid ones. This is because, according to Taylor (24), "The

difficulties in the way of a complete theory when solid particles
are replaced by fluid drops are almost insuperable, partly beczusge

}

the correct boundary conditions are not known and partly becauseh
a fluid drop would deform under the combined action of viscous fo

and surface tension."

)

rres
This opinion is shared by Aderogba (2) who observes, "The \
problen presented by the state of stress in two immiscible fluids

'll'\
under a general-internal load is o very complicated one not only
because of the non-linear nature of the governing Navier-Stoke's

equations but also beceuse of the ever-changing interface conditions®.

However, Taylor observed that a fairly accurate theory could
be developed if it is assumed that the radius of the suspended drops \
or the velocity of distortion of the fluid are small, since in that

case surface tension may be expected to keep the drops nearly

spherical. Concerning the boundary gonditions also, Aderogba \
affirmed that in some cases a combination of facts and Lethods \
available in the bending and stretching of bonded materials (in \
clasticity) can yield significant research results in fluid dynamics. \
Therefore, while Taylor (2§) tried experinentally to calculate
the distortion of a drop of one fluid by viscous forces associated
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wvith certain Maﬁhematicaiiy definable fiblds of flow of another b
£luid which sufreunds it and Wohl and Rubinov (23) studied the
aovenent of a deformable liguid sphere in an uhbounded steady
parabolic flow with the aim of determining the transverse force on \
‘“the drop, it is the attempt in (2) and (3) which has direct bearlngg
on our present studies, : %

In the paper (2) the case when the entire three-dimensional
space is filled with two incompressible immiscible viscous fluids
with a circular, eylindrical interface has been éonsidered.! It is
shown that when a line source is located in one Sf'the fluids, then
the velocitieé and stresses prqduced in the tﬁo—fluid space can bhe
obtained by differentietion of velocities and str?sses which would
be mroduced in a éingle—fluid space.

In (3) it is shown that if the displacement in the homogeneous
infinite plane is fhe gradient of a harmonic function, then the
displacement in a bonded ¢ircular disc is the gradient of a scalar
mltiple of the same harmonic function,

1.2. Aims and Method

The objects of this thesis are mainly to investigate an extension
of the work in (2) to the case when the interface between the two
fluids is spherical, that is, we would consider the'casq when the
entire three-dimensional space is filled with two incompressible

immiscible viscous fluids with a spherical interface. We would then
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investigate what rélationship, if any, exists between the velocitjes
ond stresses in the two-fluid space and a single-fluid space when\
(a) the flow is axisymmetric,
(b) the flow is not axisymmetric.
The StokeA* stream function is capable of solving only three-
dimensional problems which arc axisymmetric, In Chapter two we
attempt to develop a;new method of solving the Navier-Stoke's equations
for cases wherc the flow is more general in nature, that is, axisymnetric
or otherwise, Towar&s the end of the chapter we demonstrate how
this method can be used in solving in an elegant manner the problenm
|
of a 8clid sphere in a viscous fluid in uniform flow.
In chapter three, we apply the same method to a mae difficult
problem. We attempt to develop a theory for the flow of a thin jet
in an infinite viscous fluid.
In chapter four, we consider the casé when the entire three-
dinmensional space is filled with two immiscible viséous fluids with
a spherical interface, one fluid in the region r » a the other in
the region r < a, while a point source is located in the region r » a.
We assume that 'a' is sufficiently small, so that surface tension
alonc could keep the drop spherical; that the velocities and
tangential stresses are continuous at the interface and that body
Torces and inertial terms in the Naviem=-Stoke's equations ore negligible.
We also consider the particular case when the region r ¢ a is occupied

by a spherical bubble of gas of negligible viscosity.
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In chapter five, we consider a non-axisymmetric flow
L]

i
¢
b

problen in which the entire three-dimensional space is filled

with & viscous fluid undergoing shear flow in the presence of 'a

spherical drop of a dissimilar viscous fluid occupying the regiOn

T < &, We use the same boundary conditions as in chapter four

and employ the method of solution established in chapter two, :
The case when the spherical drop contains a fluid whose visco

is much less than thet of the surrounding fluid is also inferred.

Chapter six contains a summary of our conclusions and

references.

1

L

|

i

|

|
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CHAPTER TWO

A goneral solution of the Navior-Stoke's
cquation for steady-state incompressible
fluid flow

As we observed earlier on in chapter one; the Stokes' astrean

function can only bhe applied to three-dimensional flow problens wﬁich

are axisymmetric.

‘- .
|
|
|

|
|

|

may be axisymmetric or otherwise and for the sake of continuity we

would like to use the same method throughout, In this manner we

|
develop o general solution of the Navier-Stoke's equation which can

be successfully applied in solving problems axisymmetric or otherwise.

Solving the Navier-Stoke's equation for steédyastate incom-
pressible fluid flow when the body forces and inertial terms are
negligible normally involves the solution of a biharmonic equation

V=0,
where § represents the stream function,

Cur new approach replaces

this biharmonic equation with a wmysten of harmonic equations

Ve =0, Pg =0
where ¢ = (¢ ,¢) in two dimensions

= (¢ ,¢,¢%) in three dimonsions.

The solution obtained by this method gives the velocity vector

and pressure at a point as

§=%h +x.9) -2

P = ZH(V-,@'-'_

Now we intend to investigate flow problems which

l
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2,9 Biharmonic aspect of the problem:

The steady-state Navier-Stoke’s equation appropriate to an

incompressible viscous fluid, in the absence of bedy forces and

inertial terms is
Vp = u¥g _

together with the eqﬁation of continuity
V.g - O

where p is the pressure, g is the velocity vector and y is the

coefficient of viscosity.

Equation (1) is equivalent, in two-dimensions, to the system

of equations

25 O

8p
oy

1l

(&%) g

Differentiating (32) partially with respect to y and (3b) partially
with respect to = and subtracting,

e - - ) W,

dxdy?

3 3
Ir q =-a'$ y Q= - % s then (4) passes over into

B, ey,
o-u(Bitr 2 )

iae- V‘W - 0

- . S N JRp—



K3

i

4

Bl

=

)

i

Equation (5) is hiharuonie, sc that solving equation (1) involves

solving a biharmonic equation.

We now propose 2 row approach whereby the sclution of (4
P LS

could be achieved by solving a system of harmonie equations

instead of a biharmonie one,
242 . Solution using harmonjgs:

Suppose

e Yoo : (6)

Then () satisfies the continuity equations (g) 1e0e Vag =0
provided that P¢, = Qs

Substituting (6} info (1) we get

Vi

i

wV (P} =0, if Py = 0

L
o
i

p = ¢onstantg,

= §, without loss »f zemerality,

e T = O and g = V¢ constitute a solution of
1
(1) provided ¢y = Q .

Worr let
g =752, qy=y§$"-.-¢h ' (m

substituting (7) intc (Ja) we obtain

-
e _ 3 ﬂ.ﬁa.a 2 B, |
dz —p[y a::(a + %?F + 2 dxdy

e ———— ——"

—— — —— e — =
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A

=4

¥

a0 i.eo P = 2“- %é? + fl(y)

A substitution of {7) into {3b) yields

=)
f

= 2u %+ £ ()

ay
: 3%
. s p..Zp.ay
. d ]
[ q,:n:)’g;?; q3r=yé%n%,P—2P'u@

constitute o solution of (3) or {4) provided ¥¢y = 0 ,

Similarly

. : o 26
4 =2 Q =mgy s PG

constitute a solution of {3) or (1) provided V¢, = Q ,

10

_——— = = — = ——

Now sines the equztions are linear, the sum of the solutions ‘

is alse o sclution and hence frem (8) and (9)

._--a-él -aia—r;‘»
% =%% TV T

q = o & S _
L =Ry Ty %

constitute a solution of (3) or (1) provided Wy, =g = Pz,

T

Now in the -case of three~dimensicas equation (1) is

aquivalent to

g, = e -

—_——
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2B HoB)e

By a preocudure similor to the one ziven above, equation

{11) ig found to Lo szatisfied by

P= < \aw By g%a)

e S, 9, 00 |
qm_.:r:am-t-yam-f-zé\m Py

o Oy 9% _ .
qy-—way +Ja}_+zay 2

L) 9% s
4 ’”caz + yaz T2y
This cen be verified by a direct substitution of (12)
into (14%.
Therefors (412) constitute & solution of (1) in three-

dimOTLSi ONnsS.

Now q_ and 9, 83 given in (40) and % Gy and q, as given
in (412} are the components of Vir.¢) - 23 ir two-and

three-dimensions respectively vherc

(@y 92 ) in two-dimers g

£

1
fr

('351_ ,¢2 ,¢3} in 't}“LreﬁﬂAiﬁi\:?llsions.
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Also p cun be written as -
p = 2u(Veg)

Thercfore, as & check, we put
g = Yz - %
and substitute in (1) .
Now (1) can be written as
v = plV(V.g)] - 7, {7,9)]
== ul 7 (9,9

since Veg = 0, for incomprussible fluid flow.

Therefore substituting (13) into (14) we get

Vp=-p [VA[VAV(E-E) ]] + 2}_1[VA(VA2)]Z

i

ZP[VA(VA@J’ since VA[‘J(,%“.Q)] =0
= 2ulV(Teg) ~ P¢]

= Epv(?.g:), if V¢ = Q

2P = 2p(v.2), taking the constant of integration to

be zero., Therefore equation (1k) or (1) is indeed satisfied by

p=2u(vg), 3=v(pg) -2

provided V¢ = @ .

|
|
(15)

|
|
|
|
|
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Consequently we have two solutions of (1) given by (6) ana (15).

Therefore & general solution of (1) can be written as their sunis,

;)% 1.2,
A

Lol
i

va.g
oo + V‘(EOQ) - 293_
Wdo + £.9) - 2

40
H

1i

e

where ¢ and ¢ satisfy the harmonic equations

V%, = 0 and V?¢ = Q.

i

2,3 Observation. We observe from (16) that for a general

.

solution of the Navier-Stoke’s eguetion in steady state, when
the fluid is viscous and incompressible end in the absence of
body forces and inertial terms, we need to solve at inost three

1 harionic equations for any two-dime;mioﬁal flow problem and
g _nogt four hamonic sguations for ary tharee~dimensional flow
preblent,

2ed Applications,

(a) A rizid sphere in en infinite fluid, 4s a check on the
solution construoted above, consider & flow which at infinity has

a velocity vector given by

co

¥

let a rigid sphere of radius fa’ be introduced into the flow with

o its centre at the origin, The motion in this case would be

g = (0,0, V) (17)
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axisymmetric, We shall now construot the flow field of the

disturbed streanm. y :

5 The solution of the equation .

Vp = p'\i‘e'g i

is, as shawn above, '

‘ N

4 g = Yoo + xe@) ~ 2¢ :

p = (V) :

1

where ¢ = (¢ ,fa,¢s) &nd ¢ ave the solutions of the harmonic :

s ) |
' equations '1
!
o Now in sphericel coordinate systen, .
C e sl 2 . L !
Vo= & ,6r+r26 36"y sin 6 Zp J¢ (18);
b i
and i
- !
. 9 = (p sin 6 cos ¢ + ¢p sin O sin ¢ + ¢ cos 8)er :
£ ‘:
+ (& cosaoo;,(pa-gaacosesinq:'g;ﬁasine)ge
+ (9)2 COS @ = ¢ Sin ‘P)E‘p (19) 'I
i while i
s f
X = Ter (20)

From (16), (18), (19) and (20)
Ry
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9p = -g-;[gbo+ r sin 6(¢, cos ¢ + ¢y sin @) '
+ ¢or cos 0] - 2[sin 0(d, cos ¢ + ¢ sin @)
+ ¢ cos 8] (24)
g = ;g—é[%w sin 6(¢, cos ¢ + Pa9in @)+ gar cos 6] .
- 2[cos 6(¢yc08 ¢ + $8in @) - ¢ga8in 8] (22)
£ ,
1 o _
% = TN a(P[%-t»r sin 6(p, cos @ + ¢y 8in @) '.
+ ¢ cos 0]~ 2(g3co8 ¢ ~ ¢ 8in ¢)(23) |
[l
A

Now, since the motion under consideration 1s axisymmetrio,
% =0 for all ¢ .

Therefore from (23), we see that for % to be zero for all g,
we must sed

B o=¢a =0

| (21)
vhile ¢ and ¢; mist be independent of ¢.

Then frem {24) and (22), g, and gy Teduce respectively to

aQ = %;(qﬁo + ¢or cos 8) ~ 2¢,00S © (e5) |
0 . .
ag = m(q')o + ¢ar cOs 0) + 2¢ sin @

(26)

Consequently, we need to consider only ¢ and ¢; in this case,
In spherical coordinates, g . as given by (17) is

'g:”z-Ucose;-a,.+Usine;i6

(27)

R
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So that

(==}

gr =

)

- Ucos 6, q:; = Usin 6 (28)
Following the introduction of the rigid sphere,

the boundary
conditions to be satisfied on the sphere are

q£1) qé1)

=0 at r =a
where

(29)E

= q° + (1), @ +q .
=ty G =gt

e

|
(30)
50 that qn end g, are the perturbations in redial and tangential ‘
components of velocity.

We now need to solve for values of ¢, end ¢y in the equations

Fdo =0, Py =0

-

(34)
such that the conditions (29) are satisfied.

bn e

From (28), we observe the dependence of gq
the dependence of qg1)

(1)

i
s’ on cos § and !

on sin 8. Purthermore, (29) suggest that
both depend on r, Guided by these facts, and observing the nature

of (25) and (26), we construct a solution of (31) in the form

o = g(r) cos &

¢ = £(r)

(32)
where g{r) and £(r) are functions of r only.
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Hence ®%; = O becomes on using (32) and (33),

A solu

where A is a constant,

aZ
e *

{
Now in spherical polar coordinates and for axisymmetric flows, Li

&F 2 9 1
LA v R TR

= 0

3
con o (254 285 - 35)

tion of (34) is

cot™ 0 @

9

17

i

(33)

b

ey e

(34)

(35)

The cther solution, g = kr, k a constant, is inadimissible since

I' = 00 o

Also

e solution of (36) is

from (32) and (33), WP¢ = O becomes

@2 ar

2 .
+rdr= 0

where B and C are constants, However, € = O in this

the offect of the disturbance must vanish as r - o .

case since

the effect of the introduction of the sphere must tend to zero as

(36)

(37)

(38)

e

e
e ——
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Hence from (25) and (26) E
‘.
q: =%(%+B\cose—'?cose H‘\
/ i
' , \{
A B \
=~20086<"'+"') :
? T (39)}
qé =;g—e[<%a+3>cosa+g§sine ',:
;

, A B

- - sin 0 (;3 - ;) 0) |
So that from (28), (30), (39) and (40), \
(D . cose(2.2B,y (41) l‘
= ©Tr ‘\
!
&0 - sno (3 -2 -0) 6 |
-7 \
|
So that when r = a, '\
q£1)=q(cos 8) (i—é-*.,.%-rU):Of‘rom (29) 1&
| ‘x
}
or '1
oA 2 :
F+S v (43) |

&
-
-
i
'
LY
[4:]
D
]
(=3
S’
Pt
Y ES
)
g
i
fon
~—
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|
or |
A B | o
@ "a =V (u'")
Solving (43) and (44) simultaneously gives
8y 38U T
Hence
. i
(1) _<-2:_r}3] +%-U)cose |
* |
:-Ucos@—%U(i -%) (46) -
= o
and :
Vosin g -tulE 32 g |
Q = Jun.;Laali_U(? +rn>31n6 (l.;.Tr')'l
. ]
which agrees with results obtained by traditional methods, L
(b) Stress components. The stress components are given |
in spherical coordinatés as
G-rr = =~p + 2 9gr ' !
- P “ ar {
' . aq : i
2 6
°’ee=‘P+§H<5_é+°~P> . |
|
o /% . .
%o =~ P * T5in D 5$+qf31n6+q6°°se (48)
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a q
Couf e D
°rg T M (ras &% Tr)
9 q
g — yg-gap_..._..;_u&(p_ug .
ro -~ rsin €060 dr

aqe

T,

wqnere

2 2 . Ca 3 ’
P = .P-';’-%E (ar(rg sin 6 g )+ -a—e-(r sin 9 qe)+ -ﬁ(rqcp)) ’

aq
- 2 4 -
&p"“’(raarsinee(p . T

t 0
%‘QCO )

in term of the harmonic functions ¢y ,d; ,¢n, and ¢ theref"ore,

if we let

M=o+ T sin 6(¢, cos @ + ¢usin @)+ ¢ncos O

we can write, from (21), (22) and (23)

sin@ ) or

. ¢4 COS 6])] + -g-é-[r sin 0 (}'é-é

- 2[cos 6 ($cos ¢ + ¢ sin .cp)' - %5111 6])]

d

+a(P

f

oA

sin Q‘ Qo

P = ¢ {-a-—[rzsin e (ﬂ - 2[sin 6 (¢ cos @+ ¢p8in ¢

or

f
ey 1

- 2r{¢n cos ¢ ~ ¢ sin w)]} .55@

i
I
H
!
!

i
!
i

(49)
r
!

)
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ni" ;
. 1
O =-P+ 2 azm-2§“[sine(¢acos"+¢gsin) o
rr Tl ar-" o8¢ ¢
~ i
+ ¢g cOS e]J (51)
¥ i
o —-p-:.-g-E aal—z’gn-[cosfi(' coS @ + ¢ sin ) |
89 = r |rod a6 Pr CO5 @+ o ¢ :
!
- ¢n sin 6] + 7‘ l
g
- -2[sin 6 (g cos ¢ + ¢asin @) j
|
+ ¢ COS 6]} (52)
g . . 2u 4 Py 2 . 5
oo =P *rEn 6|7 sin 0 37 a(P%COS(p—QSJ_SJ.ncp;
+ 8in 0 (--' - 2[51n 8 (¢ cos gtpsin cp)
c :
A + ¢ycos 6]) + cos B (rae g
|
- 2[cos 0 (¢ cos Qrpasin ¢} « ¢osin e])] (53)
. 0 = B {7arsg ¥ ae 8i ;L CO8 ¢ + ¢nsin @)+ scos
-2 g—;[cos 8 (¢ co8 ¢ + ¢psin @) - gusin 6]
6). 2 . . . . i}
- st ;[cos 8 (005 ¢ + ¢u8in ¢ )=gnsin B]J (54)
: - 1 292, 3 .. > o
Tppp = i_r e (armp -2 aﬂp[s::.n 0 (g?,_cos P + ¢psin (p):
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i)

Loy

ped

+ ¢pcos 6]) -2 -—(¢gcos @~ ¢151n ?)-

m“ a<p +2(p 008 ¢ = pysin 'P)J (55)

C 292 23 _
“{Fasin 6 36 dg rae(¢acos ¢ = ¢y sin @) :

23
r'gin 6 do

[cos 6 (¢ cos ¢ + gnsin ¢)-ggsin 6]

;
t

_cot 9 [r 1 oA - 2(pycos ¢ - ysin q))]] (56)

r gin © a¢

For axisymmetric motion, when ¢, = ¢ = 0O and ¢§ and ¢n are
independent of ¢, equations (49) to (56) simplify considerably,
In Qome simple flow fields e.g. a source, or sink or doublet

iﬂ a infinite fluid only one of the four harmonic functions,
.8, ¢ 1ie needed to describe the flow. The case of a2 source in

an infinite fluid is considered below,

(¢) A source in an infinite fluid: Consider a source of.
strength m, in an infinite viscous
fluid, located at a point C on the

g-~a2x1is and at a distance h from

the origin. For any point P
distant r from the origin and

such that angle COP = 6, '

Yo Jra ™ 2rh cos ©.

- wsn
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The potential of such a flow is : 1
, n - .
o=
1- -
Yr®+ h® - 2rh cos 8

= - i
= E{;Ih(cos 0) Iy (57?
Ned 4 - ;:
where P,{cos 0) is the Legendre’s function. f
!
For this flow therefore ;
!
a7 k
i
nr"“lP cos 8 }

M o o

% =558 =n ) fmr 5 Polcos 0)
d Bp{cos @) dgos B]. ;
BT a(cos 6 de ' -

= W= 7
fz;'ﬁ':i' sin § P,

{l

t

where */?! indiocates differentiation with respect to cos 6 . !

(o)_ p{éau 2% _,-E*:.]

= Mme t 5 T

‘ (4 Y =2 o3 /
- 2um Z(! n)rh ‘s:r.n 8 P | (60)
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-P+ 2u

94,
ér

n(n~1)z"-3p,
ZP-m hn +1

. dq
2u (0
- P+T (66 M q"‘)

p:ﬁiﬁ[%;(rasine Qr) -ilg—e-(r sinéq_e)]:O | (61)

2 ) B (a1 - 0By + 7] (63)

_ 2u . !
.P * I in {qr sin 8 + 4q COS e]

- 2um z"n:r Pry

(6i)
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CHAPTER THREE

The flow f‘:.eld of a very thin Je't in an 1nf1n1te
visoous flu:l,d .

_ In ‘Ehn.s chaptér we g‘{.ve a further demonstration of Lisow to apply the
nethod given in chap‘i:e'r_ two to solve a more d:i.f‘fidixlt p'mb}em'ﬁia.n' the
cne at the end of chapter two. Infact wa dev'elop & possible theory f;or,
the flow field of a very thin jet passing through an infinite
imcompressible viscous fluid in steady state. Our only assumption is
that the rate of change of momentum of the fluid in the jet is constant.
3.4 Let the plane z = O be the interface of two immiscible dissimilar
fluids both in steady state and extending to infinity on either side of
the plane z = O, Let the region z > O be region 4 amd the region z < O
be region 2. Let a circular disc of radius ’'a’ be placed in region 2
and kept fixed with its cirecular cross-seotion at the interface,
Gons:.der a jet of momentum ? impinging directly and uniformly only on

the circular cross-section at the interface. Iet the change in momentum

©of the jet with respect to time be constant and oqual to F at any

instant., By taking the limit as ’a’ tends to zero and making the
viscosities of the two fluids the same, we should obtain the flow field
of a very thin jet passing through an infinite viseous fluid in steady

state,
3.2 The appropriate Navier-Stoke’s equation is
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where p pressure, g = velocity and p = coefficient of viscosity.
A solution of this equation is, as established earlier in chapter

two

g = Vigo +peg) - 29
' (1)

where ¢ and ¢ satisfy the hammonic equations '

Pgo = 0, Pg = 0
and

g = ($, ¢ay )

For axisymmetric flows, like the case under consideratio‘n, it
has been shown that ¢ = ¢a = 0O. So that in c¢ylindrical coordinates,
eq;ua.tion (1) gives o

3

6, = 57 (% + k) - 2% (2)

1 = & (e + o) (5)

P~ 9p _
and

3



The boundary

) _ )

zg . zZ

Tor fegion (1) i.ee 2 > 0, we take

P f A 7, (Ap)e ™™ ax

:Sl) =f B(h) Jo (Rp)e-}\'z dx
u]
For region (2) i.e. 2z < 0, we take

o) f o) T (p)e™ ar

o) =jf DO I (hp)e™®  ax

(9) to (12);&;9 solutions of the harmonic

>

equation

(5)
(6)

(7)

(8)

(9)

(i0)'

(11)

(12}

(13)
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and they also satisfy the condition that the effect of the disturbance

tends to zero at large distances from the obstacle.

From (2), (3), (9) 2nd (40),

) s Ll wl)) - gl
= [w-x Jo (xp)a'“[a(x) + 2 B(n)] aa
_ [w B(A) Jo(hp)e-lz dx
& L L )

f m-x I, (Ap)e‘“[A(x) + 2z B(A)] ax

From (2), (3), (11) and (42),

O LG L ) )
- jmh Jo (1p)e“[g(x) + 2 D(A)] an
- [ DO I (rp)e an
qf) - (¢(2) vz 4$))

[«,‘l J, (xp)e“[C(l) + Z D(l)].d?t

(14.)

(45)

(16)

(17)



i

1 8

“ron (14) and (15):

o, - v{:—:él)* ;;E)}

From (416) and (17):

e ()
4q éq
() _ —z —L
o-pz - “'z[ap‘ * 02 }
2 = 2 [m )@Jl(xp)en[c(m) +2D(0\)] ar
How
aqgl) rco s -:7\.2 A( ) B(l)] ~
e =Jo M Jo(nple (AN + 2
and
(1) 1
%E = v qg )

- ]Om B(A) Jo(np)e M dk}

from (14)

- Q0

S va{ f - 2z B(A) Jo(ap)e m]

},LIVQ[[CO -nJd (xp)e"‘z[ﬂ(x) + 2z B(A)] ar

29

(18)

(19)

(20)
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zince

Sinilarly

and

sinece

30
va[ [m - % A(0) 'Jo(xp)e-'kZ an
- [Q B()) Jo(kp)_e—)‘z dl} =0
(1) w |
"S'E = 2p1/ ¥ B(A) Jo(ap)e™™® an ' | (21) |
p(l) = 2 /m.-xs(x) Jo(xp)e'” dan - - (22) |
(1)
3q,
Gﬁ;) = - P(l? + 2 3;5
= 2 fm A J,,(xp)é'“[m(h) + B(A)(1+iz)] dx (23) i
PAC) | :
e /‘ 2eM g, (ap)[C(A) + zD(A)] an (24)
Q_E(z)_ 72 (=) _ vz{[w A2 '
500 = V% = A Jo(rple™ [ C(n)+z D(A) Jan

- f D) 3 (p)eM dm] f

<]

from (16)
~ o '

2 { f T xc) 3 (ap)eMan - [ " p() Jo'(;p)e”cn} -0 |

Q



T 3

iA‘}

%E( ) = 2 /‘miD(l)eM To(np) ax
— ) - jrmib(x)e“ Io (np) @r
FON
°£i) < - ®) g ;;E

1]

200 f " Mo (ap)e ™M) & D) (hz - 1)1an

From (5), (15) and (&7), we have at z = O:

/ e ng, (ap) A(V)A = f " a3, (hp) ()@

wes A(N) = C(N)

Trom (6), (14) and (16) we have at z = O,

o

[w. A Jo(hp) A(A)aM -f B(M) Jo (Ap)an

s]

= /mmo (xp) c(n)an - /mn(m) Jo (Ap)ax

N M?Q =~ C(n)

and B{(x) = D(d)

From (7), (18) and (19), we have at z = O,

31

(25)

(26)

(21)

(28)

(29)



T

or

4 infinite homogeneous fluid, we shall set M o=

32
. 3 . |
2, / 2, (mp):}(m)dx = - 2up [ MJ, (Ap)C(n)an
Yo £ e} :
= wAR) = 5,0.000) (30)
# |
e i
Now a-[ Jc'_(xrp)J1 (Aa)dd = {1’ Wl.';en p<a
o %; 0, 1P >8
/

From (8),” (23) ama (26), we have at =z = O:

"2 / JEv (rp) [512 (A6(A) - D(N)J- wm DA + B(V) ]} ax

E =

= ;i—a . a jra Jo (Ap)T; (Aa) ‘an
/ hEA 0o Mo1C() = DO)] = hur AG) + 30V

F -
= e J]_(?\.&.)J d.l =0

= M 6(0) - wa(M)] - [y DOV + wyB()]

. A, 5a)

7a 26 (31) -
Now from(27) ana (28)

AA) =C(d) =-¢c(d) = o0 (32)

Using this in (31) we get

Up D(7) + s B(A) = - % Jy i%)- | (33)

In order to got the flow field of a very thin jot passing through

Ha = p in equation
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-
\ )

+«n the fluid such that PS = ry !

33
\25) and then take the limit as a - O,
Sctting uy = pp = u in (33) we get, on using (29):
. g, (ra
- (31)
o Lt Jy(na)
a-0 T = ]7’2
: From (34) we have
F
sv that the potentials for this flow is
® ¥ ~AZ
%o =0 and g =f - = Jo(ple dr  from (10)
o sy
winee A = C = O,
oo ¢
Now oM o (rp)an = +
o P
A = -m (35)

Consequently for a thin jet emanating from a point P along the

S-oxls at a distence h  from the origin, the potential at any point 8

angle POS = @, and 0S = r, is



8}

4
-F 1
$3 = ll-’ﬁp 2 T,
- F 1
= Lry © YPPih7< 2rh cos 6
-F " P, (cos 8)° '
= by et (36)
vacre Pp(cos 8) is the legendre polynomial.
Moo ddcation: Using ¢y we can obtain the stress distribution in the
Mlow ficld.
Writing L = —~=—=— - @ ocan be written as
)-lﬂq_},hn"l
b =Lr" Py (37)
In spherical coordinates, and from (1),
& ,
9. = -a-I-;-(gbo + ¢par cos 8) ~ 2, cos B
= -g-; (psr cos ) - 26, cos 6, since ¢o = O .,
. Q. = (n - 1)L2" cos 6 Py,
(n = 1)1‘ r" [(n + 1) Pﬂ+1 + nPﬂ-_-l] (38)
(2n + 1)
3. o
q, = }'5"5(%"'953 r cos 0) + 29 sin

L r" sin 6 [P, - cos 6 B} ]
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2

sere (7)) indicates differentiation with respect to cos 6

o sthat

and

9

rr

6o

o

rd ~

Lr" sin 6 [(4 - n) B, - Pr:-l]!

Lr" sin 6 ’ ’
_z-rll-i-?lﬁ_[(n—‘]) PI"I+1 + (n“l" 2) Pn-l]

rog * or T

p<_ai’z ?E@._E,@,)

_ 2 u(n-1)L sin o pr"-! [nP,:tl + (n+1 )Pn/d

_ 2 3 ) 3 .
“?{?ﬁ- -5;(1‘3 smneqr)-i--é—é-(rsz.naqe)] =0

it

1]

2n+1

d
= —P+2“S;‘—"

2n Ln(n-1 )I'n -1 [(n+1) P+ 1Py, ]
2n+4

2 6
- Jor 2 T 2
P ¥ (5 )

2uL " cos 0 [n(1-n)P, + P,(_lj

o +ﬁ§‘n—é<%me+qe°°$0)

2 puIr"?t cos @ Pn/__.1

2 p L= (0P - Pr: )

»

(39)

(40)

(41)

(x2)

(4:3)

(b

(45)
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CHAPTER FOUR

A Spherical drop of fluid in an infinite dissimilar
fluid containing a source.

In this chapter we consider the case when the entire three-dimensional
space is filled with two immiscible viscous fluids. One type of fluid
oceupies the regionr > a and a di‘ff‘erent fluid occupies the region
T < a such that their interface r = a is spherical. The region r > a
is referred _to. as the region (‘I), vhile the region r <a is referr:ed to
as region (2).

A point source of strength m is located in the region (1) at a
Gistance greater than ’'a’ from the origin. The flow fields in both
regions are tlen investigated with the aim of discovering whe ther or not
ary relationship exists between these flow fields ard the flow field of

& single~{luid space containing a source..

“+1 Our basic assumptions are that a steady-state condition exists,
tie inertial terms in the Navier-Stolke's equation and body forces are
negligible, and that ’a’ is sufficiently small and the flow slow enough
for the drop of fluid in the region r < a to be nearly ‘spherical.,.

In the latter part of this chapter, we consider the case when the

Spherical drop is replaced by a spherical bubblée of gas..
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%¢2 If a steady-state condition exists and if inertial terms and body

foroes  are negligible,’ the Navier-Stoke’s equation for an incompressible

B viscous fluid is
Vp = Vg | (1)
A solution of this equation is as shown in chapter two
P 4 = V(%'*,E-n@) - 2%
- (2)
P = 2u(V.g¢)
provided ¢ = (9’:1 »P2 ,0a ) and o satisfy the harmonic equations
,:I VQQ = .9 and Vsqbo = 0
rus‘nactively,
In spherical coordimtes and for axisymmetric flows equations (2)
v
can be written as .
¥ -
ar =§;(¢°-+%rcose)-2¢3c;osﬁ (3)
: J ' . .
Uy = m(% + s r cos 0) + 2¢, sin 6 (&)
251 ) . d . ‘
P = p—'ﬁ—n—e (-5-;(1351:& 8q.) + 5’5'(1' sin eqe)) (6)
ke I
ﬁb



and. the stress components can be obtained from the relations

d

a
rr

3 .
2u /°%
"ee”‘P“;E(é"é“*qr)

!

S T in 9.
O_cpcp P+rsin6<qf" g;n6+qeOOIS 6)

aqe g '
Org = U <r66 o :

For axis etric flows. ¢ = o = 0O,
T ry — “6p

38

(7
:(8)

(9)

(10)

Now for a source of strength m located at a point h(> a) from the

origin along the z-axis, the potential for the flow is, from Chapter 2,

¢(o) = GrP,(cos 6)

(11)

where & = m/h"*!, P, (cos 6) is the Legendre function and superfix (O)

refers to flow field in a 31ngle~f1u1d spa.ce, n assumes the values from

0 te eaa

So that for the single-fluid space conta.lnlng & source of strength

m, the velocity amd stress components are

qe(") = £ 6" sin 6Py
qg’) = 0
crr9(°) = 2(1 - n) ez gy 6 7

iilere p-(l) is the viscosity of the fluid in the region r > a,

r

(12)
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O'](?;) = 2n{n ~ )p(l)Gr”‘;”Pn
O‘E('%) = 2p.(1)r”'9G(n(1-n)Pn+ p,7) | (13)

o) . 2yt )2 Paly .

%43 To solve our problem, noting that q. varies as P (cos 8), qq varies

as Pn/(cos 8) and also that the components of stress and velbéity should

vonis'. as r - w, we construct our ¢, and ¢; as follows:

For the region r > a (region 1), we have

¢c$l) = A'r—(nﬂ)Pn' ¢’c§1) = g‘z r-(n+1)Pn (14a)

and for the region r < a (region 2), we have

87 o R S CO a% P, (14p)

where 4, B, C, D are to be determined from 'the boundary conditions

£
qgl) . qés)

! (15)
‘Tre) = Uﬁe)

and 0‘(1 ) - ()
rr rr

av r = a for all 8 and ¢.
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Putting (142) ih equations (3) to'(10) and noting that if

() (%)

Lo 9g “» etc are the perturbation velocity components in the region

r > a, the qr(-l) = q_r(‘o) + qI(l*), qgl) = q{go) +-q_g*) eté.,

we have

q_r(‘l) =n Gri-1p, —-I%;—Q-I(A + % B) Py

qgl) == Gr"-! sin @ P,: - ]%%2 (A + (n-2) §.B> Pn,
. . (16)
: W
O‘JE;) = 2(1—.n)p(1)(}r"‘2 sin 6 P,: + %;ﬁﬁ‘—e ((2+n)A .

) .
+ (1) B) 54

O_I(';) = 2&1 )1:1(n—1)G—rn_3Pn+ g‘%;g-nill ((n_,_g) A+n? i_': B) P,

and

Similarly by putting (14b) in equations (3) to (10) 'we have for

the regionr < a ’

o) | n'rw—l(c ¢ (1) § D) B,

qéz) = - sinIBr”—I(C + (n-.l-j) 5 D) pr']’

(17)
Gﬁl) = 2“(2) sin e:-"*”((*:—n)c - n(n+2) i—ﬁ D) 34

t

n

o‘I(:.) = 2p(2) nr”*g((n-jl)g * _(n+‘:| )?5 D)P '
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fipplying. the boundary condi tions (15) to equations (16) and (17) we
obtain thc following equations:

nCa2n+1 _ (}1+1)(A+nB) = na?”*'l'(C + (n+1 )D> '
Ga?M+1y A4(n-2)B - a.2”+1(C + (ﬁ+3)D)
| (18)

(1-n)6a®1+1 4 (24n)A + (n?-'1)B = gazn"l((‘f-n)c - n(n+2)D>

h(n-1)G-a3_“+1f(n+1)(n+2)A + n?(n+4)B < gna””“((n-—'l)c + (n+1)BD)
where g = “(3 )/p(l) .

0" ving equations (18) simultar'iéously

bl (e en e

= (n+1)(1+23(n_1))
B = ._-in'1)(2n+1)(1_g)ann+lc_
= (n+1) (1+2g(n4)) | “
¢ . (m=-1) ¢ » (15)
- 1+25 n-4:

That D = O implies, from (14b), that ‘the flow field in the region

r<a is to‘tally described by q,)( ) = Cr"P

1
n =



o8

Now 1 4 2g(n-1) = Zg(n-g-q,)’ whére a = .1_'2.'_835

.". Fram (16)
q:E_l) = nGrh- P -&;-)- (& + nr3 —=r B)P,

q_f‘) nGa. (#)[jn1!§2n12 ra(n']“zn”

A () (8 - ) o)
() w1 E))

where _
-
a

R

T r

.. "ql(f)(r,la) = Cl1(.°)_(r,e) _( )( 1/2> [[(2—’: 1)(20, 1>.2] q£ )(R o)
- 2(" 5) S‘E.(R Q,(.O)(R,e)>
+ (1)1 420 (1§2> - (20)

| R'(“*“'--)/ Rx“ql(f’ o, B)d?\}l

Similarly,

()

qg /= = Gx"~igin ¢ P. —-—E-[A (n-2) I‘° 18/



&y

Y

&

43
A.r;d since A and B could be written as
s . p{n-)(2n-1)(1-g)an+ig
= 2g(n+1) (n+a)
= a””*lG(ouﬁz){ (5+2a)+2n + & a’:‘ 12121 - (_sz%m (21)
and

g o _ {(nz1)(One)(1-g)s? "“'G - &M g(adh) X

2e(n+4 )(n+c0_ (22)

{_2 + a+1) { 2gm1 = 2 . }
. ] n+q, (&1)(n+1)

e o). (%)ann-lwb{[mza) (%- -:) « &

+ 2n <1 . ;s) (1) [o(2041) (15) + 2 (120)]
oy ey

o 61 -5)

X ’
m] G sin 8 P,

o (,0) = ol (w,0) + @ (B2 G- 0 F ) ol m0)

+ 2(1- z)é-ﬁ-(Rq(o)(R 6))+(Ef—l)[a,(2a+1)(1 - ;—i)

+ 2 (1oa)r” (W)/ %98 (x,0)an] (23)

6(1 )
—(:;)R-H/ hqg )(K,G)d?\}
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Also

1) .
G;E-t)) ; 2(1-.n)p(1')Gr““zsin 6P, + ‘gél(—r-n—i¥‘—e-[(1r1+2)13x+(n3 -1);":3]

o, ' ala? - 2g~2
(n42)4 = (o) (n-1)a"*¢ [(1-@)*' on.+ (q,-: 1)En'+‘7)'a,
+ =20
a~1 ) { n+1 ?

(n - 1)B = (aﬁifg)(n-‘l) 2n+1(;_[1+2g, - 2n + Li.t_ﬂ»)_(_“_ﬁg.l} ‘

and

n +

0_5‘1) (0 _ (1)( &y R”-QG(‘[-n)(a-ll">)[ (1.@)4» (1+2c1,) ]+2n(1-"'2)

a(a?®-2a-2) r? =20 . ’
+ - M[ e v (1+a)(1-2a) J+ %} sin 6 P,

o5 (r,0) = o (x,0) - (3%(a %)[[(1-@«——2(“2@)] ©)(x,0)

v 201 Ema @ o) (,0))
@
(L 2 ey 120 D) D) 0

-2 ) =4 2 (o)
* o -1 & / A ro (7\,6)&7\}
[s]

i
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Similarly

' . (1‘ ) .
cs'(1 ) = 2p_(1 )n(n-'i YGr"-2p, +2H‘IT_E(D_+12 [(n+2)A+n2§ B]P,

- 0'(0 )+ 29(1 )n(n-1 JRN-2 (%)SG(G%){2+(1 -; ) (1-2a)+2n{1 —;)

4 ?&5[2(1‘“) + a{1-2a,) (1~ i—:)]} Py

rr

D e) - cﬁi)(r,e)f(%)s(a+%ﬁt[2+(1-§;)(1-2@)]Ggi)(ﬁ,e)
2Bl @ @y (25)
R
- [2(1+c1,)+q.(1'—20.)(1-;-§)]R-(G'+2)/ m“’”crg)(x,'e)dx}
88 =
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4.3 In the special case of a gags bubble, the boundary conditions
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Applying these boundary conditions we have the following equations:

A+nB = ne, g2nii
“n +1

C = -i{n+1)D

and

A+ (n=2) B = (2D -g)a®"*

(24n)A + (n®=4) B =

~ &M+ [(4-n)6 + g(1+2n)Ds
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The solution of (34) is

A .

n(1-= 2n)g Ga? N+

= 2(n +1)(1 + g)

6(2 + g + 2ngla?N+t

S 2n+ 1)1+ g)
 {4=2mle
“%TTff?g_
_ §2n - 1)¢
= 2(n+)(1+g
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Using the relations
, 34,
e wD 4
Opp = T PF 2y '
- m.l . akq
S 2 8
o = B+ (50
: - o _ _'z.l-' V .
o R (N 5in @ + cos O
P P r sin O (qT . % >
where .
_ 2% 3 /., i
P =y ":E-r-(r’mn 6 q,) + E-g(r sin O qe)]
wé can obtain the other stress components. For the homogenous fluid
these are
(o) o Fxe
T = 2 y, n(n-1) 6 r"-2Pp, . (39)
O'ég) = 2 W "2 6[n(1-n)P, + P,':_,_] ' _ (1.0)
U(o) = " 2 p,lr'"“zﬁ' PI{—I . (3#1)
P R
[s3 = ' = Oo
T Op -
We shall take note of the following relations: '
Let
R = 6.2/1‘ ) (2:2)
md let

@ = & (8 B)
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2.0
= nGR"P, = n G(%u) P,
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n+f ‘r

[ eme- nE @) 2 g

q_:‘) = - n?G- 'a.z(n_l)Pn/rnu

& na
oo ol
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dg (8,R)

1l
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2 n-1
=~ G (i-'—-) sin @ P/
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5;— (Fogy) = 20(1-n)y, G 272 sin 6 B
f 0% ofy () @0 = 2tonly €57 sin o Bf
Then . .
KON qio)(e,'r) ) [gg(f; §ia+g>1 £(6,8)
v L) %:L%qzte,ft)J
fro_.m (33) and (34) |
Similarly |
0 o) o A2 ee)] qé")i(e,ﬁ)
%%-iﬁi)- N ERIQICRIN
4 Hgéi;g;)ag 2l ﬁ[R af
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(1) _ () . aa[zaag - 1?(2+g) ]
%o (6,0) + - ol %) (0,z)
_ 1a+;13 a® a [ 1 O"(O)(B,R)]
Q/r
'(7,5;2"[ [R3q: ( (8,R)Jar
e (00 ek O
a.2/r ‘
;ﬁ (R qf(,o) (e,g)ldﬂ} -(63)
o\? = = (1- ) ERI(Ce
+;:é(-r 1) —[r qr\e r)] | (64)
%7 = grmey (10 2 oV + 7= G - 1te O o,n)]
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The following relationships also exist between the other stress

components of the undisturbed field" and those outside and inside the

2(1+g)rs

Ect) & 1 o(00,m))

ol (2+g)r®~ 2a%g] (0)
= (1+g)r o (OR)

Wy ag(é:"" - a%)
(1+g)#?

3 1 {0)
'5-; [ ; q'r V(B:R)]

(8,R)
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2

m{ (0)(9R)+(2—g)r/a/
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+(1+§5rﬂﬁzg(a2+ 5c%) q:QO)(B’R)

a/r
+ (67 g(a?s 37)] 5}/ [R qi(_o)(e,R)]dR} (68)
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CHAPTER FIVE

Slow two-phase shear-flow with a spherical interfage

Qur second comparison probiem is considered in this chapter.

It is a non-axisymnetric flow problea and our aim here is to investigate

if we could draw conclusions similar to those we drew in an
axisymmetric flow problen.

Our assumptions concerning ‘the size of the spherical drop and
the boundary conditions will be the same as in chapter four.

5.1 In the first part of this chapter we consider the problem
of two immiscible incompressible viscous fluids occupying the
regions r> aand r4 a respecti_vely of the three-dimensional
space., Here r,B,(fdenote the spherical polar co-ordinates.
The fluid in the region r > 2, otherwise called region (1), is
undergoing shear flow.

We investigate if any relationships exist between resuité
for the two—p@ase flovw. In tﬁe second part, we consider the case
when the fiuid in the region r £ a, otherwise called région (2),
is replaced by a spherical gas bubhle of negligible viscosity.
Our aim is to.find out if the conclusion of the first part

renains valid. In both cases the force tending to deform the

sphere can be obtained from the results of the single-phase flow.



e, 3

.:)/.2 Assume first of all that the entire three-dimensional space is

6

iilled with an incompressible viscous fluid undergoing shear flow which

sould be described by
a}u .

i‘!"

u=-‘,igcz.m,_v.-=-—%o,y, W:_O

fb'}i to

(o)

. Q. =% ar'sin?6 cos 2 ¢ = kr cos 2 ¢ P

where k = o/6, superfix (0) refers to original flow field and

(1)‘“

in Cartesian coordinates. In sﬁherical coordinates (1) is equivalent

¢

(2)

=
* E = 3sin?%p
(o) . kr cos 2 ¢ QF2
9 = % ar sin 6 cos '0 cos 2¢ = > ) (3)
3 (o) W r sing o .. krsin2 ¢ B
S and % = /?Cl. r sin 6 sin 2 ¢ = 5in 6 (L)
so that theA generating potential for the flow is
(0) a2 k 2
) =I;c1135,!1n:60052<p=§r0052<p?2 (5)
@ () (o) rap(® o) (o)
‘ since ol©) _ 9 (o) o (o) 1 o
BHISS @ =T 9y = SETE and " = TEERe 3 °
How let a small spherical drop of a dissimilar fluid be introduced into
the original fluid with its centre at the origin.
R .

{
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On the ir;troniuc;l:ti‘o"n of the spherical
f].rop,l the field~exte?irna.ll “to the ‘drop shall
he desigznated by supeirf‘ix (1) and the field
internal to the drop :'r;by superfix (2),

The superfix (*j: shiall refer to the

perturbation of the external fluid by the
{

drop. |
: |

|

5.3 The appropriate Navier-Stoke’s equation for the problem is, on |
§

neglicting inertial terms and body forces,

|
@ |
Vo= pVig ; (6)

| ?
*r
3=Y (o +z.9) -2, p=20(vg) = )

|
where ¢o and ¢ satisfy the,harmonic equations :

V2¢0=Q,

the solution to which is (as established in an e'arli:er paper),
! *

P

V% = 0 o

‘ : |
In spherical coordinates, (7) yield &
3 , I : |

4 e f 1 i B { e ( i f cos O

Gt = 5y Por'r 51 6 (91008 ¢ + gpsin ¢) + gox c0s 0]

- Ztsj._n 8 (p,cos @ + ¢nsin @) + ¢y cos 6] :

9 = rg——e [qb(,.{x;i sin 8 (¢ cos ¢ + gysin @)+ $ar cos 0]
~ 2 [cos € (¢ co5 ¢ + gusin ¢) - ¢ sin 6]
S _‘
-g-;. [¢o+ r 8in & (¢ c0o8 ¢ + ¢38in ¢)+ ¢or cos O
~ 2(¢a cos ¢ - ¢, sin g)

—
% =r sin 6 _‘

[

e

5|]
}
f
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vuided by the nature of ¢(0) and equations (8), we observe that
.

o aos 29F3, ¢ a cos 9P}, ¢» o - sinoP} and ¢ = O sinoce B} = &ip 6.

4l so for the region external to the drop we seloct our ¢’s as follows:

o = ———-—i-—“"ja“% A B4 - 22 oneh B, % =0 (9

while for the interior of the drop we take

o = Cricos 208, ¢y =¢» = b3 0. (10)

whcre A, B and C are constants to be determined. . )

Substituting (9) in (8) we have

r*sin 6

” A 32
G =~ o (12)
q; _ = Z2A sin 2¢§i ) (15)
f
i

The tangential stress components Ui and oi¢ are also found to be

8

%

3 3 * %

ré . rd8 or r f
' |
r? a8 = + 3B (14)
aq* 3 * q*- ' ;
% T %, ( ]
and, . °}¢ = W (r sin Bop T ar - ;ﬂ ) i

_ 2 sin 208 (8% 3B
r sin @ 2 7

S
~—
. S
\n
—



»2 that external to the drop we have

q§1) (o)

= qr + q;
. 5 A
" = cos 2¢P3[Kr "__.‘fﬁ‘ (;5- + B)]
(1) Bk | A
l Qg ' = cos 2¢ 36, (2 + =
(1) _ .~ sin 20F3 , 2 '
& %o sin 6 @ |
“ 3ol agf®) )
. o 0
And since O're = Uy | ey + T - = )
dF3
= = —i
5 Ky cos 2¢ 55
: (o) qx(- °) 2q{) ggo) ‘
vhile Org = M1 C sin 6o ¥ r T T )
" 2Ky, sin 2pB3
¥ - sin 6
. (1) _ (o),
we have G’ = 95 G'I_e
354 1 /84
@ = Y 000 2cp 38 i-. - 8 (F +5B)]
_—¢) 2, sin 20 . 1,84 -
e “ro 7T 5in 6 LK o Gl 33):]
} By substituting (10)+into (8); we get for the interior cf the
nrop

6L

(19) '.

(20)b



o 6
v { 5
q£2) = 2 Cr cos 2%F (Fq)
‘qéz) = 0 r cos 2p g—%g ; (‘22)
¥ (2) 2 Cr si i‘
_ r sin 20F2 ¢ (03)
% = sin 6 =)
(2) 973 T
LAV 2up C cos 2¢ 35 (12)4.)
5 0_(2) __ L4 Cpo sin 20F8 (£5)
- r¢ ‘ sin © \
The boundary conditions to be satisfied are the comtinuity of |
velocity components and tangential stresses, that is, at r - a \
.“ R R i N I .
§ (1) (2) |
SR I |
] ) - ! }
N CP N ) 1
q6 = lge .
qq()ﬂ M 3
& P (2(?)
| S0 (2 1
rd - ro , !
1 _ (2 ' '
“ro “ro !
where a is the radius of the drop. l
i
@ Applying these boundary conditions yields the following equations: ;
3 /A | :
Ka - a?('é'ﬂ + B) = 2Ca (2??
Ka A |
;. 5=+ s = Ca (28'){
5 2
KA 4+ = = 203 } (29)1_

1 t?-j:l
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i

1 /84
iy [1{.- gs( + 3B

-y
(531 }_K"‘ga.(

8i
w2t 3B

1]

)]
5

(@]

)
)

i

20 C

Tacse equations are equivalent to

Ka""-}(%a +B>

Ka® + 24

e

e -

where g = e/l

(-gé . 33)]

2 Ca®

2 Cab

[

2 Cg a®

Solving these equations simultaneously yield

A = a5kg°
1 =
wh = ——4&
ere B = 53
B s - 22 ke
3
and ¢ - B
f’«"’h = """“"i';""_"" -
ere & = VT
* Weiti (o), .
Ce Writing  q.’(r,;6,9) =
then q_z(.o)(ﬁ,@,tp') =

ir

k r cos 2¢F3
k R cos 2pF%, where R =

a2
k > cos 29F

a2
P

-635)

o b ———
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o
g q1(~0)tR2, 8,0) = k& cos 28 .
Ticn we can write
T R
- o 5—9‘%-@?(3? +B>
= q£°)_ Sk, cos 99(%:_%)
= {2 (r,0,0)+ Sog {°)(2,8,0) - 32z o{O)(#,6,0) “(36)
Similarly
qgl) - qf,°)(r,e,cp) + 2ag qgo)(Ra,e,(p) - (39)
Ve P ri000) + 208 8,0,0) )
19 B2 Hnon

=ng,

2

R 8/; cri{g)(w,(p)ax] )

(1 ) a :
'gr@) = °1rcc1’> (r,6,9) - & [5/0 01(-;) (r,6,p)dr

+ 8 ] Racrf,;) (0,000 (42)

Q0

Proceeding in a similay manner we found that the following - relationship

b
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also exists between the flow field within the drop and that of the

~omogeneous fluid:

@ _

9. = 28 Q£ (43)
o2 = 5g ol (1)
(2) _ (o) |
Q$ = 5g q¢ _ (45)
(2) |
re’ = m%? (46)
where M = ngy i
2 o)
and O":E. ) = M GI(‘P) : (47) :
oﬁl) is found to he
1 - Gl _&L‘Z;ié‘afi(?_ , B)
; Gﬁg)(r:e:@) - [:5 £§)(h:6:¢)dl
- [ (°)(>~, ,q,m] (48)
s a2 o 4 0l cos 208 - e ol (r,0,0) (49)
s¢ that we ocan write
3(2) = 58&2(0), 2‘2) = 55512¥°) (50)

»"+ The force  trying %o deform the spherioal drop is

(4) = (2) ,
Fo= S - Cpor and is given by
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F = (1-5gg, ) cr( )(r 6,9) - -—5° 5[ (°)(m 8,¢)an

(o) |
-2 ad0smal 0
0
Cn the surface of the sphore, i.e. at r = a,

F = (1-5gg, ) Ug‘g)(a,e,q)) - 6g, L50‘I(‘§)(a,6,<p)
20'.52) (a, G,qa)] | H

= (1"5551“‘ 1850) (,r)(a:

1t

.~ o]
- bswf,r)(a;e,cp)

i

- 3080k cos 2pF  (52)
and is independent of the radius of the drop.
Sale A _SPECIAL CASE

If the spheorieal drop contains o fluid whiose viscosity is very
suall coupared to that of the surrounding fluid then

Ha << ¢y and g = ﬁ‘" becomes negligible; Consequently,
1
. l-mg . 1

& = 3 T3 (53)

and = ! =1 (51")
& = g3 T3

«'s From (38), qiﬂ reduces to ql(.j) say, where

(3) (o) (2 0
wor n e s e e e (o)
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&

N A
sirilarly qé", %1‘, qﬁ;), o‘£;) and o;(?;) reduce respectively to

qéj), qu)}), ié), c‘hs) and c:'f‘i) tlwhere
o = ol ST 22 4§ ,0,0) (56)
q,?) = q‘:go)(r,ﬁ,cp) + 3 (°>(R2, 6,¢) (57)
. R,
Gr(.g) 3 Gi:g)(r,@,@) - '531—,_: (f/ Uf,g)(l,ﬁ,@)dh
+ 8 P()umwa) (58)
Je
O-:E':i) = Uﬁ;)(r’oﬁ’) - '?'5 "LEJ;“GI(,;)(R,GAP)Q
+ 8] ¥ Lo )(h e,cp)cu> (59)
ad (3) (o) 28 R (o)
&I Tpp = Ter (r;0,0) '?(Sf Cop (A;0,0)an .

- 2[ Rao-(")(?.,e,:p)dm) (60}

Similarly 3(2) reduces to g(h") 8zy yhere

3(4) - %g(o) (61)

and g(z) vanishes,

The force of deformation acting on the spherical bubble is then /

given by 0’(3) which on the surface of the bubble has the value
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J

010

oﬁi)(a,6,¢) - 2(5 Oﬁi)(h,e,w) - 2 rr)(h,e,¢))

= 5 o£1)(a,6,¢) ==-10k pu, cos 2pM

which again is independent of the radius of the bubble.

71

(62)
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CHAPTER STX

12

This chapter contains a summary of the conclusions reached in this |

t.esis as well as a few deductions that could be made from the results

obtained so far,

In chapter two, a method is developed which simplifies the

L3

integration of the governing steady state equations of an incompressible

viscous fluid vwith zero body and inertia forees. These equations being .

5

Vp = up¥gq,
Vg = 0,
& solution is found to e
3 =g + 1.g) ~ 2
P =2 (V.g),
where o and ¢ satisfy the harmonic equations
Voo =0, Pg =0, andg = (5,8),
in two-dimensions  and ‘
¢ = (r,f)l‘,.qsa, ¢a ) in. three-dimensions,
This wethod males Use of p:)tOntiai theory to reduce any steady state
fluid problem to that of Qi_fferentiaﬁl operators acting upon harmonic

functions. This is in contrast o the conventional stream function

approach which employs a fourth-order rartial; differential equation .

1)

(2)

(3)

(%)

and vhich can be used to solve only three-dimensional problems which are

axd.symme trilk’, : : !
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By this new approach, not only axisymmetric flow problems but
non-axisymretric {low problems also could be attempted. -
For axisymmetric flow problems, -only two harmonic equations,
P = 0 = Py - (5)

“eed be solved since ¢, and ¢, wvanish for such flows, -For any type of -
flow, ve nged to solve at most four harmonic equations far a three-
(imensional problem and at most three far a two-dimensional problem. - -
Firthermore, the formulation for singularities in the interior of -
one of iwo immiscible fluids becomes straight forward.
Three examples are considered. In chapter three, the new -
approach is employed to develop a theory for the flow of a thin Jet:
in an infinite viscous fluid in steady state., It is found that the ‘

flcw field can be describe¢ by a potential function

-+

¢ = ZL r"P,(cos 8) . (6) i
n=o. ‘.
where
L = - F/li-ﬂphn+1, - , (?)

Po(cos 8) is the Legendre polynomial, T is the constant rate of change
of the momentum of the jet and p is the coefficient of viscosity of the
infinite fluid.

In chapter four an axisymmetric flow problem is considered. It

is the case of a source in an infinite fluid containing a sph;arical



by

e

3

(o 9

~hr

)

7
drop of sdother fluid. <11« ¥le found that the velocities and
stresses within and withouf'the spherical drop can be obtained by
differentiations and integrations of the velocities and stresses of an
infinite homogeﬁeous fluid containing a source,

Furthermore, we found that the flow inside the drop could be :
described by a harmonic function
%(s) = %(0)" where
| (8)

(?5(0) = GI‘nPn(COS 8), (G = 2 ), n = U,... o0,

n +1

1s the potential function which describes the flow field in an 1

homogeneous fluid, Also since - : :

_ a6/ ~ 1 _ 1= 2z
_ﬁ-{n—_%y = g(1+§am)> where a = r (9).f

e have

%(2) = g“‘qb(o) +’1&(8-1)8‘2r-af ry‘a:d('f’(c,)()"e)dk' (10)

Similarly, to describe the flow field exterior to the drop, two

. : (1) (2) (1) (3)
harwonic functions ¢, and ¢35 ‘are employed where o and ¢y a

E
|

re

%(l) - A r—(ﬁ”)Pn(cos 8) | (11‘>
and f
Ps (1) = ‘E‘a r—(nM)Pﬂ(cos 0), | (12).

[



T

=

g.ﬁﬁ{

2

i-l.;;i

where
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AL n(n.-jgé%r;:g&;qg;aznqxlg ) aaml'G(mi’,%):[_(g;ﬁLza)ﬁn

- (13)
ala+1)(2a+1) - 6 -

+ a-1)(n+a) ~ Tadilne ]

%(1) -G Rﬂpn.%(a,+ij'g‘)[-(5+2a,)+2n' + E?-a. - o )6(n+1)] | (14)
/ :

. 2“. - N

&

¢ (r,0) - ) [~(5+20)6% ) (2, 0)

;

R |
+ 22 5290 )(x,0) + w0 o0 (19)
: _ Yo A '
6R R o ! | a
= a'_qo ( )(?\.,G)d]\] '
Simjilarly

3 {1-n) (2n+4) (1-g)a2nelg

2g{n+1) (nva) = (o) [ -2+ %ﬂ%ﬁl

(16)

' ‘ I2 | .2n'.1
: I
So that : :

() 1 n 2 v
¢a ?a;(g“'%)GR‘ (-2‘111:0, T (a=1){n+1) ) (17)

]

_ [a+1)(20-1)
- a -1

v
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R .
co a0 - Let)-2) 2,0) +YR'°°[ 29250 (3, 6)an

AR
-z om-
a-1 Jg
When the spherical drop is replaced by a gas bubble, we found that the
flow fields inside anl outside the spherical bubble are still directly
deaucible fram the flow field of homogeneous fluid,

Tn chapter five, a non-axisymmetric flow problem is considered.
This involves a spherical drop of fluid in an infinite dissimilar
fluid undergoing shear flow. The results obtaimed showed clearly that
the flow fields inside an@ outside the sphericel drop of fluid are also
directly deducible from that of homogeneous fluid in shear. This
irplies that what is true of an axisyumetric flow is also true for a
non-axisymmetric flow.

Finally, if one considers also the fact that the conclusicas
reeched in the case of the source problem are equally valid for a
sink and a radial doublet, one begins to suspect that for a fairly
wide range of flow problems the flow fields in two~fluid spaces might

be deducible from that of a homogeneous fluid.

(18)
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