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ABSTRACT 

Much research has been advanced in the development of Monte Carlo methods for 

stochastic processes. A particular focus is on sequential Monte Carlo methods (particle 

filters and particle smoothers) and the Expectation-Maximization (EM) algorithm which 

allows the estimation of a class of Hidden Markov Models (HMMs) with nonlinear, non-

Gaussian state-space models. The Stochastic Volatility (SV) model can be regarded as a 

nonlinear state space model. SV model has become increasingly popular for explaining 

the behaviour of financial variables (e.g. stock prices and exchange rates). This has 

resulted in several different proposed approaches to estimating the parameters of the 

model. This thesis proposes a Sequential Monte Carlo Expectation Maximization 

(SMCEM) approximation method for the nonlinear state space representation and applies 

it for estimating the SV model. The basic idea of our approach is to combine the 

Expectation-Maximization (EM) algorithm with particle filters and smoothers in order to 

estimate parameters of the model. In addition to mixture-of-normal distributions of Kim 

& Stoffer (2008), the scope of application of SV models is expanded by adopting a 

student-t and the Generalized Error Distribution (GED), for the observational error term. 

To establish the viability of the extended volatility models, simulation studies as well as 

real life data analysis results are presented. Furthermore, the research establishes the 

convergence properties of the proposed technique. The results obtained from the models 

indicate that the student-t and the GED are comparable to the normal mixture SV model 

but empirically more successful. The proposed model allows for a more robust fit, giving 
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us a new tool to explore the tail fit. In the same vein, there are theoretical as well as 

empirical reasons to study multivariate volatility models. The application of the SMCEM 

approach to a multivariate factor model with stochastic volatility using the student-t 

distribution indicates that it performs quite well in explaining the joint dynamics in the 

volatility of a number of asset returns.  

In the same vein, this work applies the proposed procedure to nonlinear problems in 

signal processing such as bearings-only tracking; again the procedure is successful in 

accommodating nonlinear model for a target tracking scenario. 

 

Key words: Hidden Markov model, Stochastic Volatility model, State-space model, 

Sequential      

                   Monte Carlo, EM algorithm, Student-t distribution 

 

 

 

 

 

 

CHAPTER ONE 
 
1. INTRODUCTION  

1.1 BACKGROUND OF STUDY 
Hidden Markov Models (HMMs), originally introduced in 1957, [see MacDonald and 

Zucchini (1997) and Cappe et al., (2005)] have found many applications in most 

contemporary fields like signal processing, medicine, engineering, and management 

applications. It is a doubly stochastic process 0),( ttt YX , with an underlying stochastic 

process, tX , that is not directly observable but can be observed only through another 

process, tY , that produces the sequence of independent random observations. MacKay 

(2003) has observed that it is used for two purposes, namely, to make inferences about an 
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unobserved process based on the observed one, and to explain variation in the observed 

process based on variation in a postulated hidden process. Rabiner (1989) put it thus: 

First the model is very rich in mathematical structure and  

hence can form the theoretical basis for use in a wide 

                     range of applications. Second the models, when applied properly, 

                     works very well in practice for several important applications. 

 

A number of representative classes of hidden Markov models in applications are taken 

from a variety of fields:  

 

 finite-hidden Markov model [DNA or protein sequencing, Churchill, (1992)]  

 Normal hidden Markov model  [ion channel modeling, Ball and Rice (1992)]  

 Gaussian Linear State-Space Model [signal processing, Juang and Rabiner (1991)] 

 Conditionally Gaussian Linear State-Space Models [Digital communication, 

Punskaya et al., (2002) and Fearnhead (2003)]. 

 non-linear Gaussian state-space model [stochastic volatility,Shumway & Stoffer (2000)].  

In HMMs, the output probabilities impose a veil (Ferguson, 1980) between the state 

sequence and the observed time series. In an effort to lift the veil, a substantial body of 

theories has been developed over the past years. The initial work dealt with finite 

probability spaces and addressed the problems of tractability of probability computation, 

iterative maximum-likelihood estimation of model parameters from observed time series 

and the proof of consistency of the estimates: [see Baum and Eagon (1967), Baum and 

Petrie (1966)]. In most cases, however, exact maximum likelihood estimation is 

impossible as the likelihood function of the model cannot be evaluated explicitly. 

Consequently, a lot of papers have been concerned with approximations by means of 

numerical and simulation techniques (see Del Moral et al., 2001). There are many 



18 

 

methods of identifying the parameters of a nonlinear stochastic system among which are 

maximum likelihood estimators and Bayes estimators (Casella and Berger, 2001). The 

latter especially, is related to the sequential Monte Carlo (SMC) methods (Kitagawa, 

1996) also known as Particle filter methods introduced by Gordon et al., (1993).  

 

HMMs are equivalently defined through a functional representation known as state space 

model. State-space model of a HMM certainly is one of the concepts of statistical model 

processing that has had profound practical impact in the recent years. Recent advances in 

this field include SMC filtering approximation techniques which makes it possible to 

perform inference in models that are more general than linear Gaussian models [Cappe et 

al., (2005) and Doucet et al., (2001)]. Estimation of parameters in general state-space 

models is a crucial but often difficult task (Cappe and Moulines, 2009). An online 

Expectation-Maximization (EM) algorithm proposed for HMM (Cappe, 2009) can be 

extended to more general settings, including non-linear non-Gaussian state-space models 

that necessitate the use of SMC filtering approximations. These advances not 

withstanding, the estimation of the model parameters remains challenging.  

 

The state space model (Doucet and Johansen, 2009) of a HMM is represented by the 

following two equations:                   

                    (State equation)               ttt wxfx   )( 1                                                 (1.1)                         

                (Observation equation)       ttt vxgy  )(                                                     (1.2)  

where f  and g are either linear or nonlinear functions, while tw  and tv  are white noise 

processes. Models represented by (1.1) and (1.2) are referred to as state space model and 

this includes a class of HMMs with non-linear Gaussian state-space model such as 

stochastic volatility model and the bearings-only tracking model.  
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Stochastic Volatility (SV) model is prominent in the formulation of volatility by an 

unobservable process that allows the volatilities to vary stochastically (Taylor, 1986, 

1994). The SV model introduced by Taylor (1982) accounts for the time-varying and 

persistent volatility, and the leptokurtosis in financial return series. The model has been 

commonly and successfully used to explain the behavior of financial variables such as 

stock prices and exchange rates [Durbin and Koopman (2000) and Doucet and Tadic 

(2003)]. 

 

In the early stage of time series data analysis, researchers [Box and Jenkins (1976) and 

Granger (1981)] were interested mainly in mean behaviour of the data and tried to find a 

model which could explain it effectively.  

Recently, concern about volatility in the data has been raised as changes in volatility are 

observed in real data, especially in financial data, and knowledge of volatility can be a  

good piece of information for decision-making process. Furthermore, if it is possible to 

predict the future variance of financial variables, it would be very useful to control the 

risk. For example, if there are two stocks which have the same mean but different 

variances, people would prefer the stock with smaller variance in that it is less risky. SV 

models, which are time series models concerned with volatility, would provide this type 

of information. 

 

SV model has become increasingly popular for explaining the behaviour of financial 

variables, and its popularity has resulted in several different proposed approaches 

regarding the problem of estimating the parameters of the model. It models the variance 

as an unobserved component that follows a particular stochastic process. Though 
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theoretically attractive, it is empirically challenging owing to the fact that the unobserved 

volatility process enters the model in a non-linear fashion, leading to the likelihood 

function depending upon high-dimensional integrals. In the standard form of the model, 

the SV is modeled as an autoregressive (AR) process, 

                                                  ttt wxx  1                                                              (1.3)                                       

                                                 t
t

t v
x

y 









2
exp                                                           (1.4) 

where )1,0(~,),(~,),0(~ 2

000 NvNxNw tt  , 0}{ tty  is the log-returns on day t, ,we 

call   the constant scaling factor, so that 0}{ ttx  represents the log of volatility of ty . In 

order to ensure stationarity of  ty  , it is assumed that 1¦¦  . Squaring (1.4) and taking 

the logarithm of it results in a linear equation (1.5),  

                                                ttt zxy   .                                                          (1.5) 

Equations (1.3) and (1.5) form the version of the SV model which can be modified in 

many ways; together they form a linear, non-Gaussian, state-space model for which (1.5) 

is the observation equation and (1.3) is the state equation. 

 

SV model usually assumes that the distribution of asset returns conditional on the latent 

volatility is normal. Financial data often have heavier tails than can be captured by the 

standard SV model. This has naturally led to the use of non normal distributions to 

“better-model” and to address the problem of heavy tails. [see Shephard (1996),  Kim et 

al., (1998),  Bai et al., (2003), Sadorsky (2005) and Kim and Stoffer (2008)]. Liesenfeld 

and Jung (2000) fit a student-t distribution to the error distribution in the SV model using 

the simulated maximum likelihood method developed by Danielsson and Richard (1993) 
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and Danielsson (1994). A promising distribution that models both the skewness and the 

kurtosis is the Skewed Student-t of Fernandez and Steel (1998). Hence, there is the 

utmost necessity to determine the best-fitted model out of a potentially huge class of 

candidates. In other words, it has become very pertinent to develop efficient model 

selection criteria. The above background shows the ever-growing literature on time-

varying financial market volatility which abounds in empirical studies in which 

competing models are evaluated and compared on the basis of their forecast performance , 

Andersen et al.,  (2005). 

 

In addition, there are theoretical as well as empirical reasons to study multivariate 

volatility models. This multivariate specification accounts not only for the volatility 

dynamics of the individual assets but also, due to the common factor, for time varying 

correlations across assets returns which require simultaneous multivariate estimation for 

full efficiency. 

 

 Supposedly, solutions to nonlinear problems such as bearings-only tracking, assume that 

the state transition and measurement models are known a priori [see Gordon et al., 

(1993), Carpenter et al., (1999) and Bergman (1999)]. Nonetheless, there are situations 

where the model parameters are not known a priori or are known only partially and can 

be considered as a special case of maximum likelihood estimation with incomplete data. 

In such situations, standard estimation algorithms like the Kalman filter and the extended 

Kalman filter (EKF) which assume perfect knowledge of the model parameters are not 

accurate. Recently, the growth in computational power has made computer intensive 
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statistical methods feasible. Both Markov Chain Monte Carlo methods and sequential 

Monte Carlo methods (particle filters) are now implemented in several applications.  

From a Bayesian perspective, the tracking problem can be solved by recursively 

calculating some degree of belief in the target state, taking different values, given 

available observations.  Since the target state uncertainty and the measurement-originated 

uncertainty are the two major unavoidable obstacles for target tracking, a good model of 

the target motion will effectively facilitate the design of the required tracking algorithm. 

 

 

 

 

 

 

1.2 STATEMENT OF PROBLEM 

Estimation of parameters of a class of HMMs such as SV model has been the focus of 

much academic research, in recent years. [see Sandman and Koopman (1998), Danielson 

(1994),  Chib et al., (2002),  Gallant et al., (1995), Djuric et al., (2002)   Shumway and 

Stoffer (2000) and Doucet and Tadic (2003)]. The reason is not far-fetched: parameter 

estimation for the SV-type model is intractable when the evaluation of the likelihood 

function can not be expressed in a closed form. As a result, likelihood-based inferences 

are computationally demanding. A number of specifications of the SV model has been 

suggested since its introduction by Taylor (1982).  

 

Recent works extend the basic SV model to include heavy-tailed error distributions as 

financial data often have heavier tails than can be captured by the standard SV model. 

[see Liesenfeld and Richard (2003), Bai et al., (2003), Sadorsky (2005), Shimada and 

Tsukuda (2005) and Kim and Stoffer (2008)]. The recent progress in the incorporation of 

the Expectation-Maximization algorithm computation and Sequential Monte Carlo 
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methods (particle filters and smoothers), as developed in Kim and Stoffer (2008), has 

made it possible to fit increasingly complex statistical models. It is however necessary to 

determine the best-fitting model out of a potentially huge class of candidates.   

 

Consequently, the focus of this research is to develop a method that can handle the 

estimation problem of SV model formulated as a state space form of a HMM and in 

particular to address the problem of heavy tails, by analyzing the model using non 

normal distributions as the error distribution. Ultimately, a comparison will be drawn to 

determine the distribution that is most adequate in the analysis of SV models. The 

method is also applied to solve the nonlinear bearing-only tracking problem in order to 

verify whether the procedure is successful in accommodating other nonlinear model state 

space model. 

 

 

 

 

1.3   OBJECTIVES OF THE STUDY 

The aim of this study is to develop a method for estimating parameters of a class of 

HMM with non-linear Gaussian state-space model such as stochastic volatility model 

using sequential Monte Carlo Expectation Maximization (SMCEM) technique and to 

extend results in the study and analysis of SV model with the parameter estimated in the 

procedure. The specific objectives are to:  

i) extend the SV model by modelling the observational error using a student-t 

distribution and the generalized error distribution (GED), and juxtapose them with 

the normal mixture distribution of Kim and Stoffer and then apply model diagnostic 

tools of Ibrahim et al., (2008), to determine the most empirically successful; 
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ii) improve on the results of Kim and Stoffer  parameter estimation by techniques 

based on the student-t and GED SV model and a strategy for fitting the model that 

combines the EM algorithm and SMC; 

iii) establish the viability of the proposed model by simulation studies and real data; 

iv) establish the convergence properties of the proposed technique using the theorem of 

Chan and Ledolter, (1995); 

v) build multivariate SV models for asset returns in  financial economics and apply the 

proposed procedure to other state-space model such as the bearings-only tracking 

model, in other to show that it is successful in accommodating nonlinear model. 

 

 

 

 

 

1.4     SIGNIFICANCE OF THE STUDY 

The Sequential Monte Carlo Expectation Maximization (SMCEM) algorithm for 

estimating parameter for the extended model provides a highly generic procedure for an 

accurate Monte Carlo (MC) evaluation of the marginal likelihood which depends upon 

high-dimensional interdependent integrals. Real data can be very complex, typically 

involving elements of non-Gaussianity, high dimensionality and non linearity, which 

conditions usually preclude analytic solution. This is a problem of fundamental 

importance that permeates most discipline. The proposed technique can provide a 

convenient and attractive approach to computing the complex distributions. Also, By 

estimating parameters, the dynamics of the process can be fully specified, and future 

values can be estimated from them. In addition, the proposed technique can be used to 
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analyse data from many areas, such as economics, medicine and engineering, thus 

widening the scope of its application to other state-space models. 

 

1.5    RESEARCH QUESTIONS 

This research was carried out in an attempt to answer the following questions: 

i. Using SMCEM algorithm, how can we develop a method to estimate the 

parameters for the extended volatility model? 

ii. How do we employ the use of the student-t distribution and the GED, while 

juxtaposing both with the normal mixture distribution of Kim and Stoffer (2008) 

and the method proposed by Ibrahim et al., (2008), to extend the SV model? 

iii. How can the much needed improvement of the known outcomes of parameter 

estimation be effected through techniques based on the student-t and the GED SV 

model? 

iv. By simulation studies and real data, does the student-t or GED SV model exhibit 

viability? 

v. How do we establish the convergence properties of the proposed technique by 

using the theorem of Chan and Ledolter, (1995)? 

vi. How can we build multivariate SV model for asset returns in financial economics, 

and apply the proposed technique to other state-space models such as the bearings 

only tracking model? 

 

1.6 SCOPE OF THE STUDY 

This research work is limited to a class of HMMs with non-linear Gaussian state-space 

model such as stochastic volatility model with a student-t distribution and the GED. A 

comparison is drawn between these two models and the mixture-of-normal distributions 

of Kim and Stoffer.  A Sequential Monte Carlo with Expectation Maximization 

(SMCEM) algorithm techniques is used to estimate the parameters of the extended 
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volatility model; this is extended to the multivariate SV models. Model diagnostic tools 

are employed to compare the fit of the distributions. The performance of the SV models 

is assessed using three simulated data sets and daily exchange rate series of the Nigerian 

Naira, Ghana Cedi, British Pound and Euro, all against the U. S. Dollars, from March 

3
rd

, 2009 to March 3
rd

, 2011. The proposed procedure is also applied to solve a nonlinear 

problem in signal processing such as bearing-only tracking model. 

 

 

 

 

 

1.7   OPERATIONAL DEFINITION OF TERMS 

The following definitions are useful in this research work. 

Filtering distribution:                    a filtering distribution is a distribution function 

which is used to estimate the sequence of hidden 

parameters, ,tx  for ,0t based only on the 

observed data ,ty  for .0t  It corresponds to 

estimating the distribution of the current state of an 

HMM based upon the observations received up 

until the current time. 

General state-space models:    are represented by the following two equations                                                           

),( 1 tttt wxFx                                              (1.6) 

                                                         ),( tttt vxHy                                                        (1.7)  
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Kurtosis:                  is the quality property of a distribution which is 

based on the peakedness and tails of the 

distribution.  The degree of non-Gaussianity of a 

data set of most interest is measured by the kurtosis 

of the distribution.  

Leptokurtic distribution:      In probability theory, a leptokurtic distribution is a         

probability distribution with a kurtosis greater 

thanthat of  a normal distribution. 

Likelihood function:             Let ),( xf
 
represent a probability density function 

indexed by a parameter 
 
which can be a scalar or 

vector. Let nxxx ,,, 21   be a random sample drawn 

from the distribution. The likelihood of 
 
given 

observations nxxx ,,, 21 
 

is given by 

);(),,,,( 21   in xfxxxL  .  

Linear State-Space Model:       is when the state equation and the observation 

equation are as (1.8) and (1.9). 

                                                     ttt wxx  1                                           (1.8) 

                                                     tttt vxBy                                                (1.9) 

Linear Gaussian State-Space Model:  is when both tw  and tv  are normal distributions                                         

in (1.8) and (1.9). 
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Simulation:           is an attempt to model a real-life or hypothetical 

situation so that it can be studied to see how the 

system works.  

Smoothing distribution:             smoothing distribution is a distribution that 

corresponds to estimating the distribution of the 

state at a particular time given all of the   

observations up to some later time. 

State space model:  is in principle any model that includes an 

observation process ty  and a state process tx . The 

equations may be nonlinear or non-Gaussian.                                 

Particle:             is a realization of the stochastic process. 

 

Volatility:          is the relative rate at which the price of financial 

data moves up and   down. If the price of a stock 

moves up and down rapidly over short time   

periods, it has high volatility. If it almost never changes, 

it has low   volatility 

)( j

tf  :            j
th

  particle filter at time t which approximates 

,)( tt Yxf . 

 )( j

ts :              j
th

 particle smoother at time t which approximates 

,)( nt Yxf )( tn  . 

 
)( j

tp  :            j
th

 particle predictor at time t which approximates 

,)( st Yxf )( ts  . 
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)( j

tw
 :            a weight associated with 

)( j

tf   or 
)( j

ts .  

2

1               chi-square distribution with one degree of freedom. 

 

 

 

 

 

 

 

 

CHAPTER TWO 

2.    LITERATURE REVIEW 

The likelihood of the SV model formulated as a state-space form of a Hidden Markov 

Model is intractable as the evaluation of the likelihood function cannot be expressed in a 

closed form. This has stimulated the development of various inference techniques for 

their parameters and so either an approximation of the likelihoods or numerical methods 

has been considered. Lately, the incorporation of the EM algorithm and SMC (particle 

filters and smoothers) forms a basic idea in handling the estimation problem. 

Consequently, this chapter takes a look at the Markov Model, Hidden Markov Model, 

and a review of literature of other methods by different researchers in SV model and the 
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bearings only tracking problem, the EM algorithm and SMC (particle filters and 

smoothers). 

  

2.1 THE MARKOV MODEL 

2.1.1 INTRODUCTION TO STOCHASTIC PROCESSES 

Stochastic modelling is an interesting and challenging area of probability and statistics.  

This introductory section, while explaining what a stochastic process is, also strives to 

describe what is meant by the Markov property, with examples.  

Suppose that each performance of an experiment yields a real-valued function on an 

interval. If the experiment is performed at times nttt ,,, 10   ( ),,( 10 nttt  , 

nttt XXX ,,,
10
  are random variables. A stochastic process is a sequence 

nttt XXX ,,,
10
  

of random variables based on the same sample space   . The sequence of outcomes 

when repeatedly casting the die is a stochastic process. The possible outcomes of the 

random variables are the set of possible states of the process.  

Basically a stochastic process is an indexed set of random variables  ItX t , . The 

index set I  is either a finite set or an interval in R  and is usually thought of as the time 

variable. 

Assume that for any finite set of indices Itt n },,{ 1  , the joint density 
nttt xxx ,,,

21
  

exists. For an ordered set of indices nkkkk tttttt    2121 , we define the 

conditional density 

      )),,(/,,,(),(
212111 nkknnkk tttttttttt xxxxxxxxxx 


   (see Lawler, 1995).  

For Manning and Schutze (1999), it is a family of random variables  X , indexed by a 

parameter  , where   belongs to some index set  . If   is a set of integers, 
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representing specific time points, we have a stochastic process in discrete time and we 

replace the general subscript    by n . If    is the real line (or some interval of the real 

line), we have a stochastic process in continuous time and we replace the general 

subscript   by t .  In general, for a discrete time process, the random variable nX   will 

depend on earlier values of the process, ,,, 21  nn XX . Similarly, in continuous time, 

tX  will generally depend on values uX  for tu  . Therefore, we are often interested in 

conditional distributions of the form 

                           ),,,¦(
112211 tttttttt sXsXsXsXp

kkkkkk



   ,                              (2.1) 

for some set of times 11 ttt kk   . where ts  denotes a state at time t . In general, this 

conditional distribution will depend upon values of 
kkk ttt XXX ,,,

21



 .  

However, emphasis will be laid on the processes that satisfy the Markov property, which 

says that   

           )¦(),,,¦(
1112211 kkkkkkkkkk tttttttttttt sXsXpsXsXsXsXp 



  (2.2) 

 

The Markov process is a special type of stochastic process. Historically, the Markov 

property is named after the Russian probabilist, Andrei Andreyevich Markov (1856-

1922) who began the study of an important new type of dynamic stochastic chance 

process. In this class of processes, the outcome of a given experiment can influence the 

outcome of the next experiment. An informal mnemonic for remembering the Markov 

property is this. „Given the present 1kX , the future kX   is independent of the past 

132 ,,, XXX kk  .  

These are the Markov properties described in (Manning and Schutze, 1999): 

 



32 

 

         )¦(),,,¦( 11110011 tttttttt sXsXpsXsXsXsXp                     (2.2)  

 

As time passes the process remain or change to another state. 

 

 Markov models are mathematical models of stochastic processes that generate random 

sequences of outcomes according to certain probabilities. The figure below helps to 

visualize the concept of a Markov Model. 

  

 

          Figure 2.1   visualization of the concept of a Markov Model 

                            321 ,, xxx = states,   32232112 ,,, aaaa transition probabilities 

Symbolically, 21 , xx  and 3x  in the diagram represent the possible states of the process 

and the arrows represent transitions between states. The label on each arrow sa ji

'
  

represents the transition probability. These numbers constitute the transition matrix. 

 

A Markov model consists of: 

 a finite set of states },,{ 1 nxx   .  

 an nn state transition matrix }{ jipP  , where )¦( 1 iXjXPp ttij   .  

 and an initial vector )( 1 ii sXP  .  

In this context, the Markov property suggests that the distribution for this variable 

depends only on the distribution of the previous state. In many cases, the prediction of the 

next state and its associated observation only depends on the current state, meaning that 

the state transition probabilities do not depend on the whole history of the past process.  

 

http://controls.engin.umich.edu/wiki/index.php/Image:MarkovM.JPG
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However, in some cases, the patterns that we wish to find are not described sufficiently 

by Markov process, as the observed sequence of states is probabilistically related to the 

hidden process. Such processes are modelled using a hidden Markov model. 

 

2.2 HIDDEN MARKOV MODEL (HMM) 

An HMM is an extension of Markov model which models the dynamics of hidden states 

each of which produces a value of an observable (Visser et al., 2000). It assumes that 

there is a set of states generating our data, and that the identity of each successive state 

still depends only on the state(s) before it, but now we cannot observe these states 

directly. Instead, each state is associated with an emission probability density function 

that generates our observed data. 

Li et al., (2000) define HMM as a set of states, each of which is associated with a 

probability distribution. Transitions among the states are governed by a set of 

probabilities called transition probabilities. In a particular state an outcome or observation 

can be generated, according to the associated probability distribution. It is only the 

outcome that is visible to an external observer and not the state. Therefore, states are 

hidden to the outside, hence the name HMM (Rabiner and Juang 1986).  

Grundy et al., (1999) describes HMM as a mathematical framework which models a 

series of observations based upon a hypothesized, underlying but hidden process. The 

model consists of a set of states and transitions between these states. Each state emits a 

signal based upon a set of emission probabilities and then stochastically transits to some 

other state, based upon a set of transition probabilities. These two probability 

distributions, when combined with the initial distribution characterized an HMM. 
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 Bickel et al., (1998) have defined HMM as a discrete-time stochastic process )},{( tt YX  

such that (i) }{ tX  is a finite-state Markov chain, and (ii) given }{ tX , }{ tY  is a sequence 

of conditionally independent random variables with the conditional distribution of nY  

depending on }{ tX  only through nX . 

2.2.1 THE BASIC HIDDEN MARKOV MODEL 

Let }0,{}{  tYY tt  denote a sequence of observations and }0,{}{  tXX tt  a Markov 

chain defined on the state space }1,,1,0{ J  .This Markov chain is assumed to be 

discrete, homogeneous, and irreducible with transition matrix. For better readability, we 

use the notation 

                            },{
10

1

0 tt

t

t YYY    

with 1

0
;10

t

tXtt   is defined similarly. 

Consider a stochastic process consisting of two parts: Firstly, the unobserved parameter 

process }{ tX , which fulfils the Markov property 

                              )()( 11

1

1

1

1 

  tttt

tt

tt xXxXpsXxXp ,                       (2.3) 

and secondly the state dependent observation process }{ tY , for which the conditional 

independence property 

                       )(),( 00

1

0

1

0 tttt

tttt

tt xXyYpxXyYyYp                         (2.4) 

holds. Then, the pair of stochastic processes },{ tt YX  is Hidden Markov Model.  The 

basic structure of the HMM component is illustrated below: 
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Figure 2.2 : Graphical representation of the dependence structure of a HMM, where 

                           321 ,, yyy   are the observable states and 321 ,, xxx  are the hidden states 

 A set of states )( 'sx .  

 A set of possible output symbols )( 'sy .  

 A state transition matrix )( 'sa , probability of making transition from one state 

to another: 

      tijttijij XNjipiXjXpppP ,,1,0),¦(},{ 1   , denotes    

                the current  state. 

 Output emission matrix )( 'se , probability of emitting or observing a symbol at 

a particular state:  

               ,,1,1),¦()()],([ ktktii vMkNijxvypkbkbB  denotes the                                          

               thk observation symbol per state. 

 Initial probability vector, probability of starting at a particular state: ,, Sii   

)( 1 ii sXp  .  

An application of HMM requires specification of two model parameters )( MandN  - 

the number of set of states an set of possible output - and of the three probability 

measures },,{ BP . For convenience, we use the compact notation 

                                             },,{  BP  ,  

to indicate the complete parameter for HMMs. 
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Two assumptions are made by the model. The first, is the Markov assumption, which 

states that the current state is dependent only on the previous state,  

                      )¦()¦( 111 tt

t

t xXpXXp   .                                                               (2.5)                                                     

The independence assumption states that the output observation at time  is dependent 

only on the current state, it is independent of previous observations and states: 

                        )¦(),¦( 1

1

1 tt

tt

t XYpXYYp  .
                                                            (2.6)

  

 

 

 

2.2.2  THE INFERENCE PROBLEMS 

Once a system can be described as a HMM, some inference problems must be solved for 

the model to be useful in real-world applications (Rabiner, 1989).  

 Model evaluation:  What is ),( 1 tyyp   under the current model? 

 State prediction (“filtering”): What is ?),,¦( 11 tt yyxp   That is, what do 

we think the current state is, given the history of observations? 

 State estimation (“smoothing”): What is ?),,¦( 1 tt yyxp   That is, what do 

we think the true state was at a certain time, given all the observations 

including those after that time? 

 Trajectory estimation: what is the most likely trajectory through states, 

given     ?),,¦( 1 tt yyxp    

 Learning: How can the factors )¦()¦(),( 11 tttt xypandxxpxp   be improved 

in the light of data? 

 

One of the most important problems in HMM theory is that of parameter estimation. The 

relatively long history of this problem started with the works of Baum and Petrie (1966) 

and Petrie (1969), which demonstrated the consistency and asymptotic normality of the 

maximum likelihood estimator (MLE) for some classes of finite HMM. These results 
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were extended to other classes of HMM [see Bickel et al., (1998), Jensen and Peterson, 

(1999) and Leroux (1992)]. Another direction of research in the area of parameter 

estimation for HMM is the development of computationally efficient methods of 

maximizing the likelihood function. The Baum-Welch algorithm, which is based on the 

the expectation-maximization (EM) algorithm for HMMs, is one of the most popular 

methods [Archer and Titterrington (2002), Baum et al., (1970) and Rabiner (1989)]. In 

practice, the MLE is often computed using EM algorithm (Dempster et al., 1977). 

However the EM algorithm is a deterministic algorithm, which is sensitive to 

initialization and can become trapped in severe local maxima. To avoid this and to deal 

with cases where the E-step cannot be performed in closed-form, some Monte Carlo 

variants of the EM algorithm have been proposed [see Wei and Tanner (1991) and Chan 

and Ledolter (1995)]. The more challenging issue of HMM with continuous state space 

was much studied throughout the 1990s, mostly using simulation-based approaches made 

possible by recent advances in Monte Carlo methods [Doucet et al., (2002) and Jacquier 

et al., (2007)].  

 

2.2.3. STATE-SPACE REPRESENTATION 

In great generality, an HMM is equivalently defined through a functional representation 

known as a (general) state-space model 

                                                        ),( 1 tttt wxfx                                                       (2.7) 

                                                         ),( tttt vxgy                                                        (2.8) 
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where f  and g are either linear or nonlinear functions, tw  and tv  are white noise 

processes. Practically, the sx'  are the unseen true signals in signal processing (Liu and 

Chen, 1995), the actual words in speech recognition (Rabiner, 1989), the target features 

in a multitarget tracking problem (Avitzour, 1995), the image characteristics in computer 

vision (Isard and Blake, 1996), the gene indicator in a DNA sequence analysis (Churchill, 

1992) or the underlying volatility in an economical time series (Pitt and Shephard, 1997). 

 Equations (2.7) and (2.8) correspond to a recursive, generative form of the model, as 

opposed to our initial exposition, which focused on the specification of the joint 

probability distribution of the variables.  

 

2.3  EXAMPLES 

HMMs are used in many different areas. The bibliography by Cappe (2005) gives an idea 

of the rich literature in this domain, with different applications. Some applications are in 

areas such as some results on the data on fetal lamb movements (Leroux, 1989) which 

were also used in Leroux (1992) who found that the data set is best modeled by a HMM 

with two states with Poisson rates. Hughes and Guttorp (1994) presented a multivariate 

HMM for data consisting of daily binary rainfall observations (rain or no rain) at four 

different stations. Others include speech processing (Juang and Rabiner, 1991), modeling 

and predicting corporate default frequencies (Banachewicz et al., 2007), Biology 

(Felsenstein and Churchill, 1996).  

HMM has been successfully applied to financial data. Engel and Hamilton (1990) 

modeled segmented time-trends in the US dollar exchange rates via HMMs. HMMs 
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reproduce most of the stylized facts about daily series of returns (Ryden et al., 1998) and 

accurately estimate stochastic volatility (Rossi and Gallo, 2006). The HMM has also been 

utilized in the simulation of the Nigeria Stock Exchange (Ahani et al., 2010).  

 

It should be stressed that the idea one has about the nature of the HMM may be quite 

different from one case to another. These differences are illustrated in the examples below. 

Example 2.3.1 - Finite HMM.  

In this case, both the state space tX  of the HMM and the set tY  on which the output lies 

are finite.  The HMM is characterized by the transition probabilities  

                                        )¦(
1 kkkk tttt sXsXp 


 ,                                            (2.9) 

of the Markov chain, the conditional probabilities 

                                           )¦(
1 kk tttt sXyYp 


 ,
                                                   (2.10)

 

and the initial probability vector, probability of starting at a particular state:  

                                         ,, Sii   )( 1 ii sXp  .  

Examples of this type of model are found in areas such as Capture-Recapture in the study 

of population with unknown sizes as in census undercount, survey, animal abundance 

evaluation and software debugging.  Dupuis (1995) employed the model to lizard 

population. Here, the lizards move between three spatially connected zones denoted as 1, 

2, and 3. The main focus is basically the modeling of these moves. The model has also 

been employed in genetics, signal processing, and Computer Sciences (see Koski, 2001) 

in which they can describe, amongst many other things, arbitrary finite-state machines. 

 

Example 2.3.2 Normal Hidden Markov Model 
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A normal HMM is an HMM in which the conditional distribution of  kY  given kX  is 

Gaussian. In this case, given ),(~, 2

iikk NYiX    the marginal distribution of  kY  is a 

finite mixture of normals. Example of normal HMM includes application to speech 

recognition, (Rabiner and Juang, 1993). The famous tutorial by Rabiner (1989) gives 

condensed description of the model.  

Example 2.3.4  Gaussian Linear State-Space Model.  

The standard state-space model takes the form  

                                      ttt BVAXX 1 ,                                                     (2.11) 

                                           ttt DWCXY  ,                                                             (2.12)  

where ),0(~),,0(~
wv tttt NWNV  . The initial condition 0X  is Gaussian with mean w  

and covariances  wI  and is uncorrelated with the processes }{ tV and }{ tW . The state 

transition matrix A , the measurement transition matrix C , the square-root of the state 

noise covariance B , and the square-root of the measurement noise covariance D  are 

known with appropriate dimensions. Ever since the pioneering work by Kalman and 

Bucy (1961), the study of the above model has been a favorite both in the engineering 

(automatic control, signal processing, target tracking) and time series literature, ( Ristic et 

al., 2004). If the data are modeled by the Gaussian linear state-space model, it is possible 

to derive an exact analytical expression. This recursion is known as the Kalman filter. 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process. It is reliable and 

efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To 

solve problems beyond this restricted class, particle filters are proving to be dependable 

methods for stochastic dynamic estimation. 
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Example 2.3.5 - General state space HMMs - Stochastic Volatility model.  

The state space model (Doucet and Johansen, 2009) of a HMM is represented by the 

following two equations:    

                  (State equation)               ttt wxfx   )( 1 ,                                    (2.13)                                                          

              (Observation equation)        ttt vxgy  )(  ,                                       (2.14)                                      

where f  and g can be either linear or nonlinear functions, tw  and tv  are white noise 

processes. Models represented above are referred to as general state space models. These 

include such models as the Stochastic Volatility (SV) model.  

This type of model and its generalizations have been used in various areas of economics 

and mathematical finance [Shumway and Stoffer (2000) and Chan (2002)].  

Stochastic Volatility models belong to state-space form of a HMM; they take the 

volatility of the data into account. In a general SV model framework, the data, y , are 

generated from a probability model )( xyf , where x  is a vector of volatilities, and this 

unobserved vector x  has a probabilistic structure )( xf  where   is a vector of 

parameters (see Jacquier et al., 1994)  . This work focused on the SV problem formulated 

as a state space form of a HMM. The SV model as in Taylor (1982)  is expressed thus: 

                                                    ttt wxx  1                                             (2.15)                                                                                

                                                    t
t

t v
x

r 









2
exp                                          (2.16)                                         

Here, tr
 
is the return of the asset and tx

 
is the log-volatility at time t    and follows an 

autoregressive (AR) process. Both tw  and tv  are   independent normal error. The 

parameter   is the constant scaling factor,   is the persistence in the volatility.  

By taking logarithms of the squared returns,  
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2

2

2
exp 
















 t

t

t v
x

r 
 

2

2

22

2
exp t

t
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x

r 







 

 

2

2

22

2
explog)(log t

t

t v
x

r 















 

 

)()(log()(log)exp(log)(log)(log 22222

ttttt vEvEvxr  
 

one obtains, 

                   ttt zxy    

where 

)((log)(log~

).()(log

,))(log()(log

,)(log

2

1

2

1

22

22

2





Ev

vEvz

vE

ry

t

ttt

t

tt







 

since 
2

1

22

1

2 log~)(log,~  tt vv
 

  
    

)()(log())((log~))((log 222

1

2

ttt vEvEandEvE 
 

2.4     PARAMETER ESTIMATION 

SV model have long attracted researchers in finance and econometricians since the 

1970‟s for various theoretical reasons. One use of the SV model is to explain the random 

behavior of financial markets. In the simplest framework, the series of returns, ty , is 

modeled as the product of two stochastic processes. The early work on  SV model to 

explain the random behavior of the market includes those of Clark (1973) and Tauchen 

and Pitts (1983). Clark used SV model to represent the random and uneven flow of new 

information to the financial market. Tauchen and Pitts (1983) refined this work and 

proposed a mixture of distributions of asset returns with temporal dependence in 

information arrival. 
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Some detailed reviews of ARSV models are given by Taylor (1994), Shephard (1996), 

Capobianco (1996) and Barndorff-Nielsen and Shephard (2001). 

Carnero et al. (2001) showed that the ARSV (1) model is more adequate than the more 

popular GARCH (1,1) model to represent the empirical regularities often observed in 

financial time series. Helena (2004) proposed three extensions to the simple Log-AR(1) 

SV model. In the first extension the researcher extended the model fitting procedure to 

higher order AR(p) for the volatility to examine the fit of a higher order Log-AR(p) SV 

model to the data. The second extension to the model is to allow the correlation between 

the two error processes in the return and volatility process. The third extension combines 

the historical and implied volatility in one model to provide a unified approach to forecast 

volatility. 

 
 

However, one of the most serious limitations of SV models is that the distribution of ty  

conditional on past observations up to time 1t  is unknown. Consequently, the exact 

likelihood function is difficult to evaluate. In order to derive it, the vector of the 

unobserved volatilities has to be integrated out of the joint probability distribution. If we 

denote },,{ 1 tyyy   the vector of observations, },,{ 1 txxx   the vector of log 

volatilities, and },,{   , the corresponding parameter vector, the likelihood is given 

by, 

 

                            dxxfxyfyf )(),()( 
                                                   (2.17)
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The dimension of the integral in (2.17) is equal to the sample size, T , and, in order to 

evaluate it, numerical methods must be used. Therefore, Maximum Likelihood (ML) 

estimation of the parameters of SV models is not straightforward. 

 
The empirical application of Stochastic Volatility (SV) models has been limited due to 

the difficulties involved in the evaluation of the likelihood function. However, recently 

there has been fundamental progress in this area due to several proposed estimation 

methods that try to overcome this problem. As a consequence, several extensions of the 

SV models have been proposed and their empirical implementation is increasing. Recent 

developments in estimating non-linear latent variable models have made efficient 

estimation of SV models a reality. This makes extensive research on studying the 

empirical aspect of SV model feasible. 

 

We review a number of methods proposed in the literature for fitting a SV model in the 

next section. 

 

2.4.1  REVIEW OF METHODS OF PARAMETER ESTIMATION    

           OF SV MODEL 
 

Recent developments in statistical technology have made the estimation of nonlinear 

latent variable models possible with the increasing computing power. Among them are 

Generalized Method of Moments (GMM) and Quasi-Maximum-Likelihood Estimation 

(QML). Other computationally extensive procedures include simulated maximum 

likelihood (Daniellson, 1994), Efficient Method of Moment (Gallant et al., 1995).  
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Method of moments is a tool in econometrics. Applications of this method to the SV 

model include the work of Melino and Turnbull (1990) that used the GMM to estimate 

the SV model.  The method uses model moments obtained either through simulations or 

analytically. Those estimators, however, can also be highly inefficient, depending on the 

choice of moment conditions. The main idea of the Method of Moments is to exploit the 

stationary properties of the process which yield the convergence of sample moments to 

their unconditional expectations. For a fully specified parameter model like SV model, 

the Generalized Method of Moments method is inefficient (Jacquier et al., (1994). 

Furthermore, the GMM approach is an unattractive approach for the SV model as it does 

not deliver an estimate of the volatility process tx , either filtered or smoothed. Since the 

main use of the model is to forecast volatility, another estimation procedure has to be 

developed. Jacquier et al., (1994) provided the accuracy of the GMM estimates and 

demonstrated that it is a less efficient estimation procedure for the SV model.  

Harvey et al., (1994) proposed a Quasi-Maximum Likelihood (QML) approach to 

estimate the SV model which relies on a transformation of the model to a state-space 

form by taking the logarithm of the squares of the observation. By using a normal 

approximation to the  2

1log  , they approximated the model to a  Gaussian state-space 

model and employed Kalman filter and smoother technique to estimate the latent 

volatility process This method is easy to perform and extend to more general model. It 

provides filtered and smoothed estimates of the latent volatility process but might not be 

efficient as the  2

1log   distribution is poorly approximated by the normal distribution. 

Jacquier et al., (1994) provided empirical evidence on the performance of QML and 

concluded that the procedure gave poor sampling properties. 
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Gallant et al., (1995) used the Efficient Method of Moments (EMM) to fit the standard 

SV model and various extensions to several daily financial time series. EMM is a 

simulation-based moment matching procedure. The moments that get matched are the 

scores of an auxiliary model called the score generator. If the score generator is able to 

approximate the probability distribution of return data reasonably well, then estimates of 

the parameters of the structural model are as efficient as maximum likelihood estimates. 

The EMM work has tried to maximize efficiency through the optimal choice of moment 

conditions, empirical implementation remains challenging  

 

In the simulated maximum likelihood (SML) approach, Danielsson (1994) approximated 

the marginal likelihood of the observable process by simulating the latent volatility 

conditional on available information, using the importance-sampling simulation tool.  

 

Shephard (1994) developed a partial non-Gaussian state-space framework under which 

one assumes that the state-space model is only conditionally Gaussian.  

 

Jacquier et al., (1994) undertook a Bayesian approach based on the Markov chain Monte 

Carlo (MCMC) methodology. They were able to draw samples from the joint posterior 

distribution of the model parameters and the latent volatility realizations by constructing 

a simulation tool using a cyclic Metropolis algorithm.  

 

Kim et al., (1998) demonstrated how to perform either maximum likelihood (ML) or 

Bayesian estimation for a linearized (log-squared transformed) SV model using a mixture 

of normals to approximate the error-term distribution. Bayesian analysis was carried out 
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using Markov chain Monte Carlo (MCMC) techniques, while a simulated EM (SEM) 

algorithm facilitated ML estimation. In both cases, Monte Carlo (MC) simulation is 

carried out through a multimove Gibbs sampler that enables one to sample from the 

density of the volatility process. The MC simulation based SML, partial non-Gaussian 

state-space using SEM or Bayesian analysis, and Bayesian MCMC procedures have the 

major disadvantage of being computationally demanding and much harder to implement, 

using nonconventional software that is not widely available among researchers and 

practitioners in the field. Successful application of the MC integration component in 

these techniques requires careful consideration of the simulation convergence and 

simulation error rates in the implementation. Furthermore, the Bayesian MCMC 

technique requires the choice of an appropriate conjugate prior distribution (Fridman and 

Harris, 1998). 

 

Sandmann and Koopman (1998) used a Monte Carlo maximum likelihood (MCL) 

method of estimating stochastic volatility (SV) model. The basic SV model is expressed 

as a linear state space model with log chi-square disturbances. The likelihood function is 

approximated arbitrarily and accurately by decomposing it into a Gaussian part, 

constructed by the Kalman filter, and a remainder function, whose expectation is 

evaluated by simulation. However, due to the log chi-square disturbances in the 

measurement equation of the SV model, the Gaussian likelihood will only make up a part 

of the true likelihood function. The MCL estimator proposed here approximates the term 

via Monte Carlo simulation. 
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For Fridman and Harris (1998) a maximum likelihood approach for the analysis of 

stochastic volatility models is developed. They further explored this time series by fitting 

to it five variations of the simple SV model. The first variation is an SV in mean (SV-M) 

type model, where tw  and tv  are independent and Gaussian. The second model fitted is 

an extension that includes an autoregressive conditional heteroscedasticity (ARCH) term 

in the log-volatility equation. The third variation is one in which tv  is t-distributed. In the 

fourth variation, they let tv  follow a kurtotic distribution obtained by a signed power 

transformation of the normal distribution. Finally, the fifth model fitted is a combination 

of the last two models, where both tw  and tv  have kurtotic distributions. The method 

uses a recursive numerical integration procedure that directly calculates the marginal 

likelihood. In principle, both numerical and Monte Carlo integration deliver accurate 

approximations to the exact maximum likelihood estimator, but practical considerations 

have impeded their widespread use. In particular, the methods are computationally 

intensive and rely on assumptions that are hard to check in practice, such as the accuracy 

of numerical integrals and the convergence of simulated Markov chains to their steady 

state.  

 

Durbin and Koopman (2000) used the idea of linearization of general state-space models 

and matched terms in the likelihood of a linearized model to those of a linear Gaussian 

model. As a result, the usual estimation skill for the linear Gaussian model can be applied 

to general (non-Gaussian and non-linear) state space models. 
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Shumway and Stoffer (2000) used an approximate likelihood in the normal mixtures 

setting. Their basic idea is to approximate the observation error, tz , in equation (1.5) to 

two normal mixtures and then get the normal approximation of the conditional density of 

ty  given 1tY  and tI , where 1tY  represents the previous observation and tI  is the 

indicator variable representing which of two normal‟s the observation, ty , comes from.  

 

Chib et al., (2002) applied the Metropolis-Hastings scheme for the analysis of the SV. 

Their main idea is to get a random sample from the posterior density of parameters given 

the data. In their approach, parameters are assumed to have some prior density, while in 

the classical analysis (non-Bayesian analysis), parameters are fixed and unknown, as in 

this study. Usually, their algorithms are iterative algorithms consisting of the following 

steps: 

(1). To sample from ),( nn XYp   

(2). To sample from ),( nn XXp   

(3). By repeating above, a random sample },{ nX  from the joint posterior density  

    ),( nn YXp 
 
can be obtained and this sample makes it possible to estimate     

    parameters  and to get filters and smoothers. 

 

It is not obvious how to sample from the desired densities; so there are some techniques, 

which vary by author, needed to actually get random samples. 

 

Andrieu et al., (2005) used the fixed-memory pseudo likelihoods, otherwise known as 

split likelihoods, to approximate the exact likelihood in SV model. This approach only 

requires fixed memory smoothing which is provably easier to achieve in the context of 
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Sequential Monte Carlo. Likewise the approach of Cappe, et al., (2005) used fixed-lag 

approximation ideas also inspired by an algorithm previously considered for HMMs 

(Krishnamurthy, 1993).  

 

Cappe and Moulines (2009) used on-line expectation algorithm for latent data model. 

Here, they proposed a generic online (also sometimes called adaptive or recursive) 

version of the Expectation-Maximization (EM) algorithm applicable to latent variable 

models of observations. Compared to the algorithm of Titterington (1984), this approach 

is directly connected to the usual EM algorithm and does not rely on integration with 

respect to the complete data distribution. The resulting algorithm is usually simpler and is 

shown to achieve convergence to the stationary points between the marginal distribution 

of the observation and the model distribution at the optimal rate, i.e., that of the 

maximum likelihood estimator. The main advantages of the proposed approach to online 

parameter estimation in latent data models are its analogy with the standard batch EM 

algorithm, which makes the online algorithm easy to implement, and its optimal 

convergence behaviour.  

Standard methods for maximum likelihood parameter estimation in latent variable models 

rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Johansen 

et al., (2006) proposed an approach that reminds us of simulated annealing but also 

capitalizes on Expectation Maximization (EM) related ideas. That is, they built a 

sequence of artificial distributions whose support concentrates itself on the set of 

maximum likelihood estimates. They sampled from these distributions using a sequential 

Monte Carlo approach and demonstrated state-of-the-art performance for a non-linear 
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non-Gaussian state space model which is used in financial modeling. The intention of this 

example is to show how the algorithm can be applied in more complex settings. The 

results shown do not provide rigorous evidence that the algorithm is performing well.. 

  

Mongillo and Deneve (2008) proposed an online version of the EM algorithm. Their 

main tool is a recursion which allows for data recursive computation of smoothing 

functional required by the EM algorithm. However, this recursion appears to be very 

specific, that is, HMMs for which both the states and observations take a finite number of 

values. In Cappe and Moulines (2009), it is shown that this is indeed not the case and that 

this idea can be seen as a generalization of the online EM algorithm for mixture 

combined with a scheme for recursive implementation of smoothing for sum functionals 

of the state variables. 

  

Cappe (2009) showed that the algorithm of Mongillo and Deneve (2008) can be extended 

to provide online EM estimation in more general settings, including non-linear non-

Gaussian state-space models that necessitate the use of sequential Monte Carlo filtering 

approximations. The performance of the proposed online sequential Monte Carlo EM 

algorithm is illustrated using the simple noisy Gaussian AR(1) model observed in noise. 

The resulting algorithm is generic, and its performance in simulated scenarios is 

promising.  

 

Recently, particle methods (Sequential Monte Carlo) have been applied to the SV model. 

As particle filters are designed to get the samples of hidden states given parameters and 

data, it is necessary to either adopt other methods for the parameter estimation, or extend 
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the particle filtering method to embrace the parameters as a part of the hidden states, in 

order to solve the estimation problem. Kim and Stoffer (2008) incorporated the EM 

algorithm and SMC (particle filters and smoothers). Their attempt forms a basic idea to 

handle the parameter estimation problem in the SV model. The SMCEM estimation 

procedure offers a unified simulation approach which works on actual likelihood 

distribution rather than asymptotic approximations for parameter estimation and 

smoothing. 

In order to expand the scope of application of SV models, this research extends the SMC 

techniques with EM algorithm of Kim and Stoffer (2008), to estimate the parameters of 

SV model with student-t distribution and the GED.   

 

 

 

2.4.2   REVIEW OF MULTIVARIATE STOCHASTIC   

           VOLATILITY   MODEL    
We review a number of methods proposed in the literature for fitting a univariate SV 

model. Although univariate SV models have undergone a lot of research, the literature on 

multivariate models is less abundant with the works of Harvey et al. (1994), Danielsson 

(1998), Aguilar and West (2000), Lopes and Migon (2003) and Chib et al., (2006) 

forming the basis for the developments we consider here. They modeled the levels of a 

set of financial time-series by a standard normal factor model in which both the common 

factor variances and the specific (or idiosyncratic) time-series variances are modeled as 

univariate SV processes.. An ultimate stylized fact which cannot be captured by 

univariate descriptions is the covariation effect. That is what necessitates the extension of 
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the univariate model to the multivariate case is the covariation effect. Volatilities of 

different financial series are often seen to move together and large changes in one assest 

are matched by large movements in another. This is the result of either a formal linkage 

between a set of assets, e.g currency exchange rates or due to the assets being subject to 

the same overall environment and as a result having factors in common which influence 

their behavior.  

 

As Aydemir (1998) noted, we often observe related movements between markets, sectors, 

stocks, or exchange rates. This phenomenon is usually due to their being influenced by 

common unobserved factors. Nevertheless, there are theoretical as well as empirical 

reasons to study multivariate volatility models. In the first place, portfolio allocation and 

asset pricing can only be meaningfully discussed within a multivariate framework. 

Secondly, correlation across asset returns requires simultaneous multivariate estimation 

for full efficiency. Thirdly, multivariate structural volatility models can provide useful 

information about the factors driving the volatility process.  

 

Apart from the well-established constant conditional correlation (see Harvey et. al., 

(1994)) and multivariate factor SV models (see Pitt and Shephard (1997)), other possible 

alternatives seem suitable to describe the time evolution of the joint distribution of 

different assets. However, a thorough understanding of the estimation procedures 

developed for the univariate SV model is imperative before we can extend the ideas to a 

multi-dimensional equivalent. 
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In the multivariate context, when one is dealing with a collection of financial time series 

denoted by ),,( 1 tt yyy  , the major objective is to model the time-varying conditional 

covariance matrix of ty
 
and this can be done in several ways within the SV context (Asai 

et al., 2006).  

 

In the context of stochastic volatility models, Harvey et al., (1994) propose the following 

multivariate model which allow the variances and covariances to evolve through time 

with possibly common trends 
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t vvv    has a multivariate normal distribution with 

covariance matrix , v
 and '

,,1 ),,( tnt

i

t www   is distributed independently from tv  

following a multivariate normal distribution with covariance matrix  w
. Harvey et al., 

(1994) estimate the parameters by the QML method. The main limitation of this model is 

that it restricts the correlations to be constant over time. Danielsson (1998) extends this 

model to allow for leverage effects and time-varying correlations. Later, Ray and Tsay 

(2000) used the same model to study common long memory components in daily stock 

volatilities of groups of companies. The parameters of this model are estimated by the 

simulated maximum likelihood (SML) method. 

Alternatively, Jacquier et al., (1999) and Shephard (1996) propose a factor model for 

returns, where the factors are SV processes.  
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According to this model a set of asset returns are driven by latent factors which are 

specified as SV processes. Such a multivariate factor SV specification, originally 

proposed by Shephard (1996) and Jacquier et al., (1999), has several attractive features. 

Foremost, the dimension of the parameter space remains operational as it only increases 

linearly with the number of assets being modeled. Moreover, this multivariate 

specification accounts, not only for the volatility dynamics of the individual assets but 

also, due to the common factor, for time varying correlations across assets returns which 

require simultaneous multivariate estimation for full efficiency. 

 

Chib et al., (2006) generalized model (2.19) allowing series-specific jumps at each time 

and a fat tailed t-distribution for the errors, te , and Lopes and Migon (2003) allowed for 

factor loadings to evolve over time. Recently, Tims and Mahieu (2006) have proposed to 

fit a multivariate SV model to the logarithmic range. The logarithmic range is a proxy for 

volatility that is approximately Gaussian, allowing for the application of standard Kalman 

filter techniques to estimate the corresponding models. 

Kim, et al., (1998) put forward the basic model structure we suggest in this paper. They 

allow thet to follow independent SV processes - although this model was not fitted in 

practice. In a recent paper, Aguilar and West (2000) have implemented this model using 

the Kim, et al., (1998) mixture MCMC approach. Estimation of parameters in MSV 

models is difficult as there is a sequence of latent variables and parameters needed to be 
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estimated. Thus, estimation can be based on approximations (quasi maximum likelihood), 

numerical methods for evaluating the likelihood (numerical integration) or simulation 

methods. 

 

2.4.3   TARGET TRACKING ESTIMATION - REVIEW OF 

           METHODS IN BEARINGS-ONLY TARGET    
The problem of bearings-only target estimation and tracking has a history which dates 

back to the 1960‟s and has attracted a variety of important practical applications, such as 

submarine tracking (using passive sonar) or aircraft surveillance (using a radar in a 

passive mode or an electronic warfare device) . The problem is sometimes referred to as 

target motion analysis (TMA), and its objective is to track the kinematics (position and 

velocity) of a moving target using noise-corrupted bearing measurements. The 

observation platform needs to manoeuvre in order to estimate the target range Nardone, et 

al., (1984).  

The problem of target tracking using bearings-only measurements is a difficult task. The 

filtering algorithms involve a nonlinear measurement process, which, when linearized, 

can lead to time-varying parameters, biases as explained by Aidala, (1979). The common 

estimation algorithms used for bearings-only target tracking are: Least Squares (batch 

and recursive forms), Maximum Likelihood Estimator, Extended Kalman Filter (EKF), 

and Particle Filters or Bayesian Methods.  

 

Most researchers in the field of bearings-only tracking have concentrated on tracking a 

nonmanoeuvring target. Due to inherent nonlinearity and observability issues, it is 

difficult to construct a finite-dimensional optimal filter even for this relatively simple 
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problem. As for the bearings-only tracking of a manoeuvring target, the problem is much 

more difficult.   

 

Early research focuses mainly on analytical derivations for the observability criteria of 

the estimation process, and comparisons of the convergence properties and performance 

of the different types of method used for target tracking. Since bearings-only target 

estimation involves a non-linear measurement process, several filtering and observability 

complications arise. Lindgren and Gong (1978) analyze the observability associated with 

a least-squares estimation approach and show that, for a constant velocity target and a 

constant velocity vehicle moving in a 2-D plane, the target estimation is unobservable 

until the vehicle executes a maneuver (change in heading). Kalman Filtering techniques 

are used by Aidala, (1979) and Nardone, et al., (1984). Since the bearings-only estimation 

problem involves nonlinear measurements, an Extended Kalmer filter (EKF) approach 

needs to be used instead of the normal Kalman Filter. The traditional EKF however is 

sensitive to initialization techniques and measurement errors which can cause early 

covariance collapse and other filter instabilities Aidala, (1979). The moving vehicle 

trajectory affects the observability and convergence of the target estimation, suggesting 

that a good trajectory design can reduce filter instability and estimation errors.  

 

A pseudolinear filter formulation is proposed by Aidala and Nardone (1982), which 

attempts to linearize the dynamics and measurement models. However by linearizing the 

dynamics the noise becomes non-Gaussian which, when propagated through the filter, 

causes estimation bias. For the bearings-only tracking problem, the bias is introduced 
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only in the position estimate, and is highly dependent on the geometry of the vehicle 

maneuvers, once again suggesting that the estimation performance can be improved by 

proper design of the vehicle trajectory. Comparisons of the properties and performance 

between several different filtering algorithms are explored by Nardone, et al.,(1984). 

Aidala and Hammel (1983) proposed the modified polar coordinates filter. The filter uses 

an EKF algorithm with a state vector choice, based on polar coordinates, that attempts to 

separate the observable and unobservable components of the estimated state by using a 

different coordinate system. The resulting filter is stable and asymptotically unbiased. 

The modified polar coordinate filter shows the dependence of the target estimation on the 

vehicle maneuvers, once again suggesting that the estimation can be improved by 

designing a good trajectory. 

De Vlieger (1992) used a piecewise linear model of the target motion and a Maximum 

Likelihood Estimator approach for target tracking. He uses numerical methods to 

condition the measurement model to increase the observability of the estimation. Goshen-

Meskin and Bar-Itzhack, (1992) derive the observability requirements for piecewise 
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constant linear systems. Tao et al., (1996) shows that for a MLE approach it is important 

to consider the correlation of the noise, and that ignoring it degrades the performance of 

the estimation.  

 

Several modifications to the classical estimation algorithms have been explored. Some 

attempt to smooth the trajectory, within the constraints of a known target behavior model. 

Others consist of designing multiple filters for different known target scenario and using 

statistical properties of the innovation to switch between the algorithms. Another 

approach has been to support multiple Kalman filters simultaneously and develop an 

estimate by combining all the filters. Later research by Bar-Shalom et al. (2002) has 

focused on using interacting multiple models (IMM). These algorithms employ a constant 

velocity (CV) model along with manoeuvre models to capture the dynamic behaviour of 

a manoeuvring target scenario. Le Cadre and Tremois, (1998) modelled the manoeuvring 

target using the CV model with Gaussian noise and developed a tracking filter in the 

hidden Markov model framework. 

 Particle filtering or Sequential Monte Carlo techniques have also been explored by Liu et 

al., (2002), Bar-Shalom et al., (2001), Ristic et al., (2004). Particle filters have the 

advantage of being able to deal with nonlinear systems and non-Gaussian noise models 

making them particularly well suited to bearings-only tracking. They can also 

accommodate unknown and stochastic target models making them more versatile than 

classical filters. However, they require increased computational resources and, for fast 

convergence, need a fairly accurate description of the measurement likelihood function 

and a good initial distribution on the estimated target location. 



60 

 

2.5 MAXIMUM LIKELIHOOD AND THE EXPECTATION-                                                                    

MAXIMIZATION ALGORITHM 

When we have a density function )( Xp  that depends on a set of parameters 
 
and a 

data set },,{ 1 nxxX   that are independent and identically distributed, the likelihood is  

                                 .)()()(
1





n

i

i XLxpXp 
                                       (2.22) 

The resulting )( XL 
 
is the likelihood function that we will maximize. We usually 

maximize  ))((log)( XLl  
 
because it is easier. However, there are many cases 

where )(l
 
has no analytic solution and so we resort to the Expectation-Maximization 

(EM) algorithm as one possible solution.  The EM algorithm is a parameter estimation 

tool for finding the maximum likelihood estimates of parameters in probabilistic model, 

where the model depends on some unobserved variables.
 

The method in this work is basically based on the EM algorithm. When the EM algorithm 

is applied to the SV model, it is not possible to get the exact expected likelihood due to 

the complex dependent structure of the SV model. In order to solve this problem, we 

bring out particle methods and calculate an approximate expected likelihood by using the 

output of the particle methods.   

In practice, the transition and observation distributions of state-space models usually 

depend on an unknown parameter vector   which needs to be estimated. A very useful 

approach is to apply the Expectation-Maximization (EM) algorithm. A considerable 

collection of literature exists on the EM algorithm and its application (See Dempster et 

al., 1977). The EM algorithm is an iterative algorithm for obtaining Maximum likelihood 
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parameter estimates. Generally its application has been seen much in the cases where the 

data set is considered to be incomplete in the sense that it is not fully observable. The EM 

algorithm as proposed by Dempster et al., (1977) consists in iteratively building a 

sequence   1k

k  of parameter estimates given an initial guess 0 . Each iteration is 

broken into two steps. Below is a brief description of the EM algorithm applied to the 

data: 

Let   and   be the two sample spaces where there is a many-one mapping, 

 yxyxy )(: **  from   to . y  is a realization in  . The corresponding x  in 

X is not observed and is termed the complete data. If there is a family of sampling 

densities )¦( xf  depending on parameters  , then the density of observed data Y is 

                                       )¦()¦(
)(

 



y

xfyg                                                (2.23) 

)(y  is the pre-image of y  in  .  In this framework, the problem that calls for a 

solution is to get MLE of   by maximizing )|(log)(  yl  . In several instances )(l  

has no analytic solution. The EM algorithm is an iterative algorithm to find MLE by 

using )|( xf  instead of )|( yg .One iteration of the EM algorithm is formed by the 

combination of Expectation step (E-step) and Maximization step (M-step). At thk  

iteration, the updated parameter )(k  is obtained from )1( k as follows: In the E-step, the 

conditional expectation: 

E-step: the expected likelihood, )|( )(kQ   

                                  )y,|)|(log()|( ')(
)( 


xfEQ k

k  ,                                     (2.24) 
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is computed, where )(k  is the current parameter estimate.                        

M-step:  In the M-step, a new parameter estimate )1( k  is obtained by maximizing  

)|( k)(Q .  

The E-step and M-step are repeated until some stopping criterion is met, such as 

Qn  |ˆˆ| 1n  , for some specified Q , obtaining of suitable initial parameters inclusive.  

2.5.1 MONTE CARLO EXPECTATION-MAXIMIZATION ALGORITHM 

In some applications of the EM algorithm, the E-step is difficult to perform; and is 

sometimes impossible. Wei and Tanner (1991) introduced the Monte Carlo Expexctation-

Maximization (MCEM) algorithm where the E-step is executed by Monte Carlo methods. 

The MCEM algorithm returns the expectation of M realizations of the likelihood by 

random sampling in its E-step. Chan and Ledolter (1995) applied the MCEM algorithm to 

a time series model with count data, where the E-step is intractable even by numerical 

integration. The following is a brief summary of the MCEM algorithm. 

Monte Carlo expectation step (Monte Carlo E-step) and M-step form one iteration of 

the MCEM algorithm. At the thk  iteration, the updated parameter, )(k  is obtained from 

)1( k  as follows: 

 

Monte Carlo E-step: Compute )|( )1(* kQ  , where 

 

M
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     is random sample from 

),( 1kyxf   

M-step: Choose 
)(k  which maximizes  )|( )1(* kQ  .  
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In MCEM algorithms, it is not as obvious how to get samples from desired distributions, 

and is sometimes difficult. To obtain an approximation of the conditional expectations, 

particles smoothing distributions are used. The method in this work is similar to the 

MCEM algorithm through the use of the particle smoother and filter method to execute 

the E-step while the MCEM algorithm uses the Monte Carlo method. The particle filter 

method takes advantage of the sequential structure of the state-space models, thus it is 

easier to produce samples. The clue is that it is often possible to carry out the M-step 

analytically. If this is the case, a closed-form expression for the estimator )1( k  is 

obtained which depends on the smoothing particles which are generated with respect to 

the old parameter estimate )(k . 

 

2.6  SEQUENTIAL MONTE CARLO: PARTICLE FILTERS  AND SMOOTHERS 

Since the introduction of SMC in 1993 (Gordon et al., 1993), it has become a well known 

class of numerical methods for the solution of optimal estimation problems in non-linear 

non-Gaussian state-space models. Chen and Lai (2003) applied SMC methodology to 

tackle the problems of optimal filtering and smoothing in HMM. SMC has also stirred 

great interest in the engineering and statistical literature (see Doucet et al., (2001) for a 

summary of the state of the art). Lately, by Johansen et al., (2008), SMC has been applied 

for resolving a marginal Maximum Likelihood problem. In Gordon et al., (1993), the 

application of SMC to optimal filtering was first offered. Here, SMC methods is 

developed for prediction of state by estimating the probability )¦( 1:1 tt yxp . Zhang et al., 

(2007), applied SMC method for predicting actual data of monthly national air 
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passengers in America. Ahani and Abass (2010) applied a SMC approach for stock 

market prediction.   

The SMC approach shows a great promise in providing such a fundamental technology. 

The interest has arisen with the proposal of the bootstrap filter (Gordon et al., 1993), 

simultaneously developed by (Kitagawa, 1993). Since then, Sequential Monte Carlo 

(SMC) algorithms, under the names of particle filters, sequential importance resampling 

(SIR) has been applied to a wide range of problems in the fields of engineering, financial 

data analyses, genetics, medicine, biology, to name a few (see Doucet et al., 2001). 

 

SMC methods are an efficient class of simulation techniques to approximate sequences of 

complex probability distributions. These probability distributions are approximated by a 

large number of random samples which are propagated over time using a combination of 

importance sampling and resampling steps. SMC methods allow us to carry out on-line 

approximation of probability distributions using samples (particles). They are very useful 

in scenarios involving real-time signal processing, where data arrival is inherently 

sequential. Furthermore, one might wish to adopt a sequential processing strategy to deal 

with non-stationarity in signals, so that information from the recent past is given greater 

weighting than information from the distant past.  

 

The key idea is to represent the concerned density function )¦( 1:01:0  tt yxp  at time 1t  

by a set of random samples with associated weights, },,1,{ )(

1:0

)(

1:0 Niwx i

t

i

t   
and 

compute estimates based on these samples and associated weights. As the number of 

samples becomes very large, this Monte Carlo characterization develops into an 
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equivalent representation to the functional description of the density function (Zhang et 

al., 2007).  

If we let  },,1,{ )(

1:0

)(

1:0 Niwx i

t

i

t   be respectively samples and associated weights 

approximating the density function )¦( 1:01:0  tt yxp , N

i

i

tx 1

)(

1:0 }{   is a set of particles with 

associated weights 
N

i

i

tw 1

)(

1:0 }{   with 1
)(

1:1






i

tNi

w , then the density function are 

approximated by 

                      )()¦( )(

11

1

)(

11:01:0

i

tt

N

i

i

ttt xxwyxp 



  
                                             

    (2.25)

 

 

)(x signifies the Dirac delta role. The particle approximation N

i

i

t

i

t xw 1

)()( },{   are 

transformed into an equally weighted random sample from )¦( 1:01:0  tt yxp  by sampling, 

with replacement, from the distribution. This procedure, otherwise called resampling, 

produces a new sample with uniformly distributed weights. 

Particle filters and smoothers are SMC methods grounded in particle representations, and 

are considered as generalizations of well-known Kalman filters and smoothers for general 

state-space models.  

The fundamental approach used to get particles from the desired density is based on 

sequential importance sampling (SIS) and resampling. SIS, a Monte Carlo method, forms 

the basis for most particle filtering methods. To approximate the conditional density of tx  

given the previous states, 1tx , and the past and present data, ),|(, 1 tttt yxxpy  , SIS 

introduces a importance sampling density, ),|( 1 ttt yxx   where it is easier to sample 

from the distribution, ),|( 1 ttt yxxp  . 
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2.6.1 SIMPLE MONTE CARLO SAMPLING 

Assume we are able to simulate N  independent and identically distributed random 

samples },,1,{ )(

:0 NiX i

t   according to )¦( :1:0 tt yxp . An empirical estimate of this 

distribution is given by  

                                     )(
1

)¦( :0

1

:0:0 )(
:0

t

N

i
xttN dx

N
ydxP i

t



                                            (2.26) 

or the expectation of a function  

                  



N

i

i

ttttNtttt xf
N

ydxPxfxfE
1

)(

:0:1:0:0:0 )(
1

)¦()())((  .                             (2.27) 

This estimate given in equation (2.27) is unbiased with the variance proportional to 
N

1
 

for the finite variance of  )( :0 tt xf (Doucet et al,. 2001).  

It is seldom possible to sample efficiently from the distribution )¦( :1:0 tt yxp  at any time t . 

2.6.2 IMPORTANCE SAMPLING 

An alternative solution to estimate )¦( :1:0 tt yxp  and ))(( :0 tt xfE  consists of using 

importance sampling (IS) method (Geweke, 1989). This is a fundamental Monte Carlo 

method and the basis of all the algorithms developed later on. IS relies on the 

introduction of an importance sampling distribution )¦( :1:0 tt yx , from which one can 

easily sample and such that 0)¦( :1:0 tt yxp  implies 0)¦( :1:0 tt yx , then  

              






tttt

tttttt

tt
dxyxxw

dxyxxwxf
xfE

:0:1:0:0

:0:1:0:0:0

:0
)¦()(

)¦()()(
))((




 .                                          (2.28)                                                                             

 where 
)¦(

)¦(
)(

:1:0

:1:0

:0

tt

tt

t
yx

yxp
xw


  is the importance weight. 
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If we have ... diiN  random samples },,1,{ )(

:0 NiX i

t   distributed according to 

)¦( :1:0 tt yx  then a Monte Carlo estimate of ))(( :0 tt xfE  is 

                     








 
N

i

i

t

i

tt

i

t

N

j

N

i

i

t

i

tt

tt wXf

Xw
N

XwXf
N

xfE
1

)()(

:0

)(

:0

1

1

)(

:0

)(

:0

:0
~)(

)(
1

)()(
1

)(( ,                          (2.29)                                                          

where the normalized importance weights )(~ i

tw  are given by                      

                                             





N

j

j

t

i

ti

t

Xw

Xw
w

1

)(

:0

)(

:0)(

)(

)(~ .                                                       (2.30)                                                                                          

The importance sampling is a general Monte Carlo integration method. However, in its 

simplest form, it is not adequate for recursive estimation. 

 

2.6.3 SEQUENTIAL IMPORTANCE SAMPLING 

The importance sampling method can be modified so that it becomes possible to obtain at 

any time t  an estimate )¦(ˆ
:1:0 ttN ydxP  of the distribution  )¦( :1:0 tt yxp  without modifying 

subsequently the past simulated trajectories },,1,{ )(

1:0 NiX i

t  . This means that the 

importance function )¦( :1:0 tt yx  at time t  admits as marginal distribution at time 1t  

the importance function )¦( 1:11:0  tt yx  that is, 

                               ),¦()¦()¦( :11:01:11:0:1:0 ttttttt yxxyxyx     .                  (2.31) 

Iterating, one obtains 

                             



t

k

kkktt yxxxyx
1

:11:00:1:0 ),¦()()¦(   ,                                  (2.32) 
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where  ),¦( :11:0 kkk yxx   is the probability density function of kX  conditional 

upon 1:0 kx  and ky :1 . 

This importance function allows us to evaluate recursively in time the importance 

weights (2.30). Thus , one has  

                          
),¦(

¦()¦(~~

:1

)(

1:0

)(

)(

1

)()(

)(

1

)(

t

i

t

i

t

i

t

i

t

i

tti

t

i

t
YXX

XXpXYp
ww








 .                                               (2.33)                                                         

2.6.4 SEQUENTIAL IMPORTANCE RESAMPLING 

The problem with sequential importance resampling (SIS) is that the variance of the 

importance weights  )(~ i

tw  increases stochastically over time [Kong et al., (1994) and 

Doucet et al., (2001)]. In practice, after a few iterations of the algorithm, only one particle 

has a non-zero importance weight. The algorithm fails to represent the distributions of 

interest. To avoid the degeneracy of the SIS simulation method, a resampling stage 

(which is referred to as bootstrap filter)  are used to eliminate samples with low 

importance weights )(~ i

tw and multiply samples with high importance weights (Doucet, et 

al. 2001). Many of the ideas on resampling have stemmed from the work of Efron (1982), 

Rubin (1988), and Smith and Gelfand (1992).  

 Formally, the weighted empirical distribution    

                            )(~)¦(ˆ
:0

1

)(

:0:0 )(
:0

t

N

i
x

i

tttN dxwydxP i
t




  .                                                (2.34)                                           

is replaced by the unweighted measure 

                         )(
1

)¦(ˆ
:0

1

)(

:0:0 )(
:0

t

N

i
x

i

tttN dxN
N

ydxP i
t




   ,                                             (2.35)                                         
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where )(i

tN  is the number of offspring associated to particle )(

:0

i

tX  , it is an integer number 

such that 



N

i

i

t NN
1

)( . If 0)( j

tN , then the particle 
)(

:0

j

tX  dies. The )(i

tN  are chosen such 

that )¦( :1:0 ttN ydxP  is close to )¦(ˆ
:1:0 ttN ydxP  in the sense that, for any function tf , 

                   )¦(ˆ)()¦()( :1:0:0:1:0:0 ttNttttNtt ydxPxfydxPxf    .                          (2.36)                   

After the selection step, the surviving particles 
)(

:0

i

tX , that is the ones with 0)( i

tN , are 

thus approximating distributed according to )¦( :1:0 tt yxp . 

 

Figure 2.3: SIS particle filter. 

Figures 2.3 - 2.5 are adopted from Maskell and Gordon (2002): In this example, a particle 

filter starts at time )1( t  with an unweighted measure },
~

{ 1)(

1



 NX i

t , which provides an 

approximation of )( 2:11  tt yxp . For each particle we compute the importance weights 

using the information at time )1( t . This results in the weighted measure }~,
~

{ )(

1

)(

1

i

t

i

t wX  , 

which yields an approximation )( 1:11  tt yxp . Subsequently, a resampling step selects 

only the fittest paricles to obtain the unweighted measure },
~

{ 1)(

1



 NX i

t , which is still an 
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approximation of  )( 1:11  tt yxp . Finally, the sampling step introduces variety resulting in 

the measure },
~

{ 1)(

1



 NX i

t . 

2.6.5 Algorithm description   

We specify the algorithm as follows: 

                                          Bootstrap Filter 

1) Initialisation, 0t . 

* NiFor ,,1   sample  )(~ 0

)(

:0 xpX i

t   and set  1t . 

2). Importance Sampling Step 

* NiFor ,,1   sample  )¦(~
~ )(

1

)( i

tt

i

t XXpX    and set  )
~

,(
~ )()(

1:0

)(

:0

i

t

i

t

i

t XXX   

3). Sequential Importance Sampling Step 

     * NiFor ,,1  sample ),¦(~ :1

)(

1:0

)(

t

i

tt

i

t yxXX   and set )
~

,(
~ )()(

1:0

)(

:0

i

t

i

t

i

t XXX   

 

     * NiFor ,,1  evaluate the importance weights up to a normalizing constant: 

                         

                                    
),¦(

¦()¦(~~

:1

)(

1:0

)(

)(

1

)()(

)(

1

)(

t

i

t

i

t

i

t

i

t

i

tti

t

i

t
YXX

XXpXYp
ww








.  

 

     * NiFor ,,1  normalize the importance weights: 

                             

                                            





N

j

j

t

i

ti

t

Xw

Xw
w

1

)(

:0

)(

:0)(

)(

)(~  .  

4). Selection Step* Multiply / eliminate particles  N

i

i

tX
1

)(

:0

~


 with respect to high/low 

normalized importance  weights  )(~ i

tw  to obtain N  particles  N

i

i

tX
1

)(

:0

~


   with 
N

w i

t

1~ )(   

 

                                 Fig 2.4: problem of  the SIS particle filter: degeneracy. 
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                                        Fig 2.5: Resampling 

In Figure 2.4, two particles dominate the distribution and the others are of no use since 

their weights are almost zero. Resampling is designed to solve this problem by removing 

particles with small weights, concentrating, instead, on particles with large weights. This 

resampling step involves generating a new set, M

i

i

tx 1

*)( }{   , by resampling with replacement 

M  times from M

i

i

tx 1

)( }{   so that )()(*)( )( i

t

i

t

i

t wxxp   . Figure 2.5 shows how resampling 

works. A generic particle filter draws M

i

i

tx 1

)( }{   using a SIS particle filter, and resamples 

M

i

i

tx 1

*)( }{   when degeneracy has occurred. For more details, see Zhang et al., (2007) or 

Doucet et al., (2001). 

2.7  PARTICLE FILTER ALGORITHM  

Suppose that we have at time t  weighted particles },{ )()( i

t

i

t wf  drawn from )¦( tt yxf , 

)(i

tf  is a set of particle filter with associated weight )(i

tw  . This is considered as an 

empirical approximation for the density, 

                                          



M

i

i

tt

i

ttt fxwyxf
1

)()( )()¦(  .                                         (2.37) 

Kitagawa and Sato (2001) and Kitagawa (1996) gave an algorithm for filtering in general 

state space model thus: 
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2.7.1 Monte Carlo filtering for general state-space models 

1) For Ni ,,1  , generate a random number  )(~ 0

)(

0 xpf i .  

2) Repeat the following steps for Tt ,,1  . 

a. For  Ni ,,1  , generate a random number )(~)( wqw i

t . 

b. For  Ni ,,1  , Compute ),( )()(

1

)( i

t

i

t

i

t wfFp   .  

c. For  Ni ,,1  , Compute  )¦( )()( i

tt

i

t pypw  .  

d. Generate  Nif i

t ,1,)(   by resampling )()( ,, N

t

i

t pp 
 
 .  

3) This Monte Carlo filter returns 





N

i

tt

i

tt

i

t Yxffx
N

thatsomtNif
1

)()( )¦()(
1

},,1,,,1,{   .  

 

2.8    PARTICLE SMOOTHING ALGORITHM 

If we let  M

i

i

t

i

t ws 1

)()( },{   be set of particle smoothers and associated weights approximating 

the density function )|( nt Yxf , then the density function are approximated by 

                       



M

j

i

tt

i

tnt sxwYxf
1

)()( ).()|(   .

                                                            (2.38) 

 

The problem with smoothed estimates is degeneracy. Godsill et al., (2004) suggested a 

new smoothing method (particle smoother using backwards simulation). The method 

assumes that the filtering has already been performed. Thus, the particles and associated 

weights, M

i

i

tf 1

)( }{  , M

i

i

tw 1

)( }{   
can approximate the filtering density, )|( tt Yxf , by  










N

i

i

t

i

tt

i

t

w

fxw

1

)(

)()( )(
.  Godsill et al., (2004) gave the following algorithm : 
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2.8.1 Particle smoother using backwards simulation 

Suppose weighted particles },,2,1;,{ )()( Miwf i

t

i

t   are available for nt ,,2,1  . For  

Mi ,,2,1  , 

1) Choose )()( j

n

i

n fs   with probability )( j

nw   

2) For 1n  to  1     

a. Calculate   )|( )()(

1

)()(

1|

j

t

i

t

j

t

j

tt fsfww    for each j . 

b. Choose )()( j

t

i

t fs   with probability 
)(

1|

j

ttw  . 

3) ),,( )()(

1

)(

:1

i

n

ii

n sss  is an approximate realization from )|( nn YXp . 
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CHAPTER THREE 

3. THEORETICAL FRAMEWORK AND METHODOLOGY 

This work is cardinally hinged in its analysis and extension, on the essential findings of 

Kim nd Stoffer (2008) and Cappe (2009). As online estimation of model parameters of 

the state space model of a HMM has proved to be a crucial but often a difficult task, it 

has been demonstrated through simulations that the estimates converge in a distribution 

that enables exact finite-sample inference. This research adopts methods from Kim and 

Stoffer (2008), Cappe (2009) and Cappe and Moullines (2009) in the literature of 

SMCEM algorithm and applications. Kim and Stoffer (2008) proposed a version of the 

particle methods and EM algorithm to estimate parameters of the SV model using chi-

square which was later modified to normal mixture as its observation noise. This is what 

endeared it to this work as a framework. 

 

In this section, a description of the SV model followed by SV model with a normal 

mixture distribution is discussed. The student-t SV model as well as the Generalized 

Error Distribution (GED) is also introduced, which represent the extension. An overview 

of the estimation procedure is presented, as well as theoretical results of the proposed 

technique. .  

 

3.1 STOCHASTIC VOLATILITY MODEL 

Stochastic Volatility models belong to state-space form of a Hidden Markov model which  

take the volatility of the data into account. The idea behind the family of SV models is 

that the volatility is driven by a latent process representing the flow of price relevant 
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information. However, this feature makes the SV model difficult to implement. Several 

specifications of the model have been suggested since its introduction by Taylor (1982). 

To fix notation and set the stage for our discussion, if we let ty
 
denote the return from an 

asset at time t
 
, the SV model  due to Taylor (1982) can be expressed as 

                                                    ttt wxx  1                                                         (3.1)                                                            

                                                    t

t

t v
x

r 









2
exp                                                    (3.2)                                                                                     

where )1,0(~,),(~,),0(~ 2

000 NvNxNw tt  , 0}{ tty  is the log-returns on day t, we 

call    as the constant scaling factor, so that 0}{ ttx  represents the log of squared 

volatility. We assume that 1¦¦  . The model are linearized by taking logarithms of the 

squared returns,   

                                          ttt zxy                                                                (3.3)                                                                                                                

Equations (3.1) and (3.2) form the version of the SV model which can be extended in 

many ways.  

 

3.2   STOCHASTIC VOLATILITY WITH HEAVY –TAILED                         

         DISTRIBUTION 

 
The standard form of the SV model is given in equations (3.1) and (3.3).  In equation 

(3.3) tz  follows a normal distribution. Various authors have argued that real data may 

have heavier tails than can be captured by the standard SV model. It is a known fact that 

daily asset returns have leptokurtic distributions. The kurtosis of tx   following the above 

SV model  is given by  

                                               )exp()(
))((

)( 4

22

4

xt

t

t vE
xE

xE
k   ,                                      (3.4)     
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where   represents the unconditional variance of tx .
                                         

The standard normal distribution is usually assumed for the distribution of tv . If so, 

3)( 4 tvE and hence the kurtosis tx  is  

                                                       3)exp(3  k                                         (3.5) 

where 3k only if  0 . This distribution indicates that, as long as the volatility 

changes over time, the unconditional distribution of tx   is leptokurtic even if tv    follows 

the standard normal.  

 

3.2.1  The stochastic volatility model with Normal mixture  
 

The observational noise process of Kim and Stoffer (2008) is a mixture of two normal 

distributions with unknown parameters given as
                                             

                                                 ttk zxy 
                                                           (3.6) 

     with  

                 011100001 ,),(~,),(~,)1( mRmNzRmNzzIzIz ttttttt ,   

 )1(1 m  and )(~ BernuolliI t . tI  is an indicator variable, where   is an 

unknown mixing probability, i.e )(~(1)1(  BernuolliIpIp tt  . The simplest 

extension of the normal distribution exhibiting higher kurtosis is a mixture of two 

normals.  

The kurtosis of the normal mixture distribution Asai (2009) is  

                                                 
22

1

2

0

4

1

4

0

))1((

))1((3

RIRI

RIRI

tt

tt




.                                           (3.7)

 

The likelihood of },,,,,,,,{ 110 nnn IIyyxx  is 

http://portal.acm.org/author_page.cfm?id=81100369724&coll=DL&dl=ACM&trk=0&cfid=7520798&cftoken=94300646
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where 01

*

01

* )1(,)1( qIqIRIRIR tttttt   .  

 

},,,,{ 1010 RRqq are estimated in the estimation step along with the other parameters, 

},{  . 

 

3.2.2  The Proposed model - technique based on the student-t SV model 

 
One of the main assumptions of the SV model is that tv

 
in equation (3.2) has normal 

distribution. It is generally known that the densities of many financial time series exhibit 

larger kurtosis than can be explained by the standard SV models with normal error 

distribution. The SV model with a fat tail distribution has been proposed to deal with this 

problem.  

 

However, the extension from normal to heavy-tailed distributional assumption increases 

the computational load dramatically. In this study, the impact of the distribution 

assumption on the tv  variable is analyzed. In particular, this study extends the 

observation equation by allowing the tv  variable to follow the student-t distribution and a 

Generalized Error distribution (GED). The student-t distribution and the GED allow for 

fatter tails compared to the normal distribution. A Sequential Monte Carlo with 

Expectation-Maximization algorithm technique is developed for the extended volatility 

model. 
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3.2.2.1  Student-t as an observation noise 

We now consider an extension of the linearized version of the SV model (see equation 

(3.1) and (3.2), wherein it is assumed that the observational noise process, tz
 
follow a 

student-t distribution. 

The model, first presented in Shumway and Stoffer (2006), retains the state equation for 

the volatility as:  

                                             ttt wxx  1                                                                    

but the proposed student-t distribution with degrees of freedom, v , for the observation 

error term, tz , effects a change in the observation equation:  

                                        ttt zxy                       .,,1,~ nttz vt                  (3.9) 

The distribution of the error term for this specification according to Shimada and 

Tsukuda (2005) takes the form 
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where v  represents a parameter of degree of freedom and  stands for the Gamma 

function.  

The  likelihood function of },,,,,,{ 110 nn yyxxx  is 
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Here, the target parameters are },,,{ v . The kurtosis of the student-t distribution is  
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which is greater than three if  v
 
.
 

This change to the proposed model allows for a more robust fit, giving us a new tool to 

explore the tail fit.  

3.2.2.2 Generalized error distribution as an observation noise 

The distribution of the GED according to Bao et al., (2006) takes the form 
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The log-likelihood function for the GED model is given by  
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3.3 SEQUENTIAL MONTE CARLO EXPECTATION- 

      MAXIMIZATION ANALYSIS 

In this section, the method used in this work for the analysis of the SV model with the 

student-t distribution and the GED is explained. As is well known, it is difficult to 

estimate the parameters in the SV model using the maximum likelihood method. Several 

alternative methods have been proposed. Among such method, is the extension of the 

SMCEM techniques.  

Parameter estimation 

The entire estimation procedure consists of three main steps: filtering, smoothing, and 

estimation. We consider parameter estimation for the student-t and GED SV model. A 

basic approach for the student-t SV model, equation (3.2), is to apply the EM algorithm. 

With the output of filtering and smoothing step an approximate expected likelihood is 

calculated.  

 

3.3.1  Filtering Step: 

The algorithm below for the filtering and smoothing steps shows an extension of Godsill 

et al., (2004) and Kim and Stoffer (2008) results. From here, M samples from )|,( tt Yxf  

for each t  were obtained. 
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3.3.2  Smoothing step 

In the smoothing step, particle smoothers that are needed to get the expected likelihood in 

the expectation step of the EM algorithm were obtained:  

Suppose that equally weighted particles Mif i

t ,,1},{ )(  from )|,( tt Yxf are available 

for nt ,,1   from the filtering step. 
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3.3.3  Estimation Step 
 

This step consists of obtaining parameter estimates by setting the derivative of the 

expected likelihood, of the complete data },,,,,{ 10 nn yyxx   given },,{ 0 nxx   , with 

respect to each parameter to zero and solving for ,ˆ,ˆ  and ̂ . 

 We view },,{ 0 nxx   as unobserved and apply the EM algorithm. However, problems 

arise when the model is not Gaussian because it can be difficult to compute such 

expected likelihood. A simulation-based particle filters and smoothers are therefore used 

to obtain the values needed for calculating the expected likelihood. The procedure of this 

algorithm consists of running a filtering and smoothing step for the given parameters, and 

then running an estimation step to get updated parameter estimates. 

 

To apply the EM algorithm, there is need to calculate the complete data likelihood and 

the expected likelihood given the data. The followings are the details. 

 

The complete likelihood of },,,,,,{ 110 nn yyxxx  is 
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where  C is constant.     Multiply through by -2 
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follows the GED, it is not possible to represent it as equation (3.2). Hence, for 

the SV-GED model, we sample v

 

as well as the other parameters and tx
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conditional distributions using the SMCEM techniques. 
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3.4  OTHER CONSIDERATIONS 

3.4.1  Initial Parameter Selection  

To save computing time, it is essential to start with good initial parameters. Anderson et 

al., (1969) suggested consistent estimates of the parameters of a linear system based on 

the idea of the method of moments. Their idea is applied to get initial parameters. 
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3.4.2 Relative Likelihood 

In the EM algorithm, the likelihood of the observed data increases at every iteration. 

Although the E-step, which uses particles to calculate the expected likelihood, does not 

guarantee the monotone likelihood property, the behavior of the relative likelihood is 

worth studying. The relative likelihood is the ratio of the likelihoods at two adjacent 

iterations, and the relative likelihood at ith iteration, 
)(
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the complete likelihood as follows: 
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where  y  is observed data and x  is complete data. 

On Multiplying )()( yxf i
and integrating out x , we get 
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3.4.3  Stopping Rule and Selection of Particle Size 

Theoretically, the suggested algorithm converges when the particle size, M , and the 

number of iterations, N , are large. Practically, it is not possible to use infinitely large M  
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and N . The choice of N  is important as the estimates from the procedure when stopped 

too early may not be reliable. Moreover, it is a waste of time and resources to run the 

procedure longer than necessary. Many numerical procedures involving iteration 

compares estimates from contiguous iteration; if the two are close enough, the process is 

considered to have converged, and is stopped. Equivalently, the relative likelihood, which 

is the difference between two likelihood values at two adjacent iterations are considered 

as a measure in assessing convergence. In particular, a small relative likelihood signifies 

that a process approaches convergence. Here, the relative likelihood is used to assess 

convergence. More specifically, we conclude that the process is converged if the relative 

likelihood is less than some pre-determined tolerance,.  

 

Regarding the selection of ,M Tanner (1996) mentioned that it is wise to start with a 

small ,M increasing it as the current approximation moves closer to the maximum 

likelihood estimate in the Markov chain EM setting. We apply Tanner‟s method to save 

computing time. 

On the other hand,   a key element in statistical analysis of HMM is a strong law of large 

numbers for the log-likelihood function. In previous works, stability theory of Markov 

chains and the subadditive ergodic theorem were used; see Baum and Petrie (1966), Douc 

and Matais (2001), Legland and Mevel (2000) and Leroux (1992). Early reviews of the 

theoretical properties of particle filters are found in Doucet et al., (Chapter 2 and 3, 2001) 

and Crisan and Doucet (2002) while Chapter 9 of Cappe et al., (2005) includes an 

introduction to consistency and asymptotic normality for several particle filtering 

algorithms.  
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3.5  PROOF OF CONVERGENCE OF THE PROPOSED SMCEM   

ALGORITHM    
     
In this section, the convergence of the proposed method presented is proved using the 

following theorem:  

The Theorem states that for suitable starting values close to an isolated maximizer of the 

log-likelihood of the observations and with sufficiently large particle sample, an SMCEM 

sequence will get close to the maximizer with high probability. 

 

 Theorem  3.5.1 (Chan and Ledolter, 1995)  

Let *  be an isolated local maximum of )(yl , the observed likelihood, then there exists 

a neigbourhood, say 1V , of  *  such that for starting values of the algorithm presented 

inside 1V  and for all 01  , there exists a 0k  such that 1

*)( ¦¦(  M

kp  for some 

1)0  kk  as M . 

Propositions  

(i):    If for all ),()(, '''  WrlX  , where W  is a measurable vector function of ,X then 

           r is linear in W  and )( 'Xl  is the complete likelihood at the parameter ' . 

(ii):  If ),( 'Wr  attains the unique global maximum at N )(W  then N is continuous in W  

(iii):   Let *  be an isolated local maximum of )(yl  then )(yl  is continuous in  . 

(iv):  If )(nW is the sample mean of  W  values computed from the particle sample    

          )(,),(1  nXX   then the convergence, in probability, of )()( WEWn    as    

          N  is uniform over compact subsets of   where   is a parameter space. 
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Proof:   

 (i):  The log-likelihood of the complete data for the student-t SV model is  
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The dimension of W  is not assumed constant and may grow with that of X .         
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and N )(W is continuous in W .   

 

(iii).  Furthermore, proposition (iii) is satisfied since W  is a measurable vector function 

of X  and ),()( ''  WrlX  , which is linear in W and )( 'Xl  
is the complete likelihood 

at the parameter ' where ),( 'Wr
 
attains the unique global maximum at N )(W  , and it 

has been  shown that N )(W
 
is continuous in W . Therefore, letting *  be an isolated local 

maximum of )(yl , it  follows that )(yl  is continuous in    . 
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 (iv):  we use the convergence result of the particle smoothing algorithm in Godsill et al., 

(2004). By Theorem A2 of Godsill et al., (2004), for all ),,,1( nt   there exists )(n¦ tc  

independent of N  such that for any bounded, Borel-measurable function   on nR  ,  

 
N

cxxdxxxxdxxE nnnnnn

2

n¦1

2

1n¦:111

M

n¦:11 )();,,(),,();,,(),,(


 




   

 

  );,,(),,();,,(),,( 1

N

n¦:111

N

n¦:11  nnn

P

nnn xxdxxxxdxx 

 

We can assume squared returns since both equations above are equivalent, and hence the 

ty ,  are bounded by a large number, then since W  is bounded, we obtain  

                                            )()( WEW P

N   as N . 

Thus, we need to show that for every 0  there is an integer M such that MN   

implies      )()( WEWp N  for all E  where E  is a compact subset of   to 

establish the uniform convergence.  

Since NW  and )(WE are continuous in  , for any 01   there exists 01   and 02   

such that 121    implies 121 )()(   NN WW  and 221    implies 

1)()(
21

  WEWE .  

Let us consider an open covering }{ O of E  such that }:{   O where  is 

the minimum of  1  and 2 . Then by compactness of E  we can choose the finite subset 

of KOO ,,1},{},{ '
' 

  which covers .E  

Then for any   in E  we can find O  such that  O  and },,1{ K .  

Since  
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                    , we get  1)()(    NN WW  and 1)()( 
  WEWE .  

Therefore, 

       

  
 ¦)()(¦)()()()( '''' WEWEWEWWWp NNN
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

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


3
¦)()(¦ '




WEWEp  

The first and the third terms of the above expression are less than 
3


 if we let ,

3
1


   

and the second term is less than 
3


 by pointwise convergence for .'

MN  Thus, letting 

'max


MM   , we get that for every ,E     ¦(¦ WEWp N  for Mn  .  

 

Remark: In propositions (i) and (ii), the propositions that ),()( ''  WrlX   is linear in 

W  and that, )()( WEWn   , uniformly for   over compact sets in probability , are 

needed only to guarantee that NM )(
 
converges in probability to )(WE  uniformly for   

over compact sets. 

Hence, as the algorithm satisfies all four propositions of the theorem, the convergence 

follows. 

 

3.5.2 Consistency and asymptotic normality 

In the context of i.i.d.-observations convergence properties of recursive EM-type 

algorithms have been studied in Titterington (1984), Sato (2000), Wang and Zhao (2006), 

    )()( WEWp N
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and Cappe and Moulines (2009) where also proofs of consistency and asymptotic 

normality are provided. 

Early reviews of the theoretical properties of particle filters can be found in Chapters 2-3 

of Doucet et al., (2001) and Crisan and Doucet (2002) while Chapter 9 of Cappe et al., 

(2005) includes introduction to consistency and asymptotic normality for several particle 

filtering algorithms. More recent papers on consistency and asymptotic normality are 

Douc et al., (2007)  and Douc and Moulines (2008). Douc and Moulines (2008)  also 

Cappe et al., (2005)) prove preliminary theorems showing that if one starts with a sample 

 N

i

i

n

i

n wx
1

)(

1

)(

1:0 ,
  that produces a consistent and asymptotically normal estimator for a 

function f , then one iteration of the sampling and resampling operations produce a new 

sample N

i

i

n

i

n wx
1

)()(

:0 ,


 whose estimator is also consistent and asymptotically normal for the 

function f . These theorems also govern consistency and asymptotic normality for the 

SIR algorithm of Rubin (1988). Therefore, an additional assumption is that estimates 

produced by the initial particles  N

i

ii wx
1

)(

0

)(

0 ,


 are consistent and asymptotically normal for 

a function f . 

 

Given the propositions (i) - (iv) stated above, then Theorem 10 of Douc and Moulines 

(2008) states that the estimator which is the sample mean of W computed from the 

particle samples )(,),(1  nXX  produced by the particle filter and smoother is 

consistent at iteration n  meaning that  as N   

                           )()( WEWN  
. 

 



97 

 

Proposition v. 

Let )(NW  be an estimator (based on sample size N ) of   and let  WWE )( , so that 

 WWN )( . If for each 0 , we have that  

                                                  1)(   WWP N          
as N

  

then )(NW
 
is a consistent estimator.  

Proof: 

It is sufficient to prove that for any 0 the probability is one that all limit points W  of 

the Sequence }{ NW satisfy the inequality .)  WW  The event that there exists a 

 

 limit point W of the sequence }{ NW
 

such that  WW  implies that 

),(),()},(),({ 11sup NnNn

WW

wxwxxx 


 


 for infinitely many N . But then 

                                          0
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for infinitely many n   By theorem 1 of Wald (1949), 
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We have shown that the probability is one that all limit points W  of }{ NW satisfy the 

inequality  WW . 

They are asymptotically normal meaning that as N  
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                                                ),0())(( 2

NN NWWN     

Due to the recursive nature of the algorithm, both the asymptotic variance 2

N  and the 

sets of functions for which these results will hold are determined recursively. 

 

3.6  Multivariate Stochastic Volatility model based on student-t  

The contribution of this work to the literature, on multivariate modeling of volatilities and 

correlations, lies in the introduction of observation-driven time-varying parameter models 

with heavy tailed distributions. Here, we extend SMCEM analysis to multivariate SV 

models with student-t distribution. Let '

,,1 ),,( tntt rrr 
 
denote a vector of  n

 
asset 

returns. A multivariate stochastic volatility (MSV) model with Student-t for 
tr
 
is  

                                                   txt eDr
t
                vte et ,,0~

,
                              (3.18) 
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                                         )1,0(~,1 Nwwxx tttt    .
                                        (3.20) 

Let observation vector k

ty   follow a standardized Student's t distribution with v  

degrees of freedom. The variance covariance matrix of ty
 
is denoted  by  t . We 

assume that 2v , such that the variance covariance matrix exists.  

The observation density of ty     is given by  
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Under this model, the conditional joint distribution of the returns tr  given tx  is 

multivariate student-t given by   tttt xDDtxr )exp(,0~ ' , where the time-series 

behavior of the conditional variance–covariance is driven by the volatility process of the 

common factor ty . The relative importance of the factor for each of the returns 

considered is shown by considering the unconditional variance estimated from the model. 

This is compared with the corresponding sample variance [Engle (2002), Engle and 

Shephard (2001), and Tse and Tsui (2002)]. The unconditional variance–covariance 

matrix of tr  is given by ),,()][exp()(var 22

1

'

Ntttt diagxEDDr   . Hence, the overall 

variance–covariance is decomposed into a component which is due to the variation in the 

common factor and a component reflecting the variation in the vector of noises. 

Following an interpretation offered by Diebold and Nerlove (1989), the common factor 

reflects the flow of new information relevant to the pricing of all assets, upon which asset 

specific shocks represented by the vector of noises are superimposed. 

Again, the implementation of SMCEM for the MSV model requires extending the 

conditional density of 
ty
 
given 

tx  in the baseline algorithm described in Section 3.3.  

 

Given a sample of vector observations ty  with mean zero, nt ,,1  , the log likelihood 

function for the multivariate Student's t model is given by 
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In principle, estimation can be done using the same methods suggested for univariate 

models, although not each method may be applicable to every model. Still, SMCEM 
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estimation technique appears to be flexible and efficient estimation technique for MSV 

models. 

The EM algorithm maximizes the likelihood by iteratively carrying out an E-step and an 

M-step. In the E-step, the expectation 

                             )y,|)|(log()|( ')(
)( xfEQ k

k


                                       (3.22) 

needs to be approximated, where 
)(k

 is the current estimator. In the M-step, a new 

parameter estimate 
 )1(k

 is obtained by maximizing )|( (k)Q .An approximation 

of )|( (k)Q  are computed based on the smoothing particles }~,
~

{ )(

1

)(

1

i

t

i

t wX   from our 

particle filter or from existing particle smoothing algorithms (Godsill et al., 2004 and 

Briers et al., 2010).  
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CHAPTER FOUR 

4   DATA ANALYSIS AND RESULTS 

4.1   SIMULATION STUDY 

The models which pertain to parameter estimation for the student-t and GED SV model 

are illustrated using three simulated data sets and daily exchange rate series of the 

Nigerian Naira, Ghana Cedi, British Pound and Euro, all against the U. S. Dollars, from 

March 3, 2009 to March 3, 2011, to compare the fit of the distributions. In the simulation 

studies, one data set is generated from the SV model which has the normal mixtures 

distribution as its observation noise. The second data set is generated from the student-t 

SV model. The third data set is generated from the SV model with GED as its 

observation error. In each case, we carry out the SMCEM simulation with 500 particles 

and increase the number of the particles until we have achieved the tolerance 001.0 . 

The processes were stopped when the value of relative likelihood was less than tolerance, 

 , which assesses convergence. To guarantee the processes had reached stability, we 

generated more than 11000 observations and discarded the initial 10000 samples.  

 

Simulation 1:  Data were generated from the normal mixture SV model 

                                             ttt wxx  17.0
 

                                            ttt vxy  75.2     

where )4,5.3()1()6,2(~),96.0,0(~  NINIvNw tttt and ).5.0(~ BernoulliI t  with 

true parameter set of  ),,,,,,( 1010  RRqq = (0.7, 0.96 , -3.5 , -2 , 4 , 6, 0.5). We 

applied the techniques based on mixture and student-t SV to this data to examine the 

performance of the proposed model. To make this process stationary, we generated 11000  
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samples and discarded the first 10000 values. Figure 4.1 shows the plot and the histogram 

of simulation 1. 
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Fig.  4.1a: Representation of SMCEM sequence                 4.1b  Histogram of the final values of the         
    simulated from the normal mixture  SV model.                   parameters  of the normal mixture  SV model

 

 

Simulation 2: Data were generated from the student-t SV model with true parameter set 

of  ),,,( v  = (0.81, 1.45,  -3.01, 8). The techniques based on mixture and student-t SV 

model were applied to this data to see the merit of the student-t idea. Again, the length of 

the data, }{ ty , is 1000. Figure 4.2 below shows the plot and the histogram of simulation 2. 

We used the second data set to observe the behavior of the estimation procedure when there 

is a departure from the normal mixture observational error assumption.  
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                     Fig.  4.2a: Representation of SMCEM sequence                 4.2b  Histogram of the final values of the         
                     simulated from the student-t  SV model.                               parameters  of the student-t  SV model. 

 



103 

 

 

Simulation 3: Data were generated from the GED SV model with true parameter set of  

),,,( v  = (0.9, 1.6,  0.7).  We applied techniques based on mixture and the GED SV 

model to this data to see the merit of GED idea. Again, the length of the data, }{ ty , is 1000. 

Figure 4.3 below shows the plot and the histogram of simulation 3. 
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           Fig.  4.3a: Representation of SMCEM sequence                     4.3b  Histogram of the final values of the         
          simulated from the normal mixture  SV model.                        parameters  of the normal mixture  SV model. 

 

 

Figures 4.1b – 4.3b shows the SV for the three distributions. The results confirm that the 

student-t  and the GED SV models, when compared with the normal mixture SV model, have 

fatter tails. The emphasis of the  GED SV model is on the sharpness around the mean rather 

than the tail fatness, making the student-t to have fatter tail than that of the GED. As a result,   

student-t SV model attributes a larger proportion of extreme return values to tv  instead of tw  

than the SV normal and the SV GED. Figures 4.1a – 4.3a  plot the volatilities jointly with the 

squared returns. No major difference in the volatilities among the three models.   
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4.2 ESTIMATION RESULTS 
Utilizing the functions provided by MATLAB, Tables 4.1, 4.2, 4.3 and 4.4 show the results of 

the estimation for simulation 1, 2 and 3. At the beginning of each iteration, parameters are 

assumed to be known. For given parameters, the filtering step and a smoothing step were run. 

With the output of these two steps, updated parameter estimates were obtained by running the 

estimation step.  In each simulation case, we started with 500 particles ( 500M ) and 

1.0 . The process was stopped as the relative likelihood at the next iteration was less the 

0.1. We increased M  and decreased  , and repeated the procedure until we achieved the 

tolerance 0.001.  

TABLE 4.1:  

Parameter estimation on technique based on the normal mixture and Student-t on data generated from the 

normal mixture model

  

 
 

 
)(i  

 

 
)(

0

iq  
 

 
)(

1

iq  
 

 

 
 

 

 
 

 

 
 

 

 
 

Rel. 

Lik 

 

 
 

 

True 

parameter 0.7 1.06 -3.5 -2 4 6 0.5 -2.75    

Mixture SV 0.7368 0.9408 -0.9826 -3.5081 2.2144 7.5758 0.4330 -2.0761 0.0865   

 (0.028438) (0.014796) (0.085676) (0.037916) (0.38686) (1.0062) (0.017748)     

Student-t 

SV 0.6976 1.3654           -2.1465 0.0250 500 0.1 

 (0.01475 )  (0.0029492)      (0.0038743)    

Mixture SV 0.8677 0.1186 -1.8746 -3.4744 1.8883 7.9490 0.4267 -1.983935 0.0025    

 (0.048671) (0.0059242) (0.084237) (0.00879) (0.27135) (0.59001) (0.014455)     

Student-t 

SV 0.7308 0.7625           -1.6703 

-

0.0021  1000 0.01 

 (0.049383) (0.20677)      (0.10626)    

Mixture SV 0.7568 0.3466 -1.9486 -3.7620 2.3169 7.5643 0.3854 -2.094344 

-

0.0004   

 (0.027826) (0.00931) (0.10989) (0.08690) (0.20936) (0.67241) (0.02635)     

Student-t 

SV 0.6913 1.0336           -1.9009 -0.000  1000 0.001 

 (0.037981) (0.14839)      (0.024501)    

Where 
 
is tolerance which assesses convergence,  M

 
is the number of particles, standard errors are shown in parenthesis,

 
  is 

the unconditional variance of tx  ,  is the estimated value between -1 and + to make the process stationary,  

),,,,( 0010 RRqq are parameters in the normal mixture model which are estimated along with the other parameters 
 

),(   

 

By the procedure described in Section 3, [0.9500, 1.0729,-0.6794, -3.6794, 4.000, 4.000, and 

0.5000] are selected for the initial parameters for ),,,,,,( 1010  RRqq . Table 4.1 shows the 

final estimates alongside their standard error (in parenthesis) for simulation 1. The final 

estimates, along with their standard deviations (in parentheses), were ̂ 0.7568 (0.027826), 

)(i M 
)(i )(

0

iR )(

1

iR
)(i
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̂  0.3466(0.00931), 0q̂  -1.9486(0.10989), 1q̂ -3.7620(0.08690), 0R̂ 2.3169(0.20936), 

1R̂ 7.5643(0.67241), ̂ 0.3854(0.02635) where the true parameters are (0.7, 1.06, −3.5, -2, 4, 

6, 0.5). In this approach, 01
ˆ)ˆ1(ˆˆˆ qq    = -2.6475; )ˆ,ˆ,ˆ(  = (0.7568, 0.3466,−2.6475). It 

can be said that the estimation procedure based on the normal mixture model works well in the 

sense that the estimates are close to the true parameters.  

          
Based on the technique of student-t, we use (0.9500, 1.0729, -2.1496) as the initial values for the 

parameters, ),,(  . The process was stopped when the value of relative likelihood was less than 

0.001. The final estimates, along with their standard deviations (in parentheses), were 

̂ 0.6913(0.037981), ̂ 1.0336(0.14839), ̂ = -2.9009(0.024501).  These results show that 

the model gives good estimates despite the fact that the true observation noise is not a normal 

mixture distribution.  

A similar simulation study was performed using the data from simulation 2, and the results are 

presented in the table below: 

TABLE 4.2:  

Parameter estimation on technique based on the normal mixture and Student-t on data generated from the Student-t 

model 
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Rel. 

Lik 

 

 

 

 

True 

parameter 0.81 1.45      -3.01    

Mixture SV 0.6388 1.2585 -2.8256 -5.7964 3.8225 4.6134 0.4911 -4.28456 0.0643    

 (0.021863) (0.029249) (0.035245) (0.011406) (0.075907) (0.14959) (0.0025628)     

Student-t 

SV 0.8439 1.2696           -3.1243 0.0045 500 0.1 

 (0.005971) (0.02815)      (0.000596)    

Mixture SV 0.5601 1.5805 -2.8979 -5.7544 3.8111 4.2066 0.4911 -4.300727 0.0057    

 (0.052847) (0.092768) (0.02815) (0.002826) (0.057768) (0.060831) (0.001607)     

Student-t 

SV 0.8693 1.4500           -3.1645 0.0042  1000 0.01 

 (0.002036) (0.037812)      (0.005662)    

Mixture SV 0.6547 1.2930 -3.0180    -5.8536 3.3275 5.2663 0.4806 -4.3808 0.0009    

 (0.005272) (0.002473) (0.035241) (0.012445) (0.15) (0.32564) (0.004338)     

Student-t 

SV 0.8383 1.5357           -3.0912 

-

0.0010  1000 0.001 

 (0.008552) (0.12403)      (0.005302)    

Where 
 
is tolerance which assesses convergence,  M

 
is the number of particles, standard errors are shown in parenthesis,

 
  

is the unconditional variance of tx  ,  is the estimated value between -1 and + to make the process stationary,  

),,,,( 0010 RRqq are parameters in the normal mixture model which are estimated along with the other parameters 
 

),( 
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The initial parameter set [0.8214, 1.3359,-2.7823, -5.7823, 4.000,4.000, and 0.5000] are selected 

for the  parameters ),,,,,,( 1010  RRqq  . Table 4.2 shows the results of the parameter 

estimation procedure based on the normal mixture. The final estimates, along with their standard 

deviations (in parentheses), were ̂ 0.6547 (0.005272), ̂  1.2930(0.002473), 0q̂  -3.0180 

(0.0.035241), 1q̂ -5.8536 (0.012445), 0R̂ 3.3275(0.15), 1R̂ 5.2663(0.32564), 

̂ 0.4806(0.004338) where the true parameters are (0.81, 1.45, -3.01) for the parameters, 

)ˆ,ˆ,ˆ(  ;  where 01
ˆ)ˆ1(ˆˆˆ qq    = -4.3808.  

 

The following is the result, when we fit the data from simulation 2 with the techniques based on 

the student-t.  (0.8214, 1.3359, -2.2823) were used as initial parameters of ),,(  . At 11th 

iteration, the relative likelihood was less than 0.001, and the process was considered converged. 

The final estimates, along with their standard deviations were ̂ 0.8383 (0.008552), ̂ 1.5357 

(0.12403), ̂ = -3.0912 (0.005302). These estimates are pretty similar to the true parameters (0.81, 

1.45, -3.01), while Normal mixture returns (0.6547, 1.2930,-4.3808) as )ˆ,ˆ,ˆ(  .  The method 

based on the student-t SV model worked well in both cases. When the estimation procedure based 

on the normal mixture SV model was applied, the estimates were distant to the true parameter. On 

the other hand, the application of the technique based on student-t model indicated a better 

proximity to the true parameters. Therefore, extension of the SV model by adopting student-t is 

meaningful. Figure 4.4 - 4.7 shows the trajectory of the parameter estimates and the relative 

likelihoods.  
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Figure 4.4:  Parameter estimation results                                                              Figure 4.5:  Parameter estimation results 

(1st to 3rd), and the relative likelihood (bottom)                                                  (1st to 3rd), and the relative likelihood (bottom) 

for technique based on student-t: for data generated                                                           for technique based on student: for data generated 

from student-t model                                                                                                                from normal mixture model 
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Figure 4.6:  Parameter estimation results                                                            Figure 4.7:  Parameter estimation results 

(1st to 3rd), and the relative likelihood (bottom)                                                 (1st to 3rd), and the relative likelihood (bottom) 

for technique based on normal mixture: for data generated                             for technique based on normal mixture: for data generated 

from student-t model                                                                                              from normal mixture model 

 

Table 4.3 shows the results of the parameter estimation procedure on technique based on the 

normal mixture SV and GED on data generated from the normal mixture model. Figures 4.8 - 4.11 

show the trajectory of the parameter estimates and the relative likelihoods. [0.8699, 3.6899,-

4.8897, -7.8897, 4.000,4.000, and 0.5000] are selected for the initial parameter for the parameters 

),,,,,,( 1010  RRqq .The final estimates, along with their standard deviations (in parentheses), 

were ̂ 0.9869 (0.0013341), ̂  4.1936(0.51468), 0q̂  -4.3900(0.021891), 1q̂ -

6.4554(0.026309), 0R̂ 3.7342(0.069579), 1R̂ 4.3517(0.16268), ̂ 0.4895(0.0032833) where 

the true parameters are (0.8, 3.5, −5, -8, 3, 4.1, 0.5). In this approach, 

;4010.5ˆ)ˆ1(ˆˆˆ
01  qq   )ˆ,ˆ,ˆ(  = (0.9869, 4.1936,−5.4010). It can be said that the 

estimation procedure based on the normal mixture model works well in the sense that the estimates 

are close to the true parameters.  
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Based on the technique of GED, we used (0.8699, 3.6899, -4.4365,) as the initial values for the 

parameters, ),,(  . Table 4.3 shows the results of the estimation procedure. The process was 

stopped when the value of relative likelihood was less than 0.001. The final estimates, along with 

their standard deviations (in parentheses), were ̂ 0.8127(0.0027854), ̂ 4.2368(0.020652), 

̂ =-4.7144(0.0083309).  This results show that the GED model gives good estimates even though 

the   true observation noise is not a normal mixture distribution.  

TABLE 4.3:  

Parameter estimation on technique based on the normal mixture SV and GED on data generated from the normal 

mixture model 
 

 

 

 
 

 

)(i  
 

 

)(

0

iq  
 

 

)(

1

iq  
 

 
 
 

 

 
 

 
 
 

 

 
 

Rel. Lik 

 
 
 

 

True 

parameter 0.8 3.5 -5 -8 3 4.1 0.5 -5.55    

Mixture SV 0.7875 3.4771   -5.5322 -8.5269 3.6937 4.4847 0.4895 -6.9980 0.0248    

 (0.0045855) (0.17068) (0.0059081) (0.00932) (0.10267) (0.16612) (0.003056)     

GED SV 0.8485 4.0273           -4.3205 0.0853 500 0.1 

 (0.0059856) (0.13077)      (0.035379)    

Mixture SV 0.8425 2.9591 -4.8080 -7.9658 3.7054 4.1121 0.4930 --6.3648 -0.0148    

 (0.0046651) (0.17631) (0.026411) (0.032108) (0.081339) (0.057281) (0.0025453)     

GED SV 0.8788 3.0502           -4.2576 0.0064  1000 0.01 

 (0.0037027) (0.052579)      (0.003807)    

Mixture SV 0.9869 4.1936 -4.3900 -6.4554 3.7342 4.3517 0.4805 -5.3824 -0.0684    

 (0.0013341) (0.51468) (0.021891) (0.026309) (0.069579 (0.16268) (0.0032833)     

GED SV 0.8127 4.2368           -4.7144 0.0007  1000 0.001 
 (0.0027854) (0.020652)      (0.0083309)    

Where 
 
is tolerance which assesses convergence,  M

 
is the number of particles, standard errors are shown in parenthesis,

 
  is 

the unconditional variance of tx  ,  is the estimated value between -1 and + to make the process stationary,  

),,,,( 0010 RRqq are parameters in the normal mixture model which are estimated along with the other parameters 
 

),( 
 

 

Table 4.4 shows the results of the parameter estimation procedure on technique based on the normal 

mixture SV and GED on data generated from GED SV model. The method based on the GED model 

works well in both cases. When the estimation procedure based on the normal mixture SV model 

was applied, the estimates were quite far from the true parameters. 

On the other hand, the application of the technique based on GED model indicated a better 

proximity to the true parameters. (0.9500, 1.3288, 0.6309) were used as initial parameters of 

),,(  . The final estimates, along with their standard deviations were ̂
 
= 0.9749(0.0026845), 

̂  = 2.3496(0.2678), ̂ = 0.6821(0.014247). These estimates are pretty similar to the true 
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parameters (0.9, 1.6, 0.7), while normal mixture returns (0.7515, 2.3496, 1.3259732) as ),,(   . 

Therefore, the method based on the GED idea works well in both cases. 

TABLE 4.4:  

Parameter estimation on technique based on the normal mixture SV and GED on data generated from the GED model 
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Rel. 

Lik 

 

 
 

 

True 

parameter 0.9 1.6      0.7    

Mixture SV 0.9050 0.3136 0.1491 -2.4081 2.9473 7.8467 0.4448 -0.9883 0.0052    

 (0.015127) (0.01557) (0.08715) (0.1269) (0.2282) (0.84311) (0.015076)     

GED SV 0.9770 2.1311           0.7654 0.0248 500 0.1 

 (0.0021463 )  (0.2265)      (0.018455)    

Mixture SV 0.8871 0.4605 -0.3568 -2.6609 2.5108 9.4387 0.3916 1.2590 

-

0.0125    

 (0.026021) (0.025703) (0.11521) (0.13263) (0.28846) (1.1097) (0.028448)     

GED SV 0.9754 2.3108           0.7627 0.0057  1000 0.01 

 (0.0025267) (0.26119)      (0.021224)    

Mixture SV 0.7515 1.2777 -0.3193 -3.1988 1.6365 8.7981 0.3496 -1.3259732 

-

0.0003    

 (0.015215) (0.069801) (0.088286) (0.15449) (0.47054) (1.1994) (0.041351)     

GED SV 0.9749 2.3496           0.6821 0.0007  1000 0.001 

 (0.0026845) (0.2678)      (0.014247)    

Where 
 
is tolerance which assesses convergence,  M

 
is the number of particles, standard errors are shown in parenthesis,

 
  is 

the unconditional variance of tx  ,  is the estimated value between -1 and +1 to make the process stationary,  

),,,,( 0010 RRqq are parameters in the normal mixture model which are estimated along with the other parameters 
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Figure 4.8:  Parameter estimation results  (1st to 3rd),                                              Figure 4.9:  Parameter estimation results (1st to 3rd), and the  

and the relative likelihood (bottom)  for technique                                                     relative likelihood (bottom) for technique based on GED: for data 

based on GED: for data generated from GED model                                                 generated from normal mixture model 
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         Figure 4.10:  Parameter estimation results (1st to 3rd),                                         Figure 4.11:  Parameter estimation results  (1st to 3rd), 

         and the relative likelihood (bottom)  for technique                                                and the relative likelihood (bottom) for technique based 

        based on normal mixture: for data generated from GED model                          on normal: for data  generated from normal mixture model.
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4.3 APPLICATION TO REAL LIFE FINANCIAL DATA 
Volatility which is one of the most important motivations for the development of SV model is 

most obvious in exchange rate data as exchange rate typically exhibit high degree of volatility. 

We apply the normal mixture, student-t and GED SV model to analyze daily rates on the 

Naira/Dollar, Cedi/Dollar, Pound/Dollar and Euro/Dollar exchange rates from March 3
rd

, 2009 to 

March 3
rd

, 2011.  Figure 4.12 - 4.15 shows the plots of the daily exchange rates and log returns 

of the data. 

A log return of exchange rates is 

                                     
1

ln100



t

t

t
p

p
r                                                                                       (4.1) 

where tp  is the exchange rate at time index t . 

The descriptive statistics are summarized in Table 4.5. Skewness and kurtosis are observed, 

leading to a high valued Jarque and Bera (1987) test which indicates non-normality of the 

distribution. The kurtosis of the returns of the series is significantly above three, indicating 

leptokurtic return distributions. 

Table 4.5   Descriptive statistics of Daily Returns for the Exchange Rate 

 

Statistics Naira/Dollar rate Cedi/Dollar Pound/Dollar Euro/Dollar 

Mean -0.001385 -0.006258 0.020803  0.001676 

 Std. Dev.  0.708650  0.536507  0.506541  0.488392 

 Skewness -0.074139  0.966923  0.022958 0.434943 

 Kurtosis  8.805879  13.11769  4.262290  7.993814 

 Jarque-Bera  735.0376  2312.255 34.76827 559.9343 
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Fig. 4.12  Naira/dollar daily exchange rate  and the log returns 
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Fig. 4.13 Cedi/dollar exchange rate and the log returns 
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Fig. 4.14  Euro/dollar  daily exchange rate  and the log returns 
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Fig. 4.15  Pound/dollar  daily exchange rate  and the log returns 

 
Some patterns of behavior are evident in the second plot of each of Figure 4.12-415: the data 

experience a small variance for some periods of time, and for other periods, they show a large 

variance. Therefore, it cannot be assumed that the data have a constant variance.  

 

4.3.1  Estimation Results 
Utilizing the functions and the means of various routines written in Matlab, the SMCEM were 

applied to the data, parameters are estimated using the techniques described in the previous 

sections. Table 4.6 presents the estimation results along with their standard deviations in 

parenthesis, for the student-t, normal mixture and the GED SV model. These distributions 

produce comparable maximum likelihood values, indicating an acceptable overall fit. The values 

(ranging from 0.927 to 0.988) suggest high persistence of the volatility of the series indicating 

that volatility clustering is observed in all the exchange rates return series. Figure 4.16 - 4.19 

shows the trajectory of parameter estimates and the history of the relative likelihood.  
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           Table 4.6: Estimation Results - Distributions Comparison     
 

Naira/Dollar 
 

  
 

 

  
 

 

0q  
 

 

1q  
 

 

0R  
 

 

1R  
 

 

  
 

 

  
 

Normal 
Mixture SV 0.9759 0.0988 3.0673 1.6633 0.6954 1.9713 0.0546 -2.0731 

 (0.0041766) (0.019774) (0.043267) (0.65851) (0.11387) (0.88689) (0.017691)  

Student-t SV 0.9869 0.1300           -2.1245 

 (0.0029595) (0.16604)      (0.5369) 

GED SV 0.9684 0.3227      -2.8836 

 (0.015815) (0.030638)      (0.35001) 

Cedi/Dollar 

 


 

 

  

 

0q
 

 

1q
 

 

0R
 

 

1R  
 

  

 

  
Normal 

Mixture SV 0.9830 0.0902 3.4686 0.9826 0.1865 2.3618 0.0705 -4.28356 

 (0.0049939) (0.033484) (0.015039) (0.22583) (0.015231) (0.10685) (0.006188)  

Student-t SV 0.9887 0.0854           -3.2243 

 (0.00078342) (0.0057923)      (0.0019277) 

GED SV 0.9741 0.09831      -4.9834 

 (0.01001) (0.048961)      (0.0022972) 

Pound/Dollar 

 


 

 

  

 

0q
 

 

1q
 

 

0R
 

 

1R
 

 

  

 

  
Normal 

Mixture SV 
0.9895 

0.7114 3.3388 0.4351 0.7835 4.4129 0.4941 -4.28356 

 (0.0013354) (0.36943) (0.022015) (0.023938) (0.056033) (0.14603) (0.0028666)  

Student-t SV 0.9754 0.7627           2.3108 

 (0.0025267) (0.26119)      (0.021224) 

GED SV 0.9697 0.9018      1.9588 

 (0.0084966) (0.183815)      0.0082487 

Euro/Dollar 

 


 

 

  

 

0q
 

 

1q
 

 

0R
 

 

1R
 

 

  

 

  
Normal 

Mixture SV 0.9279 0.4170 -1.9638 -4.3710 4.1677 8.1096 0.4404 -4.28356 
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Student-t SV 0.9513 0.4731           -2.2692 
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GED SV 0.9283 0.7258      -3.5033 

 (0.0021063) (0.361172)      (0.058033) 
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Fig. 4.16: Estimation results for the                              Fig. 4.17: Estimation results for   

                naira/dollar exchange rates                                            the cedi/dollar exchange rates                                                                                 
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Fig. 4.18: Estimation results for the Euro/dollar              Fig. 4.19:    Estimation results for the pound/dollar 

                exchange rates                                                                           exchange rates 

 

4.4   AKAIKE INFORMATION CRITERION BASED MODEL SELECTION                                 

CRITERIA 

Model comparison in SMCEM framework can be performed using the Akaike information 

Criterion (AIC). In general, the AIC is designed to select a model that best describes a set of 

observed data from a collection of potential probability models. If a potential probability model 

is characterized by a parameter vector   of length k  which has log-likelihood )(l , the AIC is 

defined by  

                                             AIC = )ˆ(22 lk  ,                                                               (4.2) 
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where ̂ is the maximum likelihood estimate of  . The AIC uses the observed data to 

simultaneously estimate the parameters of the model by the method of maximum likelihood and 

calculate the model selection criteria. The model with the smallest value of the AIC is the most 

desirable. It suffices to note that while the method of maximum likelihood gives an unbiased 

estimate ̂ of the parameters  , the value of the loglikelihood when evaluated at the estimated 

parameter vector ̂  produces a biased estimate of )(l  (Ibrahim et al., 2008). The term k2  in 

the definition of the AIC is used to correct the bias in the estimated maximum log likelihood 

)ˆ(l . To evaluate the AIC using the EM algorithm, a different definition of the AIC is used, as 

the EM algorithm actually estimates the expected log likelihood )|( 'Q
 
; this expected log-

likelihood is used in defining the AIC. Furthermore, using the expected log likelihood in the new 

definition of the AIC implies that the bias correction required is different from that in equation 

(4.2). 

In equation (4.2), the term k2  is added to make this statement true of the AIC. However, the 

expected log likelihood )|( 'Q when evaluated at the maximum likelihood estimate ̂  

provides an unbiased estimate of the mean expected log likelihood. The bias of the expected log 

likelihood is zero.  

Thus for the EM algorithm 

                                          AIC = ),(2 'Q                                                               (4.3) 

On the other hand, comparing normal density with non-normal ones has also been explored in a 

number of cases [Cairns et al., (2009), Rossi and Gallo (2006), Amisano and Giacomini (2007), 

Maheu et al.,  (2010)]. The evaluation of volatility forecasting models is complicated by the fact 

that the volatility is not observable, even ex post. However, there exist conditionally unbiased 
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proxies of the unobserved variance process. In general, the proxies used are of three types: daily 

squared returns, intra daily range and realized volatility.  

 

Basically, statistical measures evaluate the difference between forecasts at time t  and realized 

values at time kt  . However, asset price volatility is not directly observable and measuring the 

realized values of volatility is quite tasking. The daily squared return has been extensively used 

in the literature as ex-post volatility. Nonetheless, Andersen and Bollerslev (1998) show that it is 

a very noisy volatility estimator and does not present reliable inferences regarding the underlying 

latent volatility in daily samples. A new volatility measure, known as realized volatility is 

introduced, which estimates volatility by summing squared intraday returns. Hence, the volatility 

of a price process is treated as an observable process. Until recently, the SV models have focused 

on using either squared returns or absolute returns as a proxy to the true but unobservable 

volatility.  

 

Here, the forecasting performance for the student-t, mixture and the GED.SV model are 

presented. The forecasts are made on the four exchange rate series. The forecast summary 

statistics include well known measures like mean squared error (MSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE). 

MSE =  
n

n

t

t



1

222 )ˆ( 

 , MAE =   


n

t
n 1t

22 |-ˆ|
1

       ,  MAPE = 
n

n

t

2

1t

22 /|-ˆ| 


 

where 2̂  is the forecasted variance and 2  the actual variance time period t  and n  is the 

number of forecasts.  
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The Akaike values and the evaluation statistics using the entire data material are presented in 

Table 4.7. The Akaike information criteria and the log-likelihood values highlight the fact that 

(GED) student-t distribution better estimates the series than the normal mixture distribution for 

the SV model. Indeed, the log-likelihood function increases, leading to AIC criteria of 2.805, 

3.4593, 3.9989 and 9.6632 with the normal mixture versus (2.7814304) 2.736433, (3.4223827) 

3.321374, (3.9749741) 3.869968 and (9.6513786 ) 9.446376 with the non normal densities, for 

the Naira/Dollar, Cedi/Dollar, Pound/Dollar and Euro/Dollar rate respectively. The evaluation 

statistics from the volatility forecasts, Sadorsky (2005), are presented. In terms of MSE, student-t 

performs better than the normal mixture for the Naira/Dollars and the Euro/Dollar exchange rate 

while the opposite is true for the Cedi/Dollars and Pound/Dollar exchange rate. Generally, the 

MAE results are not very different from the MSE results. In terms of MAPE, the student-t SV 

model is preferred in three cases and the GED SV model once.  

 

 

Table 4.7: Evaluation Statistics - Distributions Comparison  

 
Naira/Dollar 

 
AIC Log-like 

 
MSE 

 
MAE 

 
MAPE 

Normal 

Mixture SV 2.805 2537.403 0.2601914 0.210278 0.233428 

      

Student-t SV 2.736433 2565.97 0.1111914 0.075379 0.353437 

      
GED SV     
 2.781430 2563.16 0.1131914 0.081256 0.264035 

Cedi/Dollar 
 
AIC Log-like 

 
MSE 

 
MAE 

 
MAPE 

Normal 

Mixture SV 3.4593 2652.836 0.037074 0.059524 0.147437 

      

Student-t SV 3.321374 2769.66 0.121086 0.171621 0.226563 

      

GED SV 3.4223827 2760.56 0.16377 0.188346 0.131424 
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Pound/Dollar 
 
AIC Log-like 

 
MSE 

 
MAE 

 
MAPE 

Normal 

Mixture SV 3.9989 2801.144 0.151623 0.072823 0.192232 

      

Student-t SV 3.869968 2869.07 0.178377 0.098361 0.345245 

      

GED SV 3.974974 2857.27 0.184677 0.103932 1.1434675 

Euro/Dollar 
 
AIC Log-like 

 
MSE 

 
MAE 

 
MAPE 

Normal 

Mixture SV 9.6632 2874.968 0.170612 0.260176 0.3988 

      

Student-t SV 9.446376 2903.9 0.095612 0.194364 0.5578 

      

GED SV 9.6513786 2897.8 0.101414 0.196355 0.2634 
The AIC picks the model with the highest likelihood. We could select our model using log-likelihood instead of the AIC. The 

model with the smallest AIC corresponds to the model with highest log likelihood, and so a model with a high likelihood (good 

fit) will make the AIC small (more negative). The MSE, MAE, and MAPE measure the magnitude of the forecast errors.    

 

4.4.1                                        Table 4.8  SMCEM estimation results for the MSV model 

 NN Cedi BP Euro 

jd  0.8754(0.03) 1.5175 (0.0201) 0.5463(0.0349) 0.7815(0.03811) 

     

je ,  0.7750 (0.01) 0.3050 (0.0070) 0.8737 (0.0069) 0.4893 (0.011) 

     

       log-likelihood 

 0.9777 

(0.0065) 

0.1587 

(0.0176) 

0.6857 

(0.0236) 

18,271.6 

     

 

The data to which we fit this multivariate model consists of the daily exchange rates: Nigeria 

Naira/US-Dollar, Ghana Cedi/Dollar, British Pound/US-Dollar (BP), and Euro/Dollar.  

The SMCEM results for the multivariate SV model (3.18) - (3.20) are summarized in Table 4.8. 

All parameter estimates are numerically reasonable as indicated by the small standard deviations 

(in parentheses). The estimates of the factor loadings jd  indicate that the Cedi currencies load 

more on the common factor than the others. Moreover, the estimated volatility parameters of the 
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factor are similar in magnitude to the those obtained under univariate SV models, and the 

estimate of  , which is close to one, implies that the common factor exhibits a strongly 

persistent volatility process. The common factor explains 76%, 90%, 52% and 61% of the 

overall variation in the returns of Naira, Cedi, Pound and Euro, respectively. In addition, the log-

likelihood of the multivariate model is 18,271.6, which is considerably larger than the sum of the 

likelihood values obtained under the four independent SV models which equals 11,108.6. This 

significant difference reflects the fact that, in contrast to the univariate specifications, the 

multivariate model can account for the correlation between the returns. Using the parameter 

estimates, we computed the corresponding estimate of the unconditional variance–covariance 

matrix,  

                                 Table 4.9  unconditional variance–covariance matrix of the returns 

Variables NGN/USD BP/USD GHC/USD EUR/USD 

NGN/USD 0.428222 0.0259 0.01118 0.01035 

BP/USD 

 
0.119209 0.03821 0.0509 

GHC/USD 

  
0.2043 0.07523 

EUR/USD 

   
0.215 

 

to be compared with the sample variance– covariance matrix of the returns.  

 

                                      Table 4.10  sample variance– covariance matrix of the returns 

Variables NGN/USD BP/USD GHC/USD EUR/USD 

NGN/USD 0.558222 0.0433 0.06892 0.02525 

BP/USD 

 
0.216509 0.03539 0.0659 

GHC/USD 

  
0.342 0.02187 

EUR/USD 

   
0.39 

 

respectively. The two matrices are quiet similar. However, the diagonal elements from our model 

are smaller in each case than those of the sample variance indicating that there is more volatility 

in the data than the model accounts for.  
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4.5. APPLICATION TO BEARINGS - ONLY TRACKING 
 
In this section another application of the proposed estimation technique developed in section 3 is 

considered. The scenario considered is the nonlinear bearing-only tracking (BOT) problem. In 

the BOT problem, the objective is to track the movements of an object using measurements of 

the relative angle to the object. Target tracking applications have proved to be an active area of 

research among scholars [see Liu et al., (2002), Bar-Shalom et al., (2001), Bergman (1999), Bar-

Shalom and Fortmann (1988) and Mazor et al., (1996)]. It is an important component of many 

modern applications, such as robots localization, visual tracking, radar tracking, and satellite 

navigation. The key to a successful target tracking depends on an effective extraction of the 

useful information about the target state from available observations. 

 

The commonly studied estimation technique tracking models relies upon the Kalman filter or, for 

non-linear systems the extended Kalman filter. Recently, the growth in computational power has 

made computer intensive statistical methods feasible. The main breakthrough came with the 

seminar paper of Gordon et al., (1993). Both Markov Chain Monte Carlo methods and sequential 

Monte Carlo methods (particle filters) are now implemented in several applications. Several 

writers including Gordon et al., (1993) and Pitt and Shephard (1997) have implemented particle 

filters for simple tracking models.  

 

Bearings-only tracking involves estimating the target states based on angle measurements at a 

antenna node. The target is assumed to move in the x-y plane and to follow a constant-velocity 

motion model, Bar-Shalom and Fortmann (1988), with a state update period of 1s. 

The BOT problem is illustrated below: 
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Figure 4.20: The Bearings-Only Tracking (BOT) problem. 

In addition, BOT involves tracking of an object (typical examples include ships, planes and other 

moving vehicles) based upon its measured bearing (angle) with respect to a fixed sensor. The 

system state in BOT is 4 dimensional and includes the positions and velocities along the 

Cartesian x and y directions. The positions are expressed with reference to the fixed sensor 

location. The state equation in the BOT problem describes the system kinematics modelled with 

a Constant Velocity model. The measurement is the bearing or angle of the object with respect to 

the sensor axis ( y  axis). The system model that we describe here is similar to that used in 

Gordon et al., (1993) and Chapter 6 of Ristic et al., (2004) [see also Pitt and Shephard (1997) and 

Carpenter et al., (1999)]. The state vector tX  contains the positions and velocities of the object 

in the y-x  directions respectively : T

tttt yxyx ),,,(X t
  , where 1secT  denotes the sampling 

period. One possible discretization of this model, is given by Gordon et al., (1993) 

 

                                 Ntux tt ,,1X 1t    .                                              (4.4) 
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The equation of the observed bearing, tz , is  
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Parameter tu
 

represents the system noise and is Gaussian distributed with covariance 

  2

2 Iuu  where 2I  is a 22  identity matrix. This vector can be thought of as representing the 

acceleration in the x  and y  directions. tz  represents the observed bearing of the object 

measured by the sensor at time t . tw  represents a Gaussian measurement noise with  mean zero 

and variance 2

w . Before measurements are taken, the particle filter recursion is started with 

initial state vector in the form of a 4 dimensional Gaussian variable with known mean and 

covariance matrix. As can be seen, this model is 4 dimensional and nonlinear due to a 

transcendental function in the observation equation.  The particle filters handle these situations 

efficiently. It has been shown through intense simulations in Gordon et al., (1993), that particle 

filters are much more efficient for this problem than the traditional EKF.  

 

 

4.5.1 SMCEM for Bearings-Only Tracking 
 
Using equation (4.5) and (4.5), the proposed estimation technique for target tracking is applied. 

The state update is used to propose new particles. This provides a sub-optimal recursive estimate 

of the target position in the yx  plane.  
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 Previous approaches to density estimation have mostly focused on Gaussian nonlinear 

measurement dynamics in practice.  The SMCEM algorithm is developed based on non-

Gaussian, which are heavier tailed than Gaussians and hence more robust. Simulations have 

demonstrated not only the effectiveness but also the improved performance of the non-Gaussian 

distribution over Gaussian. 

 

As we observed the target in its motion, new data tz  accrue, along with new parameters ),( tt yx  . 

The vector of unknown at time t  is 

                                             ),,,,,,( 1111 ttt yxyxyx   ,  

and the data  are ),,( 1:1 tt zzz  . Therefore, the target distribution evolves in an expanding 

space, t . As t  increases, the aim here is to maintain a set of sampled particles in t  which can 

be used to estimate aspect of the distribution of interest. In particular, these particles can be used 

at any given time point t  to approximate the conditional distribution for the current state of the 

object, given the data, tz :1  accumulated up to that point. The procedure for the BOT problem is 

summarized below. 

Given the observed data tz  at t  

For Ni ,2,1  sample particles , )(i

tX are drawn from the density 
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we evaluate this distribution at time t  for the parameters estimation by using the EM algorithm 

and  SMC,  

and then calculate the output: 
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The mean estimate of the target state and the covariance matrix of the estimate error are  

 

approximated by  
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4.5.2 Tracking Performance 
An in-depth analysis of the tracking performance for the BOT problem is investigated in various 

works including Gordon et al., (1993) and Doucet et al., (2001). A bearings-only tracking 

problem is simulated to present implementation of the proposed estimation technique. A target 

trajectory and associated measurements is generated according to equations (4.4) and (4.5) with 

the parameter values  

                                            001.02 u , 005.02 w   

the initial state of the target  

                                             T)0,1,5,5(X0    

and covariance )7.2,5.5,55.2,5.7(diag .  

The time between successive measurement is sT 1  and a single bearing measurement is 

obtained in each time step.  
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    Fig. 4.21.    Three scenarios for the BOT.  Representation of the trajectories of the true target    

                       path (shown by a square), observer (shown by an asterisk) the SMCEM estimate    

                        and position MSE (shown by a cross)   

 

Figure 4.21 gives the true target path in the yx   plane, with the position of the target at each 

time being shown by a square and the observation by an asterisk. The result of applying the 

SMCEM with 2000N  particles is shown in the figure. The number of particles was chosen 

such that further increase in N  does not bring a significant improvement in the tracking 

performance. The cross symbol gives the SMCEM estimate such that the estimate moves 

towards the true target path.  The performance is evaluated using the mean square error (MSE) 

for each time, according to Sanjeev et al., (2004)  

                                                



N

n

t

true

t xx
N

tMSE
1

2)(
1

)(                                                (4.6) 
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where tx  denotes the estimate at time t , N  is the total number of  realizations over which the 

MSE is averaged. Each of these realizations used observations from the same generated true 

state. Obviously, with increasing particles, the performance in terms of mean square error (MSE) 

improves.  The MSE is obtained independently for each element of the state in the BOT problem. 

In Figure 4.21, the MSE value (7.2197) for different times are presented. For the SMCEM based 

method, no tracks diverged. Thus, the performance of the proposed estimation technique is 

successful for the target tracking problem. 

 

The proposed estimation technique was also applied to the problem of tracking a moving vehicle. 

Data were taken from the digital GSM real-time data logging tracking system, (see 

www.trackingtheworld.com). It models the dynamic properties of the tracked vehicle and 

estimates it using the proposed technique.  

From the data collected, we estimate the vehicle‟s position  ),( ttt yxX   at time t , and its 

velocity tv  . Also at each time step we obtain a new measurement tz . the velocity evolves over 

time according to 

                                                                           )( 1tt vvp  .
  

The vehicle moves based on the evolved velocity according to a dynamics model: 

                                                                          ),( 1 ttt vXXp   .  

The measurements are governed by a measurement model: 

                                                                             )( tt XZp     .  

The measurement likelihood  factor is  

                                                             



N

i

itt XzpXZp
1

)()(  . 

http://www.trackingtheworld.com/
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At each time step  t , we produce an estimate of the proposed technique about the tracked  

vehicle trajectory and velocity based on a set of measurements: 

                                                        ),( tttt ZvXpM   .                                                          (4.7)                                                           
   

                                                            

Equation (4.7) encodes the vehicle motion and is approximated using the student-distribution. 

The motion update of the particle filter is carried out using the vehicle dynamic model. The 

measurement update is carried out by computing the importance weights tw
 
for all particles: 

                                        )]([ˆ )(

1

)(
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t

i

t XZpww   

where )(~ vomdistributitxz tt
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Fig 4.22.  Estimates of the vehicle being tracked 

 

The results for this case are presented in Figure 4.22. The SMCEM based method is able to track 

the true path of the vehicle being tracked and remains stable and converges, showing that 

increasing the information provided by the measurements improves the accuracy and 

convergence of the estimation. 
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CHAPTER FIVE 

5.         SUMMARY OF FINDINGS, CONCLUSION AND     

CONTRIBUTION TO KNOWLEDGE 

5.1  SUMMARY OF FINDINGS 

In Sections 4.1 and 4.2, from the simulation results presented in Table 4.1 – 4.4, the new 

parameter estimation technique which combines the EM algorithm along with particle filters and 

smoothers yields acceptable results when the normal assumption about the observation error is 

violated as well as when the normal assumption holds, thus exhibiting the viability of the 

proposed model. Furthermore, the research establishes the proof of convergence of the proposed 

technique. The convergence results extend the results of Chan and Ledolter (1995) and Godsill et 

al., (2004).  

 

In Section 4.3, the SMCEM results on the real life data presented in Table 4.6, show that the 

distributions produced comparable maximum likelihood estimates, indicating an acceptable 

overall fit. The values (ranging from 0.927 to 0.988) suggest high persistence of the volatility of 

the series indicating that volatility clustering is observed in all the exchange rates return series. 

 

In Section 4.4, from the results based on the akaike values presented in Table 4.7, , it is evident 

that the student-t and the GED SV model are comparable to the normal mixture SV model but 

empirically more successful. This change to the proposed model allows for a more robust fit, 

giving us a new tool to explore the tail fit. 

 

In Section 4.4.1, the SMCEM results for the multivariate SV model in Table 4.8 show that all 

parameter estimates are numerically accurate as indicated by the small standard deviations. 
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Moreover, the estimated volatility parameters of the factor are similar in magnitude to those 

obtained under univariate SV models. Using the parameter estimates, we computed the 

corresponding estimate of the unconditional variance–covariance matrix, to be compared with 

the sample variance– covariance matrix of the returns. The diagonal elements from our model 

are smaller in each case than those of the sample variance. This indicates that there is more 

volatility in the data than the model accounts for. 

 

In section 4.5, the proposed technique when applied to solve the nonlinear bearing-only tracking 

problem showed that the algorithm is capable of modeling the observations and accurately 

tracking the state vector, thus showing the vast applicability of the proposed technique to other 

state space models. 

 

5.2  CONCLUSION 

This work presents an extension of the observation error in the SV model from normal mixture to 

student-t and GED distribution. A Sequential Monte-Carlo Expectation Maximization 

experiment is used to estimate the parameters for the extended SV model. The functions 

provided by MATLAB enabled us to develop the techniques based on the student-t and GED SV 

model and a strategy for fitting the model that combines the EM algorithm & SMC. This change 

to the proposed model allows for a more robust fit, giving us a new tool to explore the tail fit. 

The student-t and GED SV model were compared and evaluated with the normal mixture. The 

EM algorithm makes it possible to get maximum likelihood estimators. the estimation algorithm 

were completed by applying the particle smoothing algorithm of Godsill et al., (2004), to the SV 

model with (1.3) and (1.5) as an observation equation and a state equation. The experimental 
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outcome of the simulation and real data analyses confirms the viability of the proposed method. 

The estimation results show that this proposed estimation algorithm yields acceptable results 

when the normal assumption is violated, as well as when the normal assumption holds, thus 

widening the range of application of the SV model. 

The empirical studies for the real data reveal that the technique based on the student-t  and GED 

yields similar estimates of coefficients to those of Kim and Stoffer (2008). The evaluation 

statistics are calculated to compare the fit of distributions. The results, based on daily data from 

the naira/dollar, cedi/dollar exchange rate, pound/dollar and Euro/dollar reveal that the student-t 

is comparable to the normal mixture SV model but empirically more successful. A multivariate 

one-factor SV model performs quite well in explaining the joint dynamics in the volatility of a 

set of four exchange rates series. Additionally, the work considered another application of the 

proposed estimation technique. The application of proposed technique to solve a nonlinear 

bearing-only tracking problem showed that the algorithm is capable of modeling the observations 

and accurately tracking the state vector. Thus, the procedure can be used for general non- linear 

non-Gaussian state-space models.  

 

5.3  CONTRIBUTIONS TO KNOWLEDGE 

This research has 

i) introduced the techniques based on the student-t and GED SV models, and a 

strategy for the estimation of parameters  of the above models by using the EM 

algorithm and SMC, thereby expanding the scope of application of the SV 

models 
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ii) generalized and extended previously known results (results of Kim and Stoffer, 

2008, Cappe, 2009) for dealing with the problem of heavy tails using techniques 

based on the student-t  and GED SV model.   

iii) established the convergence properties of the proposed technique using the 

theorem of Chan and Ledolter, (1995) . 

iv) shown that the proposed technique can be used to explain data from many areas, 

such as economics, engineering and medicine as indicated in its successful 

application in signal processing (bearing-only tracking). 

v) built multivariate SV models for asset returns in  financial economics. 

 

 

5.4   SUGGESTION FOR FURTHER RESEARCH 

This research estimated and tested extensions of the standard SV model to multivariate SV 

model, while a multivariate one-factor SV model performs quite well in explaining the joint 

dynamics in the volatility of a set of four exchange rates series. Thus, adding additional dynamic 

factors in the future would be useful. 

The focus here was on a parameter estimation of a class of HMMs with non-linear non-Gaussian 

state-space models, specifically the SV models in explaining data in financial time series as well 

as signal processing - bearings-only tracking. However the application of the proposed technique 

can be applied to other state-space models. 
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 Appendix A 

Parameter estimation results for normal mixture and student-t SV model 

A1. Estimation results from data generated from normal mixture SV model: techniques based on 

normal mixture 

iteration )(i  
)(i  )(

0

iq  )(

1

iq  
)(

0

iR  )(

1

iR  
)(i  Rel.Lik M    

0 0.9500 1.0729 -0.6794 -3.6794 4.0000 4.0000 0.5000    

1 0.8093 0.9699 -0.7390 -3.6016 3.2444 4.9142 0.4792 14.3001   

2 0.7629 0.9357 -0.8163 -3.5716 2.8007 5.7570 0.4690 2.0087   

3 0.7445 0.9301 -0.8563 -3.5277 2.5575 6.4485 0.4569 0.6524 500 0.1 

4 0.7384 0.9345 -0.8918 -3.5236 2.3984 6.9496 0.4469 0.2407   

5 0.7371 0.9326 -.09276 -3.5090 2.2782 7.2959 0.4393 0.1087   

6 0.7368 0.9408 -0.9826 -3.5081 2.2144 7.5758 0.4330 0.0865   

7 0.8226 0.1103 -0.8358 -3.4686 1.9520 7.8731 0.4379 0.0565   

8 0.8429 0.1125 -0.8457 -3.4818 1.9178 7.8919 0.4346 0.1314   

9 0.8552 0.1144 -0.8508 -3.4750 1.9108 7.9290 0.4314 0.0128 500 0.01 

10 0.8643 0.1164 -0.8696 -3.4745 1.8972 7.9594 0.4294 0.0363   

11 0.8677 0.1186 -0.8746 -3.4744 1.8883 7.9490 0.4267 0.0025   

12 0.7631 0.3385 -1.0200 -3.7210 2.2676 7.5133 0.3981 0.0319   

13 0.7622 0.3409 -1.0325 -3.7205 2.2993 7.5590 0.3949 0.0019 1000 0.001 

14 0.7609 0.3456 -1.0421 -3.7425 2.2926 7.5224 0.3894 0.0089   

15 0.7568 0.3466 -1.0486 -3.7620 2.3169 7.5643 0.3854 -0.0004   

 

A2. Estimation results for normal mixture model: techniques based on student-t   

Iteration )(i  
)(i  )(i  Rel.Lik M    

0 0.9500 1.0729 -2.1496    

1 0.7266 1.3670 -2.1504 1.0773 500 0.1 

2 0.7070 1.3613 -2.1543 0.1175   

3 0.6976 1.3654 -2.1465 0.0250   

4 0.8891 0.1578 -1.3467 0.1126 500 0.01 

5 0.8850 0.1712 -1.3326 0.1747   

6 0.8840 0.1876 -1.3451 0.1881   

7 0.8795 0.2044 -1.3414 0.0870   

8 0.8785 0.2254 -1.3696 0.0893   
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9 0.8661 0.2468 -1.3726 0.0576   

10 0.8600 0.2699 -1.3740 0.0672   

11 0.8522 0.2925 -1.3873 0.0686   

12 0.8439 0.3152 -1.3917 0.0702   

13 0.8363 0.3397 -1.4063 0.1875   

14 0.8385 0.3740 -1.4191 0.2537   

15 0.8279 0.4036 -1.4413 0.0477   

16 0.8192 0.4368 -1.4748 0.0995   

17 0.8082 0.4683 -1.4786 0.1374   

18 0.8047 0.5017 -1.5146 0.1622   

19 0.7970 0.5322 -1.5281 -0.0112   

20 0.7878 0.5668 -1.5468 0.0800   

21 0.7748 0.6010 -1.5680 0.0653   

22 0.7698 0.6345 -1.5958 0.0760   

23 0.7636 0.6710 -1.6062 0.0428   

24 0.7522 0.7009 -1.6193 0.0517   

25 0.7413 0.7308 -1.6474 0.0297   

26 0.7308 0.7625 -1.6703 -0.0021   

27 0.7225 0.9135 -1.8566 0.0040 1000 0.001 

28 0.7245 0.9333 -1.8619 0.0250   

29 0.7158 0.9377 -1.8710 0.0072   

30 0.7160 0.9557 -1.8700 0.0146   

31 0.7081 0.9670 -1.8778 0.0076   

32 0.6998 0.9664 -1.8686 0.0145   

33 0.7006 0.9667 -1.8933 0.0105   

34 0.7068 0.9930 -1.8915 0.0351   

35 0.7034 1.0124 -1.8962 0.0093   

36 0.6962 1.0165 -1.8958 0.0027   

37 0.6898 1.0192 -1.8935 0.0028   

38 0.6955 1.0332 -1.8950 0.0224   

39 0.6913 1.0336 -1.9009 -0   

 

 

A3. Estimation results for student-t SV model: techniques based on normal mixture  

Iteration )(i  )(i  )(

0

iq  )(

1

iq  
)(

0

iR  )(

1

iR  )(i  Rel.Lik M    

0 0.5710 1.1606 -2.7823 -5.7823 4.0000 4.0000 0.5000    

1 0.5952 1.2001 -2.7557 -5.8142 3.9742 4.3193 0.4961 0.4400   

2 0.6200 1.2322 -2.7986 -5.8177 3.8930 4.5138 0.4925 0.1333 500 0.1 
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3 0.6388 1.2585 -2.8256 -5.7964 3.8225 4.6134 0.4911 0.0643   

4 0.5800 1.6199 -2.8816 -5.7510 3.7019 4.1275 0.4932 0.0826 500 0.01 

5 0.5704 1.5957 -2.8931 -5.7492 3.7727 4.1449 0.4914 0.0141   

6 0.5601 1.5805 -2.8979 -5.7544 3.8111 4.2066 0.4911 0.0057   

7 0.6549 1.2925 -2.9987 -5.8696 3.3282 5.1130 0.4843 0.0085 1000 0.001 

8 0.6541 1.2921 -3.0092 -5.8682 3.3253 5.1832 0.4820 0.0088   

9 0.6542 1.2913 -3.0130 -5.8643 3.3292 5.2233 0.4810 0.0015   

10 0.6547 1.2930 -3.0180 -5.8536 3.3275 5.2663 0.4806 0.0009   

  

A4. Estimation results for student-t SV model:  techniques based on student-t  

Iteration )(i  )(i  )(i  Rel. Like M    

0 0.8214 1.3359 -3.1199  500 0.1 

1 0.8354 1.3094 -3.1252 0.0401   

2 0.8439 1.2696 -3.1243 0.0045   

3 0.8693 1.4500 -3.1645 0.0042 500 0.01 

4 0.8228 1.7098 -2.1057 0.0056 1000 0.001 

5 0.8247 1.6772 -2.1068 0.0016   

6 0.8275 1.6367 -2.1016 0.0062   

7 0.8324 1.5988 -2.1002 0.0199   

8 0.8365 1.5766 -2.0951 0.0084   

9 0.8353 1.5506 -2.0891 0.0037   

10 0.8389 1.5519 -2.0862 0.0157   

11 0.8383 1.5357 -2.0912 -0.0010   

 

Appendix B 

Parameter estimation results for normal mixture and GED SV model 

 

B1 Estimation results from data generated from GED SV model: techniques based on GED 

Variance Estimate 

    0.0001   -0.0005   -0.0003 

   -0.0005    0.0688    0.0197 

   -0.0003    0.0197   -0.5506 

 

No of Iteration = 6 

Total time = 279.9397 

Standard deviation of final estimate = 0.0021463      0.2265    0.018455 

iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood 

         0    0.9500    1.3288    0.6309 

 

    1.0000    0.9828    1.5411    0.7105   11.1953 
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    2.0000    0.9814    1.6990    0.7327    0.3987 

    3.0000    0.9802    1.8264    0.7443    0.1294 

    4.0000    0.9789    1.9643    0.7497    0.2142 

    5.0000    0.9780    2.0703    0.7352    0.1113 

    6.0000    0.9770    2.1311    0.7654    0.0248 

 

 0.01 500 sample 

Variance Estimate 

    0.0001   -0.0006    0.0000 

   -0.0006    0.0768   -0.0111 

    0.0000   -0.0111   -0.1236 

 

No of Iteration = 10 

Total time = 455.1017 

Standard deviation of final estimate = 0.0025267     0.26119    0.021224 

iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood 

         0    0.9500    1.3288    0.6309 

 

    1.0000    0.9828    1.5411    0.7105   11.1953 

    2.0000    0.9814    1.6990    0.7327    0.3987 

    3.0000    0.9802    1.8264    0.7443    0.1294 

    4.0000    0.9789    1.9643    0.7497    0.2142 

    5.0000    0.9780    2.0703    0.7352    0.1113 

    6.0000    0.9770    2.1311    0.7654    0.0248 

    7.0000    0.9766    2.1884    0.7755    0.0181 

    8.0000    0.9762    2.2325    0.7790    0.0121 

    9.0000    0.9757    2.2812    0.7585    0.0166 

   10.0000    0.9754    2.3108    0.7627    0.0057 

 

0.001 1000 sample 

Variance Estimate 

    0.0001   -0.0005    0.0003 

   -0.0005    0.0742   -0.0369 

    0.0003   -0.0369   -0.1461 

No of Iteration = 11 

Total time = 5003.1666 

Standard deviation of final estimate = 0.0026845      0.2678    0.014247 

iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood 

         0    0.9500    1.3288    0.6309 

 

    1.0000    0.9830    1.5482    0.6532   11.4154 

    2.0000    0.9813    1.7226    0.6576    0.4121 

    3.0000    0.9797    1.8869    0.6437    0.2577 

    4.0000    0.9782    2.0188    0.6426    0.1740 

    5.0000    0.9775    2.1014    0.6503    0.0460 

    6.0000    0.9769    2.1617    0.6645    0.0233 
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    7.0000    0.9761    2.2268    0.6660    0.0323 

    8.0000    0.9758    2.2788    0.6691    0.0158 

    9.0000    0.9754    2.3150    0.6790    0.0109 

   10.0000    0.9750    2.3445    0.6800    0.0058 

   11.0000    0.9749    2.3496    0.6821    0.0007 

 

 
B2 Estimation results from data generated from normal mixture SV model: techniques 

based on GED 

Variance Estimate 

    0.0007   -0.0054   -0.0023 

   -0.0054    0.2457    0.1535 

   -0.0023    0.1535    0.3758 

 

No of Iteration = 2 

Total time = 88.6583 

Standard deviation of final estimate = 0.0059856     0.13077    0.035379 

iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood 

         0    0.8699    3.6899   -4.4365 

 

    1.0000    0.8570    3.8424   -4.3706    0.8560 

    2.0000    0.8485    4.0273   -4.3205    0.0853 

 

 0.01 500 sample 

Variance Estimate 

    0.0008   -0.0093    0.0020 

   -0.0093    0.2671   -0.0493 

    0.0020   -0.0493    0.0394 

 

No of Iteration = 3 

Total time = 133.336 

Standard deviation of final estimate = 0.0037027    0.052579    0.003807 

iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood 

         0    0.9500    3.0366   -4.2449 

 

    1.0000    0.8861    2.9451   -4.2504    4.6311 

    2.0000    0.8814    3.0011   -4.2560    0.0192 

    3.0000    0.8788    3.0502   -4.2576    0.0064 

0.001 1000 sample 

Variance Estimate 

    0.0011   -0.0077    0.0017 

   -0.0077    0.2698   -0.0356 

    0.0017   -0.0356    0.0933 

 

No of Iteration = 6 

Total time = 786.1738 
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Standard deviation of final estimate = 0.0027854    0.020652   0.0083309 

iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood 

         0    0.9075    4.6686   -4.7389 

 

    1.0000    0.8187    4.2881   -4.7372    6.1792 

    2.0000    0.8113    4.2367   -4.7367    0.0578 

    3.0000    0.8126    4.2523   -4.7294    0.0012 

    4.0000    0.8117    4.2510   -4.7284    0.0013 

    5.0000    0.8117    4.2319   -4.7265    0.0016 

    6.0000    0.8127    4.2368   -4.7144    0.0007 

 

B3  Estimation results from data generated from GED  SV model: techniques based on 

normal mixture 

No of Iteration = 5 

Total time = 259.3772 

Standard deviation of final estimate = 0.015127     0.01557     0.08715      0.1269      0.2282     

0.84311    0.015076 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 

 

         0    0.8250    0.2572    0.3484   -2.6516    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.8695    0.2745    0.3719   -2.7158    3.5192 

    2.0000    0.8889    0.2846    0.3099   -2.6360    3.2317 

    3.0000    0.9038    0.2974    0.2563   -2.5317    3.0711 

    4.0000    0.9026    0.3045    0.2047   -2.4549    3.0149 

    5.0000    0.9050    0.3136    0.1491   -2.4081    2.9473 

 

  Columns 7 through 9 

 

    5.7045    0.4819    8.2085 

    6.5096    0.4718    1.0975 

    7.0490    0.4587    0.4812 

    7.4874    0.4514    0.1234 

    7.8467    0.4448    0.0052 

 0.01 500 sample 

 

No of Iteration = 11 

Total time = 539.7878 



150 

 

Standard deviation of final estimate = 0.026021    0.025703     0.11521     0.13263     0.28846      

1.1097    0.028448 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 

 

         0    0.7418    0.3584    0.0012   -2.9988    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.8067    0.3808    0.0083   -3.0392    3.4186 

    2.0000    0.8477    0.3970   -0.0912   -2.9562    3.0021 

    3.0000    0.8711    0.4072   -0.1585   -2.8640    2.7730 

    4.0000    0.8807    0.4124   -0.2109   -2.7880    2.6284 

    5.0000    0.8859    0.4204   -0.2399   -2.7236    2.5635 

    6.0000    0.8871    0.4271   -0.2747   -2.7165    2.5550 

    7.0000    0.8882    0.4347   -0.2989   -2.7031    2.5307 

    8.0000    0.8897    0.4432   -0.3209   -2.6769    2.5183 

    9.0000    0.8909    0.4524   -0.3295   -2.6580    2.5098 

   10.0000    0.8910    0.4560   -0.3333   -2.6388    2.4895 

   11.0000    0.8871    0.4605   -0.3568   -2.6609    2.5108 

 

  Columns 7 through 9 

 

    5.9123    0.4795   11.1725 

    6.8847    0.4648    2.3854 

    7.4628    0.4531    0.9593 

    7.8875    0.4420    0.4326 

    8.2703    0.4323    0.2220 

    8.5237    0.4247    0.0821 

    8.7384    0.4186    0.0574 

    8.9514    0.4112    0.0573 

    9.1711    0.4036    0.0664 

    9.3319    0.3972    0.0276 

    9.4387    0.3916   -0.0125 

 

>> No of Iteration = 11 

Total time = 539.7878 

Standard deviation of final estimate = 0.026021    0.025703     0.11521     0.13263     0.28846      

1.1097    0.028448 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 
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         0    0.7418    0.3584    0.0012   -2.9988    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.8067    0.3808    0.0083   -3.0392    3.4186 

    2.0000    0.8477    0.3970   -0.0912   -2.9562    3.0021 

    3.0000    0.8711    0.4072   -0.1585   -2.8640    2.7730 

    4.0000    0.8807    0.4124   -0.2109   -2.7880    2.6284 

    5.0000    0.8859    0.4204   -0.2399   -2.7236    2.5635 

    6.0000    0.8871    0.4271   -0.2747   -2.7165    2.5550 

    7.0000    0.8882    0.4347   -0.2989   -2.7031    2.5307 

    8.0000    0.8897    0.4432   -0.3209   -2.6769    2.5183 

    9.0000    0.8909    0.4524   -0.3295   -2.6580    2.5098 

   10.0000    0.8910    0.4560   -0.3333   -2.6388    2.4895 

   11.0000    0.8871    0.4605   -0.3568   -2.6609    2.5108 

 

  Columns 7 through 9 

 

    5.9123    0.4795   11.1725 

    6.8847    0.4648    2.3854 

    7.4628    0.4531    0.9593 

    7.8875    0.4420    0.4326 

    8.2703    0.4323    0.2220 

    8.5237    0.4247    0.0821 

    8.7384    0.4186    0.0574 

    8.9514    0.4112    0.0573 

    9.1711    0.4036    0.0664 

    9.3319    0.3972    0.0276 

    9.4387    0.3916 

0.001 1000 sample 

Variance Estimate 

  Columns 1 through 6 

 

    0.0000    0.0110    0.0004   -0.0013    0.0036   -0.0131 

    0.0110   -0.0684   -0.0067    0.0131   -0.0369    0.0889 

    0.0004   -0.0067    0.0013   -0.0089    0.0031    0.0077 

   -0.0013    0.0131   -0.0089   -0.0141   -0.0398    0.0218 

    0.0036   -0.0369    0.0031   -0.0398    0.1317    0.0705 

   -0.0131    0.0889    0.0077    0.0218    0.0705   -0.0310 

    0.0024    0.0268    0.0246    0.1122    0.2717   -0.1239 

 

  Column 7 



152 

 

 

    0.0024 

    0.0268 

    0.0246 

    0.1122 

    0.2717 

   -0.1239 

    1.0414 

 

No of Iteration = 14 

Total time = 646.1515 

Standard deviation of final estimate = 0.015215    0.069801    0.088286     0.15449     0.47054      

1.1994    0.041351 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 

 

         0    0.9500    1.7658    0.0472   -2.9528    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.7759    1.5043   -0.0330   -2.8441    3.2101 

    2.0000    0.7357    1.4275   -0.0921   -2.7778    2.6811 

    3.0000    0.7185    1.3735   -0.1115   -2.7611    2.3335 

    4.0000    0.7193    1.3473   -0.1431   -2.7671    2.1048 

    5.0000    0.7219    1.3303   -0.1870   -2.7968    1.9461 

    6.0000    0.7326    1.3140   -0.2014   -2.8313    1.8516 

    7.0000    0.7362    1.2962   -0.2243   -2.8647    1.7928 

    8.0000    0.7402    1.2823   -0.2385   -2.9185    1.7313 

    9.0000    0.7425    1.2729   -0.2502   -2.9853    1.6991 

   10.0000    0.7473    1.2782   -0.2709   -3.0331    1.6821 

   11.0000    0.7487    1.2731   -0.2855   -3.0712    1.6670 

   12.0000    0.7472    1.2687   -0.2967   -3.1117    1.6375 

   13.0000    0.7499    1.2796   -0.3091   -3.1637    1.6357 

   14.0000    0.7515    1.2777   -0.3193   -3.1988    1.6365 

 

  Columns 7 through 9 

 

    4.9086    0.4810   18.7099 

    5.8650    0.4639    2.2298 

    6.7320    0.4465    1.1780 

    7.3280    0.4346    0.2285 

    7.7537    0.4227    0.1868 



153 

 

    8.0216    0.4112    0.0831 

    8.2753    0.4005    0.0603 

    8.4366    0.3911    0.0370 

    8.4710    0.3853    0.0231 

    8.5269    0.3762    0.0090 

    8.6863    0.3691    0.0094 

    8.7283    0.3615    0.0327 

    8.7644    0.3562    0.0106 

    8.7981    0.3496   -0.0003 

 

B4  Estimation results from data generated from normal mixture SV model: techniques 

based on normal mixture 

 

No of Iteration = 3 

Total time = 137.4582 

Standard deviation of final estimate = 0.0045855     0.17068   0.0059081     0.00932     0.10267     

0.16612    0.003056 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 

 

         0    0.8987    4.4300   -5.5210   -8.5210    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.7923    3.8149   -5.5214   -8.5094    3.8962 

    2.0000    0.7831    3.6039   -5.5225   -8.5125    3.7653 

    3.0000    0.7875    3.4771   -5.5322   -8.5269    3.6937 

 

  Columns 7 through 9 

 

    4.1539    0.4955    8.2747 

    4.2923    0.4914    0.1702 

    4.4847    0.4895    0.0248 

0.01 500 sample 

 

No of Iteration = 4 

Total time = 199.6295 

Standard deviation of final estimate = 0.0046651     0.17631    0.026411    0.032108    0.081339    

0.057281   0.0025453 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 
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         0    0.8699    3.6899   -4.8897   -7.8897    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.8324    3.3688   -4.8714   -7.8968    3.8962 

    2.0000    0.8330    3.2129   -4.8508   -7.9105    3.8038 

    3.0000    0.8371    3.0787   -4.8429   -7.9483    3.7550 

    4.0000    0.8425    2.9591   -4.8080   -7.9658    3.7054 

 

  Columns 7 through 9 

 

    3.9752    0.4979    1.6141 

    4.0192    0.4941    0.0760 

    4.0460    0.4921    0.0338 

    4.1121    0.4930   -0.0148 

 

0.001 1000 sample 

No of Iteration = 3 

Total time = 464.2807 

Standard deviation of final estimate = 0.0013341     0.51468    0.021891    0.026309    0.069579     

0.16268   0.0032833 

iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative Likelihood 

  Columns 1 through 6 

 

         0    0.9500    5.8502   -1.4214   -4.4214    4.0000 

 

  Columns 7 through 8 

 

    4.0000    0.5000 

 

  Columns 1 through 6 

 

    1.0000    0.9843    5.2198   -1.4331   -4.4032    3.8701 

    2.0000    0.9858    4.6363   -1.4184   -4.4234    3.7759 

    3.0000    0.9869    4.1936   -1.3900   -4.4554    3.7342 

 

  Columns 7 through 9 

 

    4.0264    0.4960    9.0561 

    4.1807    0.4921    0.0746 

    4.3517    0.4895   -0.0684 
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Appendix C  

C1  Parameter estimation for the GED SV model 

 Filtering Step: 

The algorithm for the filtering and smoothing steps below shows a slight modification of Godsill 

et al. (2004) and Kim & Stoffer (2008). From here M samples from )|,( tt Yxf  for each t  were 

obtained. 
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 C2 Smoothing step 

In the smoothing step, particle smoothers that are needed to get the expected likelihood in the 

expectation step of the EM algorithm were gotten:  

Suppose that equally weighted particles Mif i

t ,,1},{ )(  from )|,( tt Yxf are available for 

nt ,,1   from the filtering step. 
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Appendix D 
 

The table below shows historical exchange rates between the Nigerian naira (NGN) and the US 

Dollar (USD), British Pound (GBP) and the US Dollar, Ghanaian Cedi (GHS) and the US Dollar, 

Euro (EUR) and the US Dollar. 

 

Date USD/NGN USD/GBP USD/GHC USD/EUR 
3/9/2009 146.897 0.7149 13,784.30 0.7907 

3/10/2009 146.952 0.7237 13,739.10 0.7882 

3/11/2009 147.148 0.7263 13,811.20 0.7862 

3/12/2009 146.008 0.7226 13,807.60 0.7804 

3/13/2009 146.207 0.7163 13,779.40 0.7747 

3/14/2009 145.716 0.7139 13,788.90 0.7731 

3/15/2009 145.716 0.7139 13,794.50 0.7732 

3/16/2009 146.882 0.7109 13,735.50 0.772 

3/17/2009 146.873 0.7113 13,900.10 0.77 

3/18/2009 146.799 0.7133 13,755.70 0.7645 

3/19/2009 146.151 0.6967 13,654.40 0.7385 

3/20/2009 147.144 0.6906 13,863.80 0.7338 

3/21/2009 146.72 0.6911 13,880.40 0.736 

3/22/2009 146.72 0.6911 13,871.60 0.736 

3/23/2009 148.089 0.6883 13,868.20 0.7336 

3/24/2009 148 0.6815 13,937.80 0.7355 

3/25/2009 148.058 0.6833 13,920.40 0.7408 

3/26/2009 146.417 0.687 13,935.90 0.7367 

3/27/2009 146.961 0.6945 13,984.90 0.7433 

3/28/2009 146.56 0.6981 13,947.00 0.7522 

3/29/2009 146.56 0.6984 13,955.90 0.7523 

3/30/2009 145.846 0.7036 13,960.40 0.7571 

3/31/2009 146.48 0.6987 13,917.00 0.7532 

4/1/2009 146.903 0.6964 13,995.20 0.756 
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4/2/2009 146.448 0.6855 13,879.30 0.75 

4/3/2009 146.195 0.6777 13,918.60 0.7439 

4/4/2009 145.626 0.6736 13,901.40 0.7413 

4/5/2009 145.626 0.6736 13,898.30 0.7413 

4/6/2009 145.49 0.6729 13,973.50 0.7408 

4/7/2009 146.927 0.6801 14,031.30 0.7505 

4/8/2009 147.208 0.6805 13,988.20 0.7557 

4/9/2009 147.033 0.6808 14,012.70 0.755 

4/10/2009 146.186 0.6826 14,124.70 0.7609 

4/11/2009 146.186 0.6812 14,077.00 0.7581 

4/12/2009 146.186 0.6812 14,072.50 0.7581 

4/13/2009 147 0.6794 13,991.90 0.7558 

4/14/2009 146.2 0.6721 13,982.00 0.7514 

4/15/2009 146.156 0.6699 14,074.60 0.7559 

4/16/2009 146.783 0.6686 14,071.70 0.7577 

4/17/2009 146.944 0.6736 14,151.70 0.7635 

4/18/2009 147.4 0.6756 14,546.50 0.7663 

4/19/2009 147.4 0.6755 14,667.00 0.7663 

4/20/2009 147.042 0.6824 14,166.20 0.7705 

4/21/2009 147.243 0.686 14,094.30 0.7728 

4/22/2009 146.814 0.6854 14,101.10 0.7718 

4/23/2009 146.942 0.6873 14,133.70 0.7672 

4/24/2009 146.933 0.6814 14,141.50 0.7574 

4/25/2009 146.756 0.68 14,223.90 0.755 

4/26/2009 147.08 0.681 14,204.30 0.7549 

4/27/2009 146.806 0.6842 14,308.60 0.7604 

4/28/2009 145.879 0.6846 14,279.50 0.7669 

4/29/2009 145.919 0.6794 14,198.90 0.7567 

4/30/2009 146.937 0.6751 14,326.00 0.753 

5/1/2009 147.049 0.6739 14,353.30 0.7541 

5/2/2009 147.049 0.6699 14,347.90 0.7533 

5/3/2009 147.049 0.6699 14,349.50 0.7533 

5/4/2009 145.72 0.6694 14,283.20 0.7512 

5/5/2009 146.427 0.6642 14,314.90 0.7474 

5/6/2009 146.523 0.664 14,389.00 0.7516 

5/7/2009 146.697 0.6636 14,325.30 0.7492 

5/8/2009 146.696 0.6629 14,228.80 0.7436 

5/9/2009 145.995 0.6563 14,323.20 0.7332 

5/10/2009 145.995 0.6563 14,308.20 0.7332 

5/11/2009 146.158 0.6593 14,221.90 0.7344 

5/12/2009 146.249 0.6579 14,315.70 0.7341 

5/13/2009 146.499 0.6567 14,355.10 0.7326 

5/14/2009 146.896 0.66 14,361.20 0.7359 

5/15/2009 146.909 0.6574 14,359.10 0.7363 

5/16/2009 147.541 0.6585 14,401.50 0.7407 

5/17/2009 147.25 0.6586 14,421.00 0.7408 

5/18/2009 147.002 0.6567 14,372.60 0.7418 

5/19/2009 147.035 0.6484 14,331.40 0.7357 

5/20/2009 147.082 0.6429 14,358.40 0.731 

5/21/2009 146.704 0.6349 14,275.30 0.7246 
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5/22/2009 146.651 0.6299 14,352.00 0.7163 

5/23/2009 146.651 0.6275 14,512.20 0.7141 

5/24/2009 146.651 0.6276 14,492.30 0.7141 

5/25/2009 146.88 0.6289 14,516.70 0.7141 

5/26/2009 146.558 0.6293 14,509.10 0.7162 

5/27/2009 146.364 0.6252 14,528.30 0.7169 

5/28/2009 146.23 0.6273 14,565.80 0.7206 

5/29/2009 146.054 0.6208 14,486.00 0.712 

5/30/2009 146.054 0.6175 14,533.00 0.7065 

5/31/2009 146.054 0.6175 14,533.00 0.7065 

6/1/2009 147.799 0.6124 14,475.80 0.7056 

6/2/2009 147.312 0.6073 14,532.30 0.7039 

6/3/2009 146.622 0.6051 14,614.10 0.7024 

6/4/2009 147.781 0.6146 14,681.30 0.7055 

6/5/2009 147.646 0.6222 14,764.10 0.7079 

6/6/2009 148.571 0.6255 14,895.90 0.7157 

6/7/2009 148.571 0.6256 14,712.40 0.7157 

6/8/2009 147.405 0.6271 14,764.40 0.7186 

6/9/2009 147.717 0.6191 14,556.90 0.7168 

6/10/2009 147.396 0.6117 14,621.80 0.7115 

6/11/2009 147.663 0.6077 14,663.90 0.7123 

6/12/2009 148.073 0.606 14,684.00 0.7115 

6/13/2009 148.073 0.6079 14,733.00 0.7132 

6/14/2009 148.073 0.6079 14,731.70 0.7132 

6/15/2009 147.942 0.6114 14,792.10 0.7202 

6/16/2009 147.766 0.6111 14,706.20 0.7225 

6/17/2009 147.88 0.6113 14,670.30 0.7209 

6/18/2009 146.534 0.6116 14,669.40 0.7171 

6/19/2009 148.496 0.6094 14,712.00 0.7179 

6/20/2009 146.154 0.6061 14,678.90 0.7173 

6/21/2009 146.154 0.606 14,703.00 0.7172 

6/22/2009 148.484 0.6086 14,735.60 0.7203 

6/23/2009 147.388 0.6121 14,660.10 0.7172 

6/24/2009 147.68 0.6066 14,729.60 0.7117 

6/25/2009 147.711 0.6108 14,785.30 0.7167 

6/26/2009 147.307 0.6074 14,708.90 0.7116 

6/27/2009 146.75 0.605 14,793.20 0.7111 

6/28/2009 146.75 0.605 14,793.70 0.7111 

6/29/2009 147.396 0.6053 14,785.50 0.7118 

6/30/2009 147.427 0.6036 14,789.70 0.7099 

7/1/2009 147.546 0.6074 14,756.20 0.71 

7/2/2009 147.089 0.609 14,786.40 0.7103 

7/3/2009 147.417 0.6114 14,807.00 0.7149 

7/4/2009 146.11 0.6121 14,790.60 0.7151 

7/5/2009 145.79 0.6121 14,781.00 0.7151 

7/6/2009 147.547 0.6161 14,789.40 0.717 

7/7/2009 147.448 0.6167 14,820.30 0.716 

7/8/2009 148.04 0.6219 14,895.60 0.7197 

7/9/2009 147.221 0.6179 14,768.40 0.7167 

7/10/2009 146.251 0.6152 14,796.20 0.7166 
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7/11/2009 145.469 0.6167 14,776.20 0.7173 

7/12/2009 147.8 0.6167 14,767.50 0.7173 

7/13/2009 146.117 0.6172 14,793.00 0.7168 

7/14/2009 147.404 0.6143 14,819.10 0.7156 

7/15/2009 148.153 0.6106 14,777.40 0.712 

7/16/2009 147.956 0.6092 14,804.30 0.7091 

7/17/2009 147.956 0.6115 14,804.30 0.7085 

7/18/2009 146.29 0.612 14,817.80 0.7089 

7/19/2009 146.29 0.612 14,825.30 0.7089 

7/20/2009 147.92 0.6076 14,785.20 0.7046 

7/21/2009 148.337 0.6071 14,839.10 0.7036 

7/22/2009 148.798 0.6092 14,831.30 0.704 

7/23/2009 150.577 0.6061 14,798.50 0.703 

7/24/2009 150.431 0.6072 14,845.20 0.7045 

7/25/2009 149.1 0.6085 14,868.20 0.7039 

7/26/2009 149.1 0.6084 14,871.60 0.7038 

7/27/2009 149.436 0.6072 14,849.40 0.7024 

7/28/2009 149.436 0.6068 14,896.20 0.7029 

7/29/2009 151.299 0.6096 14,947.00 0.7081 

7/30/2009 155.266 0.6079 14,879.60 0.7112 

7/31/2009 156.7 0.6034 15,000.00 0.7068 

8/1/2009 156.7 0.5981 14,711.00 0.7012 

8/2/2009 156.7 0.598 14,709.20 0.7011 

8/3/2009 154.999 0.5946 14,695.80 0.6989 

8/4/2009 155.446 0.5902 14,733.30 0.6943 

8/5/2009 154.511 0.5893 14,761.10 0.6942 

8/6/2009 154.316 0.5912 14,733.50 0.6951 

8/7/2009 153.648 0.5973 14,688.30 0.6989 

8/8/2009 153.95 0.5992 14,723.70 0.7048 

8/9/2009 153.8 0.5992 14,729.30 0.7048 

8/10/2009 153.849 0.6019 14,635.80 0.7053 

8/11/2009 153.754 0.6066 14,561.80 0.7068 

8/12/2009 153.744 0.6066 14,544.90 0.706 

8/13/2009 153.773 0.6041 14,509.40 0.7016 

8/14/2009 155.941 0.604 14,700.00 0.7014 

8/15/2009 154.34 0.6043 14,609.20 0.7038 

8/16/2009 156 0.6044 14,609.80 0.7039 

8/17/2009 156.871 0.6103 14,690.00 0.7084 

8/18/2009 157.806 0.6083 14,700.00 0.7086 

8/19/2009 156.466 0.6061 14,700.00 0.7064 

8/20/2009 155.978 0.6053 14,455.60 0.7026 

8/21/2009 155.859 0.606 14,488.80 0.6999 

8/22/2009 154.62 0.6055 14,518.20 0.6978 

8/23/2009 154.619 0.6055 14,516.30 0.6978 

8/24/2009 155.974 0.6068 14,505.90 0.6982 

8/25/2009 154.503 0.6102 14,466.10 0.6991 

8/26/2009 153.871 0.614 14,464.20 0.7003 

8/27/2009 153.72 0.6165 14,449.40 0.7011 

8/28/2009 152.919 0.6135 14,422.00 0.6968 

8/29/2009 152.13 0.6145 14,476.00 0.6989 



160 

 

8/30/2009 152.13 0.6145 14,489.90 0.6989 

8/31/2009 153.868 0.6154 14,461.30 0.6991 

9/1/2009 153.081 0.6155 14,431.40 0.6989 

9/2/2009 153.198 0.6174 14,440.60 0.7028 

9/3/2009 153.517 0.6129 14,407.20 0.7004 

9/4/2009 153.94 0.6116 14,410.70 0.7009 

9/5/2009 151.9 0.6099 14,374.20 0.6995 

9/6/2009 151.9 0.6099 14,360.70 0.6995 

9/7/2009 153.204 0.6102 14,362.50 0.6976 

9/8/2009 153.917 0.6079 14,351.90 0.6934 

9/9/2009 153.202 0.6051 14,343.70 0.6887 

9/10/2009 152.706 0.6031 14,330.90 0.6866 

9/11/2009 153.56 0.5992 14,364.20 0.6853 

9/12/2009 153.56 0.6001 14,415.00 0.6861 

9/13/2009 153.56 0.6 14,414.00 0.686 

9/14/2009 153.487 0.6026 14,378.10 0.6861 

9/15/2009 153.779 0.6044 14,346.70 0.6839 

9/16/2009 153.214 0.6065 14,342.20 0.6809 

9/17/2009 152.799 0.6061 14,366.00 0.679 

9/18/2009 153.537 0.6117 14,400.30 0.6796 

9/19/2009 151.76 0.6144 14,392.20 0.6795 

9/20/2009 151.771 0.6144 14,393.90 0.6795 

9/21/2009 151.676 0.6171 14,383.20 0.6814 

9/22/2009 154.053 0.6136 14,279.70 0.6778 

9/23/2009 152.672 0.6099 14,306.40 0.6761 

9/24/2009 150.558 0.6162 14,358.40 0.6791 

9/25/2009 149.934 0.6256 14,315.20 0.6816 

9/26/2009 148.72 0.6267 14,255.00 0.6805 

9/27/2009 148.72 0.6266 14,254.00 0.6805 

9/28/2009 151.429 0.6304 14,298.60 0.6833 

9/29/2009 151.336 0.6281 14,300.10 0.6853 

9/30/2009 149.165 0.6242 14,293.50 0.6838 

10/1/2009 147.827 0.626 14,387.10 0.6856 

10/2/2009 147.827 0.6287 14,387.10 0.687 

10/3/2009 144.214 0.6268 14,309.30 0.6858 

10/4/2009 144.21 0.6269 14,303.50 0.6857 

10/5/2009 147.195 0.6267 14,318.50 0.6836 

10/6/2009 146.36 0.6272 14,321.00 0.6798 

10/7/2009 147.938 0.6286 14,370.60 0.6803 

10/8/2009 147.29 0.6236 14,282.70 0.6776 

10/9/2009 147.384 0.6261 14,306.10 0.6785 

10/10/2009 147.84 0.6309 14,303.00 0.6786 

10/11/2009 147.84 0.6309 14,304.30 0.6787 

10/12/2009 147.33 0.6323 14,272.60 0.6782 

10/13/2009 149.354 0.6323 14,270.00 0.6754 

10/14/2009 150.48 0.6265 14,288.70 0.6717 

10/15/2009 150.01 0.619 14,315.50 0.6697 

10/16/2009 148.03 0.6123 14,311.40 0.6705 

10/17/2009 148.05 0.6112 14,288.30 0.6706 

10/18/2009 148.05 0.6114 14,290.70 0.6706 
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10/19/2009 148.17 0.6122 14,265.60 0.6705 

10/20/2009 148.36 0.6097 14,272.50 0.6686 

10/21/2009 148.18 0.606 14,233.40 0.6686 

10/22/2009 148.21 0.6027 14,193.40 0.6667 

10/23/2009 148.425 0.6062 14,216.00 0.6655 

10/24/2009 149.5 0.6131 14,262.00 0.6662 

10/25/2009 149.5 0.6132 14,263.60 0.6662 

10/26/2009 149.11 0.613 14,280.90 0.6671 

10/27/2009 148.92 0.6116 14,290.60 0.6731 

10/28/2009 148.843 0.6109 14,235.20 0.6762 

10/29/2009 148.785 0.6078 14,139.40 0.6776 

10/30/2009 148.84 0.6051 14,144.70 0.6754 

10/31/2009 149.63 0.6079 14,221.00 0.6793 

11/1/2009 149.63 0.6079 14,221.00 0.6793 

11/2/2009 149.17 0.6096 14,160.80 0.6774 

11/3/2009 149.186 0.611 14,184.40 0.6789 

11/4/2009 148.12 0.6064 14,077.00 0.6771 

11/5/2009 149.74 0.6042 14,075.20 0.6731 

11/6/2009 149.66 0.6026 14,123.70 0.6725 

11/7/2009 149.66 0.6017 14,158.00 0.6733 

11/8/2009 149.66 0.6016 14,158.20 0.6731 

11/9/2009 149.99 0.5977 14,092.90 0.6687 

11/10/2009 150.47 0.5984 14,160.90 0.6674 

11/11/2009 150.09 0.5995 14,174.40 0.6667 

11/12/2009 150.2 0.6035 14,217.10 0.669 

11/13/2009 150.071 0.601 14,173.20 0.6723 

11/14/2009 151.7 0.5996 14,128.00 0.6708 

11/15/2009 151.7 0.5995 14,125.90 0.6707 

11/16/2009 150.16 0.5975 14,106.90 0.6683 

11/17/2009 150.109 0.5948 14,183.20 0.6703 

11/18/2009 149.59 0.5955 14,163.40 0.6703 

11/19/2009 148.95 0.5995 14,183.50 0.6709 

11/20/2009 148.95 0.6032 14,183.50 0.6718 

11/21/2009 147.99 0.6056 14,169.50 0.6726 

11/22/2009 149.75 0.6056 14,169.10 0.6726 

11/23/2009 148.18 0.6034 14,128.30 0.6691 

11/24/2009 147.24 0.6035 14,167.90 0.6689 

11/25/2009 147.939 0.6004 14,099.70 0.6654 

11/26/2009 147.861 0.6024 14,152.00 0.6633 

11/27/2009 148.1 0.6087 14,182.80 0.6694 

11/28/2009 147.52 0.6057 14,069.70 0.6669 

11/29/2009 147.52 0.6055 14,074.00 0.6668 

11/30/2009 146.86 0.606 14,084.20 0.6654 

12/1/2009 144.417 0.6053 14,125.00 0.6644 

12/2/2009 145.519 0.6013 14,167.50 0.6631 

12/3/2009 147.02 0.601 14,179.60 0.6626 

12/4/2009 147.92 0.6039 14,287.10 0.6663 

12/5/2009 150.03 0.607 14,366.90 0.6729 

12/6/2009 150.5 0.6071 14,362.50 0.6729 

12/7/2009 149.216 0.6086 14,244.30 0.6736 
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12/8/2009 149.8 0.6109 14,142.00 0.6758 

12/9/2009 147.61 0.615 14,149.30 0.6792 

12/10/2009 148.12 0.6144 14,119.20 0.679 

12/11/2009 148.975 0.6142 14,149.40 0.68 

12/12/2009 149.989 0.6148 14,245.20 0.6839 

12/13/2009 149.9 0.6148 14,243.30 0.6839 

12/14/2009 148.3 0.6152 14,119.50 0.6828 

12/15/2009 147.67 0.6146 14,113.50 0.6854 

12/16/2009 147.66 0.6134 14,107.30 0.6874 

12/17/2009 148.49 0.6168 14,179.10 0.6942 

12/18/2009 147.83 0.6186 14,130.30 0.6968 

12/19/2009 149.25 0.6187 14,150.00 0.6972 

12/20/2009 149.25 0.6187 14,151.90 0.6973 

12/21/2009 147.08 0.6205 14,167.60 0.698 

12/22/2009 147.126 0.624 14,142.80 0.7 

12/23/2009 147.571 0.6266 14,078.70 0.7003 

12/24/2009 147.13 0.626 14,092.50 0.6963 

12/25/2009 147.13 0.6261 14,137.50 0.695 

12/26/2009 147.13 0.6243 14,142.00 0.6945 

12/27/2009 148.75 0.6264 14,142.00 0.6948 

12/28/2009 147.9 0.6259 14,148.60 0.6949 

12/29/2009 148.13 0.6254 14,156.00 0.695 

12/30/2009 148.162 0.6278 14,168.60 0.6977 

12/31/2009 147.38 0.62 14,138.40 0.696 

1/1/2010 149.45 0.6188 14,151.60 0.6985 

1/2/2010 149.45 0.6198 14,154.00 0.6949 

1/3/2010 149.45 0.6188 14,171.20 0.6984 

1/4/2010 148.047 0.6199 14,174.80 0.6966 

1/5/2010 147.44 0.6227 14,177.60 0.6936 

1/6/2010 147.457 0.6253 14,189.50 0.6961 

1/7/2010 147.036 0.6263 14,175.00 0.6961 

1/8/2010 147.84 0.6257 14,143.90 0.6976 

1/9/2010 149.9 0.6239 14,074.20 0.6937 

1/10/2010 149.9 0.6238 14,069.00 0.6936 

1/11/2010 148.48 0.6205 14,087.90 0.6894 

1/12/2010 148.37 0.6201 14,086.10 0.6898 

1/13/2010 148.5 0.6163 14,010.10 0.6895 

1/14/2010 149.349 0.6136 14,007.20 0.689 

1/15/2010 149.21 0.6134 14,016.60 0.6936 

1/16/2010 149.17 0.6147 13,958.00 0.6949 

1/17/2010 151.1 0.6147 13,964.80 0.695 

1/18/2010 148.33 0.613 13,999.00 0.6957 

1/19/2010 149.02 0.6104 14,123.20 0.697 

1/20/2010 148.2 0.6134 14,142.00 0.705 

1/21/2010 148.193 0.6161 14,018.00 0.7097 

1/22/2010 148.004 0.618 14,000.60 0.7078 

1/23/2010 147.75 0.6207 14,038.00 0.7072 

1/24/2010 150 0.6206 14,047.70 0.707 

1/25/2010 148.178 0.619 14,083.70 0.7064 

1/26/2010 148.71 0.6177 14,152.80 0.7089 
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1/27/2010 148.12 0.6186 14,160.00 0.7112 

1/28/2010 148.73 0.6175 14,163.30 0.7141 

1/29/2010 148.62 0.6211 14,183.10 0.7176 

1/30/2010 149.622 0.6253 14,231.80 0.7211 

1/31/2010 150.88 0.6255 14,233.80 0.7211 

2/1/2010 149.4 0.6275 14,158.90 0.7198 

2/2/2010 149.585 0.6269 14,118.50 0.7176 

2/3/2010 149.339 0.6259 14,185.50 0.7164 

2/4/2010 149.35 0.6307 14,254.90 0.7224 

2/5/2010 149.26 0.637 14,241.60 0.7305 

2/6/2010 149.6 0.6383 14,240.20 0.7308 

2/7/2010 151.82 0.6383 14,247.00 0.7306 

2/8/2010 149.27 0.6408 14,149.60 0.7317 

2/9/2010 148.93 0.6401 14,092.20 0.729 

2/10/2010 148.61 0.6385 14,151.10 0.7267 

2/11/2010 149 0.6398 14,173.30 0.7283 

2/12/2010 149.11 0.6381 14,140.50 0.7335 

2/13/2010 151.3 0.6367 14,046.40 0.7333 

2/14/2010 151.3 0.6368 14,054.00 0.7334 

2/15/2010 148.92 0.6383 14,118.10 0.735 

2/16/2010 148.64 0.6361 14,074.80 0.7303 

2/17/2010 148.83 0.6352 14,122.40 0.7301 

2/18/2010 148.91 0.6404 14,127.00 0.7361 

2/19/2010 148.18 0.6485 14,055.80 0.7394 

2/20/2010 147.85 0.6461 13,978.10 0.7344 

2/21/2010 150.6 0.6461 14,008.40 0.7342 

2/22/2010 148.28 0.646 14,028.70 0.7348 

2/23/2010 148.133 0.6468 14,102.90 0.7364 

2/24/2010 148.124 0.648 14,100.00 0.7381 

2/25/2010 148.15 0.6542 14,103.20 0.7407 

2/26/2010 147.96 0.6561 14,035.10 0.7352 

2/27/2010 147.291 0.6561 14,030.90 0.7335 

2/28/2010 150.3 0.6563 14,024.10 0.7333 

3/1/2010 148.785 0.6658 14,080.70 0.7371 

3/2/2010 147.86 0.6692 14,063.70 0.7378 

3/3/2010 148.14 0.664 14,015.70 0.7318 

3/4/2010 147.98 0.664 14,101.40 0.7336 

3/5/2010 148.18 0.6634 14,069.00 0.7355 

3/6/2010 147.85 0.6604 14,004.00 0.7337 

3/7/2010 147.85 0.6604 14,001.70 0.7337 

3/8/2010 148.3 0.6613 13,984.40 0.7323 

3/9/2010 148.244 0.6673 14,028.00 0.7358 

3/10/2010 148.07 0.669 13,955.70 0.7344 

3/11/2010 148.25 0.6657 13,930.60 0.7321 

3/12/2010 148.42 0.6603 13,919.90 0.7275 

3/13/2010 150.3 0.6575 13,939.00 0.726 

3/14/2010 148.54 0.6575 13,943.00 0.726 

3/15/2010 148.33 0.6632 14,014.60 0.7298 

3/16/2010 147.81 0.6604 14,012.00 0.7286 

3/17/2010 148.08 0.6534 14,010.30 0.7264 
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3/18/2010 148.501 0.6547 14,103.30 0.7325 

3/19/2010 147.73 0.6621 14,051.90 0.7374 

3/20/2010 149.45 0.6658 13,998.00 0.7387 

3/21/2010 147.98 0.6658 13,997.50 0.7388 

3/22/2010 147.66 0.6654 13,939.40 0.7392 

3/23/2010 147.307 0.6648 13,898.70 0.7398 

3/24/2010 147.29 0.6697 13,993.60 0.7482 

3/25/2010 147.556 0.6716 13,990.80 0.7504 

3/26/2010 147.78 0.6723 13,955.90 0.7472 

3/27/2010 147.73 0.671 13,967.00 0.7468 

3/28/2010 147.73 0.6707 13,958.20 0.745 

3/29/2010 148.01 0.6677 13,957.10 0.7425 

3/30/2010 148.617 0.6635 13,995.80 0.7432 

3/31/2010 149.303 0.66 13,992.70 0.7414 

4/1/2010 148.924 0.6557 13,987.50 0.7391 

4/2/2010 148.485 0.6559 14,007.10 0.7385 

4/3/2010 149.7 0.6574 14,027.00 0.7406 

4/4/2010 147.88 0.6572 14,029.10 0.7406 

4/5/2010 148.462 0.655 14,040.50 0.7413 

4/6/2010 149.75 0.6575 14,071.50 0.7463 

4/7/2010 149.255 0.6565 14,018.60 0.7481 

4/8/2010 148.747 0.6567 13,994.80 0.7502 

4/9/2010 149.554 0.6515 13,921.30 0.7451 

4/10/2010 150.4 0.6503 13,871.00 0.7405 

4/11/2010 149.75 0.6503 13,872.00 0.7408 

4/12/2010 148.866 0.6489 13,875.70 0.7349 

4/13/2010 147.789 0.65 13,989.30 0.7359 

4/14/2010 149.154 0.6475 13,944.80 0.733 

4/15/2010 149.142 0.6462 13,973.70 0.7366 

4/16/2010 148.633 0.6485 13,988.40 0.7395 

4/17/2010 148.477 0.6507 14,019.00 0.7404 

4/18/2010 150 0.6509 14,014.80 0.7406 

4/19/2010 148.28 0.655 13,981.70 0.7431 

4/20/2010 148.36 0.6509 13,978.50 0.7425 

4/21/2010 148.27 0.6494 14,011.80 0.7459 

4/22/2010 148.03 0.6493 14,016.80 0.7494 

4/23/2010 148.729 0.6511 13,992.10 0.751 

4/24/2010 148.729 0.6501 13,886.00 0.7472 

4/25/2010 150 0.6501 13,887.50 0.7473 

4/26/2010 149.106 0.647 13,944.80 0.7495 

4/27/2010 142.679 0.6517 13,999.00 0.7519 

4/28/2010 149.12 0.6576 14,056.70 0.758 

4/29/2010 149.881 0.6555 13,975.80 0.7554 

4/30/2010 150.138 0.6527 13,965.10 0.752 

5/1/2010 148.8 0.6544 13,992.30 0.7521 

5/2/2010 148.8 0.6543 13,989.20 0.7517 

5/3/2010 148.42 0.6557 14,007.00 0.7565 

5/4/2010 150.194 0.6587 14,047.70 0.7638 

5/5/2010 148.5 0.661 14,106.20 0.7749 

5/6/2010 149.618 0.6668 14,113.50 0.7852 
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5/7/2010 148.67 0.6792 14,043.90 0.7864 

5/8/2010 149.249 0.6758 14,011.70 0.7836 

5/9/2010 149.25 0.6756 14,022.10 0.7824 

5/10/2010 150.099 0.6699 13,976.60 0.7746 

5/11/2010 148.29 0.6727 14,115.20 0.7867 

5/12/2010 148.36 0.6714 14,021.80 0.79 

5/13/2010 149.154 0.6781 14,028.40 0.7939 

5/14/2010 148.44 0.6864 14,104.20 0.8024 

5/15/2010 148.44 0.6877 14,104.20 0.8088 

5/16/2010 149.86 0.6878 14,131.00 0.8091 

5/17/2010 149.843 0.6933 14,083.60 0.811 

5/18/2010 151.12 0.6928 14,154.10 0.8095 

5/19/2010 149.43 0.6975 13,998.00 0.8151 

5/20/2010 149.05 0.6967 14,039.80 0.8067 

5/21/2010 149.745 0.6934 14,084.10 0.7963 

5/22/2010 149.745 0.6904 14,084.10 0.795 

5/23/2010 148.65 0.6905 14,027.00 0.7948 

5/24/2010 149.646 0.6927 14,093.80 0.8051 

5/25/2010 150.641 0.6974 14,210.70 0.8156 

5/26/2010 149.58 0.6945 14,083.40 0.8153 

5/27/2010 151.009 0.6888 14,223.10 0.813 

5/28/2010 149.452 0.6885 14,101.90 0.8101 

5/29/2010 150.86 0.6918 14,251.00 0.8145 

5/30/2010 149.75 0.6919 14,290.00 0.8146 

5/31/2010 149.01 0.6892 14,096.00 0.8128 

6/1/2010 150.835 0.6857 14,219.70 0.8178 

6/2/2010 149.666 0.682 14,112.20 0.8181 

6/3/2010 150.21 0.6822 14,220.80 0.817 

6/4/2010 150.249 0.6862 14,197.30 0.8273 

6/5/2010 150.655 0.6916 14,252.50 0.8352 

6/6/2010 150.65 0.6917 14,252.00 0.8354 

6/7/2010 148.71 0.691 14,376.50 0.8372 

6/8/2010 148.81 0.6928 14,075.00 0.837 

6/9/2010 149.654 0.6891 14,091.40 0.8339 

6/10/2010 148.79 0.6834 14,092.00 0.8281 

6/11/2010 150.152 0.6842 14,258.30 0.8263 

6/12/2010 150.152 0.687 14,258.30 0.8253 

6/13/2010 148.9 0.687 14,124.00 0.8253 

6/14/2010 150.138 0.6793 14,247.00 0.8176 

6/15/2010 148.48 0.677 14,114.30 0.815 

6/16/2010 148.8 0.6756 14,121.90 0.8125 

6/17/2010 148.81 0.6768 14,138.40 0.8099 

6/18/2010 150.044 0.6747 14,293.80 0.8078 

6/19/2010 149.128 0.6752 14,154.00 0.8082 

6/20/2010 148.85 0.6743 14,127.00 0.8065 

6/21/2010 149.565 0.674 14,250.70 0.8073 

6/22/2010 150.249 0.6766 14,187.90 0.8135 

6/23/2010 149.26 0.6713 14,155.00 0.8147 

6/24/2010 148.87 0.6681 14,190.40 0.8118 

6/25/2010 148.683 0.6683 14,178.10 0.8113 
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6/26/2010 148.12 0.6638 14,178.10 0.8081 

6/27/2010 148.12 0.6638 14,078.00 0.8081 

6/28/2010 148.4 0.6634 14,165.30 0.8107 

6/29/2010 147.94 0.6635 14,186.80 0.8191 

6/30/2010 148.555 0.6666 14,101.50 0.8163 

7/1/2010 147.59 0.6655 14,193.80 0.8089 

7/2/2010 147.914 0.6585 14,168.60 0.7975 

7/3/2010 146.53 0.658 14,180.00 0.7955 

7/4/2010 146.53 0.6581 14,180.00 0.7955 

7/5/2010 147.73 0.6603 14,243.00 0.7977 

7/6/2010 148.369 0.659 14,222.80 0.7937 

7/7/2010 147.802 0.6599 14,245.20 0.7935 

7/8/2010 148.601 0.6597 14,262.90 0.7895 

7/9/2010 148.33 0.661 14,327.00 0.7898 

7/10/2010 148.33 0.6636 14,327.00 0.7908 

7/11/2010 148.63 0.6636 14,356.00 0.7909 

7/12/2010 148.19 0.6658 14,133.00 0.7947 

7/13/2010 149.949 0.6621 14,429.90 0.7917 

7/14/2010 147.419 0.6558 14,255.80 0.7858 

7/15/2010 148.961 0.6515 14,287.70 0.7792 

7/16/2010 148.493 0.6508 14,326.70 0.7726 

7/17/2010 148.597 0.6534 14,271.50 0.7731 

7/18/2010 148.6 0.6534 14,272.00 0.7732 

7/19/2010 148.869 0.655 14,401.90 0.7723 

7/20/2010 149.342 0.6559 14,369.50 0.7738 

7/21/2010 147.88 0.6562 14,375.00 0.7795 

7/22/2010 148 0.6559 14,299.00 0.778 

7/23/2010 148.671 0.6502 14,452.80 0.7758 

7/24/2010 148.476 0.6481 14,464.60 0.7743 

7/25/2010 150 0.6482 14,545.00 0.7744 

7/26/2010 147.83 0.6458 14,016.00 0.7723 

7/27/2010 147.75 0.6438 14,354.00 0.7693 

7/28/2010 147.88 0.6411 14,271.50 0.7691 

7/29/2010 148.307 0.6401 14,253.90 0.7654 

7/30/2010 149.385 0.6392 14,321.40 0.7667 

7/31/2010 149.385 0.6372 14,321.40 0.766 

8/1/2010 147.63 0.6371 14,166.00 0.7659 

8/2/2010 147.41 0.6317 14,184.00 0.7622 

8/3/2010 147.73 0.6278 14,225.90 0.7566 

8/4/2010 147.89 0.6284 14,168.00 0.7582 

8/5/2010 149.137 0.6298 14,240.30 0.7591 

8/6/2010 149.045 0.628 14,230.70 0.7556 

8/7/2010 146.51 0.6271 13,987.00 0.7528 

8/8/2010 146.51 0.627 13,987.00 0.7527 

8/9/2010 148.05 0.6271 14,157.00 0.7543 

8/10/2010 149.325 0.6333 14,226.80 0.7606 

8/11/2010 148.779 0.6362 14,137.20 0.7703 

8/12/2010 149.398 0.6403 14,194.80 0.7781 

8/13/2010 148.842 0.6406 14,242.90 0.7805 

8/14/2010 148.842 0.6412 14,242.90 0.7838 
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8/15/2010 148.02 0.6411 14,189.00 0.7837 

8/16/2010 147.87 0.6397 14,141.00 0.7801 

8/17/2010 148.13 0.6401 14,162.00 0.7768 

8/18/2010 148.2 0.6409 14,161.00 0.7771 

8/19/2010 148.19 0.6408 14,148.00 0.7795 

8/20/2010 148.04 0.6438 14,140.00 0.7852 

8/21/2010 148.21 0.6436 14,158.00 0.7864 

8/22/2010 147.88 0.6436 14,126.00 0.7865 

8/23/2010 148.34 0.6431 14,163.00 0.7878 

8/24/2010 148.615 0.6482 14,185.00 0.7907 

8/25/2010 148.57 0.6479 14,163.00 0.7902 

8/26/2010 148.83 0.6433 14,165.00 0.7867 

8/27/2010 149 0.6447 14,150.00 0.7857 

8/28/2010 148.47 0.6437 14,100.00 0.7832 

8/29/2010 148.43 0.6437 14,096.00 0.7832 

8/30/2010 149.19 0.6446 14,138.00 0.7872 

8/31/2010 150.42 0.6497 14,240.90 0.7885 

9/1/2010 149.491 0.6483 14,182.60 0.7824 

9/2/2010 150.086 0.6494 14,262.40 0.7803 

9/3/2010 149.075 0.648 14,196.60 0.778 

9/4/2010 147.92 0.6469 14,101.00 0.7752 

9/5/2010 150.25 0.647 14,330.00 0.7752 

9/6/2010 148.75 0.6488 14,143.00 0.776 

9/7/2010 150.16 0.6513 14,246.10 0.7843 

9/8/2010 149.26 0.647 14,141.00 0.7864 

9/9/2010 149.4 0.648 14,129.00 0.7867 

9/10/2010 149.08 0.6492 14,106.00 0.7866 

9/11/2010 149.67 0.6506 14,162.00 0.7882 

9/12/2010 151.4 0.6504 14,290.00 0.7881 

9/13/2010 150.445 0.6481 14,252.50 0.7791 

9/14/2010 150.164 0.6467 14,148.80 0.7739 

9/15/2010 150.605 0.6428 14,200.20 0.7696 

9/16/2010 150.701 0.6405 14,187.60 0.7658 

9/17/2010 151.336 0.6389 14,247.10 0.7642 

9/18/2010 150.25 0.6395 14,168.00 0.766 

9/19/2010 150.35 0.6395 14,177.00 0.7659 

9/20/2010 151.18 0.6411 14,229.70 0.7646 

9/21/2010 151.882 0.6427 14,205.00 0.7611 

9/22/2010 152.339 0.6384 14,224.40 0.7485 

9/23/2010 151.39 0.6376 14,101.00 0.7489 

9/24/2010 151.732 0.6348 14,112.00 0.7451 

9/25/2010 153.2 0.6317 14,112.00 0.7409 

9/26/2010 150.63 0.6317 14,029.00 0.7409 

9/27/2010 153.787 0.6315 14,196.70 0.7424 

9/28/2010 153.406 0.6323 14,233.60 0.7408 

9/29/2010 152.38 0.6326 14,127.50 0.7347 

9/30/2010 152.22 0.6329 14,035.00 0.7339 

10/1/2010 152.07 0.6326 14,021.40 0.7285 

10/2/2010 154.5 0.6319 14,021.40 0.7248 

10/3/2010 151.37 0.6321 13,938.00 0.7248 
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10/4/2010 152.16 0.632 14,096.70 0.7294 

10/5/2010 151.692 0.63 14,204.50 0.7255 

10/6/2010 150.768 0.6291 14,174.90 0.7205 

10/7/2010 149.24 0.6285 14,123.00 0.7172 

10/8/2010 150.418 0.6287 14,215.20 0.7184 

10/9/2010 148.829 0.6263 14,063.90 0.7172 

10/10/2010 151.2 0.6265 14,063.90 0.717 

10/11/2010 150.617 0.6281 14,179.90 0.7181 

10/12/2010 149.99 0.6316 14,138.40 0.722 

10/13/2010 151.206 0.6306 14,222.80 0.7161 

10/14/2010 151.161 0.6247 14,246.70 0.7104 

10/15/2010 150.24 0.6239 14,149.00 0.7121 

10/16/2010 151.28 0.6251 14,218.00 0.7152 

10/17/2010 151.161 0.6252 14,219.40 0.7151 

10/18/2010 149.344 0.6287 14,220.80 0.7181 

10/19/2010 151.326 0.634 14,173.30 0.7221 

10/20/2010 150.937 0.6337 14,198.10 0.7208 

10/21/2010 149.89 0.6346 14,195.40 0.7158 

10/22/2010 150.829 0.6371 14,199.40 0.7179 

10/23/2010 150.829 0.6375 14,199.40 0.7163 

10/24/2010 149.29 0.6375 14,041.00 0.7162 

10/25/2010 147.716 0.6352 13,845.10 0.7135 

10/26/2010 148.05 0.6318 14,149.40 0.719 

10/27/2010 149.234 0.6328 14,217.50 0.7248 

10/28/2010 147.86 0.6297 14,171.70 0.7207 

10/29/2010 148.21 0.6266 14,192.30 0.7198 

10/30/2010 150.75 0.6233 14,192.30 0.7167 

10/31/2010 147.18 0.6233 14,087.00 0.7167 

11/1/2010 149.518 0.623 14,342.40 0.7171 

11/2/2010 149.048 0.6236 14,324.20 0.7161 

11/3/2010 148.09 0.6223 14,267.30 0.7124 

11/4/2010 147.68 0.618 14,142.20 0.7052 

11/5/2010 148.632 0.616 14,210.30 0.7069 

11/6/2010 148.632 0.6177 14,210.30 0.7124 

11/7/2010 150.4 0.6177 14,350.00 0.7124 

11/8/2010 148.217 0.6194 14,192.80 0.7164 

11/9/2010 149.354 0.6206 14,292.60 0.7202 

11/10/2010 148.09 0.6237 14,241.70 0.7264 

11/11/2010 148.31 0.6198 14,208.70 0.7279 

11/12/2010 149.173 0.621 14,233.20 0.7318 

11/13/2010 148.63 0.6203 14,230.00 0.7302 

11/14/2010 150.65 0.6203 14,390.00 0.7302 

11/15/2010 149.405 0.6212 14,326.40 0.7323 

11/16/2010 148.6 0.6249 14,183.00 0.7365 

11/17/2010 148.627 0.6291 14,186.20 0.7404 

11/18/2010 149.436 0.6266 14,328.80 0.7353 

11/19/2010 148.33 0.6242 14,247.50 0.7319 

11/20/2010 150.3 0.6256 14,415.00 0.7311 

11/21/2010 150.3 0.6256 14,415.00 0.7309 

11/22/2010 148.656 0.6252 14,318.10 0.7299 
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11/23/2010 149.62 0.6287 14,390.20 0.7392 

11/24/2010 148.35 0.6331 14,268.20 0.7479 

11/25/2010 148.02 0.6343 14,272.00 0.7497 

11/26/2010 148.33 0.6372 14,289.10 0.753 

11/27/2010 148.33 0.6413 14,289.10 0.7549 

11/28/2010 150.6 0.6412 14,475.00 0.7546 

11/29/2010 149.994 0.6416 14,414.80 0.758 

11/30/2010 148.51 0.643 14,321.90 0.7654 

12/1/2010 149.573 0.6415 14,269.70 0.7659 

12/2/2010 150.112 0.6409 14,387.40 0.7602 

12/3/2010 148.84 0.639 14,355.40 0.7537 

12/4/2010 146.97 0.6336 14,115.00 0.7451 

12/5/2010 151.05 0.6337 14,470.00 0.7451 

12/6/2010 148.84 0.6361 14,208.10 0.7502 

12/7/2010 150.308 0.6344 14,479.80 0.7501 

12/8/2010 150.627 0.6346 14,385.10 0.7554 

12/9/2010 150.212 0.6333 14,374.90 0.7544 

12/10/2010 149.254 0.6331 14,457.80 0.7553 

12/11/2010 149.254 0.6326 14,457.80 0.7558 

12/12/2010 151.78 0.6326 14,580.00 0.7558 

12/13/2010 150.666 0.633 14,509.50 0.754 

12/14/2010 149.9 0.6313 14,453.50 0.7457 

12/15/2010 150.85 0.6372 14,456.50 0.7504 

12/16/2010 151.94 0.6418 14,485.30 0.7562 

12/17/2010 153.836 0.6416 14,539.40 0.7547 

12/18/2010 153.21 0.6435 14,545.00 0.7579 

12/19/2010 153.21 0.6435 14,545.00 0.758 

12/20/2010 152.744 0.6441 14,520.50 0.7605 

12/21/2010 153.525 0.6448 14,598.10 0.7607 

12/22/2010 152.416 0.6475 14,652.10 0.7624 

12/23/2010 149.62 0.649 14,415.30 0.763 

12/24/2010 150.782 0.6475 14,444.50 0.762 

12/25/2010 150.782 0.6476 14,444.50 0.7618 

12/26/2010 153.73 0.6475 14,470.00 0.7618 

12/27/2010 151.523 0.6485 14,556.00 0.7612 

12/28/2010 151.47 0.6478 14,590.80 0.7578 

12/29/2010 151.22 0.6489 14,639.60 0.7609 

12/30/2010 151.774 0.6464 14,801.10 0.7545 

12/31/2010 149.86 0.645 14,741.30 0.7495 

1/1/2011 149.86 0.6404 14,741.30 0.747 

1/2/2011 149.84 0.6405 14,666.00 0.7473 

1/3/2011 149.89 0.6445 14,685.80 0.7503 

1/4/2011 150.13 0.6433 14,705.70 0.7489 

1/5/2011 150.541 0.643 14,713.30 0.7554 

1/6/2011 150.616 0.6451 14,664.70 0.763 

1/7/2011 149.81 0.6459 14,638.80 0.7705 

1/8/2011 149.81 0.643 14,638.80 0.7744 

1/9/2011 150.47 0.6431 14,691.00 0.7746 

1/10/2011 151.978 0.6434 14,654.10 0.7743 

1/11/2011 150.278 0.6421 14,640.20 0.7722 
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1/12/2011 150.077 0.6387 14,606.60 0.768 

1/13/2011 151.34 0.6335 14,634.00 0.7579 

1/14/2011 151.52 0.6309 14,719.20 0.7486 

1/15/2011 153.2 0.63 14,719.20 0.7468 

1/16/2011 153.2 0.6299 14,840.00 0.7467 

1/17/2011 151.15 0.6298 14,731.40 0.7509 

1/18/2011 151.59 0.6267 14,808.90 0.7491 

1/19/2011 150.13 0.6252 14,793.70 0.7432 

1/20/2011 150.53 0.6272 14,874.00 0.7429 

1/21/2011 150.094 0.6274 14,820.20 0.7393 

1/22/2011 149.564 0.6248 14,792.40 0.7341 

1/23/2011 152.25 0.6249 15,100.00 0.7342 

1/24/2011 152.5 0.626 15,052.10 0.7348 

1/25/2011 152.5 0.6292 15,140.80 0.733 

1/26/2011 150.648 0.6313 15,229.40 0.7307 

1/27/2011 149.76 0.628 15,230.00 0.7294 

1/28/2011 149.82 0.6294 15,220.00 0.7304 

1/29/2011 151.1 0.6305 15,349.00 0.7344 

1/30/2011 152.06 0.6306 15,500.00 0.7346 

1/31/2011 151.281 0.6287 15,550.30 0.733 

2/1/2011 150.04 0.6217 15,421.90 0.7274 

2/2/2011 150.2 0.6184 15,581.00 0.7235 

2/3/2011 150.634 0.6177 15,593.50 0.7274 

2/4/2011 150.23 0.6204 15,567.00 0.7345 

2/5/2011 150.725 0.6205 15,605.50 0.736 

2/6/2011 150.74 0.6206 15,607.00 0.7362 

2/7/2011 151.489 0.6203 15,368.50 0.7365 

2/8/2011 150.49 0.6207 15,181.80 0.7339 

2/9/2011 151.535 0.622 15,122.40 0.732 

2/10/2011 150.13 0.6217 15,029.00 0.732 

2/11/2011 150.19 0.6235 14,962.40 0.7376 

2/12/2011 152.4 0.6246 14,962.40 0.7377 

2/13/2011 149.87 0.6246 14,934.00 0.7379 

2/14/2011 150.876 0.6239 14,883.10 0.7408 

2/15/2011 150.23 0.6217 14,887.00 0.7403 

2/16/2011 150.395 0.6207 14,927.90 0.7393 

2/17/2011 150.58 0.6202 14,899.00 0.7364 

2/18/2011 150.52 0.6172 14,786.90 0.7344 

2/19/2011 149.09 0.6151 14,587.00 0.73 

2/20/2011 153.73 0.615 14,910.00 0.7299 

2/21/2011 151.32 0.616 14,867.00 0.7309 

2/22/2011 151.749 0.6185 14,872.00 0.7335 

2/23/2011 150.851 0.6173 14,866.70 0.7292 

2/24/2011 150.86 0.6177 14,927.50 0.726 

2/25/2011 151.446 0.6205 14,921.80 0.725 

2/26/2011 151.446 0.6202 14,921.80 0.7268 

2/27/2011 152.5 0.6203 14,950.00 0.7268 

2/28/2011 151.1 0.6184 14,957.50 0.7254 

3/1/2011 151.3 0.6143 14,983.60 0.7239 

3/2/2011 152.047 0.6143 15,014.20 0.7243 
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3/3/2011 152.933 0.6135 15,029.20 0.7201 

3/4/2011 152.11 0.6146 14,944.50 0.7159 

3/5/2011 154.2 0.6146 14,825.00 0.715 

3/6/2011 154.2 0.6145 15,175.00 0.7146 

3/7/2011 154.25 0.6151 15,200.00 0.7148 

3/8/2011 152.924 0.618 15,113.70 0.7174 

3/9/2011 152.638 0.618 15,122.30 0.7195 

 

 

Appendix E 
Simulation of data from the SV model 

 

Simulation 1 

 

function [y,x]=sim_model1(phi,Q,alpha,q1,R0,R1,p,n) 
% sim_modle1 : give stationary random sample from the sv model(2): normal 

mixtures 
% y(t)=alpha+x(t)+v(t) 
% x(t)=phi*x(t-1)+w(t) 
% w(t) Gaussian (0,Q) 
% v(t) mixtures of two normals N(mu1,R1),N(mu0,R0) mixing prob=p 
w=randn(1,n+10000)*sqrt(Q); 
Ind=(rand(1,n+10000)<p); 
nor1=randn(1,n+10000); 
v1=Ind.*(nor1*sqrt(R1)+mu1)+(1-Ind).*(nor1*sqrt(R0)); 
x0=randn(1); 
x(1)=phi*x0+w(1); 
for t=2:n+10000 
x(t)=phi*x(t-1)+w(t); 
end 
y=alpha+x+v1; 
y=y(10001:n+10000); 
x=x(10001:n+10000); 
t=1:n; 
figure(3),plot(t,x,t,y) 
legend('x_1','y_1') 
figure(4),hist(y) 

 

  
Simulation 2 

 

function [y,x]=sim_model2(phi,Q,alpha,n) 
% randsp : give random sample from the sv model 
% y(t)=alpha+a(t)*x(t)+v(t) 
% x(t)=phi*x(t-1)+w(t) 
% w(t) Gaussian (0,Q) 
% n=1000; number of observation 

% v(t) student-t distribution 
 

w=randn(1,n)*sqrt(Q); 
v1= abs(trnd(3,1,n));  
x0=randn(1); 
x(1)=phi*x0+ w(1); 
for t=2:n 
    x(t)=phi*x(t-1)+w(t); 
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end 
y=alpha+x+v1; 

 
y=y(1:n); 
x=x(1:n); 

  
nn=1:n; 
figure(1),plot(nn,x,nn,y) 

  
legend('x_1','y_1') 
figure(2),hist(y) 

 
Simulation 3 

  
function [y,x]=sim_model3(phi,Q,alpha,n,v) 
% randsp : give random sample from the sv model 
% y(t)=alpha+a(t)*x(t)+v(t) 
% x(t)=phi*x(t-1)+w(t) 
% w(t) Gaussian (0,Q) 
% n=1000; number of observation 

% v(t) generalized error distribution 

 
w=randn(1,n+10000)*sqrt(Q); 
v1=grnd(v,1,n+10000); 
x0=randn(1); 
x(1)=phi*x0+w(1); 
for t=2:n+10000 
    x(t)=phi*x(t-1)+w(t); 
end 
y=alpha+x+v1; 
y=y(10001:n+10000); 
x=x(10001:n+10000); 
nn=1:n; 
figure(1),plot(nn,x,nn,y) 

  
legend('x_1','y_1') 
figure(2),hist(y) 

 

 
 

Parameter Estimation for on technique based on the normal mixture and Student-t on data 

generated from the normal mixture model 
clc 
clear 
n=1000; 

sim_model(0.9500, 1.0729,-0.6794, -3.6794, 4.000, 4.000,  0.5000, n); 
 
Iparm=Iparmnorm(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
Npar=1000; 

  
tt=1; 
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[Eparm,Vparm,Vparmt,RelLike,Tcal,Niter]=mainnorm(y,a,Iparm,Tol,Miter,Npar,n,t

t) 

  

disp('USING TECHNIQUE BASED ON THE NORMAL MIXTURE ON NORMAL SV MODEL') 

  
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  q_0(i) q_1(i) R0(i) R1(i) pi(i) Relative 

Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 

  

  
figure(1),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 

 
clc 
clear 
n=1000; 

sim_model1(0.9500, 1.0729, -2.1496,  n); 
  
Iparm=Iparmnorm(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
Npar=1000; 

  
tt=1; 
[Eparm,Vparm,Vparmt,RelLike,Tcal,Niter]=mainnorm(y,a,Iparm,Tol,Miter,Npar,n,t

t) 

disp('USING TECHNIQUE BASED ON THE NORMAL MIXTURE  ON STUDENT-T  MODEL') 

  
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
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IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  q_0(i) q_1(i) R0(i) R1(i) pi(i) Relative 

Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 

  

  
figure(2),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 
clc 
clear 
n=1000; 

sim_model2(0.8214, 1.3359,-2.7823, -5.7823, 4.000,4.000, 0.5000, n,v); 
 
Iparm=Iparm_t(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
Npar=1000; 

  
tt=1; 
[Eparm,Vparm,RelLike,Tcal,Niter]=mainchis(y,a,Iparm,Tol,Miter,Npar,n,tt) 

disp(' USING TECHNIQUE BASED   ON STUDENT-T  MODEL ON NORMAL SV MODEL') 
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 
figure(3),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 
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clc 
clear 
n=1000; v=12; 

sim_model1(0.8214, 1.3359, -2.2823,n,v); 
  
Iparm=Iparm_t(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
Npar=1000; 
tt=1; 
[Eparm,Vparm,RelLike,Tcal,Niter]=mainchis(y,a,Iparm,Tol,Miter,Npar,n,tt) 
diary Result_Alg_A_A.txt 

disp(' USING TECHNIQUE BASED   ON  STUDENT-T  MODEL ON STUDENT-T SV MODEL ') 
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 
figure(4),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 

 

Parameter estimation on technique based on the normal mixture SV and GED on data generated 

from the normal mixture model 
clc 
clear 
n=1000; 

sim_model2(0.8699, 3.6899,-4.8897, -7.8897, 4.000,4.000, 0.5000, n); 
  

  
Iparm=Iparmnorm(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
Npar=1000; 

  
tt=1; 
[Eparm,Vparm,Vparmt,RelLike,Tcal,Niter]=mainnorm(y,a,Iparm,Tol,Miter,Npar,n,t

t) 
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disp(' USING TECHNIQUE BASED   ON  NORMAL MIXTURE ON GED SV MODEL ') 

  
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative 

Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 

  

  
figure(5),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 

 
clc 
clear 
n=1000; v=12; 

[y_C, x_C] = sim_model3(0.8699, 3.6899, -4.4365, n,v); 
  
Iparm=Iparm_g(y); 
a=~isnan(y); 
Tol=0.1; 
Miter=100; 
Npar=500; 
tt=1; 
[Eparm,Vparm,RelLike,Tcal,Niter]=maintdist(y,a,Iparm,Tol,Miter,Npar,n,tt,v) 
diary Result_Alg_C_tdist.txt 

disp(' USING TECHNIQUE BASED   ON  GED ON NORMAL MIXTURE SV MODEL ') 
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 
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figure(6),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 

 
clc 
clear 
n=1000; v=12; 

[y_A, x_A] = sim_model3(0.9500, 1.3288, 0.6309, n,v); 
  
Iparm=Iparm_g(y_A); 
a=~isnan(y_A); 
Tol=0.1; 
Miter=100; 
Npar=500; 
tt=1; 
[Eparm,Vparm,RelLike,Tcal,Niter]=maintdist(y_A,a,Iparm,Tol,Miter,Npar,n,tt,v) 
diary Result_Alg_C_tdist.txt 

disp(' USING TECHNIQUE BASED   ON  GED ON GED SV MODEL ') 
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 
figure(7),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 

 

Parameter estimation for real life financial data 
 
clc 
clear all 

  
yn=xlsread('exchangeratedata.xls','NGN_US','H5:H183'); 

  
y=yn'; 
n=length(y); 
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Iparm=Iparmnorm(y); 
a=~isnan(y); 
Tol=0.1; 
Miter=100; 

 
tt=1; 
[Eparm,Vparm,Vparmt,RelLike,Tcal,Niter]=mainnorm(y,a,Iparm,Tol,Miter,Npar,n,t

t) 

  
disp('USING NORMAL MIXTURE') 

  
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  m_0(i) m_1(i) R0(i) R1(i) pi(i) Relative 

Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 

 

 

 

 

clc 
clear all 
%yn=xlsread('Bankdata.xlsx'); 
yn=xlsread('exchangeratedata.xls','NGN_US','H5:H183'); 

  
y=yn'; 
n=length(y); 

  

 
Iparm=Iparm_c(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
tt=1; 
[Eparm,Vparm,RelLike,Tcal,Niter]=mainchis(y,a,Iparm,Tol,Miter,Npar,n,tt) 
disp('USING STUDENT-T') 
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood') 
disp([IniP]) 
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disp([Results]) 
diary off 
figure(8),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 

 
clc 
clear all 
%yn=xlsread('Bankdata.xlsx'); 
yn=xlsread('exchangeratedata.xls','NGN_US','I5:I183'); 

  
y=yn'; 
n=length(y); 

  

 
Iparm=Iparm_c(y); 
a=~isnan(y); 
Tol=0.001; 
Miter=100; 
Npar=1000; 
tt=1; 
[Eparm,Vparm,RelLike,Tcal,Niter]=mainchis(y,a,Iparm,Tol,Miter,Npar,n,tt) 
disp('USING GENERALIZED ERROR DISTRIBUTION') 
disp('Variance Estimate') 
disp(Vparm) 
disp(['No of Iteration = ',num2str(Niter)]) 
disp(['Total time = ',num2str(Tcal)]); 
stdev=std(Eparm); 
disp(['Standard deviation of final estimate = ',num2str(stdev)]) 
nn1=1:Niter; 
Results=[nn1' Eparm RelLike]; 
IniP=[0 Iparm]; 
disp('iteration(i)  phi(i) Q(i)  alpha(i)   Relative Likelihood') 
disp([IniP]) 
disp([Results]) 
diary off 
figure(9),subplot(4,1,1),plot(1:Niter,Eparm(:,1)),ylabel('\phi'),xlabel('iter

ation(i)') 
subplot(4,1,2),plot(1:Niter,Eparm(:,2)),ylabel('Q'),xlabel('iteration(i)') 
subplot(4,1,3),plot(1:Niter,Eparm(:,3)),ylabel('\alpha'),xlabel('iteration(i)

') 
subplot(4,1,4),plot(1:Niter,RelLike),ylabel('Relative 

Likelihood'),xlabel('iteration(i)') 
 

 

Summary statistics for real life financial data 
clc 
clear 
diary ResultsNew.txt 
X=xlsread('exchangeratenew1.xls','exchangeratenew','B5:M734'); 
NN=X(:,2); 
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BP=X(:,5); 
GHC=X(:,8); 
EUR=X(:,11); 

  
disp(' Results for Nigeria Naira - USD') 
[Coeff,Error,LLF,Innov,Sigmas,Summary]=st_svfit(NN) 
disp(' ') 
disp(' Results for British Pound - USD ') 
[Coeff2,Error2,LLF2,Innov2,Sigmas2,Summary2]=st_svfit(BP) 

  
disp(' ') 
disp(' Results for Ghana Cedi - USD ') 
[Coeff3,Error3,LLF3,Innov3,Sigmas3,Summary3]=st_tfit(GHC) 

  
disp(' ') 
disp(' Results for EURO - USD ') 
[Coeff4,Error4,LLF4,Innov4,Sigmas4,Summary4]=st_tfit(EUR) 

  

  
disp('AIC') 
a=aic([LLF LLF2 LLF3 LLF4],[4 4 4 4]) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%# 
st_tfit (NN) 
st_tfit (BP) 
st_tfit (GHC) 
st_tfit (EUR) 

  

  
%%%%%%%%%%%%%%%%%%%%%%%FACTOR ANALYSIS%%%%%%%%%%%%%% 
disp('FACTOR ANALYSIS') 
XX=[NN BP GHC EUR]; 
disp('COVARIANCE') 
disp(cov(XX)) 
[Lambda,Psi,T,stats,F] = factoran(XX,1,'scores','regression') 

  
diary off 

 

Scenarios for the BOT. 
clc 
clear 
% State = (x y xdot ydot). We only 
% observe (x y). 
ss = 4; % state size 
os = 2; % observation size 

  
F = [1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1]; 
H = [1 0 0 0; 0 1 0 0];  
Q=[0.0667 0.1 0 0;0.1 0.2 0 0;0 0 0.0667 0.1;0 0 0.2 0.8]; 

  
R = 1*eye(os);  
initx = [5 5 1 0]'; 
initV = 10*eye(ss); 
seed = 9; 
rand('state', seed);  
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randn('state', seed); 
T =150;  
%[x,y] = sample_lds(F, H, Q, R, initx, T); 
[x,y] = sample_lds(F, H, Q, R, initx, T); 

  
[xfilt, Vfilt, VVfilt, loglik] = pfilter(y, F, H, Q, R, initx, initV); 
[xsmooth, Vsmooth] = kalman_smoother(y, F, H, Q, R, initx, initV); 
dfilt = x([1 2],:) - xfilt([1 2],:); 
mse_filt = sqrt(sum(sum(dfilt.^2))) 
dsmooth = x([1 2],:) - xsmooth([1 2],:); 
mse_smooth = sqrt(sum(sum(dsmooth.^2))) 
subplot(2,1,1) 
hold on  
plot(x(1,:), x(2,:), 'ks-'); 
plot(y(1,:), y(2,:), 'g*'); 
plot(xfilt(1,:), xfilt(2,:), 'rx:'); 
% for t=1:T 
%     plotstudent_t2d(xfilt(1:2,t), Vfilt(1:2, 1:2, t)); 
% end 
hold off 
legend('true', 'observed', 'SMCEM estimate', 0) 
xlabel('X') 
ylabel('Y') 

  
subplot(2,1,2) 
hold on 
%plot(x(1,:), x(2,:)); 
%plot(y(1,:), y(2,:)); 
plot(xsmooth(1,:), xsmooth(2,:), 'rx:'); 

  
% for t=1:T 
%     plotstudent-t2d(xsmooth(1:2,t),Vsmooth(1:2, 1:2, t)); 
% end 
hold off 
legend('SMCEM', 0) 
xlabel('Time') 
ylabel('MSE(t)') 

 

 

 

 

 

 

 

 

 

 

  


