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The qualitative analysis of the elastic-plastic behavior of metal sheet is usually performed by finite element
methods. These methods are often complicated because of large computational requirements associated
with the use of realistic models. In this paper, an effective model based on the macro-mechanical properties
of the metal blank and tool geometry is used to describe the anisotropic plastic flow of the metal sheet in
plane stress condition. The model is derived from the fundamental deflection equation of beam/column. The
model used to optimize the stamping process is designed to be as close to realistic forming conditions as
possible.
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1. Introduction

The problem of optimal blank shape design for the cup
forming process has attracted the attention of researchers. A
good number of works to characterize anisotropy of sheet
metal with useful yield function for plastic flow have been
carried out. For workhardening of metals empirical and semi-
empirical formulas for one-dimensional case have been
presented (Ref 1-10). The power law, which is applicable to
stretch formability, does not account for any strain rate or
temperature effects. The Johnson-Cook is often used in finite
element codes to introduce strain rate and temperature
dependence of the flow stress. Its accuracy of the curve
fitting to experimental data is not satisfactory for most
materials. The Voce model fits experimental data and accounts
for the saturation of flow stress at relatively large strains.
However, it is not equally accurate in the whole range of
strains.

The earing defect in formed cup is a result of planar
anisotropy in the rolled sheet. This variation of material
properties along different directions of the rolled sheet occurs
during thermo-mechanical processing of the sheet before
drawing is done. Barlat et al. (Ref 1) predicted earing in
polycrystals with a model in which the flange was analyzed. It
was found out that plane strain assumption successfully
explained the major trends of earing. The work of Becker
et al. (Ref 2) on single crystals agrees with that of Barlat et al.
(Ref 1, 2).

Although the analysis of the elastic-plastic behavior of
crystalline solids is of great importance for fundamental and
practical reasons, qualitative analyses by finite element
methods are often complicated by the large computational

requirements associated with the use of realistic models
(Ref 3).

A large volume of research has been dedicated to
characterizing anisotropy of sheet metal and to develop a
useful yield function for plastic flow. The quadratic aniso-
tropic yield criterion of Hill (Ref 4) has been widely used.
This model predicts the behavior of certain metals including
some aluminum alloys. There are a number of nonquadratic
yield criteria, which were developed by Gotoh (Ref 5),
Bassani (Ref 6), and Logan and Hosford (Ref 7). These were
found ineffective for modeling planar anisotropy in sheet
metal under general loading conditions. For plane stress
conditions Barlat and Lian (Ref 8) proposed a nonquadratic
planar anisotropic yield function where three parameters
describe the anisotropy in the sheet metal. Barlat and Lege
(Ref 9) proposed a six-component model for planar anisotropy
in sheet metal applicable to three-dimensional deformations.
Chung and Shah (Ref 10) demonstrated the effectiveness of
this model in the finite element simulation of sheet metal
forming. Pegada et al. (Ref 11) have proposed an effective
algorithm for the determination of optimal blank shape for
cups using the planar anisotropic function proposed by Barlat
et al. (Ref 9). The algorithm uses an iterative process to arrive
at the optimum blank shape.

In this paper, an effective model based on the macro-
mechanical properties of the sheet and tool geometry is used to
describe the anisotropic plastic flow of the sheet metals in plane
stress condition.

2. Methodology

2.1 Theoretical Analysis

The cup forming process involves placing a well lubri-
cated circular blank sheet on a die, which is held down by a
blank holder and the punch, P moves with the sheet through
the die opening. The punch is withdrawn when the required
cup height is attained. For this analysis the formed cup has
been taken to consist of three sections namely AB, BC, and
CD (Fig. 1). Sections AB and BC are treated as beams
having uniform cross sections, while CD is taken to be a
column.
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Case 1 Elastic Deformation (Section AB)

For the case of elastic deformation, Section AB is taken to be
a beam of length l.

Consider a beam AB of length l fixed at one end and
carrying a load P uniformly distributed over its entire length,
the magnitude of the load per unit length (the load intensity)
being q (Fig. 2).

The sum of all forces lying to the left of section

Mn is Q ¼ �qx:
ðEq 1Þ

The maximum shear force Qmax occurs at the fixed support
and is given as Qmax = -P.

Considering the left-hand cut-off part, we obtain the bending
moment as

M ¼ �qx
x
2
¼ �q

x2

2
: ðEq 2Þ

The maximum moment Qmax occurs at the fixed support,
where x = l and is given as

Mmax ¼ �q
l2

2
¼ �P

l
2
:

Comparing this moment with the maximum bending moment in
the case of a concentrated force applied at the center of the
beam, we see that the maximum bending moment for a
uniformly distributed load is half the value for a concentrated
force. It should be noted that Q ¼ dM=dx and q ¼ d2M=dx2;

The general equation of the elastic curve is given by

M ¼ El
d2y
dx2

: (Eq 3)

Deflection y at mid-length where x ¼ l=2 is given as

y ¼ �p
l3

384El
: (Eq 4)

But bending stress formula provides that r
y ¼ M

l ¼ E
R ; where y is

the vertical deflection of beam, r the bending stress, E the
Young�s modulus of elasticity of material, I the moment of
inertia, R the radius of curvature or punch corner radius.

The bending stress on section AB of the cup is therefore
expressed as

rx¼l
2
¼ P 2l4

3072El2
: ðEq 5Þ

Case 2 Elastic-Plastic Transition

In the elastic-plastic transition region (section BC), the entire
plastic region starts in this very small area. Here the deforma-
tion is largely plastic. Enlarged form of BC is shown in Fig. 3.
P can be resolved into forces Sx,Sy.

During deformation, section BC becomes oblique. The
stresses acting on the oblique plane are the normal stress r and
the shear stress s.

Let the normal to this plane (BC) be the x1 direction and
direction lying in the oblique plane be the y1 direction.

The assumptions for this description are that the plane is at
infinitesimal distance from 0 and the element is so small that
variations in stress over the sides of the element can be
neglected.

The normal and shear stresses acting on the oblique plane
are given as
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Fig. 1 Schematic of drawing operation before and after drawing

x

a M

n

A

B

MB

b

l

q

Fig. 2 Section AB under elastic deformation

C
l

B

2
l

2
l

Y
Sx

Sy

y

y

xy

Sx

x

yx

y

x

y'

x'

x'

Sy

O

B

C

q

s

t

t

s

q

t
s

(a) (b)

Fig. 3 Cup corner region in horizontal plane (a) and oblique plane (b)
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rx1 ¼Sx cos hþ Sy sin h)
rx1 ¼rx cos

2 hþ ry sin
2 hþ 2sxy sin h cos h

ðEq 6Þ

sx1y1 ¼Sy cos h� Sx sin h)
sx1y1 ¼sxyðcos2 h� sin2 hÞ þ ðry � rxÞ sin h cos h:

ðEq 7Þ

To determine ry1 put ðhþ p
2Þ in place of h in Eq 6. Since ry1 is

orthogonal to rx1

ry1 ¼ rx cos
2 hþ p

2

� �
þ ry sin

2 hþ p
2

� �

þ 2sxy sin hþ p
2

� �
cos hþ p

2

� �
; that is;

ry1 ¼ rx sin
2 hþ ry cos

2 h� 2sxy sin h cos h: (Eq 8)

Bending moment at any section of the bar (Fig. 3a) is

M ¼ Py: ðEq 9Þ

2.2 Euler�s Formula

Assume that the deflected axis or the elastic curve of section
BC represents a sine curve. Let the magnitude of the deflection
at the middle of the bar be f.

The elastic curve equation is then

y ¼ f sin
px
l
; ðEq 10Þ

when there is no deflection, y = 0. At points B and C, x = 0 and
x = l, respectively.

At the middle of the bar i.e. at x ¼ l=2; the deflection is
equal to f and dy=dx ¼ 0:

) M ¼ Pf sin
px
l
: ðEq 11Þ

The bending stresses in x1 and y1 axes are rx0 ¼
Py

ðy2þR2Þ
1
2
cos h� R

y sin h
h i

and ry1 ¼ �Py
ðy2þR2Þ

1
2
sin hþ �PR

ðy2þR2Þ
1
2

� cos h ¼ � Py

ðy2þR2Þ
1
2
sin hþ R

y cos h
h i

:

The shear stress is given as

sx1y1 ¼ Sy cos h� Sx sin h ¼ �PR

ðy2 þ R2Þ
1
2

cos h� �Py

ðy2 þ R2Þ
1
2

sin h

sx1y1 ¼ �
Py

ðy2 þ R2Þ
1
2

R
y
cos hþ sin h

� �
: ðEq 12Þ

Case 3 Plastic Deformation (section CD)

Consider section CD as a column with end C built in and
end D hinged. This section experiences bending and unbending
stresses.

The stresses acting at C are rx1 ;ry1 and sx1y1 due to the
stress on the oblique plane BC. For a column with both ends
hinged, the equilibrium equation is

EI
d2y
dx2
þ Py ¼ 0: ðEq 13Þ

This equation follows from the condition that the sum of the
bending moments at any section is zero. It assumes this simple

form because shear forces and moments at the end supports do
not exist. For other end conditions, there will be in general an
unknown shear and bending moment acting at the end support,
and the equilibrium equation will be of the form

EI
d2y
dx2
þ Py ¼ QxþM0; ðEq 14Þ

where Q is the shear force and M0 is the bending moment at the
end of the column.

Using Eq 14 as the starting equilibrium equation and
differentiating with respect to x twice, we have

d2

dx2
EI

d2y
dx2

� �
þ P

d2y
dx2
¼ 0: ðEq 15Þ

Equation 15 is the differential equation of equilibrium for a
column with any boundary condition. It expresses the condition
that the sum of shear forces on an element of the column is zero.
For columns with constant cross sections made of homogeneous
material, EI is independent of x and Eq 15 becomes

d4y
dx4
þ K2 d2y

dx2
¼ 0; ðEq 16Þ

where K2 ¼ P=EI : Equation 16 is an ordinary differential
equation with constant coefficients. The general solution will be

y ¼ C1 sinKxþ C2Kxþ C3xþ C4; ðEq 17Þ

where C1, C2, C3, and C4 are constants.
For a column with one end built in and the other end hinged,

the boundary conditions are that, at

x ¼ 0; y ¼ 0 and
dy
dx
¼ 0;

and at x ¼ l; y ¼ 0 and
d2y
dx2
¼ 0:

Thus for section CD the bending and shear stresses are,
respectively,

rx1 ¼
P

ðy2 þ l2Þ
1
2

l cos h� y sin h½ �: ðEq 18Þ

sx1y1 ¼ �
p

ðy2 þ l2Þ
1
2

y cos hþ l sin h½ �: ðEq 19Þ

Since ry1 is orthogonal to rx1 ; replace h with ðhþ p
2Þ to

determine ry1 :

ry1 ¼ �
p

ðy2 þ l2Þ
1
2

l sin hþ y cos h½ �: ðEq 20Þ

The stresses acting on CD of the formed cup are taken as
principal stresses and may be summarized as follows:

r1 ¼
P

ð2�eÞ
1
2

1þ �eð Þh cos h� �e sin h½ � ðEq 21Þ

r2 ¼ �
P

ð2�eÞ
1
2

1þ �eð Þh sin hþ �e cos h½ � ðEq 22Þ

sx0y0 ¼ �
P

ð2�eÞ
1
2

½�e cos hþ ð1þ �eÞh sin h�: ðEq 23Þ

These equations are functions of P, R, e and h.
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The deviatoric strain-increment is defined as de1ij ¼
deij � eijde and de ¼ 1

3 deii: However, de ¼ ð1�2vÞE dr
and delij ¼ depij þ

dri
ij

2G where de is the effective strain.
If we consider yielding under uniaxial tension,

rxa ¼ r1 6¼ 0; r2 ¼ r3 ¼ 0; and rm ¼
r1

3
:

Since only the deviatoric stresses cause yielding,

r1
1 ¼ r1 � rm ¼ 2

r1

3
;r1

2 ¼ r1
3 ¼ �

r1

3
;

from which we find r1
1 ¼ �2r1

2 ¼ �2r1
3:

From the condition of constancy of volume in plastic defor-
mation

de1 ¼ �2de2 ¼ �2de3; so that
de1
de2
¼ �2 ¼ r1

1

r1
2

:

The effective stress or equivalent stress �r is given as

�r ¼
ffiffiffi
2
p

2

�
r1 � r2ð Þ2þ r2 � r3ð Þ2þ r3 � r1ð Þ2

�1
2

¼ F WPð Þ ¼ Y ¼
ffiffiffiffiffiffi
3K
p

:

ðEq 24Þ

2.3 Total Plastic Strain

If the straining is proportional (with a constant ratio of
de1 : de2 : de3), the total plastic strain may be expressed in
terms of the total strains as �e ¼ 2

3 e21 þ e22 þ e23
� 	
 �1

2: But
e2 ¼ ey1 ; e3 ¼ �tey ¼ �te2; where t is the Poisson�s ratio.

Thus,

�e ¼ PR2h3

384EI
2

3
2t2 þ 1
� 	� �1=2

; ðEq 25Þ

where h is in radians

Effective stress;

�r ¼
P 2 1þ �eð Þ2h2 þ 2�e2 þ 1þ �eð Þ2h2 sin 2h� �e2 sin 2h
h i1

2

2 �eð Þ
1
2

ðEq 26Þ

Effective strain;

d�e ¼
P 2 1þ eð Þ2h2 þ 2�e2 þ 1þ �eð Þ2h2 sin 2h� �e2 sin 2h
h i1

2

dk

3 �eð Þ
1
2

ðEq 27Þ

2.4 Stress and Strain Models

The equations in section CD above are for an isotropic
material. The heterogeneous nature of the sheet and the degree
of deformation affect the hardness and Young�s modulus, E of
the material. The orientation of the grains in relation to the
rolling direction denoted as ðhÞ is influenced by the heteroge-
neous nature of the material. The parameter k, which defines the
dislocation density through the sheet, depends on the intensity
of plastic work carried out. If the degree of deformation is
denoted as c; for anisotropic material, the isotropic model
equations will be represented as follows.

2.5 Strain Model

The empirical strain model is given below

Effective strain;

de ¼ P ½ð1þ eÞ2h2ð2þ sin 2hÞ þ e2ð2� sin 2hÞ�
1
2dk

3ðeÞ
1
2

:

ðEq 28Þ

2.6 Plastic Strain

Total plastic strain; e ¼
KPR2h3½23 ð2t2 þ 1Þ�

1
2

384EI
: ðEq 29Þ

2.7 Stress Model

Effective stress;

r ¼ Pc½ð1þ eÞ2h2ð2þ sin 2hÞ þ e2ð2� sin 2hÞ�
1
2

2aðeÞ
1
2

ðEq 30Þ

where R is the forming tool parameter (punch corner radius), m;
h the inclination of test sample to the rolling direction in radian;
P the punch force, N; a the cross-sectional area of test piece,
m2; E the Young modulus of material; I the moment of inertia
of material; K the dislocation density, m-2; c the degree of
deformation; t Poisson ratio � 0.36 (0.33-0.55); dk the ratio of
plastic strain increment to deviatoric stress = 0.001.

3. Experimental Analysis

Materials and test facilities for experimentation were
provided by Aluminum Rolling Mills, Ota Ogun State, Nigeria.
Cold and hot rolled aluminum sheets that have been annealed
were used for the experimental and theoretical analyses of
stress variation in cup forming.

Test samples were made from 1.2 and 1.6 mm thickness of
both cold and hot rolled sheet. The thickness and chemical
composition of these sheets are shown in Table 1.

Experimental tests were carried out through the following
routes.

3.1 Tensile Test

Rectangular test pieces of greater dimension than required
for tensile test were cut from a circular blank sheet—using snip

Table 1 Chemical composition of specimens

Sheet
thickness,
mm Al Fe Si Cu Mg

Material
processing
condition

1.2 99.38 0.31857 0.09316 0.13057 <0.00187 Cold rolled
1.6 99.01 0.51155 0.22595 0.04443 0.002
1.2 99.54 0.25600 0.09237 0.00685 0.001 Hot rolled
1.6 99.53 0.2756 0.09912 0.00754 0.00116

Quality level: Fe £ 0.4%, Cu £ 0.05, Si £ 0.23%
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after geometrical markings have been done at various angles to
the rolling direction. These were placed on a die with a
cylindrical cavity and blanked by a manually operated machine.
Two flat tensile pieces of the form shown in Fig. 4 were
prepared for each of the sheet thickness at angles 0�, 45� and
90� to the rolling direction. The test sample was gripped
between the ends of the tensometer-testing machine and axis of
tension is along the axis of the test sample. A maximum test
load of 5 kN was used during the experiment.

Thickness of test piece = t, gauge length ðl0Þ ¼ 50�
0:5mm; total length (lT) = 100 mm, final length is (lf) mm.
The results of a tensile test may be expressed as:

Tensile strength ¼ maximum load

original cross-sectional area

Similarly, % elongation ¼ increase in gauge length

original gauge length
� 100

¼ lf � l0
l0
� 100:

4. Results

4.1 Experimental Empirical Relations and Theoretical Model

Several empirical formulae have been proposed for fitting
stress-strain curves. In many metals the ðr; eÞ curve has an
approximately constant slope at very large strains. The curve
for such a metal, when heavily prestrained, is closely repre-
sented by r ¼ aþ be:

In some metals a more successful formula for moderate
strains is r ¼ aþ ðb� aÞð1� e�ceÞ; where e denotes the
exponential constant. Voce and Palm proposed this indepen-
dently. However, for very small or purely elastic strains the
formula fails.

4.2 Theoretical and Experimental Relations

Using regression analysis to fit a curve to the experimental
stress-strain results; a quadratic relation of the form
r ¼ aþ beþ ce2 fits well with the data having r2 values
ranging from 0:92 < r2 � 0:99: The stress-strain curves are
displayed in Fig. 5-16.

Generally, at h ¼ 0�; 45� and 90�; quadratic empirical rela-
tions of the form r ¼ aþ beþ ce2 fit well with the experi-
mental data and are in close agreement with the theoretical
model developed for stress variation in cup forming.

In Fig. 5 and 6 there is a close agreement between theory
and experiment in the strain range 0< e< 0:5: In Fig. 8, the
agreement exists in strain range 0 � e � 1:6: From Fig. 7, 9-16
there is a good agreement between the theory and experiment in

50 25

12

25
t

100

Fig. 4 Tensile test piece sample (dimensions in mm)

Fig. 5 Graph of effective stress vs. effective strain (experiment/
theory) at 0� to rolling direction

Fig. 6 Graph of effective stress vs. effective strain (experiment and
theory) at 45� to rolling direction

Fig. 7 Graph of effective stress vs. effective strain (experiment and
theory) at 90� to rolling direction
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Fig. 8 Graph of effective stress vs. effective strain (experiment and
theory) at 0� to rolling direction

Fig. 9 Graph of effective stress vs. effective strain (experiment and
theory) at 45� to rolling direction

Fig. 10 Graph of effective stress vs. effective strain (experiment
and theory) at 90� to rolling direction

Fig. 11 Graph of effective stress vs. effective strain (experiment
and theory) at 0� to rolling direction

Fig. 12 Graph of effective stress vs. effective strain (experiment
and theory) at 45� to rolling direction

Fig. 13 Graph of effective stress vs. effective strain (experiment
and theory) at 90� to rolling direction
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the strain range considered. The anisotropic stress variations
between the theory and experiment are shown in Table 2.

The above results indicate the variation from the rolling
direction of anisotropic behavior of plastic flow towards the
direction normal to rolling direction. The ultimate stresses
occur at normal to the rolling direction independent of the sheet
rolling temperature. The stresses observed in the various

directions show that hot rolled sheet flow plastically more
readily than cold rolled sheet. However, it should be noted that
if particles of troublesome elements like copper and iron are
above the quality level prescribed for practical work, the
precipitation of these elements in the rolling direction will not
significantly affect the flow stress. At normal to rolling
direction the presence of the precipitates of copper and iron
will increase the flow stress in this region appreciably.

4.3 Dislocation Density

The derived plastic strain relation (Eq 29) is a function of
dislocation density for an anisotropic material. This plastic
strain is fitted into both the stress model and the empirical
relation obtained from experimental data. The resultant stress
obtained in both cases was compared to determine the
dislocation density value. Dislocation density is highest in the
rolling direction and independent of both the thickness and the
rolling temperature of sheet (Table 3). The least dislocation
density occurs at 90� to the rolling direction, an indication of
low resistance to deformation. The above show that there is
property variation from the rolling direction outwards. It should
be noted that annealing after cold working of the material
produces dislocation density in the neighborhood of 102 mm-2.
The cause of this occurrence may be the prompt recovery for
crystals perpendicular to the rolling direction as a result of the
formation of new equiaxed crystals, while no full recovery is
achieved for those crystals along the rolling direction. It may
also be that along the rolling direction, crystals with different

Table 2 Values of ultimate stress for some 1017 Aluminum sheets (theory and experiment)

Sheet thickness, mm

Ultimate stress, MPa with inclination to the rolling direction

0� 45� 90�

Theory Experiment Theory Experiment Theory Experiment

Cold rolled 1.2 180 180 275 225 1800 1800
1.6 340 340 170 170 1900 1900

Hot rolled 1.2 640 680 1580 1580 1900 1900
1.6 340 340 1100 1100 1300 1300

Fig. 16 Graph of effective stress vs. effective strain (experiment
and theory) at 90� to rolling direction

Fig. 15 Graph of effective stress vs. effective strain (experiment
and theory) at 45� to rolling direction

Fig. 14 Graph of effective stress vs. effective strain (experiment
and theory) at 0� to rolling direction
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orientations {100} grew out and developed. While away from
the rolling direction precipitation of crystals with similar
orientation {111} occurs. This would give rise to low
dislocation density. Another plausible reason could be the
greater presence of the second phase particles along the rolling
directions than could be expected.

4.4 Degree of Deformation

The rearrangement and annihilation of the lattice defects
result in the change of many physical properties. The measure-
ment of these changes yields valuable information on the
properties of defects. In a metal plastically deformed at low
temperatures, a large number of defects are generated. If this
metal is subjected to gradual heat-treatment the defects are
activated at different temperatures, and their mutual annihilation
decreases the internal energy of the crystal. X-ray investigations
have shown that recrystallization begins at the same time as
the rapid energy release. Naturally, the development of the

recrystallization process depends upon the magnitude of the
previous deformation. With very large internal stresses, the
thermodynamic instability of the internal stresses occurs at lower
temperature. Stored energy increases as degree of deformation
increases while temperature of recrystallization decreases.

Table 4 shows that the degree of deformation decreases with
sheet thickness in the rolling direction as well as at 90� to the
rolling direction in hot rolled sheets. However, deformation
increases with material thickness at 45�.

For cold rolled sheets, the degree of deformation decreases
with sheet thickness at 45� to the direction of rolling. At 90�,
the degree of deformation increases with sheet thickness. In the
rolling direction as well as normal to this direction, the property
of the test samples decreases as the thickness of the materials
increases.

Plastic flow can be accommodated readily without imposi-
tion of extra external effort, which is related to low degree of
deformation. Inhomogeneity in the distribution of phases and
presence of gaseous pores and their positions could be the
cause of this phenomenon.

4.5 Effective Stress

Table 5 shows a comparison of effective stresses obtained
experimentally with those derived from the model for the strain
range 0 � e � 0:6 for hot and cold rolled sheets. The model
and experimental results have good agreement in the rolling
direction as well as direction normal to rolling direction.
However, the result of experiment at 45� to the rolling direction
is about half that of the model results in 1.2 and 1.6 mm hot
rolled metals. Thus, the model over-estimates stress at 45� to
the rolling direction. For cold rolled sheets, there is fairly good
agreement between experiment and model results except at 90�
in 1.2 mm sheet, where the model under-predicts the stress.

With the results of yield stress and effective stress for both
experiment and model relation having close agreement, the
developed analytical model can be used to study the anisotropic
stress variation in aluminum sheets. It can also be used as a
ready tool of the quality control department to determine
whether there is homogeneous recovery after annealing of
rolled sheets and the likely presence of residual stresses that
could initiate corrosion whenever the material is in an
aggressive environment.

5. Conclusion

Although significant developments in analysis and design
capabilities have been achieved in modern technology, there
still exists a gap between the simulation-based design and

Table 5 Variation of effective stress with inclination to rolling direction (strain, 0 � e � 0:6)

Sheet thickness, mm

Effective stress, MPa with inclination to the rolling direction

0� 45� 90�

Experiment Model Experiment Model Experiment Model

Cold rolled 1.2 90 105 170 175 190 100
1.6 160 125 170 170 170 190

Hot rolled 1.2 100 110 50 80 105 100
1.6 120 120 90 180 100 110

Table 4 Values of degree of deformation ðcÞ for some
1xxx Aluminum sheets

Sheet thickness, mm

Degree of deformation

Cold worked Hot worked

0.7 0.9 1.0 1.2 1.6 1.1 1.2 1.6

Inclination to rolling
direction

0� 2.15 1.75 1.55 1.90 1.70 2.10 2.0 1.65
15� 3.25 2.10 1.55 2.10 1.57 1.55 2.4 1.35
30� 2.55 2.78 1.62 1.85 1.46 2.80 2.1 2.06
45� 3.00 2.05 1.50 1.35 1.00 2.80 3.15 3.17
60� 2.60 2.85 1.95 1.95 1.54 3.10 2.00 3.67
75� 2.70 2.03 2.65 2.15 2.52 2.00 4.09 2.05
90� 1.10 3.55 1.65 2.55 3.94 3.10 2.73 2.70

Table 3 Values of dislocation density (k) for some 1xxx
Aluminum sheets

Sheet thickness, mm

Dislocation density, mm-2

Cold worked Hot worked

0.7 0.9 1.0 1.2 1.6 1.1 1.2 1.6

Inclination to rolling
direction

0� 106 106 106 107 107 107 107 107

15� 106 106 106 106 106 106 106 106

30� 105 105 105 105 105 105 105 106

45� 104 104 104 104 104 105 105 105

60� 103 104 104 104 104 104 104 105

75� 103 104 104 104 104 104 104 104

90� 102 103 103 104 104 104 104 104
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manufacturing process. The problem of accurate numerical
method that takes care of large deformation, while avoiding
complicated constitutive relation, has been developed. A
macro-mechanical property based model derived from the
fundamental deflection equation of beam/column, has been
used to make the stamping optimization process practical.

In the study, the deflection equation of beam/column has
been used for the first time, to describe anisotropic plastic flow
in sheet metals.

The degrees of deformation and dislocation density have
been evaluated to determine the extent of microstructural
inhomogeneity of the material and the level of recovery that has
taken place. These phenomena can be investigated in deformed
materials after rolling, before and after annealing, and also after
the stamping operation.
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