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ABSTRACT 

Offshore pipeline and flow line systems define a variety of subsea architectures associated with 

Floating Production Storage and Offloading units (FPSOs) or Floating Storage and Offloading 

units (FSOs) that are usually employed for oil and gas production in deep and ultra deep waters. 

The design of such transmission facilities, must satisfactorily account for various phenomena such 

as hydrodynamic wave loading, fluid transport velocity, operating pressure and temperature of 

the internal fluid as well as limitations imposed by the seabed subsoil layer geotechnical 

properties. In fact the transverse and longitudinal dynamic responses of these pipeline and flow 

line systems are strongly modulated by these effects. Subsea pipelines are on the high demand to 

function at high temperatures and pressures. The natural behavior of a pipeline is to relieve the 

attendant high axial stress in the pipe-wall by buckling. Such uncontrolled buckling can have 

serious implication on the integrity of a pipeline. Hence, the usual practice to date, in the industry 

is to restrain pipelines by trenching and burying, or relieving the stress with inline expansion 

spools. In this work, the effect of transverse and longitudinal vibrations on the dynamic stresses 

induced by the fluid flow was studied with special reference to onset of buckling or bursting of 

such pipes. For this purpose, an offshore pipeline was idealized as a fluid conveying elastic beam 

on an elastic foundation and the corresponding set of equations governing the transverse and 

longitudinal motion of the pipe were formulated. Particularly, by employing integral transforms, 

an analytic solution for the induced stresses was computed and simulated for design applications 

while comparison with corresponding formulae currently in use in the field was also carried out. 

Furthermore, the earlier work was extended to capture the effect of deliberate or natural sediment 

covering of pipe that occurs over a long period of time, by examining the dynamic stress 

propagation through a partially or fully buried offshore pipeline. For this problem a boundary 

valued partial differential equation for the fluid- structure- soil interaction mechanics was 

formulated. In particular, by employing operational methods, the burst and buckling pressure 

profiles as modulated by the seabed sediment layer history were reported for design analysis and 

applications. Lastly this research reported an analytic solution for the induced stresses in polar 

coordinates coupled with von Mises yield criterion in conjunction with the corresponding set of 

equations governing the transverse and longitudinal motions of an offshore pipeline on an elastic 

foundation. Interesting results were simulated for practical analysis and applications. 
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NOTATION 

 

A  pipe cross sectional area after deformation 

oA  original cross sectional area of pipe  

pA  surface area of pipe 

A  change in the surface area of the pipe 

1C  damping force per unit velocity in the transverse direction  

2C   damping force per unit velocity in the axial direction 

DC  hydrodynamic drag coefficient  

E  Young modulus of elasticity 

)(1 tF   external force in the transverse direction 

)(2 tF   external force in the longitudinal direction 

g  acceleration due to gravity 

h  depth of pipe below sea level 

I  moment of inertia 

bk  stiffness of the sea bed  

L  length of pipe 

m       sum of the masses of pipe and fluid 
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fm     mass of flowing fluid in side the pipe 

wm  mass of sea water displaced by pipe 

M  sum of masses of pipe, fluid in pipe and external water displaced by pipe 

pA   pressurization effect 

hP   hydrodynamic effect of the ocean 

op  pressure at entry 

oT  tension in pipe 

t  time 

u      longitudinal displacement 

U  velocity of fluid flowing inside pipe 

U   differential of velocity with respect to x   

U  differential of fluid velocity with respect to time 

u~  longitudinal response in Laplace plane 

Fu  longitudinal response in Fourier plane 

Fu~  longitudinal response in Fourier-Laplace plane 

w  transverse displacement 

w~  transverse response in Laplace plane 

Fw  transverse response in Fourier plane 

Fw~  transverse response in Fourier-Laplace plane 

x      axial displacement coordinate 

z  transverse displacement coordinate 
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ir  internal radius of pipe 

 
or  external radius of pipe 

              rB = the body force in the r direction 

              ra = the acceleration in the r direction 

Greek letters  

  coefficient of thermal expansivity 

  coefficient of area deformation 

  temperature change from inlet to outlet  

p  pressure change from inlet to outlet 

  temperature of the flowing fluid  

  temperature gradient 

  coefficient of sliding friction 

2  Laplacian operator 

  gradient operator 

w  density of water 

  velocity potential 

            
 y

    
  transverse bending stress 

    
         x

    
  axial bending stress 

             r         radial bending stress 

                      Hoop stress    

           r ,  r      radial shear stresses 



 

17 
 

          1xz ,     shear stress on the upper layer 

         2xz ,    shear stress on the lower layer 

        s     sediment layer 

CHAPTER 1 

INTRODUCTION 

 

 

   1.1     Brief Introduction 

 

Producing oil and gas from offshore and deepwater by means of pipeline has gained a 

tremendous   momentum in the energy industry in the past few decades. Presently, the pipeline 

technology has been successfully used in areas with water depths greater than 1500 m. 

 

The first pipeline was built in the United States in 1859 to transport crude oil, Wolbert (1952). 

For the one-and a half century of pipeline operating practice, it was reported by Boyun et al 

(2005) that the petroleum industry has proven that pipelines are by far the most economical 

means of large scale overland transportation for crude oil, natural gas and their products, clearly 

superior to rail and truck transportation over competing routes, given large quantities to be 

moved on a regular basis.  

 

Transporting petroleum fluids with pipelines is a continuous and reliable operation. Thus 

pipelines have demonstrated an ability to adapt to a wide variety of environments including 

remote areas and hostile environments. 

 

Man‟s inexorable demand for petroleum products intensified the search for oil in the offshore 

regions of the world as early as 1897, when the offshore oil exploration and production started 

from the Summerland, California, Leffler et al (2003). The first offshore pipeline was built in the 

Summerland, just southeast of Santa Barbara. Since then, the offshore pipeline has become the 

unique means of efficiently transporting offshore fluids, i.e., oil, gas and water.  

Offshore pipelines can be classified as follows: 

 Flowlines transporting oil and gas from satellite subsea wells to subsea manifolds; 

 Flowlines oil and gas from subsea, manifolds to production facility platforms; 
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 Infield flowlines transporting oil and gas between production facility platforms; 

 Export pipelines transporting oil and gas from production facility platforms to shore; and 

 Flowlines transporting water or chemicals from production facility platforms, through 

subsea injection manifolds, to injection wellheads. 

   

 
 
Figure 1.0 Offshore Field Development Components 
Source :Jaeyoung Lee, P.E. “ Introduction to Offshore pipelines and Risers”; Houston, Texas; (2008) p10 

 

 

1.2     Motivation for the present work 

 

Pipelines affect daily lives in most of the world. As such, modern people‟s lives are dependent 

on an environment in which energy plays a vital significance. Oil and gas are major factors in the 

supply of energy, thus pipelines are the primary modes of their transportation. Also, it is 

pertinent to know that an extensive pipeline network goes hand-in-hand with a high standard of 

living and technological progress. 

Furthermore, oil and gas are important to generation of electrical power worldwide. The 

electricity/oil and gas directly are employed domestically for heating the houses, cooking meals 
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and for living comfortably. Petrochemical processes equally use oil and gas to make useful 

products. 

 

In order to meet the oil and gas demand for the aforementioned, pipelines are employed to 

transport the supply from their source. These facilities are normally buried and function without 

creating nuisance to the human comfort. They transport large volumes of natural gas, crude oil 

and other products in continuous streams. It is therefore necessary to safeguard the pipelines and 

ensure minimal damage to the offshore facilities at all time.    

 

1.3    Background to the Study  

 

The problem of meeting energy demands globally in the present dispensation has necessitated 

challenges of looking inward for new fossil deposits hence, the need for new technology in the 

quest for oil and gas prospecting. In respect of fossil deposits, this has intensified interests and 

activities of oil and gas exploration companies for offshore hydrocarbon deposits even though, 

such offshore prospecting in deep waters, has its challenges as there are additional problems to 

contend with especially the hazards attributed to environmental forces such as, currents, winds, 

waves, etc., to which the engineering structures are now exposed, Olunloyo et al (2007). 

 

In the last few years, the price of crude oil has been on the increase, as a result of high demand 

for energy consumption worldwide, though of recent, the price has being fluctuating due to 

financial crisis in the economy of the super nation (USA) that controls the international market 

forces. In Nigeria, prospecting and oil exploration in the Niger-Delta region has become a big 

challenge as on-shore exploration in this area is fraught with security problems including 

sabotage, vandalism and social unrest. The losses presently to the country are very tremendous. 

The Niger-Delta region of Nigeria is one area where the discovery of offshore hydrocarbon 

deposits has intensified the awareness and activities of oil prospecting companies in areas such 

as the Bonga oil field etc. Besides, the risk of deep sea oil spillage is real especially, in the 

process of its conveyance from the seabed to the Production Storage facilities; such 

consideration is particularly important in the regions that have been geologically active. 

 

Furthermore, exploited hydrocarbon resources from under the seabed are transported via 

transmission pipelines from the oil fields production storage facilities, the hydrodynamic forces 
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to which these pipelines are subjected and their overall effects on the longevity of these pipelines 

is an area that is yet to be fully explored. Hence, the lifespan of such pipelines depends on 

various factors namely, the characteristics of the pipeline materials, water depth, ground motion 

and seabed integrity in relation to geological and geo-mechanical properties etc, Osheku (2005).  

 

Suffice to mention, oil spills are detrimental environmentally to both terrestrial and aquatic lives 

which happen via pipeline rupture. Notwithstanding, such transmission pipelines vibrate 

transversely and longitudinally due to the conveyance of fluid through the pipe, thus subjecting 

such piping to stress distributions. 

 

1.4     Statement of Problem 

 

There are millions of kilometres of transmission pipelines around the world. In Nigeria alone, the 

oil and gas transmission system is over several kilometres in length. These pipes conveying 

fluids are generally under the influence of both natural vibration and pipe deformation. Presently, 

the functional oil and gas pipelines are increasingly being subjected to high temperatures and 

pressures which occasionally lead to: 

 Euler buckling (upheaval or lateral) when under constraint; 

 Pipe walking i.e. pipe elongation in the axial direction, if unconstrained and  

 Pipe burst due to material failure under constraint. 

Most significantly, are the phenomena of pipe bursting and buckling that continue to receive 

special attention as they affect the integrity and reliability of conveyance networks. 

To fully understand the study of the fluid conveying pipelines both in the offshore and onshore 

environments, the following factors are taken into cognizance viz: 

 The flow velocity of oil/gas within pipeline 

 Temperature and temperature gradient 

 Oscillatory strain due to pipe vibration  

 Geology characteristics of the seabed and 

 Size of the pipeline. 

 

1.5     Aim and Objective of Study 

 

The aim is to model and investigate the problem of dynamic stress propagation of a subsea 

pipeline during the transportation of crude oil from one location to the other in exploration. The 
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issue of pipeline failure is a very significant interest with regard to the safety of oil facility, 

especially under the depth of sea. Thus, this research work attempts to develop a comprehensive 

and pro-active model to quantitatively and qualitatively address the problems of pipe bursting 

and buckling in an offshore environment. Hence, this research work presents a model of dynamic 

stress propagation of subsea pipeline which will be of practicable design analysis to take care of 

the pipeline integrity and ensuring its lifespan. This model differs from the existing ones by the 

incorporation of dynamic vibration in this analysis. 

 

The objectives of this research work are: 

 To establish the generalised governing differential equations for the transverse and 

longitudinal vibrations of an offshore pipeline by using the modified version of Gorman et 

al approach;  

 To formulate the dynamic stresses concerning the bursting and buckling of fluid 

conveyance pipeline in offshore environment based on some criteria ; 

 To solve the equations obtained analytically by employing double-integral transforms 

approach and 

 To do computer simulation of the model analysis with some parameters and validate it by 

comparing this model with existing conservative model in oil and gas industries.  

 

1.6     Scope and Limitation of Study 

The study is limited to: 

 pipelines lying horizontally on seabed 

 Newtonian fluids as applicable to crude oil and gas 

 Traditional steel pipes without defects 

 

 

1.7     Significance of the Study 

 

Pipeline failure (either onshore or offshore) is always detrimental to human lives, properties and 

facilities. The attendant losses are often colossal. The significance of this study is based on the 

interest in the oil/gas exploration, where the demand for the energy accruable is on the rise 

globally. Because of the high pressure and temperature involved in the pumping of crude oil 

through the pipeline, there is need to fathom a way of safeguarding the subsea facilities from 

severe damage or failure which can lead to environmental hazard, such as the recent Gulf of 
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Mexico pipeline burst and its aftermath. Thus, transportation of crude from the seabed has to be 

accomplished in a safer and crisis free manner. Only appropriate design analysis can bring this 

situation.  

 

 

1.8     Overview of Thesis   

 

This research work presents the problem of fluid-pipe-soil dynamic interaction concerning 

conveyance of oil and gas through subsea pipelines. The focus here is to formulate the dynamic 

stresses in conjunction with the vibration of the pipe to enable us eventually obtain practical 

design analysis of onset of pipe bursting and buckling pressures. These are achieved via the 

following overviews:  

Chapter 1 presents brief introduction of the problem, the motivation and establishment of our 

study. Also, it highlights the statement and objectives of the research matters as well as the 

significance of the study. 

In chapter 2, detailed literature studies of the existing past and recent works on pipe vibration, 

pipe bursting and buckling phenomena are enumerated. 

Next is chapter 3, where the analysis of dynamic stress propagation of an offshore pipeline 

sitting on a seabed is reported. 

Similarly, chapter 4 considered the phenomena in chapter 3, but here, the pipe is considered 

partially or fully buried. 

Furthermore, in chapter 5, another model for the pipe bursting and buckling pressures using 

polar coordinates method in conjunction with von Misses yield criterion is presented. 

The last but not the least is chapter 6, where summary of findings, contributions and future 

works are discussed. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1     Historical Development of Pipe Dynamics   

 

Whereas the installation of pipelines for the transportation of liquids over land may be traced 

back to antiquity, the establishment of marine pipelines is a more recent development of the 

latter part of the twentieth century. The fuel line installed across the English channel in 1944 to 

supply the allied troops during the Normandy landings is often cited as the first example. In fact, 

before the war small diameter oil export lines had already been installed in shallow waters off 

the US Gulf coast, and possibly also in Caddo Lake (Louisiana), off California and in the 

Caspian Sea, where offshore hydrocarbon exploration began. 

 

The first oil-producing well „out of sight of land‟ (in the Mexican Gulf) was drilled in 1947, the 

first pipelay barge commissioned in 1952, and the first pipeline laid on the seabed in 1954. 

Separate tallying of offshore pipelines did not start until 1968, but during following three 

decades it is estimated that close to 90000 km of marine pipelines were installed for the 

transportation of hydrocarbons, with approximately 5000 km being added each year. The 

majority of the pipeline systems are located in the heavily developed regions of the Arabian 

Gulf, the Gulf of Mexico and the North Sea, Andersen et al. (2005). 

 

2.2     Studies on Pipe Dynamic Stability  

 

An extensive review of the dynamics and stability of pipes transporting fluid, where the flow 

velocity is either entirely constant, or with a small harmonic component superposed is given 

here. Concerning constant flow velocity, Paidoussis and Issid (1973) observed that, the dynamics 

of the system in a general form showed that conservative systems are subjected not only to 

buckling (divergence) at sufficiently highly flow velocities, but also flutter (oscillatory 

instabilities) at high transport velocity. The co-workers stated further that, for harmonically 

varying flow velocity, the extent of the instability regions increases with fluid velocity for 

clamped-clamped and pinned-pinned pipes, while a more complex behaviour occurs for 

cantilevered pipes. 

 

Experimentally, Aitken (1876) worked extensively on travelling chains and elastic cords, 

showing the balance between motion-induced tensile and centrifugal forces, as pertinent to the 
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study of dynamics of flexible pipes conveying fluid. Marcel Brillouin, in 1885, was first to 

recognize a self-excited oscillation of spontaneous motions imparted to the free end of a rubber 

pipe by a sufficiently high flow rate, but his work on the subject is hitherto unpublished.  

Meanwhile, Bourrieres (1939) who was one of Brillouin‟s students made the first attempt to 

investigate serious study on the dynamics of flexible pipes conveying fluid. He reported in his 

remarkable paper published in that year, the oscillatory instability of cantilevered pipes 

conveying fliud, both theoretically and experimentally. Though he derived the correct equation 

of motion, he failed to obtain analytically the critical flow velocity for the onset of motion; he 

however, achieved most of the vital features of the phenomenon. Sadly, this important paper was 

evidently “lost” in the sense of being unknown to those who have since undertaken research in 

this area. 

 

Interestingly, the subject was reactivated by Ashley and Haviland (1950) in connection with the 

study of vibration of the Trans-Arabian pipeline. Later, Feodos‟ev (1951) derived the full 

equation of motion for a pipe conveying fluid and analysed the case of a pipe with simply-

supported ends. Independently, Housener (1952) studied the same problem by using a different 

method. Both workers found that for sufficiently high flow velocities, the pipe may buckle if it is 

loaded axially. Niordson (1953) subsequently, obtained a more general and elegant investigation 

which led to the same equation of motion and concluded in the same way regarding stability of 

pipes with simply-supported ends. 

 

Furthermore, Long (1955) was the first after Bourrieres (1939), to consider cantilevered pipes 

transporting fluid with another set of boundary conditions. His analysis dealt with relatively 

small flow velocities, appreciably below the threshold of oscillatory instability, the existence of 

which he seemed to be unaware. Notwithstanding, he observed and confirmed experimentally 

that, contrarily, to those of simply-supported pipes, forced vibrations of cantilevered pipes are 

damped by internal flow in the range of flow velocities investigated.   

 

An analytical method in which the character of the eigenvalues of the problem is obtained from 

the structure of the differential equation of motion without finding specific solutions was 

presented by Handelman (1955). Besides, Heinrich (1956), Bolotin (1956) as well as Hu and 

Tsoon (1957) investigated various aspects of the problem. Later, Movchan (1965) recovered the 



 

25 
 

condition of stability for a simply-supported pipe conveying fluid by means of Liapunov‟s direct 

method. 

Prior to 1963, apart from Bourrieres, the only form of instability known was buckling in all the 

above studies. In 1963, Gregory and Paidoussis (1966a, b) showed theoretically and 

experimentally that, at sufficiently high flow velocities, cantilevered pipes are subject to 

oscillatory instabilities (flutter) rather than buckling (divergence). However, Benjamin (1961a, b) 

observed fully the existence of oscillatory instabilities in his two outstanding papers. He was the 

first worker to discover that the dynamical problem is independent of fluid friction, and forecast 

analytically the existence of oscillatory instability of cantilevered pipes conveying fluid. These 

effects were confirmed by Gregory and Paϊdoussis‟ work. 

 

Benjamin (1961a) further found that buckling instability is possible in the case of a vertical 

cantilevered system, where gravity is functional, if the fluid is sufficiently heavy; on the other 

hand, Paidoussis (1970) discovered that, vertical continuously flexible pipes are never subject to 

buckling. However, Paidoussis and Deksnis (1970) gave a clarification of this controversy. 

Further study on the stability of tubular cantilevers conveying fluid was reported by Nemat-

Nasser et al. (1966) where they neglected the gravity forces. Their emphasis was on the effect on 

stability of velocity-dependent forces, such as dissipative and Coriolis forces; they showed that 

such forces may destabilize the system, which corroborated Gregory and Paidoussis (1966a, b) 

earlier discovery. Subsequent publications by Herrmann (1967), Herrmann and Nemat-Nasser 

(1967) emphasised the connection between the problem of instability of a cantilever conveying 

fluid and the more encompassing problem of instability of a cantilever subjected to a “follower”- 

type force at the free end. Wiley and Furkert (1972) studied the problem of a beam subjected to a 

follower force acting within the span, where the force is caused by a fluid jet attached to the 

beam and fed by an infinitely flexible supply line. They concluded that either buckling or 

oscillatory instabilities, or both, may exist, based on the boundary conditions. 

 

A correction to the equation of motion as earlier formulated in some of the investigations 

aforementioned was given by Stein and Torbiner (1970) with regards to the infinitely long pipes 

conveying fluid. The correction was first noticed by Heinrich (1956) and by Hu and Tsoon 

(1957) separately, and had been observed in a slightly different nature by Haringx (1952) much 

earlier. This correction emanates from the effect of internal pressure and may become significant 
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for sufficiently high pressures. The experimental and theoretical aspect of the problem was 

considered by Naguleswaran and Williams (1968). Interestingly, pipes with both ends supported 

may buckle even at very small fluid velocities due to internal pressure. 

 

Another remarkable work on non-linear analysis for a pipe with simply-supported ends 

conveying fluid was done by Thurman and Mote (1969). Here they used perturbation technique 

to determine natural frequencies of the system and found that, the significance of non-linear 

terms increases with flow velocity, so that the range of applicability of linear theory becomes 

more restricted as the flow velocity increases.  Chen (1971) in a related study observed that 

buckling and oscillatory instabilities are possible in the vibration of a pipe transporting fluid with 

the upstream end clamped and the downstream end constrained by a linear spring. The boundary 

conditions here are intermediate between clamped-free and clamped-pinned. 

 

In Paidoussis and Denise (1971, 1972) work, the dynamics of cantilevered pipes and pipes with 

clamped ends were investigated. They discovered that thin pipes with clamped ends are subject 

to buckling as well as coupled-mode flutter which was confirmed experimentally by the duo. 

Later, Weaver and Unny (1973) achieved similar theoretical results by using a different 

analytical technique for simply-supported shells. 

 

In all the investigations mentioned above, the fluid velocity was considered uniform. A striking 

study was done by Chen (1971), where he examined the stability of simply-supported pipes 

conveying fluid with a flow velocity U that is harmonically changing at the same time 

superposed on the steady velocity, Uo. He expressed U as U = Uo(1+μcosωt). He concluded that, 

parametric instabilities are possible in such cases and found the boundaries of stability-instability 

regions. Also, he confirmed the combination of resonances. 

  

2.3     Non-Linear Vibrations of Pipe Conveying Fluid 

  

Extensive reviews of flow-induced vibrations are highlighted here. Leissa (1973) reported on 

large-amplitude vibrations of circular cylindrical shells. Other workers in this area are Amabili et 

al. (1998), Paidoussis (2003) as well as Kubenko and Koval‟chuk (1998). In their various 

reviews, they all agreed that instabilities may be achieved by increasing the flow velocity in the 

axial direction of pipe conveying fluid. 
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Evensen (2000) in his publication, originally written in 1968, studied the influence of pressure 

and axial loading on large-amplitude vibrations of circular cylindrical shells. He assumed mode 

shapes which were derived in agreement with the experimental observation. This method was 

first introduced to study buckling of circular cylindrical shell. Also, Amabili et al. (1999, 2000) 

showed that at least the first and third axisymmetric modes (axisymmetric modes with an even 

number of longitudinal half-waves are insignificant) must be incorporated in the mode expansion 

(for modes with a single longitudinal half-wave), as well as using both the driven and companion 

modes, to correctly predict the trend of nonlinearity with sufficiently good accuracy. 

Raouf and Palazotto (1991) adopted an asymptotic method to get the nonlinear equations of 

motion governing the forced dynamic response of a laminated circular cylindrical panel in 

cylindrical bending. The expansion is valid for near-resonant external excitation and in the 

presence of a two-to-one internal resonance. Raouf and Palazotto (1992) further extended the 

work by using the formulations developed earlier (1991) with a single-mode expansion. Their 

results showed that the response of panels simply supported on the straight edges (no 

deformation arises along the longitudinal axis) is of hardening type. Besides, Raouf (1993) and 

Raouf and Palazotto (1994) investigated the nonlinear free vibrations of curved orthotropic 

panels. They combined the Galerkin method with perturbation method in a single-mode analysis 

that was studied. In particular, Raouf (1993) observed that, thin circular cylindrical pipes display 

softening nonlinearity when the ratio between the radius and length (R/L) of the pipe is smaller 

than 1.25 or 1.5, for the orthotropic composite material used, but display a hardening 

nonlinearity for R/L too close to zero. 

 

2.4     Further Review Concerning the Pipelines with Internal Fluid Velocity 

In this context, there are several media transporting fluid internally at high velocity and pressure 

under time-varying being influenced by pump and valve operations. These include: the anchored 

pipelines arrays above ground level, pipeline arrays in a steam generator, oil pipelines, pump 

discharge lines, propellant fluid lines of liquid-filled rockets and human circulatory system as 

pointed out by Lee et al. (2004). In their study, they found out that generally, when a pipeline 

transporting fluid vibrates, the internal fluid interacts with the pipe wall and influences the 

dynamic characteristics of the pipeline system, which may lead to catastrophic structural 

imbalance.  
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Paidoussis and Li (1993) gave extensive review on the modelling and analysis of the flow-

induced vibrations of pipeline systems covering over six decades. It is worthy of mentioning 

that, Ashley and Haviland (1950) were the first workers to consider the internal flow-induced 

transverse vibration of a pipeline. Later, their work was revised by Housner (1952) where he 

included the inertia force concerning coriolis acceleration of internal fluid. Following this 

revision, there have been various modifications to the earlier studies on pipe-dynamic analysis 

which are available in the literature. 

 

Among these are the linear theories of the following researchers viz: Nemat-Nasser et al. (1966), 

Stein and Tobriner (1970), Chen (1971), Hill and Davis (1974), Paidoussis et al. (1986) and 

Lesmez et al. (1990). On the other hand, Semler et al. (1994), Lin and Tsai (1997), Jensen 

(1997), Zhang et al. (1999), Öz (2001), Lee and Chung (2002) did extensive studies on the non-

linear theories of pipe dynamics.  

Impressively, most available pipe-dynamic analyses considered the structural vibration of 

pipeline only without the dynamics of internal fluid in conjunction with the vibration of pipeline. 

To correct this serious anomaly, Lee et al. (1995) formulated a set of coupled pipe-dynamic 

equations for the longitudinal, radial and transverse vibrations of pipeline and also for the 

transients of unsteady internal fluid pressure and velocity. The work of Lee et al. (1995) was 

further extended by Lee and Kim (1999). They generalized the governing differential equations 

by adding the circumferential strain effect due to the internal fluid pressure. Subsequently, 

Gorman et al. (2000) included radial shell vibration and initial axial tension to the work of Lee 

and Kim (1999).  

 

There are equally contributions from Paidoussis and his co-workers (1974, 1976, 1986 and 

1994), where their studies were based on both the Euler-Bernoulli beam theory and the 

Timoshenko beam theory. Others that also employed these theories in their investigations 

included Pramila and Laukkanen (1991), Chu and Lin (1995), Lin and Tsai (1997), Zhang et al. 

(1999) and Lee and Oh (2003). Reddy and Wang (2004) too presented a paper with complete 

derivation of the equations of fluid-conveying pipes with small strains but moderate rotations. In 

their studies, they made use of the Euler-Bernoulli beam theory and the Timoshenko beam 

theory based on energy considerations. They included contributions of fluid velocity to the 
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kinetic energy as well as to the body forces. Their non-linear formulations were in agreement 

with those of Semler et al. (1994). 

 

Furthermore, Ibrahim (2010) in his articles presented a comprehensive overview of mechanics of 

pipes conveying fluid and related problems concerning the fluid-elastic instability under 

conditions of turbulence in nuclear power plants. He articulated many areas involving different 

types of modelling, dynamic analysis and stability regimes of pipes conveying fluid restrained by 

elastic or inelastic barriers subject to the dynamic and stability behaviours of pinned-pinned, 

clamped-clamped and cantilevered pipes transporting fluid. 

 

In particular, Osheku (2005) made useful contributions to the study of a conveyance of fluid in 

pipes laid on or buried under the sea floor. In his investigations, he considered the pipeline as a 

hollow beam vibrating on an elastic foundation by using analytic methods that involved doubled 

integral transforms. He however, solved for the transverse vibration only.  There are avalanche 

of studies from Olunloyo et al. in recent time concerning the problems of offshore pipeline. 

Olunloyo et al. (2007a, 2007b) reported the cases of transverse and longitudinal vibrations of a 

fluid conveying beam and the pipe walking phenomenon as well as the dynamics and stability of 

a fluid conveying vertical beam. The studies were extended to the dynamics and stability of a 

viscoelastic pipe conveying a non-Newtonian fluid by Olunloyo et al. (2009). Besides, Olunloyo 

et al. (2010a, 2010b,) and Osheku et al. (2010) further their investigations concerning the 

Mechanics of gas pipeline vibrations, vibration and stability behaviour of sandwiched 

viscoelastic pipe conveying a non-Newtonian fluid and the mechanics of pipe walking of buried 

pipeline. 

 

2.5     Pipeline Design 

The objective of a subsea pipeline is to transport a medium from one location to another. Many 

different parameters – economic, technical, environmental, etc. - determine whether or not a 

subsea pipeline system will be installed. The justification may not rely solely on assessments of 

cost estimates and transportation requirements. Decisions may also be influenced by technically 

less tangible aspects such as societal expectations of security of supply, requiring sufficient 

redundancy in pipeline networks, or the political objectives of opening up new oil or gas 

provinces for economic or strategic reasons. 
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The bases for design consist of the basic requirements to functionality, as well as a description of 

the environment into which the pipeline will be placed, leading to the selection of pipeline 

dimension and routing. Also , the requirements included in the bases for design are the ; physical 

pipe properties, such as diameter, steel grade options and line-pipe specification details, 

including supplementary requirements to codes and guidelines. Central also are the parameters 

regarding flow assurance and pressure containment, i.e. design temperature and pressure, 

maximum and minimum operating temperatures, maximum operating pressure, and details of 

incidental operation. 

The subsea pipeline system design and installation covers the marine pipeline proper, platform 

risers, tie-in and spool connection parts, hydrostatic testing, possible subsea valve or branch 

assemblies, the corresponding protection works, as well as the activities conducted in association 

with start-up of production. The construction of subsea pipelines took off in the 1970s, and 

literature on the technology started to appear in the next decade, prominent workers in this area 

are, Mouselli (1981), who contributed immensely to the analysis and method of Offshore 

pipeline design; while a few years later, in 1985, de la Mare (1985), published a scientific work 

on Advances in Offshore Oil and Gas pipeline technology.    

 

Yong Bai (2001), gave a comprehensive overview of design methods based upon two decades of 

research and teaching experience on Pipelines and Risers. Also, Palmer and King (2004), 

reported extensively on the Subsea pipeline, but have less emphasis on practical construction 

issues.   

 

2.6     Pipe Buckling & Bursting 

Pipe buckling and bursting in the oil and gas industry are phenomena that generally cannot be 

overlooked. Rather, holistic approach has to be adopted in order to protect the integrity of the 

pipe installations in the deep sea and ultra deep sea. In this regard, analytical and numerical 

modellings of the upheaval buckling response of offshore pipelines have progressed rapidly over 

the last few years, Rafael et al. (2004). This is viewed globally from the classical analysis by 

Hobbs (1974), Hobbs and Liang (1989), to one covering initial imperfections as reported by 

Taylor and Gan (1986), Ju and Kyriakides (1988), to one additionally including large pipe 

displacement and associated cover non-linearity in the work of Pedersen and Jensen (1988). 

Besides, Palmer et al. (1988) used a design method based on the application of the computer 
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program while, a finite-element models were developed to carry out analysis of pipeline 

upheaval buckling by Croll (1997) and Palmer et al. (1990). 

 

 Furthermore, Olunloyo et al. (2008) contributed immensely to the field of pipeline analysis by 

reporting the sets of dynamic stresses in conjunction with the buckling and burst pressures 

phenomena. 

 

In general, earlier researcher in this offshore field, such as Paidoussis and Issid (1974), Semler et al. 

(1994) and Gorman et al. (2000) studied the instability and pipe dynamics of offshore vibrating 

pipelines without investigating the related dynamic stress. Olunloyo et al. (2007a, 2007b)  

equally did excellent works concerning the transverse and longitudinal motions of the offshore 

vibrating pipeline. On the other hand, Osheku (2005) mainly investigated the transverse motion of 

the pipeline. Their studies however, did not account for the dynamic stress and the phenomena of 

pipe buckling and bursting pressures.  

 

Hence, this work will attempt to account for the pipe dynamics, dynamic stresses and the attendant 

pipe bursting and buckling pressures of a vibrating subsea pipeline.  
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CHAPTER 3 

 

ANALYSIS OF DYNAMIC STRESS PROPAGATION IN SUBSEA PIPELINE AND      

                                                    FLOW LINE SYSTEMS 

 

3.1     Problem Fundamentals and Governing Differential Equation 

 

The problem of dynamic stress propagation concerning the vibration of a pre-stressed high 

pressure and high temperature subsea pipe that is transporting a fluid, resting on the seabed is 

considered here. To study this, we look at the problems viz: 

 (a) The dynamic stresses and 

 (b) The vibrations of the pipe in transverse and longitudinal perspectives. 

For the dynamic stresses, underlying assumptions in the formulation of the governing dynamic 

stress equations are as follows: 

(i)   the fluid conveying pipe is idealised as an elastic beam with the  neutral plane lying along the  

      geometric centre or mid plane where the internal transport velocity  is maximum. 

(ii)  the deflection of the beam is small compared with the span of the beam. 

(iii) during bending the elastic beam has two (upper and lower )  layers  such that each has its     

       neutral plane which may not necessarily coincide with the geometric mid plane of the beam . 

(iv)  these neutral planes are located at    
 ( )  

 
  and       

 ( )  

 
  where  ( )  is a function       

       of     as illustrated in Figure3.                                             

(v)   the approximations involved in the forgoing beam theory are such that the field variables are  

       expressible in terms of derivatives of the deflection  ( )which is taken to be same  for both  

       layers.   

  

 

 

 

 

 

 

 

Figure. 3.0: A model of the elastic beam approximation with upper and lower layers.   
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Following the foregoing assumptions, the formulated dynamic stress propagation equations of the 

subsea pipeline have been derived in equations (A.11, A.13, A.16, A.17, A.20 and A.21) as  
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3.2     Governing Differential Equations 

Following Olunloyo et al (2007), the physical problem under investigation consists of a pre-

stressed pipe and pressurized hot fluid conveying pipeline that is resting on the seabed. The pre- 

and post- deformation fluid flow geometries of the boundary value problem are posed in Figures 

3.1a and 3.1b. 

 

  

Fig. 3.1a: The flow geometry of the dynamic   interaction   

of pipeline on sea bed when   is zero     

 

Fig. 3.1b: The flow geometry of the dynamic interaction 

of pipeline on seabed when   is 0.02
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The underlying theory employs the following hypotheses namely: 

(i) the pre-stressed pipeline is idealised as an elastic beam on a subsoil layer that is considered to 

be a homogenous semi-infinite elastic continuum with non-retarded geo-mechanical 

properties. 

(ii) a fully developed incompressible viscous Newtonian pressurised hot fluid is flowing through 

the pipeline. 

(iii) the contrived dynamic system is under the influence of hydrodynamic and bending loads, 

internal fluid transverse and longitudinal transmission forces, seabed subsoil layer and 

overlying sea water pipeline interfaces frictional and drag forces. 

(iv) the elastically deforming pre-stressed hot fluid conveying pipeline is subjected to both non 

linear infinitesimal strains of Semler et al or Reddy and Wang. 

(v) the temperature differential between the external and internal walls of the pipeline results in 

thermal strain with attendant cross sectional area change. 

(vi) a linear Airy wave profile propagates uniformly above the still water level (SWL). 

 

Under these assumptions, the generalised governing differential equations for the case of a 

vibrating horizontal fluid conveying pipe sitting on the ocean floor in transverse and longitudinal 

directions as reported in equations (B.48) and (B.49) read 
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The linearised form of equations (3.7) and (3.8) as special cases for our problem are:                                             
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3.3     Analysis of Transverse Vibration Problem 

Following Olunloyo et al (2007), it is possible to substitute for the geometric and operating flow 

variables in eqns.(3.7-3.8) via the following relations viz;                                                                                                                                                                                                                                                                                                                                                                                                                                                     
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while   is the area  deformation coefficient. Also, the hydrodynamic effect in Eq. (3.9) could be 

expressed, using the relation derived by Olunloyo et al (2005) i.e. 
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Accordingly, equation (3.7) in non-dimensionalised form becomes 
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where, 
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By introducing the Laplace and Finite Fourier Sine transforms namely, 
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subject to the under listed pinned-pinned end boundary conditions  viz; 
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Further more, noting that    
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Equation (3.12) with zero initial conditions, can be re-written as, 
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Employing the procedural analysis reported in Olunloyo et al (2004), it is possible to rewrite   in 

the Fourier-Laplace transform plane as  
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Hence, a closed form solution for the transverse dynamic response can be computed as, 
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where, 
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From the Fourier-Laplace inversion, the solution of equation (3.18) now gives, 
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where, 
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and,  
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3.4    Analysis of Longitudinal Vibration Problem 

By following the same method used above for the transverse problem, equation (3.8) is rewritten 

as 
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Substituting the result of equation (3.23) into (3.27), then gives 
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where, 
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Equation (3.28) in the Fourier-Laplace plane, subject to the boundary conditions 
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where 
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with zero initial conditions, equation (3.31) now becomes, 
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From the Fourier-Laplace inversion, the axial displacement is now obtained as, 
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where, 
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and, 
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3.5 Analysis of Dynamic Stress Propagation 

The non-dimensionalised equations of stresses as can be recalled from equations (3.1 - 3.6)  are:  
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where the following dimensionless parameters have  been used viz: 

 (  ) =  (   )Po,   z =   L,    =   ,    =  L,   =   Po,  w =   L,  u =   L ,  L
2  τ2

Po = 1 

t =   τ, P =   Po,  F =   PoL
2
,   = E/ Po,  K =   LPo, C =  LτPo,    =   / . 

 

 Validation Analysis                                                                  

To validate the proposed flow induced dynamic stress theory, two special cases shall be 

demonstrated namely:   

3.5.1 Case 1: Maximum Bending Stress 

The maximum values of the bending stresses viz 
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occur in the mid-section of the pipe. Thus, in the absence of longitudinal vibration, for an empty 

pipe, the above equations reduce to the forms 
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which sum up to give   
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Now on substituting      
 

 
 , where d, is the internal diameter of the pipe, for this case the 

result below is obtained: 
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which agrees with the value reported for a circular hollow beam by Ephraim (1997).  

 

3.5.2 Case 2: Maximum Shear Stress 

For any fluid flowing through a pipe, the maximum shear stress occurs at the wall of the pipe, cf 

equations (3.43) and (3.44) namely;  
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In fact in the absence of transverse vibration, the bending terms 
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   are negligible. Under this restriction, we can set 

      at the lower and upper walls of the pipe to obtain the well known maximum shear 

stresses reported in the literature of fluid mechanics namely; 
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 3.5.3 Computation of Dynamic Stresses 

 Now in the Laplace transform domain, equations (3.43) through (3.48) become  
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At the same time the initial boundary conditions of simply supported beam at     (   ); in the 

Laplace transform plane give 
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 Equations (3.56) through (3.61) via equations (3.62-3.63) can now be re-written as follows:  
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In view of expressions for  ̃(   ) and  ̃(   ), equations (3.64) to (3.69) are recast as follows:   
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Here, 
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3.6 Analysis of Burst Pressure Induced by Vibration 

We shall demonstrate an application of the derived stress relations by considering the influence of 

flow velocity and other operating conditions on the burst pressure of the vibrating offshore 

pipeline under investigation. For such an exercise, it is sufficient to invoke some well known 

empirical relations in the literature. As a special case and following Staat and Duc khoi vu (2006), 

the burst pressure for a thick-walled pipe without defect is given by the expression 
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which realistic limit load solutions for the cracked pipe must assume asymptotically. For this case, 

the realistic load is fully captured via the boundary value partial differential equations as 

represented in equations(3.56) and (3.57). However, for a thin pipe, the approximation reduces to 

the form   
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where the constraint factor D varies for yield conditions. In particular we recall 
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for  problems of pressurized pipes without defects. 

We shall next explore the aforementioned relations for the burst pressure in relation to the lower 

and upper shear stress as represented in equations (3.70) and (3.71).  
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3.6.1 Computation of Burst Pressure for the Pipe under investigation  

For pipe burst, the maximum shear stress theory predicts that      
 

 
     where     is the yield 

stress. Following Henry and Ronald (2004), the yield stress is related to the ultimate stress via the 

expression   

                                                                                                                                   (3.80)                                                                                                                               

where , 

    = ultimate stress 

c = hardening modulus and   

    = the strain 

This now allows us to redefine the maximum shear stress as  
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We next set    = 0 at yield point to rewrite equation (3.82) as 
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By invoking the von Mises yield criterion, and recalling equation (3.82), we can in fact compute 

the burst pressure as 
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Equation (3.84) in view of equation (3.70) can be written in the Laplace transform plane as: 
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So that on invoking Laplace inversion, the burst pressure for the upper half of the pipe is 
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Similarly, the burst pressure for the lower half of the pipe can be expressed as: 
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3.7 Computation of Buckling Pressure for the Pipe under investigation    

Following the analysis in section 3.6, we can in fact compute the buckling pressure via the 

expression 
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Equation (3.88) in  conjunction with equation (3.71) in the transform plane gives: 
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Laplace inversion then gives, the buckling pressure for the upper half of the pipe as 
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while the corresponding buckling pressure for the lower half of the pipe is given by 
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3.8 Computation of Burst Equation with Barlow’s Equation  

In industry, Barlow‟s equation is the simplest and the most widely employed conservative formula 

for pipelines burst pressure analysis in the absence of vibrations.  

However, in this research, the effects of both longitudinal and transverse vibrations imposed by 

the internal fluid flow, hydrodynamic loading and excitation forces are fully captured as couched in 

equations (3.84) and (3.85). Nevertheless, for purpose of comparative analysis, we shall invoke 

the Barlow‟s equation as reported by Andrew and Mike (2000) viz :  
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where the following have been defined namely;    

   = burst pressure 

   = external diameter  

  = pipe wall thickness 
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   = ultimate tensile strength of the pipe material 

As a matter of convention, the ultimate tensile stress is not usually expressed in terms of parameters 

like internal fluid flow velocity, hydrodynamic loading and excitation forces; nonetheless the 

nondimensionnalised ultimate tensile strength of the pipe material can be written in this case as 
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which now allow us to rewrite equation.(3.92) as 
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Since, Barlow‟s equation ignores the effect of vibrations, it will in this case give the Laplace 

inversion of equation (3.94)  as 

 
 
  

   

 
 
 

                                                                                                                              (3.95)                                                                                           

Equation (3.95) then represents the computation of burst pressure  from our theory via Barlow‟s 

equation. On the other hand, if the effect of vibrations are incorporated, the analytic expression for 

the case of upper layer burst pressure can be written as   
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which for the case n = 1(principal mode), gives 

    
  

√ 

 

  
[( 

 
    )  

    ( )      
  

 
 
 

    ]                                                               (3.97) 

        

3.9 Analysis and Discussion of Results  

In this work, the problem of dynamic stress propagation through a fluid conveying pipe in a 

generalised offshore environment is investigated. The significance of this exercise is to model 

stress propagation that come into play in the presence of transverse and longitudinal vibrations in a 

fluid conveying beam. In particular, the effect of operating parameters or variables such as 

hydrodynamic wave loading, fluid transport velocity, pressure and temperature of the internal 

fluid as well as  the seabed subsoil layer geotechnical properties on the phenomena   of pipe 

bursting and buckling are highlighted.  

 

For the interpretation of results, simulations based on the characteristic values of some of the fluid 

and geo-mechanical parameters that govern this fluid-structure-soil interaction problem have been 

carried out. In particular some of the values used in the simulation are listed in Table 3.1 below. 
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Of fundamental interest are the burst and buckling pressure profiles for the fluid conveying 

pipeline. In particular, Figures 3.2 to 3.4 display the variation of upper layer steady state burst 

pressure profiles with respect to the internal flow velocity for some selected pipe thicknesses in an 

ocean environment. For this case, a pipe of inner radius 0.197 m and length 6m  was used for the 

analysis which was carried out for different locations along the pipe length. Other parameters such 

as the cross sectional area deformation of pipe, depth of pipe from sea surface and are kept 

constant.   

 

However, from Figures 3.2 and 3.3.it is observed that, for the fundamental mode and irrespective 

of pipe thickness or geology of the sea bed, the burst pressure increases monotonically with the 

fluid transport velocity; Furthermore, and as would be expected, the thicker the pipe, the higher 

would be the burst pressure required. However when the mode of vibration n changes, this pattern 

of behaviour changes. In particular, we find that when the mode is even, as for example for cases n 

= 2, 4; the burst pressure behaviour is strongly influenced by the geology of the sea bed. For 

example, whereas the pattern of behaviour for hard bed (Figures 3.5 and 3.7) remains the same as 

was earlier described, the soft bed allows the burst pressure to rise with increasing flow velocity 

up to a peak beyond which it gets attenuated as illustrated in Figures 3.4 and 3.6. By comparing 

the corresponding figures, it is also observed that the soft sea bed, will in general support a higher 

burst pressure than a hard sea bed at the same conveyance velocity of internal flow.  

 

It is also noted that for a given pipe and whether it is lying on a soft sea bed (Figures 3.8 and 3.9) 

or hard bed (Figures 3.11and 3.12), the even modes have higher burst pressure values than for odd 

modes. For a given mode and irrespective of the geology of the sea bed, the burst pressure is 

always greater than the buckling pressure as is clearly illustrated in Figures 3.14 and 3.15 for case 

n = 2. 

Figures 3.16 and 3.17 show the stress distribution across the diameter of the pipe. It can be 

observed that at the inlet there is a slight asymmetry in the stress distribution with the upper half 

of the pipe supporting higher burst pressure values than the corresponding image. Furthermore,  

the burst pressure is also a function of the mass ratio of the internal fluid with the lighter fluid 

commanding a higher burst pressure. However, as one transcends the entry length such differences 

tend to be attenuated completely as shown for the situation half way through the pipe length in 

Figures 3.20 and 3.21. 
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 As can be seen in the hatched zones (Figures 3.24 and 3.25), there is a tendency for the existence 

of regions of multiple buckles and hybrid phenomena, both for soft and hard beds. These regions 

are very significant and can be positively exploited for deep and ultra deep waters subsea pipeline 

and flow line designs. 

 

On the other hand, Figures 3.26 to3.32 displayed plots of upper burst pressure profiles for both 

soft and hard beds as computed from Barlow‟s equation model. In particular, Figure 3.26 to3.30 

illustrate the effects of pipe length for both soft and hard sea beds. In fact, comparison of the burst 

pressures from Barlow‟s equation and our model showed that there is a variation of about 50% for 

the case of a long pipeline on a hard sea bed as can be observed in Figures 3.28 to 3.30. These 

results showed that fluid conveyance systems are likely to burst in lower pressure range on hard 

seabed in comparison with soft bed.  

 

 In dynamic environment, burst pressure can be significantly affected by vibrations as shown in 

Figures 3.31to3.34. Thus, designing such fluid transmission or conveyance media must 

satisfactorily account for the effects of vibrations propagation.      
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Table 3.1: Parametric Values Used For Simulation 

S/N DESCRIPTION SYMBOL VALUES USED 

1 Density of pipe material  7850Kg/m
3
 

2 Density of sea water w 980 kg/m
3
 

3 Pipeline fluid  relative density f 0.977 kg/m
3
 

4 Wave number k 0.1 

5 Characteristic stress    5x10
18 

N/m
2
 

6 Modulus of elasticity of pipe material E 200GN/m
2
 

7 Acceleration due to free fall g 9.8m/s
2
 

8 Height (depth) of pipeline below mean sea 

surface 

h 1500m 

9 Seabed modulus of deformation Kb 8, 800N/m  

10 Length of the pipeline L 6m 

11 External Diameter Do 0.4064m 

12 Internal Diameter Di  0.394m 

13  Inner Radius of the pipeline R Di/2 

14 Moment of inertia I 1.17x10
-5

m
4
 

15 Uniform fluid flow velocity through the pipe U 3 m/s 

16 Transverse pipe displacement w w(x, t) 

17 Axial pipe displacement  u u(x,t) 

18 Temperature   110
o
C 

19 Temperature gradient   10
o
C 

20 Pressure P 1-5x10
5
 N/m 

21 Tensile prestress T 5x10
18 

N/m
2
 

22 Damping force/vel. in transverse and axial 

direction resp. 

C1,  C2, 1, 5 

23 Normalised density of water w   1 
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Fig. 3.2: Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                               

 

 

Fig. 3.3: Steady state burst pressure profile at the upper layer of  the pipe  on a hard sea bed for  the 

case                         
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Fig. 3.4: Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                         

 

 

Fig. 3.5: Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                         
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   Fig. 3.6:  Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

   case                         

 

 

    

   Fig. 3.7:  Steady state burst pressure profile at the upper layer of the pipe  on a hard sea bed for the    

   case                           
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Fig.3.8:  Steady state burst pressure profile at the upper layer of  the pipe on a soft sea bed for the 

case                                                         

 

 

Fig. 3.9:  Steady state burst pressure profile at the upper layer of  the pipe on a soft sea bed for the 

case                                                  
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Fig.3.10:  Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the                  

                                                       

 

    Fig.3.11: Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for  

   the   case                                                        
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Fig.3.12: Steady state pressure profile at the upper layer of the pipe on a soft sea bed for the case  

                                                           

  

 

          

  Fig.3.13: Steady state pressure profile at the upper layer of the pipe on a hard sea bed for the case  
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Fig.3.14: Steady state pressure profile at the upper layer of the pipe on a soft sea bed for the case 

                                     ;                       

 

Fig.3.15: Steady state pressure profile at the upper layer of the pipe on a hard sea bed for the case 
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Fig.3.16: Steady state burst pressure profile at the lower layer of the pipe on a soft sea bed for the 

case                                                              

 

Fig.3.17: Steady state burst pressure profile at the lower layer of the pipe on a hard sea bed for the 

case                                                           
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Fig.3.18: Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                                         

 

Fig. 3.19: Steady state burst pressure profile at the upper layer  of the pipe on a soft sea bed for the 

case                                                       
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Fig. 3.20: Steady state burst pressure profile at the upper layer  of the pipe on a soft sea bed for the 

case                                                                      

 

 

 

 Fig.3.21: Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                                              ;                
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Fig.3.22: Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                                                    

 

Fig.3.23: Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                                                                      
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 Fig.3.24: Ratio of steady state burst/buckling pressure profile  at the  upper  layer of the pipe on a   

 hard sea bed for  the case                               

 

 

 

Fig.3.25:   Ratio of steady state burst/buckling pressure profile at the  upper  layer of the pipe on a 

soft sea bed for  the case                          
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Fig.3.26:   Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                  

 

Fig.3.27:   Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                    
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Fig.3.28:   Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                                         

 

 

Fig.3.29:   Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                     
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Fig.3.30:   Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                                          

 

 

Fig.3.31:   Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                   
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Fig.3.32:   Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                                    

 

 

 

Fig.3.33:   Steady state burst pressure profile at the upper layer of the pipe on a soft sea bed for the 

case                                 
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Fig.3.34:   Steady state burst pressure profile at the upper layer of the pipe on a hard sea bed for the 

case                                     
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CHAPTER 4 

 

THE EFFECT OF FLUID-PIPELINE-SOIL INTERACTION ON DYNAMIC STRESS    

                                     PROPAGATION AT SEABED 

 

4.1     Problem Fundamentals and Governing Differential Equation 

In Chapter 3, the problem of dynamic stress propagation concerning the vibration of a pre-stressed 

high pressure and high temperature subsea pipe that is transporting a fluid, resting on the seabed 

was considered. This chapter is an attempt to extend the analysis presented in Chapter 3 to account 

for case of partially/fully buried pipe at seabed subject to the same operating conditions.  

 

The focus here is to examine the effect of burial through ocean floor subsoil layer for the case of 

partially and fully buried offshore pipelines. For this exercise, we shall employ the modified 

version of Gorman‟s et al. (2000) analysis in conjunction with the recent approach of Olunloyo et 

al. (2007, 2008).  

The physical problem under investigation consists of a fluid pipeline partly buried in an ocean 

floor or seabed. The investigation here entails the study of a fluid pipeline soil dynamic interaction 

boundary value problem, with the attendant fully fluid flow regime.  The pipe and its position are 

as shown in Figure 4.0 below, while the necessary assumptions leading to the formulation of the 

well posed boundary value partial differential equations, governing the dynamic interaction 

problem under investigation are listed viz: 

(i)  the pre-stressed pipeline is idealised as an elastic beam on a subsoil layer that is considered to     

     be a homogenous semi-infinite elastic continuum with non-retarded geo-mechanical properties.  

(ii)   a fully developed incompressible viscous Newtonian pressurised hot fluid is flowing through  

        the pipeline. 

(iii)  the contrived dynamic system is under the influence of hydrodynamic  and bending loads,   

        internal fluid transverse and longitudinal transmission forces, seabed subsoil layer and   

       overlying sea water pipeline interfaces frictional and drag forces. 

(iv)   the elastically deforming pre-stressed hot fluid conveying pipeline is subjected to both non-   

         linear infinitesimal strains of Semler et al.(1994) or Reddy and Wang (2004). 

(v)   the temperature differential between the external and internal walls of the pipeline results in  

        the thermal strain with attendant cross sectional area change. 

(vi)   a linear Airy wave profile propagates uniformly above the still water level (SWL).        
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Fig. 4.0 The flow geometry of the dynamic interaction of a partially buried offshore pipeline. 

By employing the foregoing assumptions, the governing non-linear partial differential equations in 

the transverse and longitudinal directions has been derived in equation (B.47&B.50) in the 

appendix as: 
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Furthermore, employing the procedural method of Olunloyo et al. (2007), linearised forms of 

equations (4.1) and (4.2) as special cases for our problem then become  
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4.2 Analysis of Transverse Vibration Problem                                                                                                                            

Equation (4.3) can be rewritten in the form 
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Thus, equation (4.5) becomes,                                                                                                                                            
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Subject to the pinned-pinned end boundary conditions viz: 

 (   )   (   )    and      (   )     (   )                                                                (4.8)                     

 

It is now suffice to express for    from the hydrodynamic effect of the overlying sea water with 

the assumption of Airy linear wave theory, as reported by Olunloyo et al (2007): 
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Using equation (4.12), equation (4.7) now becomes, 
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4.3 Analytic Solution for    via Integral Transforms Method  

Equation (4.13) is solved by employing the Laplace transform namely, 
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Application of equation (4.14) to (4.13) yields: 
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Next, the finite Fourier sine transform is introduced namely, 
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Furthermore, noting that, 
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Subject to the pipeline being idealized as simply supported at    (    ), i.e. 
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Thus, equation (4.15) with zero initial conditions becomes 
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Invoking the method of analysis by Olunloyo et al. (2007) for the Fourier-Laplace transform 

solution of  ̃
 

(       ) as  
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Also, 
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Therefore, equation (4.21) in view of equations (4.22 - 4.24) takes the form 
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Hence, it can be conveniently obtained from equation (4.25) that, 
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To solve equation (4.26) completely, we shall employ the method reported by Olunloyo et al. 

(2007), via the model for the rigid porous bed viz: 
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In the non-dimensionalised form, 
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with the following parameters defined as: 
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Equation (4.30) can now be rewritten by using double integral transforms as  
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Using equation (4.32) in (4.26) yields,              
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Hence, in the Laplace domain, the transverse deflection becomes, 
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Also, the solution of equation (4.34) from the Laplace inversion gives,              
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By using closed form Fourier series representative viz:  
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equation (4.38) is rewritten as
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4.4 Analysis of Longitudinal Vibration Problem  

The solution for the axial displacement formulation i.e. equation (4.2) follows the same procedural 

methods as was done for the transverse displacement. This is done by non- dimensionalising 

equation (4.2) and then employs the same transform procedures invoked previously with the same 

boundary conditions. 

Rewriting equation (4.2) yields, 
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The non-dimensionalised form of equation (4.42), following the same method above, yields, 
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 Next, we substitute the result of equation (4.35) into (4.42), to give 
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where, 
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To solve for u completely, we employed the boundary conditions in the Laplace transform plane 

 (    ) namely; 
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Hence, equation (4.45) enables us to express equation (4.43) in the Fourier-Laplace plane as,   
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Applying zero initial conditions, equation (4.46) is re-written as 
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Thus, it is obvious that from equation (4.48) the characteristic equation is  
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By letting         the solution to this is then; 
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The roots of equation (4.52) enable us to rewrite equation (4.48) as  
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In equation (4.55), the axial displacement from the Fourier-Laplace inversion yields 
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and, 
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4.5   Computation of Burst Pressure 

Following Staat and Duckhoivic vu (2006), as reported in Olunloyo et al (2008) paper, the burst 

pressure for a thick-walled pipe, without defect is given by the expression: 
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where the constraint factor D varies for yield conditions. In particular, we recall the solutions of 

the derived stress formulations in Chapter 3, in the Laplace transform plane viz: 
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in conjunction with the following yield condition of   Von-Mises  viz;
3

2
D                                                    

for the case  of pressurized pipe without defects, we can in fact compute the  upper half burst 

pressure, as  
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Similarly, the burst pressure for the lower half of the pipe is: 
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4.6 Computation of buckling pressure for the pipe 

By employing similar procedural analysis, buckling pressure for the upper and lower halves can be 

computed as follows: 
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where, 
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4.7 Discussion of Results  

 

Dynamic stress propagation, as influenced by flow induced coupled transverse and longitudinal 

vibrations, within the context of a vibrating offshore pipeline in deep sea environment, is 

investigated in this research. By employing parametric values in Table 4.1, simulated results have 

shown that the bursting and buckling of these conveyance media on porous rigid seabed, under 

hydrodynamic forces and traction are influenced by factors such as, the internal fluid transport 

velocity, temperature, pressurization, pre-stress etc. In particular, Figures 4.1- 4.7 illustrate the 

effects of accumulation of sediment layer growth (i.e. the pipe burial) and transport velocity in 

conjunction with geotechnical characteristics on the steady state burst and buckling pressure 

profiles.  As can be observed in Figure 4.1, the burst pressure increases with the rate of pipe burial 

as the fluid moves through the pipe. In Figure 4.2, the results show that, the longer the pipe, the 

higher would be the burst pressure for a buried pipe.  

 

Furthermore, the buckling pressure as demonstrated in Figures 4.3 and 4.4, with the same 

conditions for the burst pressure, showed that, the buckling pressure is always less than the burst 

pressure, which was in agreement with the results presented in Chapter 3. Also, in Figure 4.5, the 

effect of the pipe burial on the dynamic stress distribution is displayed, where the burst pressure 

increases from the middle of the buried pipe to the wall of the pipe with varying sediment growth 

layers. 

 

In Figures 4.6 and 4.7, the effects of internal fluid transport velocities are shown, where it is 

observed that, increasing the velocity will lead to a high burst pressure. In particular, Figure 4.7 

illustrates the results when the axes in Figure 4.6 are turned orthogonally. This is in conformity 

with the results in a well established text book of transport phenomena. 

 As can be seen in Figure 4.8, transient burst pressure is plotted for various seepage movement. 

Here, we observed the burst pressure attenuating until it reaches a minimum value before it starts 

to increase monotonically as the buried pipe conveys the internal fluid across.        

 

In Figure 4.9, the profiles of the burst pressure as modulated by the level of sedimentation 

activities across the pipe segment is illustrated. As expected, the pressure required to burst these 

pipes can be significantly enhanced by  increase in sedimentation activities, irrespective of the 

value of their diameters. We have in Figure 4.10, the plot of steady state burst pressure against the 
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sediment velocity for various pipe thicknesses. The results show that , the burst pressure increases 

with increase in the pipe thickness, hence, the thicker the pipe, the greater the burst pressure for 

the pipe to rupture. As can be deduced from Figure 4.11, the burst pressure is expectedly higher 

than the buckling pressure, regardless of whether the pipe is resting, or is partially or totally 

buried as a result of sedimentation activities, that are constantly reshaping the ocean floor 

geomorphology in endless cycles.  

 

Besides, the modal effects are illustrated in Figure 4.12, where it is observed that the burst 

pressure is higher for even modes in comparison with the odd modes. While, a comparison of  the 

steady state burst pressure profile, as computed with Barlow‟s equation  and one of the empirical 

relationships reported in Saat and Duckhovic‟s is shown in Figure 4.13. As expected, the pressure 

is maximum at the walls of the pipe, which is found to be increasing with increase in the level of 

sediment deposition.  

Also, the three dimensional plots of the burst pressure are as shown in Figures 4.14 and 4.15.    
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Table 4.1: Parametric Values Used For Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S/N DESCRIPTION SYMBOL VALUES USED 

1 Density of pipe material  7850Kg/m
3
 

2 Density of sea water w 980 kg/m
3
 

3 Pipeline fluid  relative density f 0.977 kg/m
3
 

4 Wave number k 0.1 

5 Characteristic stress    5x10
18 

N/m
2
 

6 Modulus of elasticity of pipe material E 200GN/m
2
 

7 Acceleration due to free fall g 9.8m/s
2
 

8 Height (depth) of pipeline below mean sea 

surface 
h 

1500m 

9 Seabed modulus of deformation Kb 8, 800N/m 

10 Length of the pipeline L 6, 60m 

11 External Diameter Do 0.4064m 

12 Internal Diameter Di 0.394m 

13 Inner Radius of the pipeline R Di/2 

14 Moment of inertia I 1.17x10
-5

m
4
 

15 Uniform fluid flow velocity through the pipe U 3 m/s 

16 Transverse pipe displacement w w(x, t) 

17 Axial pipe displacement u u(x,t) 

18 Temperature   110
o
C 

19 Temperature gradient   10
o
C 

20 Pressure P 1-5x10
5
 N/m 

21 Tensile prestress T 5x10
18 

N/m
2
 

22 Damping force/vel. in transverse and axial 

direction resp. 
C1,  C2, 

1, 5 

23 Normalised density of water w 1 

24 Sediment relative density s 0.6 

25 Sliding frictional coefficient at the interface 

of the pipe and the sediment layer 
μs 0.2 
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                Fig.4.1 Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                                                    mLkztsmUn sb 6;5.0;800;1;1;/5;1      

 
 
 

              Fig.4.2: Steady state burst pressure profile of  the pipe  on a hard sea bed  for the case  

                                                   mLkztsmUn sb 60;5.0;800;1;1;/5;1      
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Fig.4.3: Steady state buckling pressure profile of the pipe on a hard sea bed for the case  

                                                   mLkztsmUn sb 6;5.0;800;1;1;/5;1      

 
 

           Fig.4.4: Steady state buckling pressure profile of the pipe on a hard sea bed for the case  

                                                              mLkztsmUn sb 60;5.0;800;1;1;/5;1      
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             Fig.4.5: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                                                   mLkztsmUn sb 6;5.0;800;1;1;/5;1      

 
 

 

             Fig.4.6: Steady state burst pressure profile of  the pipe  on a hard sea bed  for the case  

                                                   mLkztn sb 6;5.0;800;1;1;1      
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    Fig.4.7: Steady state burst pressure profile of the pipe on a hard sea bed for the case (orthogonal axis) 

                                                   mLkztn sb 6;5.0;800;1;1;1      

 
 

 

        Fig.4.8: Transient burst pressure response profile of the pipe on a hard sea bed for the case  

                                                   mLkzxsmUn sb 6;5.0;800;1;1;/5;1      
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     Fig.4.9: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                          mLkzxtsmUn b 6;800;1;5.0;1;/5;1   

 

 

Fig.4.10: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                        mLkzxtsmUn sb 6;5.0;800;1;5.0;1;/5;1    
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Fig.4.11: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                         mLkztsmUn sb 6;5.0;800;1;1;/5;1    

 

Fig. 4.12: Steady state burst pressure profile of the pipe on a hard sea bed for the case  
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Fig.4.13: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                     mLkztsmUn sb 6;5.0;800;1;1;/5;1    

                       

Fig.4.14: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                             mLkzUn sb 6;5.0;800;1;5;1      
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    Fig.4.15: Steady state burst pressure profile of the pipe on a hard sea bed for the case  

                              mLkzUn sb 6;5.0;800;1;5;1      
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CHAPTER 5 

 

CONCERNING DYNAMIC STRESS PROPAGATION IN AN OFFSHORE PIPELINE AT        

                            THE SEABED FOR DESIGN APPLICATION 

 

5.1     Problem Fundamentals and Governing Differential Equation 

 

This chapter attempts to present another method of dynamic stress propagation analysis 

concerning the vibration of a pre-stressed high pressure and high temperature subsea pipe that is 

transporting a fluid and resting on the seabed. For this investigation, an offshore pipeline is 

assumed to be sitting on an elastic foundation and the corresponding set of equations governing 

the transverse and longitudinal motions of the pipe are formulated. Besides, by employing integral 

transforms, an analytic solution for the induced stresses in polar coordinates coupled with von 

Mises yield criterion is reported for design analysis and applications. 

 

The physical problem under investigation consists of a fluid pipeline sitting on an ocean floor or 

seabed. The investigation here entails the study of a fluid pipeline soil dynamic interaction 

boundary value problem, with the attendant fully fluid flow regime.  The pipe and its position are 

as shown in Figure 5.0 below, while the necessary assumptions leading to the formulation of the 

well posed boundary value partial differential equations governing the dynamic interaction 

problem under investigation are listed viz: 

 

(i)   The coordinate system is described appropriately by the cylindrical polar system ( ,r ); 

(ii)  The entire system is axisymmetric i.e., the geometry and the internal loading are  

       symmetrical about the axis of the cylinder; 

(iii)  Due to axial symmetry, there are no shear stresses, r and  r   and 

(iv)  For open pipe, axial stress z  is negligible. 

 

Following the above assumptions, the equations of equilibrium of forces acting on the element of 

material in the radial and circumferential directions have been derived in equations (C.21 &C.22) 

in the appendix as: 

 

 

 

 
 
 



 

93 
 

 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.0. The flow geometry of the model at the seabed. 
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5.2 Failure Analysis 

 

The greatest absolute values of radial and hoop stresses occur at the inner surface of the cylinder 

and are given below: 

For r  we substitute iRr   in equation (5.1) to get 
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ir pmax,                                                                                                                               (5.3)                                                              

 

Also, 

max, occurs at iRr  , using this in equation (5.2) gives 
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Equations (5.3 and 5.4) can be non-dimensionalised into the forms 

ir pmax,                                                                                                                               (5.5)    
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where the followings can be expressed viz: 
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For the material to yield, the hoop stress and radial stress are maxima at the inner wall of the pipe. 

Hence, von Mises yield criterion is applied in terms of the three principal stresses i.e., 

.32,1  and This is written as 

      22

13

2

32

2

21 2 y                                                                                           (5.7)                                       

 

where y is the yield tress of the pipe material. 

In this case, .,, max,3max,,2max,,1 rz    Furthermore, the pipe is open-ended, thus 

axial stress 0max,, z . 

Using the above conditions we get 

2

max,max,

2

max,

2

max, yrr                                                                                                        (5.8) 

                                                                     

Substituting equations (5.5 and 5.6) into equation (5.8), yields, after simplification, 

0
2

 MQpDp ii
                                                                                                                       (5.9) 

where the followings are defined as 
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Equation (5.9) now enables us to express  
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This is obtained from the transverse response of a vibrating offshore pipeline.   

Following modified Gorman et al (2000), the transverse response of a vibrating offshore pipeline 

in Laplace domain is given as  
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In the meantime, we can re-express the following in polynomial form viz: 
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via the following closed form Fourier series representation namely 
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Following Olunloyo et al (2007) 
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while the velocity potential in the Laplace transform plane is given as 
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so that, 
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Equation (5.23) can be rewritten in view of equation (5.25) as 
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Using equations (5.14, 5.16 and 5.18) in equation (5.26), yield 
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Similarly, substituting equations. (5.16, 5.17 and 5.18) in equation (5.13) give 
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Here, 
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5.3 Discussion of the Results. 

 

In Figure 5.1, steady state burst pressure is plotted against the normalised pipe internal radius, 

while Figure 5.2 shows the same result but for different modes. It is evident here that, regardless 

of the modes, the pressure will increase from the centre of the pipe to the inner wall of the pipe. 

 

The next result, i.e., Figure 5.3, the pressure attenuates monotonically to a point and then rises 

monotonically to a maximum point before decreases to initial point while the fluid moves through 

the pipe. Furthermore, the result of the burst pressure against the normalised pipe thickness, where 

the pressure increases as the thickness increases are shown in Figure 5.4. The implication is that, 

high pressure will be needed to burst a thick pipe wall.  Figure 5.5 shows the patterns obtained 

when the burst pressure is plotted against the fluid internal velocity. Here, the pressure increases 

steadily with the internal flow velocity until it gets to a maximum value for different thicknesses. 

The significant of this result is that, the maximum pressure should be avoided in order to maintain 

the pipeline integrity, beyond this value it could be a disastrous failure. 

 

Interesting results were obtained in Figure 5.6 for the transient burst pressure with different fluid 

velocities. The results showed clearly that the burst pressure attenuates monotonically and 

increases monotonically with many peak values over the time of operation. 
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                            Figure 5.1: Burst pressure profile for the case;   

 

 

                 Figure  5.2: Burst pressure profile with different modes for the case; 
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                                 Figure 5.3: Burst pressure profile for the case; 

 

 

                                      Figure 5.4: Burst pressure profile for the case; 
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                     Figure 5.5: Burst pressure  profile with different pipe thicknesses for the case  ; 

 

 

               Figure 5.6 Burst pressure profile with different flow velocities for the case; 
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CHAPTER 6 

CONCLUSION 

 

6.1     Summary and findings for Model Problems 

In this thesis, the generalized governing differential equations for the dynamic stress propagation 

concerning onset of burst and buckling pressures of a subsea pipeline conveying a fluid in a 

pressurized environment have been established.   

 

Here, the problem of conveyance of hot fluid in pipes laid on the sea floor within the context of 

dynamic stress propagation is investigated. In particular, effort have been made to examine the 

phenomena of pipe burst and buckling associated with pumping cycles of crude/ gas exploration in 

deep and ultra deep sea. In treating this problem, a set of governing differential and dynamic 

stresses propagation equations, that recognises the fact that pumping of such fluid sets the pipe 

into both transverse and longitudinal motions in conjunction with the propagation of dynamic 

stresses have been employed. The linearised solution of these equations enabled us to compute the 

nature and profiles of stress propagation. The propagation of such stresses can, in fact, trigger the 

phenomena of pipe burst and buckling, which have been shown to be influenced by parameters 

such as the nominal length of the pipe, the temperature difference between the fluid and the 

ambient temperature, the temperature gradient along the pipe length and the nature of the geology 

of the seabed. Although, several empirical relations abound in literature for design applications, 

closed form analytic expressions for burst and buckling pressures have not been widely reported. 

Nevertheless, the effect of vibrations and other operating parameters are fully captured in this 

investigation.       

 

The work has equally been extended to the case of having the pipe partially/fully buried at seabed, 

where the sediment coverage was accounted for. It was observed that, vibration was reduced as a 

result of burying the pipe. However, the sediment layer increases the external load on the pipe. 

These results obtained can be positively exploited in oil and gas pipe and flow lines systems for 

deep and ultra deep waters operations. 

Besides, for special cases: this work (i) recovered Ephraim (1997) results for maximum bending 

stress for circular hollow beam and (ii) reproduced maximum shear stress at walls of non-vibrating 

pipe. 
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6.2     Contributions to knowledge 

1. The work has been able to solve the problem of conveyance of hot fluid in pipeline laid on sea        

     floor as well as partially or completely buried at seabed within the context of dynamic stress   

     propagation. 

2.  In this work, the sets of vibration induced stresses analytically for the first time to the best of    

     my knowledge have been developed. 

3.  For design applications, closed form analytic expressions for burst and buckling pressures have   

     been established (capturing the effect of vibrations and other parameters) that have not been   

     widely reported.  

 

6.3     Recommendations 

For future work, the followings are recommended: 

 Extension of the work to capture the effect of pipe sandwich and viscoelasticity. 

 Consideration of non-linear equations for the pipe dynamic equations rather than the 

linearised version adopted in this research. 

 Furthermore, this work could be extended to the areas of nuclear power plants and air-

conditioning system that have arrays of piping connections. 
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APPENDIX A 

GENERALIZED GOVERNING DIFFERENTIAL EQUATION FOR MODEL PROBLEM 

CONCERNING DYNAMIC STRESSES OF SUBSEA PIPELINE 

 

Figure A1a: Pre-deformed free body diagram 

 

 

 

 

 

Figure A1b: free body diagram of the elastic beam approximation with upper and lower layers.   

Following Damisa (2002), the longitudinal displacements in the upper and lower halves are given 

as 

 

 






































x

wR
xzu

x

wR
xzu

2

2

1
2

1
1





      

                                                 

(A.1)  

However the corresponding  non-linear version will be 

  (     )      (   ( )
  

 
)

  

  
 

(   ( )
  
 
)
 
(
  

  
)
 

  
                            (A.2a)                                                                                                                                                                                   

x

=

0 

z

=

0 
   

  
=

0 

0

=

0 



 

111 
 

  (     )      (   ( )
  

 
)

  

  
 

(   ( )
  
 
)
 
(
  

  
)
 

  
                        (A.2b) 

                                                                                                                                                                                                   

On the other hand from theory of elasticity, the in-plane bending stresses have the forms 
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 so that if we confine our analysis to the case of linear strain theory, equations (A.3a,b) can be 

shown to have the reduced forms                                                   

  (  )   
 

  
*  ( )  (   ( )

  

 
)

  

  
+                                                           

(A.1.4a)                              

 (  )   
 

  
*  ( )  (   ( )

  

 
)

  

  
+    (A.4b)                                                                                                                                      

where    ( ) and   ( ) represent the initial displacement of the  upper and lower halves at the 

support point. However,   ( ) and   ( ) must vanish from the support conditions. Thus 
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We now invoke the elastodynamic stress equations namely: 
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where   and   satisfy the governing differential equation for the vibrating pipeline. 

Equation (A.6a) when combine with equation (A.5a) gives 
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so that integrating equation (A.8) then yields 

 (  )  
   

 

   

   
 

   

 
 

 

  
( ( )

   

   )  (    ) 
   

   
                       (A.9)                                                                          

where, the constant of integration      is to be evaluated from the boundary condition at the centre 

of the pipe as listed below viz: 

(i) At       (  )       

while at the inner surface of the pipe we have  

(ii)       (  )           

On invoking these conditions we can rewrite equation (A.9) as 
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while   (  )  assumes the form 
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On the other hand 
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and by carrying out a similar analysis it is found that 
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The evaluation of the inplane bending stress in view of equations (A.6a) and (A.6b) now yields 
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which can be integrated to give 
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where     is evaluated based on the nature of the support conditions. For pinned or clamped ends 
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Similarly, it is possible to derive the relation for  ( )  with the above procedures, as 
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Also    can be expressed from (A.6b) via (A.13) and (A.16), thus 
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which simplifies to 
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In this case     is evaluated based on the support condition viz 

at       (the upper outer pipe wall) 

By invoking this,     is expressed as 
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Similarly, 

at       (the lower outer pipe wall)                                                                                                                    
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APPENDIX B 

GENERALIZED GOVERNING DIFFERENTIAL EQUATION FOR MODEL PROBLEM        

                        CONCERNING VIBRATION OF SUBSEA PIPELINE 

 B.1 Model formulation 

Here we consider one-dimensional pulsating flow of a Newtonian viscous incompressible fluid in 

a pipe conveying fluid as shown in figure B1 below. The pipe has length L, cross-sectional area 

    mass per unit length   , initial axial tension   , transporting a fluid of mass    per unit 

length with axial velocity U and pressure  , that is space and time dependent. Also, this pipe 

conveying fluid is simply supported at both ends, and experiences external forces such as 

tangential force       ̇ due to bending and centripetal force of    
  

 
. 

 

In general, the pipeline is inclined at an angle of   to the ground. Besides, the pipe material is 

considered to be linear, homogeneous and isotropic elastic medium. In figure B1, the system is 

decomposed into fluid and pipe element. The fluid is acted upon by a normal force      and a 

tangential force      due to the fluid-pipe interaction. On the other hand, the pipe element is acted 

upon by shearing force  , bending moment M as well as      and      that are as a result of fluid 

pipe interaction. As a result of deflection, let   be the angle between the pipe element position and 

the x-axis. Furthermore,  (   )      (   ) represent transverse and longitudinal displacements 

of the element, while   is the fluid velocity before pipe deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B1. Fluid and pipe elements together with an indication of forces.  
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Force balance on the fluid and empty pipe elements are given respectively below by taking a small 

fluid and pipe element of length    in the x and y directions. For the fluid element the longitudinal 

and transverse equations of motion are: 

In the x-direction (longitudinal) 

 –                   (      )                  
  (   )

   
                        (B.1)  

Similarly, resolving forces in the y-direction (transverse) after simplification 
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                      (B.2) 

where the terms in the equations  have been defined in the nomenclature 

 

For the pipe element, the equation of motion in the x-axis (longitudinally) is: 

(     )    (     )                                     ̈              (B.3) 

 

In the y-axis (transversely) the equation of motion assumes: 
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Next, we add equations (B.1) and (B.3) to obtain: 
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Also, addition of equations (B.2) and (B.4) yields: 
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where         

Further simplification of equations (B.5) and (B.6) leads to 
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Furthermore, in Gorman et al (2000), the strain was considered as comprising two components 

viz: a steady state strain due to    and oscillatory strain , due to pipe vibration i.e 

                                                                                                                                  (B.9) 

where 

       
 

 
                                                                                                                           (B.10) 

However, in this work, thermal strain due to temperature effect is introduced. Thus, the new 

expression for   has the form: 

         –                                                                                                                (B.11) 

Here, the following are defined as 

                                                                             

                                          

 

B.2 Procedural analysis 

There are some preliminaries needed to express certain terms such as 

(     )  (     )             etc. in equations (B.7) and (B.8) respectively. 

Using Semler et al. (1994), it was assumed that  (X, Y, Z) be the position of a material point p at 

the initial state and (x,y,z) to denote the position of p in the new state, such that     

            while z is considered to be zero  

If an element of initial length   (          ) be deformed to a new length   , then    is given 

by: 

(  )  (  )  [(
  

  
)
 

 (
  

  
)   ] (  )                                                                          (B.12) 

Now         when the initial length lies on the X-axis so that,    (   )      (   ) 
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Figure B2: Right angle triangle for the Strain 

The right angle triangle represents the strain according to Semler et al. (1994) and Thurman and 

Mote Jr (1969) in x and y axes. 

Next the followings are written as 
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and the curvature       
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Equation (B.16) in terms of the X-coordinate assumes the form 
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while 
  

  
 can be obtained by differentiating      . 

From figure B2, 
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Now, 
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where  
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Substituting equation (B.19) in (B.20) gives 
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From figure B2 
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(   )  *(    )     +                                                                                                (B.22) 

Thus, equation (B.21) becomes 
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The next exercise is to consider term by term equation (B.7) and (B.8). 

Expression for Q: 
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where M is related to the curvature of a beam as: 
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Expressions for                

From equation (B.18) 
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By using binomial expansion 

     
 

 
      for small strain 

Thus,  
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If we use order of magnitude, with     (  )   it then applies that   
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only terms of  (  ) are needed.  

Hence 
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Expressions for   are now being considered 

From equation (B.11) 
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simplifying this,  
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Also for       the expression assumes 
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Hence combining equations (B.11) and (B.33) yields 
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Likewise there is need for  (      )   and  (      )    terms. 
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The expressions for velocity and acceleration terms are as follows: 
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Using equations (B.26, B.21) 
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Using equations (B.28, B.29 and B.43),  sinQ   and  cosQ  can be equally written as  

   402sin   uwwwwEIQ  

hence 

   wwwwEIQ 


sin                                                                                              (B.44)   

similarly 

  22 2222cos wwwwuwuwuwwEIQ   

then  

   32 228234cos wwwwwwuwuwuwuwwEIQ vvvv 


      (B.45)   

 

Governing Differential Equations 

w- equation 

Substitution of equations (B.34), (B.45), (B.35) and (B.38) into equation (B.8) yields  
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Using Olunloyo et al. (2007) 
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When the pipe is laid horizontally, the reaction force of the seabed cancels the weight of the pipe 

and fluid.  The generalized governing differential equation in transverse direction then admits the 

form in equation (B.48)  
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If the pipe is sitting on the seabed without sediment covering, equation (B.47) then becomes 
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u- equation 

Combining equations (B.31), (B.44), (B.34) and (B.40) with equation (B.7) gives  
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where 
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APPENDIX C 

BURST PRESSURE FORMULATION IN CYLINDRICAL POLAR COORDINATES 

 

 

 

 

 

 

  

 

 

 

 

 

Figure C1. Stress Components on a sector-shaped element ABCD of an axisymmetric pipe. 

 

The in-plane stresses acting on the element are as shown in Figure C1. The derivation of the 

stresses follows assumptions in chapter 5, thus an equation of equilibrium of forces acting on the 

element of material in the radial direction is written as 
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where 

       rB = the body force in the r direction, 

          ra = the acceleration in the r direction 

By simplifying equation (C.1) and neglecting small quantities and replacing sine of the small 

angle
2


  with ,
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 equation (C.2) is obtained as  
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Dividing equation (C.2) by zrr  . , and taking 0r , yields 
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Neglecting body force, equation (C.3) becomes 

rr
r a
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     fp                                                                                (C.4)                                                                                           

We note that, the partial derivative becomes a total derivative because, r is now the only 

independent variable, Roger (1989). 

 

Also, the strain compatibility equations are written as  

r
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From Hooke‟s law, we have the stress-strain relations 

   zrr
E

e   
1

                                                                                                  (C.6a) 
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Internally pressurized thick-walled pipe  

Figure C2 illustrates the cross section of a long thick-walled cylinder of internal radius 1R and 

external radius ,2R subjected to fluid pressure p at its inner surface. The variations of radial and 

hoop stresses with radius through the thickness of the pipe wall are expressed below. 
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Figure C2. Cross section of a long thick-walled pipe 

 

Substituting equations (C.6a and 6b) into equation (C.5b) gives 

     rzzr r
dr

d
                                                                            (C.7) 

Differentiating the right-hand side of equation (C.7) and make some rearrangement yields 

     rzr
dr

d
r    1                                                                            (C.8) 

Assuming plane strain condition, since the length of the pipe is large compared to its diameter, 

hence, the axial strain is independent of radius. We can then differentiate equation (C.6c) with 

respect to radius and setting the derivative of ze to zero, to get 
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 Using equation (C.9) in equation (C.8), we obtain 
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Rearranging equation (C.4), we get 
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Comparing these two expressions for the difference between the radial and hoop stresses, it can be 

deduced that 
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integrating this to give 
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where for convenience, 2C is used as constant of integration. 

 

From equation (C.12), 
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Putting equation (C.13) into equation (C.11) yields 
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Integrating equation (C.14) gives 
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Substituting equation (C.14) into equation (C.13) to obtain                                                                         
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Further analysis of the foregoing equations is subject to the following boundary conditions viz: 

iir Rratp    (internal radius)                                                                              (C.17a) 

 0)( Rratp totaler  (external radius)                                                                      (C.17b) 

 

Equations. (C.17) enable us to rewrite equations (C.15 & C.16) respectively as 
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Subtracting equation (C.18b) from equation (C.18a) gives 
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Using equation (C.19) in equation (C.18a), we obtain 
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Substituting equations (C.19 and C.20) into equations (C.15 and C.16) yields 
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APPENDIX D 

                                                         MATLAB PROGRAMS 

 

D.1 Matlab Program for Pipe Sitting on the Seabed (Chapter 3) 

 

P0=1.5e8; 

T0=5e8; 

L=600; 

h0=1500; 

c1=1; 

rhow1=0.977; 

rhow2=7850; 

rhow3=980; 

c2=5; 

D0=0.4064; 

D1=0.394; 

E=200e9; 

Ap=pi/4*(D0^2-D1^2); 

A0=pi/4*D1^2; 

m1=rhow1*A0*L; 

m2=rhow2*Ap*L; 

m3=rhow3*pi/4*D0^2*L; 

m=m1+m2; 

M=m+m3; 

P1=10*P0; 

P2=10*P0; 

K0=400; 

I=1.17*10^-5; 

teta0=110; 

teta1=10; 

alpha=1.7e-5; 

u=linspace(0,5,100); 

delta=m1/m; 

delta0=m3/M; 

beta=((T0*L^2)/E*I); 

beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)./u; 

beta3=alpha*beta1*beta2*teta0; 
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beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

U=3; 

beta7=beta1./u; 

beta8=delta0/L; 

C1=(c1*L^2/m*E*I); 

C2=(c2*L^2/m*E*I); 

g0=9.8; 

g=M*g0*L^3/E*I; 

gama=0.2; 

gama1=(P1*A0*L^2/E*I); 

gama2=((P1-P2)*A0*L^2/E*I); 

rhow=1; 

U_w=3; 

k=1; 

h=h0/L; 

betta=(-U_w*coth(k*h)/k) 

deltta=0.25*D0;%not actual 

kb=8; 

Kb=((kb*L^4)/E*I); 

alpha0=(L^4/I); 

u=linspace(0,5,100); 

u1=.5; 

K=pi*(2*(D0/(2*L))-deltta)*(beta8*g*h/L-0.2^2*alpha0*0.03*deltta/2*0.02)*u1; 

KK=K./(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

n=1; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

n1=1; 

n2=2; 

n3=3; 

n4=4; 

n5=5; 
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z=1; 

x=0.5; 

R1=(D1/(2*L)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n1^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n1^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n2^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n2^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n4^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n4^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n5^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n5^2*pi^2)+ Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 
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R1=(D1/2*L); 

r1=0.01; 

r2=0.02; 

r3=0.04; 

r4=0.06; 

r5=0.09; 

u=linspace (0, 5,100); 

Y1=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r2/R1-1/2*r1^2/R1^2+1/3*r2^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r3/R1-1/2*r1^2/R1^2+1/3*r3^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r4/R1-1/2*r1^2/R1^2+1/3*r4^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r5/R1-1/2*r1^2/R1^2+1/3*r5^3/R1^3)); 

figure(1),plot(u,Y1,u,Y2,'m-.',u,Y3,'r*',u,Y4,'bo-',u,Y5,'k*-') 

grid on  

legend('r=0.01','r=0.02','r=0.03','r=0.04','r=0.09') 

n1=2; 

Y1=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r2/R1-1/2*r1^2/R1^2+1/3*r2^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r3/R1-1/2*r1^2/R1^2+1/3*r3^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r4/R1-1/2*r1^2/R1^2+1/3*r4^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r5/R1-1/2*r1^2/R1^2+1/3*r5^3/R1^3)); 

figure(2),plot(u,Y1,u,Y2,'m-.',u,Y3,'r*',u,Y4,'bo-',u,Y5,'k*-') 

grid on  

legend ('r=0.01','r=0.02','r=0.03','r=0.04','r=0.09') 

u=.5; 

beta=((T0*L^2)/E*I); 

beta1= ((E*A0*L^2)/E*I); 

beta2=sqrt (delta)./u; 
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beta3=alpha*beta1*beta2*teta0; 

beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

beta7=beta1./u; 

beta8=delta0/L; 

z=linspace(-1,0,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n1^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n1^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n2^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n2^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n4^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n4^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n5^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n5^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 
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alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 

U=5; 

x=0 

Y1=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F1*cos(n1*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F2*cos(n1*pi*x))-3.1e-

6*z*U)*(r2/R1-1/2*r2^2/R1^2+1/3*r2^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F3*cos(n1*pi*x))-3.1e-

6*z*U)*(r3/R1-1/2*r3^2/R1^2+1/3*r3^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F4*cos(n1*pi*x))-3.1e-

6*z*U)*(r4/R1-1/2*r4^2/R1^2+1/3*r4^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F5*cos(n1*pi*x))-3.1e-

6*z*U)*(r5/R1-1/2*r5^2/R1^2+1/3*r5^3/R1^3)); 

figure(3),plot(z,Y1,z,Y2,'m-.',z,Y3,'r*',z,Y4,'bo-',z,Y5,'k*-') 

grid on  

legend('r=0.1','r=0.2','r=0.3','r=0.4','r=0.9') 

z=linspace(-1,1,100); 

Y1=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F1*cos(n1*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F2*cos(n1*pi*x))-3.1e-

6*z*U)*(r2/R1-1/2*r2^2/R1^2+1/3*r2^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F3*cos(n1*pi*x))-3.1e-

6*z*U)*(r3/R1-1/2*r3^2/R1^2+1/3*r3^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F4*cos(n1*pi*x))-3.1e-

6*z*U)*(r4/R1-1/2*r4^2/R1^2+1/3*r4^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F5*cos(n1*pi*x))-3.1e-

6*z*U)*(r5/R1-1/2*r5^2/R1^2+1/3*r5^3/R1^3)); 

figure(4),plot(z,Y1,z,Y2,'m-.',z,Y3,'r*',z,Y4,'bo-',z,Y5,'k*-') 

grid on 

legend('r=0.1','r=0.2','r=0.3','r=0.4','r=0.9') 

z=1; 

x=linspace(0,1,100); 

Y1=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n2^2*pi^2*(1+(-1)^n2+1)*KK*F2*cos(n2*pi*x))-3.1e-

6*z*U)*(r2/R1-1/2*r2^2/R1^2+1/3*r2^3/R1^3)); 
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Y3=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n3^2*pi^2*(1+(-1)^n3+1)*KK*F3*cos(n3*pi*x))-3.1e-

6*z*U)*(r3/R1-1/2*r3^2/R1^2+1/3*r3^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n4^2*pi^2*(1+(-1)^n4+1)*KK*F4*cos(n4*pi*x))-3.1e-

6*z*U)*(r4/R1-1/2*r4^2/R1^2+1/3*r4^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F5*cos(n5*pi*x))-3.1e-

6*z*U)*(r5/R1-1/2*r5^2/R1^2+1/3*r5^3/R1^3)); 

figure(5),plot(x,Y1,x,Y2,'m-.',x,Y3,'r*',x,Y4,'bo-',x,Y5,'k*-') 

grid on  

legend('r=0.1','r=0.2','r=0.3','r=0.4','r=0.9') 

U=5; 

n1=2; 

n2=4; 

n3=6; 

n4=8; 

n5=10; 

z=1; 

K=pi*(2*(D0/(2*L))-deltta)*(beta8*g*h/L-0.2^2*alpha0*0.03*deltta/2*0.02)*u1; 

KK=K./(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

x=linspace(0,1,100); 

Y1=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK.*F1*cos(n1*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n2^2*pi^2*(1+(-1)^n2+1).*KK.*F2*cos(n2*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n3^2*pi^2*(1+(-1)^n3+1).*KK.*F3*cos(n3*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n4^2*pi^2*(1+(-1)^n4+1).*KK.*F4*cos(n4*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F5*cos(n5*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

figure(55),plot(x,Y1,x,Y2,'m-.',x,Y3,'r*',x,Y4,'bo-',x,Y5,'k*-') 

grid on  

legend('n=1','n=3','n=5','n=7','n=9') 

U=5; 

n1=1; 

n2=4; 

n3=6; 

n4=8; 

n5=10; 

z=1; 
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x=linspace(0,1,100); 

Y1=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK*F1*cos(n1*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n2^2*pi^2*(1+(-1)^n2+1).*KK*F2*cos(n2*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r2^2/R1^2+1/3*r1^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n3^2*pi^2*(1+(-1)^n3+1).*KK*F3*cos(n3*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r3^2/R1^2+1/3*r1^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n4^2*pi^2*(1+(-1)^n4+1).*KK*F4*cos(n4*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r4^2/R1^2+1/3*r1^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK*F5*cos(n5*pi*x))-3.1e-

6*z*U)*(r1/R1-1/2*r5^2/R1^2+1/3*r1^3/R1^3)); 

figure(66),plot(x,Y1,x,Y2,'m-.',x,Y3,'r*',x,Y4,'bo-',x,Y5,'k*-') 

grid on  

legend('n=2','n=4','n=6','n=8','n=10'),axis([0,1,0,30]) 

Y1=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r1/R1)); 

Y2=abs((alpha0*((z.^2+(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK*F2*cos(n1*pi*x))-3.1e-6*z*u)*(r1/R1)); 

figure(77),plot(x,Y1,x,Y2,'r-o') 

grid on  

legend('burst pressure','buckling pressure') 

n1=2; 

x=0.5; 

u=5; 

z=linspace(-1,1,100); 

alpha0=(L^4/I); 

xi=linspace(0,1,100); 

yi=linspace(0,1,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n1^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n1^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

[xxi,yyi]=meshgrid(xi,yi) 

zzi=4*((2/sqrt(3))*alpha0*((xxi.^2+(D1/(2*L)))*xxi)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1.*cos(n1*pi*yyi)) 

figure(6),mesh(xxi,yyi,zzi) 

u=5; 

delta1=0.1; 
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delta2=0.2; 

delta3=0.3; 

delta4=0.4; 

delta5=0.5; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta21=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta22=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

eta32=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

eta42=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

eta52=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

eta62=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta22=eta22/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

Eta32=eta32/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

Eta42=eta42/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

Eta52=eta52/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

Eta62=eta62/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha11=(Eta21/2+i*sqrt(Eta22-Eta21.^2./4)); 

alpha12=(Eta21/2+i*sqrt(Eta32-Eta21.^2./4)); 

alpha13=(Eta21/2+i*sqrt(Eta42-Eta21.^2./4)); 

alpha14=(Eta21/2+i*sqrt(Eta52-Eta21.^2./4)); 

alpha15=(Eta21/2+i*sqrt(Eta62-Eta21.^2./4)); 

alpha21=(Eta21/2-i*sqrt(Eta22-Eta21.^2./4)); 

alpha22=(Eta21/2-i*sqrt(Eta32-Eta21.^2./4)); 

alpha23=(Eta21/2-i*sqrt(Eta42-Eta21.^2./4)); 

alpha24=(Eta21/2-i*sqrt(Eta52-Eta21.^2./4)); 

alpha25=(Eta21/2-i*sqrt(Eta62-Eta21.^2./4)); 

F11=(1./(alpha11.*alpha21)); 

F21=(1./(alpha12.*alpha22)); 

F31=(1./(alpha13.*alpha23)); 

F41=(1./(alpha14.*alpha24)); 

F51=(1./(alpha15.*alpha25)); 

z=linspace(0,1,100); 

x=0; 

Y1=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F11*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F21*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F31*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 
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Y4=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F41*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F51*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

figure(7),plot(z,Y1,z,Y2,'m-.',z,Y3,'r*',z,Y4,'bo-',z,Y5,'k*-') 

grid on  

legend('\delta=0.1','\delta=0.2','\delta=0.3','\delta=0.4','\delta=0.5') 

x=.5; 

u=5; 

z=linspace(-1,1,100); 

Y1=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F11*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F21*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F31*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F41*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F51*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

figure(8),plot(z,Y1,z,Y2,'m-.',z,Y3,'r*',z,Y4,'bo-',z,Y5,'k*-') 

grid on  

legend('\delta=0.1','\delta=0.2','\delta=0.3','\delta=0.4','\delta=0.5') 

Y1=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F11*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F21*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F31*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F41*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z.^2+(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK.*F51*cos(n5*pi*x))-3.1e-

6*z*u)*(r1/R1-1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

figure(9),plot(z,Y1,z,Y2,'m-.',z,Y3,'r*',z,Y4,'bo-',z,Y5,'k*-') 

grid on  

legend('\delta=0.1','\delta=0.2','\delta=0.3','\delta=0.4','\delta=0.5') 

z=1; 

x=0; 

r=linspace(0.1,.9,100); 
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Y1=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F11*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F21*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F31*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F41*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F51*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

figure(10),plot(r,Y1,r,Y2,'p',r,Y3,'r*',r,Y4,'bo-',r,Y5,'k*-') 

grid on  

legend('\delta=0.1','\delta=0.2','\delta=0.3','\delta=0.4','\delta=0.5') 

Y1=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F11*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F21*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y3=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F31*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y4=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F41*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

Y5=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F51*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2/R1^2+1/3*r.^3/R1^3)); 

figure(11),plot(r,Y1,r,Y2,'p',r,Y3,'r*',r,Y4,'bo-',r,Y5,'k*-') 

grid on  

legend('\delta=0.1','\delta=0.2','\delta=0.3','\delta=0.4','\delta=0.5') 

n1=1; 

n2=2; 

n3=3; 

n4=4; 

alpha0=(L^4/I); 

Y1=(abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK*F11*cos(n1*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2./R1^2+1/3*r.^3./R1^3))); 

Y21=(abs((alpha0*((z.^2-(D1/(2*L))*z).*n1^2*pi^2*(1+(-1)^n1+1).*KK*F11*cos(n1*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3))); 

Y22=(abs((alpha0*((z.^2-(D1/(2*L))*z).*n2^2*pi^2*(1+(-1)^n2+1).*KK*F11*cos(n2*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3))); 

Y23=(abs((alpha0*((z.^2-(D1/(2*L))*z).*n3^2*pi^2*(1+(-1)^n3+1).*KK*F11*cos(n3*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3))); 
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Y24=(abs((alpha0*((z.^2-(D1/(2*L))*z).*n4^2*pi^2*(1+(-1)^n4+1).*KK*F11*cos(n4*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3))); 

figure(12),plot(r,Y1,'k*-',r,Y21,'r',r,Y22,'g*-',r,Y23,'bo-',r,Y24,'+-'),axis([1,8,1,7]) 

grid on  

xlabel('r') 

ylabel('p') 

legend('burst pressure,n=1','buckling pressure,n=1','buckling pressure,n=2','buckling pressure,n=3','buckling 

pressure,n=4') 

n5=2; 

Y1=abs((alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK*F51*cos(n5*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z.^2-(D1/(2*L))*z).*n5^2*pi^2*(1+(-1)^n5+1).*KK*F51*cos(n5*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

figure(13),plot(r,Y1,r,Y2,'k*-') 

grid on  

legend('buckling pressure','burst pressure ') 

u=linspace(0,5,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n1^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n5^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n2^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n5^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

r1=0.1; 

r2=0.1;; 

n1=1; 

u=linspace(0,5,100); 

Y1=abs((alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-6*z*u)*(r1/R1-

1/2*r1^2/R1^2+1/3*r1^3/R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r2/R1-1/2*r1^2/R1^2+1/3*r2^3/R1^3)); 
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figure(14),plot(u,Y1,u,Y2,'ro-') 

grid on  

legend('buckling pressure','burst pressure ') 

x=[0 2 6 10 ]; 

y=[0.038/0.0325 0.0382/0.0327 0.0384/0.0329 0.042/0.0325 ] 

xx=linspace(0,5,100); 

yy1=spline(x, y, xx) 

figure(15),plot(xx,yy1) 

grid on  

x=[0 2 6 10 ]; 

y=[4.22/3.68 4.25/3.69 4.38/3.78 4.65/4.08 ] 

xx=linspace(0,10,100); 

yy2=spline(x, y, xx) 

figure(16),plot(xx,yy2) 

grid on  

figure(17),plot(xx,yy1,xx,yy2,'r*-') 

legend('pipe thickness =0.9','pipe thickness =0.1 ') 

grid on  

xlabel( 'Normalised flow velocity') 

ylabel ( 'Ratio of burst to buckling pressure')    

x=0; 

z=1; 

u=5; 

n1=1; 

r=linspace(0,0.9,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n4^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n4^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

Y1=abs((alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

figure(18),plot(r,Y1,'ro-',r,Y2,'k*-') 

grid on 
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legend('buckling pressure','burst pressure') 

x=[0.1 0.3 0.5 0.7 ]; 

y=[0.0098/0.095 0.025/0.024 0.048/0.04 0.065/0.058 ] 

xx=linspace(0.1,0.88,100); 

yy1=spline(x, y, xx) 

figure(19),plot(xx,yy1) 

grid on  

x=0; 

z=1; 

u=8; 

n1=1; 

r=linspace(0,0.9,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n4^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n4^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

Y1=abs((alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

figure(20),plot(r,Y1,'ro-',r,Y2,'k*-') 

grid on 

legend('buckling pressure','burst pressure') 

x=[0.1 0.3 0.5 0.7 ]; 

y=[0.011/0.01 0.032/0.029 0.058/0.048 0.078/0.068 ] 

xx=linspace(0.1,0.88,100); 

yy2=spline(x, y, xx) 

figure(21),plot(xx,yy2) 

x=0; 

z=1; 

u=10; 

n1=1; 

r=linspace(0,0.9,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n4^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n4^2*pi^2) + Kb); 



 

143 
 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

Y1=abs((alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-6*z*u)*(r./R1-

1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

Y2=abs((2/sqrt(3)*alpha0*((z^2-(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u)*(r./R1-1/2*r.^2./R1^2+1/3*r.^3./R1^3)); 

figure(22),plot(r,Y1,'ro-',r,Y2,'k*-') 

grid on 

legend('buckling pressure','burst pressure') 

x=[0.1 0.3 0.5 0.7 ]; 

y=[0.016/0.015 0.04/0.038 0.064/0.05 0.088/0.068 ] 

xx=linspace(0.1,0.88,100); 

yy3=spline(x, y, xx) 

figure(23),plot(xx,yy3) 

figure(24),plot(xx,yy2,xx,yy3,'ro-') 

grid on  

xlabel( 'Normalised pipe thickness') 

ylabel ( 'Ratio of burst to buckling pressure') 

legend('normalised flow velocity=8','normalised flow velocity=10') 

x=[0.1 0.3 0.5 0.7 ]; 

y=[0.045/0.043 0.14/0.12 0.23/0.18 0.29/0.252 ] 

xx=linspace(0.1,0.88,100); 

yy4=spline(x, y, xx) 

x=[0.1 0.3 0.5 0.7 ]; 

y=[0.05101/0.048 0.058/0.051 0.125/0.120 0.167/0.135 ] 

xx=linspace(0.1,0.88,100); 

yy5=spline(x, y, xx) 

figure(25),plot(xx,yy4,xx,yy5,'ro-') 

grid on  

xlabel( 'Normalised pipe thickness') 

ylabel ( 'Ratio of burst to buckling pressure') 

legend('normalised flow velocity=8','normalised flow velocity=10') 

u=10; 

beta=((T0*L^2)/E*I); 

beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)./u; 

beta3=alpha*beta1*beta2*teta0; 
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beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

beta7=beta1./u; 

beta8=delta0/L; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 
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z=-1; 

x=0.5; 

u=.5; 

u2=u; 

t=linspace(0,.01,100) 

R1=(D1/(2*L)) 

Y1=abs((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*pi^2*KK*F1*cos(-pi*x)))-(-3.1e-6*u2*z*t./R1.^2)); 

YY1=abs((-2*z*t./R1^2)) 

figure(26),plot(t,Y1,t,YY1,'-o') 

grid on  

n1=1; 

n2=3; 

n3=5; 

n4=7; 

n5=9; 

beta=((T0*L^2)/E*I); 

beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)./u; 

beta3=alpha*beta1*beta2*teta0; 

beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

beta7=beta1./u; 

beta8=delta0/L; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 
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Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 

YZ1=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ2=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n2^2*pi^2*(1+(-1)^n2+1)*KK*F2*cos(n2*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ3=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n3^2*pi^2*(1+(-1)^n3+1)*KK*F3*cos(n3*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ4=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n4^2*pi^2*(1+(-1)^n4+1)*KK*F4*cos(n4*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ5=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F5*cos(n5*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

figure(27),plot(t,YZ1,t,YZ2,'-*',t,YZ3,'-.',t,YZ4,'k--',t,YZ5,'b*',t,YY1,'r-o') 

legend('n=1','n=3','n=5','n=7','n=9','Barlow Equation') 

grid on  

n1=2; 

n2=4; 

n3=6; 

n4=8; 

n5=10; 

beta=((T0*L^2)/E*I); 
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beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)./u; 

beta3=alpha*beta1*beta2*teta0; 

beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

beta7=beta1./u; 

beta8=delta0/L; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 
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Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 

YZ1=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ2=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n2^2*pi^2*(1+(-1)^n2+1)*KK*F2*cos(n2*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ3=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n3^2*pi^2*(1+(-1)^n3+1)*KK*F3*cos(n3*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ4=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n4^2*pi^2*(1+(-1)^n4+1)*KK*F4*cos(n4*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ5=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F5*cos(n5*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

figure(28),plot(t,YZ1,t,YZ2,'-v',t,YZ3,'-.',t,YZ4,'k--.',t,YZ5,'b-*',t,YY1,'r-o') 

legend('n=2','n=4','n=6','n=8','n=10','Barlow Equation') 

grid on  

n1=1; 

t=0.01; 

x=linspace(0,1,100); 

YZ1=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

Y1=abs((2/sqrt(3)*alpha0*((z^2+(D1/(2*L))*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))-3.1e-

6*z*u2)*(t/R1)); 

figure(29),plot(x,YZ1,'r-o',x,Y1,'b-*') 

legend('Computation with Barlow Equation', 'Computation with Staat and Duckhovic Equation') 

grid on  

n1=1; 

n2=3; 

n3=5; 

beta=((T0*L^2)/E*I); 

beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)./u; 

beta3=alpha*beta1*beta2*teta0; 

beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

beta7=beta1./u; 

beta8=delta0/L; 
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eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 

YZ1=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ2=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n2^2*pi^2*(1+(-1)^n2+1)*KK*F2*cos(n2*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 
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YZ3=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n3^2*pi^2*(1+(-1)^n3+1)*KK*F3*cos(n3*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ4=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n4^2*pi^2*(1+(-1)^n4+1)*KK*F4*cos(n4*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ5=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F5*cos(n5*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

figure(30),plot(x,YZ1,x,YZ2,'-v',x,YZ3,'r-*') 

legend( 'n=1','n=3','n=5') 

grid on  

n1=2; 

n2=4; 

n3=6; 

beta=((T0*L^2)/E*I); 

beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)./u; 

beta3=alpha*beta1*beta2*teta0; 

beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 

beta7=beta1./u; 

beta8=delta0/L; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F1=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F2=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 
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alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F3=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F4=(1./(alpha1.*alpha2)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

eta2=((n^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n^2*pi^2) + Kb); 

Eta2=eta2/(1-pi*(2*(D0/(2*L))-deltta)*beta8*betta); 

alpha1=(Eta1/2+i*sqrt(Eta2-Eta1.^2./4)); 

alpha2=(Eta1/2-i*sqrt(Eta2-Eta1.^2./4)); 

F5=(1./(alpha1.*alpha2)); 

YZ1=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n1^2*pi^2*(1+(-1)^n1+1)*KK*F1*cos(n1*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ2=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n2^2*pi^2*(1+(-1)^n2+1)*KK*F2*cos(n2*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ3=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n3^2*pi^2*(1+(-1)^n3+1)*KK*F3*cos(n3*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ4=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n4^2*pi^2*(1+(-1)^n4+1)*KK*F4*cos(n4*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

YZ5=abs(((4/sqrt(3)*t./R1*alpha0.*((z^2-R1*z)*n5^2*pi^2*(1+(-1)^n5+1)*KK*F5*cos(n5*pi*x))))-(3.1e-

6*u2*z*t./R1^2)); 

figure(31),plot(x,YZ1,x,YZ2,'-v',x,YZ3,'r-*') 

legend('n=2','n=4','n=6') 

grid on 
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D.2 Matlab Program for Pipe Partially/Fully Buried on the Seabed (Chapter 4) 

 

P=1.5e7; 

P0=1.25e4; 

T0=5e8; 

L=6; 

h0=1500; 

c1=1; 

rhow1=977; 

rhow2=7850; 

rhow3=980; 

c2=5; 

D0=0.4064; 

D1=0.394; 

E=200e9; 

Ap=pi/4*(D0^2-D1^2); 

A0=pi/4*D1^2; 

m1=rhow1*A0*L; 

m2=rhow2*Ap*L; 

m3=rhow3*pi/4*D0^2*L; 

m=m1+m2; 

M=m+m3; 

P1=10*P0; 

P2=5*P0; 

K0=400; 

I=1.561*10^-4; 

teta0=110; 

teta1=10; 

alpha=1.7e-5; 

u=5; 

delta=m1/m; 

delta0=m3/M; 

beta=((T0*L^2)/E*I); 

beta1=((E*A0*L^2)/E*I); 

beta2=sqrt(delta)/u; 

beta3=alpha*beta1*beta2*teta0; 

beta4=alpha*beta1*beta2*teta1; 

beta5=(alpha*beta1*teta0); 

beta6=(alpha*beta1*teta1); 
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U=3; 

beta7=beta1/u; 

beta8=delta0/L; 

C1=(c1*L^2/sqrt(m*E*I)); 

C2=(c2*L^2/sqrt(m*E*I)); 

g0=9.8; 

g=M*g0*L^3/E*I; 

gama=0.2; 

gama1=(P1*A0*L^2/E*I); 

gama2=((P1-P2)*A0*L^2/E*I); 

rhow=1; 

U_w=3; 

k=1; 

h=h0/L; 

betta=(-U_w*coth(k*h)/k) 

kb=8e6; 

Kb=((kb*L^4)/E*I); 

alpha0=(L^4/I); 

R2=(D1/(2*L)); 

sigma=5.2e8; 

sigma0=(sigma*A0*L^2/E*I); 

Pb=(P*A0*L^2/E*I); 

r1=0.2; 

n3=1; 

z=1; 

u=0; 

u1=.2; 

u2=.4; 

u3=.6; 

u4=.8; 

u5=10; 

deltta1=.5; 

delta=.5; 

t=1; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 
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alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

F3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K2=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u2)/(2*0.02))])); 

K3=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u3)/(2*0.02))])); 

K4=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u4)/(2*0.02))])); 

K1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

tau1=-3.1e-6*z*u; 

tau2=-3.1e-6*z*u; 

tau3=-3.1e-6*z*u; 

tau4=-3.1e-6*z*u; 

x=linspace(0,1,100); 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*x-12)-(z/R2)*tau1)); 

Y2=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK2.*F3)*(24*x-12)-(z/R2)*tau2)); 

Y3=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK3.*F3)*(24*x-12)-(z/R2)*tau3)); 

Y4=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK4.*F3)*(24*x-12)-(z/R2)*tau4)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

YY3=1+Y3./sigma0; 

YY4=1+Y4./sigma0; 

figure(1),plot(x,YY1,'go-',x,YY2','o-',x,YY3,'-*',x,YY4,'>-m') 

grid on 

legend('u=0.2','u=0.4','u=0.6','u=0.8') 

figure(2),plot(YY1,x,YY2,x,YY3,x,YY4,x) 

grid on 

legend('u=0.2','u=0.4','u=0.6','u=0.8') 

D0=0.4064; 

deltta1=0.25; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 
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alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF31=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

deltta2=0.50; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta2])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta2])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF32=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

deltta3=0.75; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta3])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta3])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF33=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

deltta4=0.999; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta4])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta4])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF33=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K2=((pi*[(D0/L)-deltta2]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta2*u2)/(2*0.02))])); 

K3=((pi*[(D0/L)-deltta3]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta3*u3)/(2*0.02))])); 

K4=((pi*[(D0/L)-deltta4]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta4*u4)/(2*0.02))])); 
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KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta2])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta3])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta4])]*(beta8*betta)); 

tau1=-3.1e-6*z*u; 

tau2=-3.1e-6*z*u; 

tau3=-3.1e-6*z*u; 

tau4=-3.1e-6*z*u; 

x=linspace(0,1,100); 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*x-12)-(z/R2)*tau1)); 

Y2=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK2.*F3)*(24*x-12)-(z/R2)*tau2)); 

Y3=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK3.*F3)*(24*x-12)-(z/R2)*tau3)); 

Y4=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK4.*F3)*(24*x-12)-(z/R2)*tau3)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

YY3=1+Y3./sigma0; 

YY4=1+Y4./sigma0; 

figure(3),plot(x,YY1,'go-',x,YY2','o-',x,YY3,'-*',x,YY4,'mo-.') 

grid on  

legend('\delta_s=0.25D_0','\delta_s=0.50D_0','\delta_s=0.75D_0','\delta_s=D_0') 

U1=.2; 

U2=.4; 

U3=.6; 

U4=.8; 

deltta1=.5; 

deltta=.5; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*U1.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF31=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

U1=U2; 
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eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*U1.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF32=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

U1=U3; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*U1.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF33=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

U1=U4; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*U1.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF34=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

u1=5; 

K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K2=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K3=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K4=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

tau1=-3.1e-6*z*U1; 
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tau2=-3.1e-6*z*U2; 

tau3=-3.1e-6*z*U3; 

tau4=-3.1e-6*z*U4; 

x=linspace(0,1,100); 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*FF31)*(24*x-12)-(z/R2)*tau1)); 

Y2=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK2.*FF32)*(24*x-12)-(z/R2)*tau2)); 

Y3=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK3.*FF33)*(24*x-12)-(z/R2)*tau3)); 

Y4=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK4.*FF34)*(24*x-12)-(z/R2)*tau4)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

YY3=1+Y3./sigma0; 

YY4=1+Y4./sigma0; 

figure(4),plot(YY1,x,YY2,x,'o-',YY3,x,'-*',YY4,x,'.-') 

grid on 

legend('U=0.2 m/s','U=0.4 m/s','U=0.6 m/s','U=0.8 m/s') 

figure(5),plot(x,YY1,x,YY2,'o-',x,YY3,'-*',x,YY4,'.-') 

grid on 

legend('U=0.2 m/s','U=0.4 m/s','U=0.6 m/s','U=0.8 m/s') 

u1=.2; 

u2=.4; 

u3=.6; 

u4=.8; 

deltta1=.5; 

deltta= .5; 

u=5; 

t=linspace(0,1,100); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))] 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1.*exp(-alpha2*t))-(alpha2.*exp(-alpha1*t))); 

GG3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

F3=(H31+(GG3.*HH31)); 
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K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K2=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u2)/(2*0.02))])); 

K3=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u3)/(2*0.02))])); 

K4=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u4)/(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

tau1=-3.1e-6*z*u; 

tau2=-3.1e-6*z*u; 

tau3=-3.1e-6*z*u; 

tau4=-3.1e-6*z*u; 

x=1; 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*x-12)-(z/R2)*tau1)); 

Y2=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK2.*F3)*(24*x-12)-(z/R2)*tau2)); 

Y3=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK3.*F3)*(24*x-12)-(z/R2)*tau3)); 

Y4=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK4.*F3)*(24*x-12)-(z/R2)*tau4)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

YY3=1+Y3./sigma0; 

YY4=1+Y4./sigma0; 

figure(7),plot(t,YY1,t,YY2,'o-',t,YY3,'-*',t,YY4,'.-') 

grid on 

legend('u=0.2','u=0.4','u=0.6','u=0.8') 

n1=1; 

u1=.2; 

deltta1=.5; 

deltta= .5; 

t=linspace(0,1.5,100); 

xi=t; 

yi=linspace(0,1,100); 

[xxi,yyi]=meshgrid(xi,yi); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))] 
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alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1.*exp(-alpha2*xxi))-(alpha2.*exp(-alpha1*xxi))); 

GG3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

F3=(H31+(GG3.*HH31)); 

K1=((pi*[(D0/L)-deltta]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

tau1=-3.1e-6*z*u1; 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Z1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2+R2*z)*n1^4*pi^4*KK1.*F3).*((([1-2*yyi])./8))-z/R2*tau1)); 

figure(8),mesh(xxi,yyi,Z1,'Facecolor','white','Edgecolor','green','Facelighting','none','Edgelighting','flat') 

deltta1=linspace(0,1,100); 

u1=.2; 

u2=.4; 

u3=.6; 

u4=.8; 

t=2; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))] 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1.*exp(-alpha2*t))-(alpha2.*exp(-alpha1*t))); 

GG3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

F3=(H31+(GG3.*HH31)); 

K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)./(2*0.02))])); 

K2=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u2)./(2*0.02))])); 

K3=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u3)./(2*0.02))])); 

K4=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u4)./(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

n1=2; 

tau1=-3.1e-6*z*u; 

tau2=-3.1e-6*z*u; 
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tau3=-3.1e-6*z*u; 

tau4=-3.1e-6*z*u; 

x=.85; 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*x-12)-(z/R2)*tau1)); 

Y2=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK2.*F3)*(24*x-12)-(z/R2)*tau2)); 

Y3=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK3.*F3)*(24*x-12)-(z/R2)*tau3)); 

Y4=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK4.*F3)*(24*x-12)-(z/R2)*tau4)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

YY3=1+Y3./sigma0; 

YY4=1+Y4./sigma0; 

figure(9),plot(deltta1,YY1,'go-',deltta1,YY2,'o-',deltta1,YY3,'-*',deltta1,YY4,'.-') 

grid on 

legend('u=0.2','u=0.4','u=0.6','u=0.8') 

u1=0.2; 

t=linspace(0,2,100); 

xi=t; 

yi=linspace(0,1,100); 

[xxi,yyi]=meshgrid(xi,yi); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-yyi])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-yyi])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))] 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1.*exp(-alpha2*xxi))-(alpha2.*exp(-alpha1*xxi))); 

GG3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

F3=abs(H31+(GG3.*HH31)); 

K1=((pi*[(D0/L)-yyi]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*yyi*u1)./(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-yyi])]*(beta8*betta)); 

tau1=-3.1e-6*z*u1; 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3).*([24*yyi-12])-z/R2*tau1)); 

Z1=1+Y1./sigma0; 

figure(10),mesh(xxi,yyi,Z1,'Facecolor','white','Edgecolor','blue','Facelighting','none','Edgelighting','flat') 
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n3=1; 

r1=0.2; 

z=1; 

u=5; 

delta=.5; 

t=1; 

D0=0.4064; 

D1=0.394; 

R2=(D1/(2*L)); 

deltta1=0.25; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF31=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

deltta2=0.50; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta2])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta2])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF32=(1./((alpha1.*alpha2)).*(alpha2-alpha1)) 

deltta3=0.75; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta3])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta3])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 
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FF33=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

deltta4=0.999; 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta4])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta4])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))]; 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1*exp(-alpha2*t))-(alpha2*exp(-alpha1*t))); 

FF33=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)/(2*0.02))])); 

K2=((pi*[(D0/L)-deltta2]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta2*u2)/(2*0.02))])); 

K3=((pi*[(D0/L)-deltta3]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta3*u3)/(2*0.02))])); 

K4=((pi*[(D0/L)-deltta4]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta4*u4)/(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta2])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta3])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta4])]*(beta8*betta)); 

tau1=-3.1e-6*z*u; 

tau2=-3.1e-6*z*u; 

tau3=-3.1e-6*z*u; 

tau4=-3.1e-6*z*u; 

L=linspace(0,10,100); 

g=(r1/R2); 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1.*exp(-alpha2*t))-(alpha2.*exp(-alpha1*t))); 

GG3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

F3=(H31+(GG3.*HH31)); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*L-12)-(z/R2)*tau1)); 

Y2=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK2.*F3)*(24*L-12)-(z/R2)*tau2)); 

Y3=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK3.*F3)*(24*L-12)-(z/R2)*tau3)); 

Y4=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK4.*F3)*(24*L-12)-(z/R2)*tau3)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

YY3=1+Y3./sigma0; 

YY4=1+Y4./sigma0; 

figure(11),plot(L,YY1,'go-',L,YY2','o-',L,YY3,'-*',L,YY4,'mo-.') 
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grid on  

legend('\delta_s=0.25D_0','\delta_s=0.50D_0','\delta_s=0.75D_0','\delta_s=D_0') 

deltta1=linspace(0,1,100); 

L=6; 

u=3; 

u1=.2; 

u2=.4; 

u3=.6; 

u4=.8; 

t=1; 

z=1; 

n3=1; 

x=1; 

delta=0.5; 

D0=0.4064; 

D1=0.394; 

R2=(D1/(2*L)); 

eta1=(C1+C2-beta4*(1-0.5*gama)-beta3*gama-gama2*beta2*(1-0.5*gama)-beta4*(1-0.5*gama)); 

Eta1=eta1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

eta2=[((n3^4*pi^4)-((3*sqrt(delta)*u.^2-beta+gama1*(1-0.5*gama))+beta5*(1-0.5*gama))*(n3^2*pi^2) + Kb)]; 

Eta2=eta2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

alpha1=[(Eta1./2+i*sqrt(Eta2-Eta1.^2./4))] 

alpha2=[(Eta1./2-i*sqrt(Eta2-Eta1.^2./4))]; 

H31=(1./(alpha1.*alpha2)); 

HH31=((alpha1.*exp(-alpha2*t))-(alpha2.*exp(-alpha1*t))); 

GG3=(1./((alpha1.*alpha2)).*(alpha2-alpha1)); 

F3=(H31+(GG3.*HH31)); 

K1=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u1)./(2*0.02))])); 

K2=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u2)./(2*0.02))])); 

K3=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u3)./(2*0.02))])); 

K4=((pi*[(D0/L)-deltta1]).*([(beta8*g*(h/L))-((0.2^2*alpha0*0.03*deltta1*u4)./(2*0.02))])); 

KK1=K1./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK2=K2./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK3=K3./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

KK4=K4./([1-pi*([(D0/L)-deltta1])]*(beta8*betta)); 

n1=2; 

tau1=-3.1e-6*z*u; 

tau2=-3.1e-6*z*u; 

tau3=-3.1e-6*z*u; 
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tau4=-3.1e-6*z*u; 

g=(r1/R2); 

H=(g-(1/2*g^2)+(1/3*g^3)); 

Y1=abs((-2/sqrt(3)*H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*x-12)-(z/R2)*tau1)); 

Y2=abs((-H*((alpha0/2)*(z^2-R2*z)*KK1.*F3)*(24*x-12)-(z/R2)*tau1)); 

YY1=1+Y1./sigma0; 

YY2=1+Y2./sigma0; 

Z1=YY1./YY2; 

figure(12),plot(deltta1,Z1,'go-') 

grid on 
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D.3 Matlab Program for Pipe Sitting on the Seabed (Chapter 5) 

 

clc 

clear 

format long 

ti=0.02; 

L=2000; 

R=0.197; 

R1=R/L; 

j=0.1*R1; 

R0=R1+j; 

n=1; 

C1=0.2; 

Cd=0.1; 

y=0.1; 

a=1.1*10^-6; 

g=10; 

h=1000; 

rhof=980; 

rhop=7500; 

rhow=977; 

E=207*10^9; 

T0=1*10^6; 

theta=110; 

dtheta=50; 

p=1.5e7; 

dp=(1/6)*p; 

K=10; 

k=0.1; 

Uw=0.5; 

t=50; 

v=0.3; 

SIGy=4000000; 

U=5; 

A1=pi*R1^2; 

A0=pi*R0^2; 

I=1.17e-5; 

mf=rhof*A1; 

mp=rhop*(A0-A1); 
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mw=rhow*A0; 

m=mp+mf; 

M=m+mw; 

hb=h/L; 

tau=L^2/sqrt(m/E*I); 

tb=t/tau; 

Ub=U*L*sqrt(mf/(E*I)); 

R1b=R1/L; 

R0b=R0/L; 

d=mf/m; 

d1=mw/M; 

b=T0*L^2/(E*I); 

b1=A0*L^2/I; 

b2=sqrt(d)./Ub; 

b3=a*b1*b2*theta; 

b4=a*b1*b2*dtheta; 

b5=a*b1*theta; 

b6=a*b1*dtheta; 

b7=b1./Ub; 

b8=d1/L; 

C1b=C1*L^2/sqrt(m*E*I); 

Cdb=Cd*L^2/sqrt(m*E*I); 

gb=M*g*L^3/(E*I); 

apr=L^4/I; 

rhob=rhof*L^5/(E*I*tau); 

Kb=K*L^4/(E*I); 

B1=-Uw*coth(k*hb)/k; 

x=0.6;    

gam=(x/45)-(2*x.^3/9)+(x.^4/3)-(2*x.^5/15); 

et1=((C1b+Cdb-b4*(1-y/2)-b3*y-dp*A0*(1-y/2)-b2*p*A0*y)/(1-d1*B1)); 

et2=((n^4*pi^4-(3*sqrt(d)*Ub.^2-b+b5*(1-y/2)+p*A0*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1)); 

a1=((et1/2)-i*sqrt(et2.^2-et1.^2/4)); 

a2=((et1/2)+i*sqrt(et2.^2-et1.^2/4)); 

tb=linspace (0,0. 01,100);  

Ft=(1./(a1.*a2)+(1./(a1.*a2.*(a2-a1))).*(a1.*exp(-a2.*tb)-a2.*exp(-a1.*tb))); 

F1t= (a2.*exp(-a2.*tb)-a1.*exp(-a1.*tb))./(a2-a1); 

pe=-d1*(((B1*d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*Ft +hb*gb); 

rhoar=rhof*((d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*F1t; 
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%D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))/(R1.^2-R0.^2).^2)); 

D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))./(ti.^2*(R1+R0).^2))); 

%Q=(R0.^2./(R1.^2-R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(R1.^2-R0.^2)); 

Q=(R0.^2./(ti.^2*(R1+R0).^2)).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(ti*(R1+R0))); 

M1=4*pe.*(R0.^2./(-ti*(R1+R0))); 

M2=(R0.^2./(R1.^2+R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v))); 

M3=R0.^2./(ti*(R1+R0)); 

M=M1.*(M3-M2)+M2-SIGy^2; 

pbust1=((-Q+sqrt(Q.^2-4*D*M))/(2*D)); 

pbust2=((-Q-sqrt(Q.^2-4*D*M))/(2*D)); 

t=tb*tau; 

figure(1),plot(t,pbust1,'b.-') 

grid  

figure(2),plot(t,pbust2,'r.-') 

grid  

figure(3),plot(t,pbust1,'b.-',t,pbust2,'r.-') 

%grid  

clc 

clear 

format long 

L=2000; 

R1=1; 

j=0.1*R1; 

R0=R1+j; 

n=1; 

C1=0.2; 

Cd=0.1; 

y=0.1; 

a=1.1*10-6; 

g=10; 

h=1000; 

rhof=980; 

rhop=7500; 

rhow=977; 

E=207*10^9; 

T0=1*10^6; 

theta=110; 

dtheta=50; 

p=1.5e7; 
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dp=(1/6)*p; 

K=10; 

k=0.1; 

Uw=0.5; 

t=50; 

v=0.3; 

SIGy=4000000; 

A1=pi*R1^2; 

A0=pi*R0^2; 

I=pi*((2*R0)^4-(2*R1)^4)/64; 

mf=rhof*A1; 

mp=rhop*(A0-A1); 

mw=rhow*A0; 

m=mp+mf; 

M=m+mw; 

hb=h/L; 

tau=L^2/sqrt(m/E*I); 

tb=t/tau; 

Ub=linspace(0,5,100); 

%Ub=U*L*sqrt(mf/(E*I)); 

R1b=R1/L; 

R0b=R0/L; 

d=mf/m; 

d1=mw/M; 

b=T0*L^2/(E*I); 

b1=A0*L^2/I; 

b2=sqrt(d)./Ub; 

b3=a*b1*b2*theta; 

b4=a*b1*b2*dtheta; 

b5=a*b1*theta; 

b6=a*b1*dtheta; 

b7=b1./Ub; 

b8=d1/L; 

C1b=C1*L^2/sqrt(m*E*I); 

Cdb=Cd*L^2/sqrt(m*E*I); 

gb=M*g*L^3/(E*I); 

apr=L^4/I; 

rhob=rhof*L^5/(E*I*tau); 

Kb=K*L^4/(E*I); 
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B1=-Uw*coth(k*hb)/k; 

x=.6;   % good results obtained at x= 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 

ti=0.0002; 

ti=0.0004; 

ti=0.0006; 

ti=0.0002; 

gam=(x/45)-(2*x.^3/9)+(x.^4/3)-(2*x.^5/15); 

et1=((C1b+Cdb-b4*(1-y/2)-b3*y-dp*A0*(1-y/2)-b2*p*A0*y)/(1-d1*B1)); 

%et1=((C1b+Cdb-b4*(1-y/2)-b3*y)/(1-d1*B1)); 

et2=(n^4*pi^4-(3*sqrt(d)*Ub.^2-b+b5*(1-y/2)+p*A0*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

%et2=(n^4*pi^4-(3*sqrt(d)*Ub^2-b+b5*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

a1=(et1/2)-i*sqrt(et2.^2-et1.^2/4); 

a2=(et1/2)+i*sqrt(et2.^2-et1.^2/4); 

Ft=(1./(a1.*a2)+(1./(a1.*a2.*(a2-a1))).*(a1.*exp(-a2.*tb)-a2.*exp(-a1.*tb))); 

F1t= (a2.*exp(-a2.*tb)-a1.*exp(-a1.*tb))./(a2-a1); 

pe=-d1*(((B1*d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*Ft +hb*gb); 

rhoar=rhof*((d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*F1t; 

%D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))/(R1.^2-R0.^2).^2)); 

D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))./(ti.^2*(R1+R0).^2))); 

%Q=(R0.^2./(R1.^2-R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(R1.^2-R0.^2)); 

Q=(R0.^2./(ti.^2*(R1+R0).^2)).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(ti*(R1+R0))); 

M1=4*pe.*(R0.^2./(-ti*(R1+R0))); 

M2=(R0.^2./(R1.^2+R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v))); 

M3=R0.^2./(ti*(R1+R0)); 

M=M1.*(M3-M2)+M2-SIGy^2; 

pbust1=((-Q+sqrt(Q.^2-4*D.*M))./(2*D)); 

ti=0.0004; 

gam=(x/45)-(2*x.^3/9)+(x.^4/3)-(2*x.^5/15); 

et1=((C1b+Cdb-b4*(1-y/2)-b3*y-dp*A0*(1-y/2)-b2*p*A0*y)/(1-d1*B1)); 

%et1=((C1b+Cdb-b4*(1-y/2)-b3*y)/(1-d1*B1)); 

et2=(n^4*pi^4-(3*sqrt(d)*Ub.^2-b+b5*(1-y/2)+p*A0*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

%et2=(n^4*pi^4-(3*sqrt(d)*Ub^2-b+b5*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

a1=(et1/2)-i*sqrt(et2.^2-et1.^2/4); 

a2=(et1/2)+i*sqrt(et2.^2-et1.^2/4); 

Ft=(1./(a1.*a2)+(1./(a1.*a2.*(a2-a1))).*(a1.*exp(-a2.*tb)-a2.*exp(-a1.*tb))); 

F1t= (a2.*exp(-a2.*tb)-a1.*exp(-a1.*tb))./(a2-a1); 

pe=-d1*(((B1*d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*Ft +hb*gb); 

rhoar=rhof*((d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*F1t; 
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%D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))/(R1.^2-R0.^2).^2)); 

D1=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))./(ti.^2*(R1+R0).^2))); 

%Q=(R0.^2./(R1.^2-R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(R1.^2-R0.^2)); 

Q1=(R0.^2./(ti.^2*(R1+R0).^2)).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(ti*(R1+R0))); 

M11=4*pe.*(R0.^2./(-ti*(R1+R0))); 

M21=(R0.^2./(R1.^2+R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v))); 

M31=R0.^2./(ti*(R1+R0)); 

M1=M11.*(M31-M21)+M21-SIGy^2; 

pbust2=((-Q1+sqrt(Q1.^2-4*D1.*M1))./(2*D1)); 

ti=0.0006; 

gam=(x/45)-(2*x.^3/9)+(x.^4/3)-(2*x.^5/15); 

et1=((C1b+Cdb-b4*(1-y/2)-b3*y-dp*A0*(1-y/2)-b2*p*A0*y)/(1-d1*B1)); 

%et1=((C1b+Cdb-b4*(1-y/2)-b3*y)/(1-d1*B1)); 

et2=(n^4*pi^4-(3*sqrt(d)*Ub.^2-b+b5*(1-y/2)+p*A0*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

%et2=(n^4*pi^4-(3*sqrt(d)*Ub^2-b+b5*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

a1=(et1/2)-i*sqrt(et2.^2-et1.^2/4); 

a2=(et1/2)+i*sqrt(et2.^2-et1.^2/4); 

Ft=(1./(a1.*a2)+(1./(a1.*a2.*(a2-a1))).*(a1.*exp(-a2.*tb)-a2.*exp(-a1.*tb))); 

F1t= (a2.*exp(-a2.*tb)-a1.*exp(-a1.*tb))./(a2-a1); 

pe=-d1*(((B1*d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*Ft +hb*gb); 

rhoar=rhof*((d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*F1t; 

%D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))/(R1.^2-R0.^2).^2)); 

D2=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))./(ti.^2*(R1+R0).^2))); 

%Q=(R0.^2./(R1.^2-R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(R1.^2-R0.^2)); 

Q2=(R0.^2./(ti.^2*(R1+R0).^2)).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(ti*(R1+R0))); 

M12=4*pe.*(R0.^2./(-ti*(R1+R0))); 

M22=(R0.^2./(R1.^2+R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v))); 

M32=R0.^2./(ti*(R1+R0)); 

M2=M12.*(M32-M22)+M22-SIGy^2; 

pbust3=((-Q2+sqrt(Q2.^2-4*D2.*M2))./(2*D2)); 

ti=0.0008; 

gam=(x/45)-(2*x.^3/9)+(x.^4/3)-(2*x.^5/15); 

et1=((C1b+Cdb-b4*(1-y/2)-b3*y-dp*A0*(1-y/2)-b2*p*A0*y)/(1-d1*B1)); 

%et1=((C1b+Cdb-b4*(1-y/2)-b3*y)/(1-d1*B1)); 

et2=(n^4*pi^4-(3*sqrt(d)*Ub.^2-b+b5*(1-y/2)+p*A0*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

%et2=(n^4*pi^4-(3*sqrt(d)*Ub^2-b+b5*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

a1=(et1/2)-i*sqrt(et2.^2-et1.^2/4); 

a2=(et1/2)+i*sqrt(et2.^2-et1.^2/4); 

Ft=(1./(a1.*a2)+(1./(a1.*a2.*(a2-a1))).*(a1.*exp(-a2.*tb)-a2.*exp(-a1.*tb))); 
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F1t= (a2.*exp(-a2.*tb)-a1.*exp(-a1.*tb))./(a2-a1); 

pe=-d1*(((B1*d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*Ft +hb*gb); 

rhoar=rhof*((d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam.*F1t; 

%D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))/(R1.^2-R0.^2).^2)); 

D3=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))./(ti.^2*(R1+R0).^2))); 

%Q=(R0.^2./(R1.^2-R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(R1.^2-R0.^2)); 

Q3=(R0.^2./(ti.^2*(R1+R0).^2)).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(ti*(R1+R0))); 

M13=4*pe.*(R0.^2./(-ti*(R1+R0))); 

M23=(R0.^2./(R1.^2+R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v))); 

M33=R0.^2./(ti*(R1+R0)); 

M3=M13.*(M33-M23)+M23-SIGy^2; 

pbust4=((-Q3+sqrt(Q3.^2-4*D3.*M3))./(2*D3)); 

figure(4),plot(Ub,pbust1,'b.-',Ub,pbust2,'go-',Ub,pbust3,'o-',Ub,pbust4,'r.-') 

grid  

legend('ti=0.002','ti=0.004','ti=0.006','ti=0.008') 

%figure(5),plot(x,YY1,'go-',x,YY2','o-',x,YY3,'-*',x,YY4,'mo-.') 

clc 

clear 

L=2000; 

ti=0.002; 

R1=1; 

R0=1.1*R1; 

n=1; 

C1=0.2; 

Cd=0.1; 

y=0.1; 

a=1.1*10-6; 

g=10; 

h=1000; 

rhof=980; 

rhop=7500; 

rhow=977; 

E=207*10^9; 

T0=1*10^6; 

theta=110; 

dtheta=50; 

p=1.5e7; 

dp=(1/6)*p; 

U=5; 
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K=10; 

k=0.1; 

Uw=0.5; 

t=5; 

v=0.3; 

SIGy=4000000; 

A1=pi*R1.^2; 

A0=pi*R0.^2; 

I=pi*((2*R0).^4-(2*R1).^4)/64; 

mf=rhof*A1; 

mp=rhop*(A0-A1); 

mw=rhow*A0; 

m=mp+mf; 

M=m+mw; 

hb=h/L; 

tau=L^2./sqrt(m/E.*I); 

tb=t./tau; 

Ub=U*L*sqrt(mf./(E.*I)); 

R1b=R1/L; 

R0b=R0/L; 

d=mf./m; 

d1=mw./M; 

b=T0*L^2./(E.*I); 

b1=A0*L^2./I; 

b2=sqrt(d)/Ub; 

b3=a*b1*b2*theta; 

b4=a*b1*b2*dtheta; 

b5=a*b1*theta; 

b6=a*b1*dtheta; 

b7=b1./Ub; 

b8=d1/L; 

C1b=C1*L^2./sqrt(m.*E.*I); 

Cdb=Cd*L^2./sqrt(m.*E.*I); 

gb=M*g*L^3/(E*I); 

apr=L^4./I; 

rhob=rhof*L^5./(E.*I.*tau); 

Kb=K*L^4./(E.*I); 

B1=-Uw*coth(k*hb)/k; 
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x=linspace(0,.5,100); 

gam=(x/45)-(2*x.^3/9)+(x.^4/3)-(2*x.^5/15); 

et1=((C1b+Cdb-b4*(1-y/2)-b3*y-dp*A0*(1-y/2)-b2*p*A0*y)/(1-d1*B1)); 

et2=(n^4*pi^4-(3*sqrt(d).*Ub.^2-b+b5*(1-y/2)+p*A0*(1-y/2))*n^2*pi^2+Kb)/(1-d1*B1); 

a1=(et1/2)-i*sqrt(et2.^2-et1.^2/4); 

a2=(et1/2)+i*sqrt(et2.^2-et1.^2/4); 

Ft=(1./(a1.*a2)+(1./(a1.*a2.*(a2-a1))).*(a1.*exp(-a2.*tb)-a2.*exp(-a1.*tb))); 

F1t= (a2.*exp(-a2.*tb)-a1.*exp(-a1.*tb))/(a2-a1); 

pe=-d1.*(((B1*d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam*Ft +hb*gb); 

rhoar=rhof*((d1*gb*hb)/(1-d1*B1))*n^4*pi^4*gam*F1t; 

%D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))/(R1.^2-R0.^2).^2)); 

D=(1+((2*R0.^2.*(R1.^2+R1.^2*R0.^2))./(ti.^2*(R1+R0).^2))); 

%Q=(R0.^2./(R1.^2-R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(R1.^2-R0.^2)); 

Q=(R0.^2./(ti.^2*(R1+R0).^2)).*((2/3)*rhoar*((2-v)/(1-v)))-(2*pe.*(R1.^2+3*R0.^2)./(ti*(R1+R0))); 

M1=4*pe.*(R0.^2./(-ti*(R1+R0))); 

M2=(R0.^2./(R1.^2+R0.^2).^2).*((2/3)*rhoar*((2-v)/(1-v))); 

M3=R0.^2./(ti*(R1+R0)); 

M=M1.*(M3-M2)+M2-SIGy^2; 

pbust1=((-Q+sqrt(Q.^2-4*D.*M))./(2*D)); 

pbust2=((-Q-sqrt(Q.^2-4*D.*M))/(2*D)); 

figure(6),plot(x,pbust1,'bo-') 

%axis[0.01 0.1 0 4e5] 

 

 

 

 

 

 

 

 


