
 

 

 

A CLASS-BASED VIRTUAL MACHINE CONSOLIDATION 

FOR IMPROVED QUALITY OF SERVICE AND ENERGY 

CONSERVATION IN CLOUD COMPUTING 

 

 

BY 

 

 

 

AJAYI, OLASUPO OPEYEMI 

 

 

 

NOVEMBER, 2017 

 



 

 

A CLASS-BASED VIRTUAL MACHINE CONSOLIDATION FOR IMPROVED 

QUALITY OF SERVICE AND ENERGY CONSERVATION IN CLOUD COMPUTING 

 

 

By 

 

 

AJAYI, Olasupo Opeyemi 

030805018 

 

 

 

B.Sc. Computer Science (2008), University of Lagos. 

M.Sc. Computer Science (2012), University of Lagos. 

 

 

A thesis submitted to the School of Postgraduate Studies, University of Lagos, Akoka, 

Lagos, Nigeria, in partial fulfilment of the requirement for the award of the degree of 

Doctor of Philosophy (Ph.D.) in Computer Science. 

 

NOVEMBER, 2017 



Page | ii  
 

CERTIFICATION 

School of Postgraduate Studies, University of Lagos. 

This is to certify that the thesis entitled: 

A CLASS-BASED VIRTUAL MACHINE CONSOLIDATION FOR IMPROVED 

QUALITY OF SERVICE AND ENERGY CONSERVATION IN CLOUD COMPUTING 

 

Submitted to the School of Postgraduate Studies, University of Lagos, for the award of the 

degree of Doctor of Philosophy (Ph.D.) in Computer Science is a record of original research 

carried out by: 

 

AJAYI, Olasupo Opeyemi 

In the Department of Computer Sciences 

     

Author’s Name  Signature  Date 

First Supervisor’s Name  Signature  Date 

Second Supervisor’s Name  Signature  Date 

External Examiner’s Name  Signature  Date 

First Internal Examiner’s Name  Signature  Date 

Second Internal Examiner’s Name  Signature  Date 



Page | iii  
 

DEDICATION 

To my mother, I know you always wished you could, now you can be proud that your son did. 

This is for you momi. 

 

To my father who made reading compulsory. 

 

To my grandmother (mama) who on leaving for school, quietly made me promise her that 

“ibi to ga ju ninu iwe kika, omo mi ba wan debe” – this is promise fulfilled ma. 

 

To my god-mother, I miss you so much big momi. 

 

  



Page | iv  
 

ACKNOWLEDGEMENTS 

I have come to understand that without doubt, my life and everything about it is purely at God’s 

discretion, I am therefore, truly grateful for His grace. It has simply been the grace of God in 

my life that has made this and every other thing in my life possible. Baba God, it’s been You 

all the way.  

To my family, my parents, Mr. and Mrs. O. A. Ajayi, I say thank you for all your support, love, 

prayer and patience. It is my prayer that God would continually bless you and reward you 

abundantly. My siblings, Mrs. O. O. Dada, Mr. O. O. Ajayi, and Mr. A. O. Arowolo, thank 

you, you have been awesome. 

To my supervisor, Professor C.O. Uwadia, words would be grossly insufficient to express my 

gratitude to you sir. You have been the perfect pseudo-father to me and have taught me so 

many things, within and outside academia. Despite your busy schedule, you always found time. 

No matter how tight your week was, you always squeezed out time to see me and review my 

work. Your belief in me often times amazes me and I sincerely appreciate your time, efforts, 

advice, encouragement, support and love. Thank you very much and God bless you sir.  

To my co-supervisor and my school mother, Dr. (Mrs.) F. A. Oladeji, I say thank you ma. I 

always ran to you when I got stuck on any aspect of my work and you always seemed to have 

a solution or knew someone who did. Ma, your efforts and time are highly appreciated, may 

God continue to bless and strengthen you ma.  

My gratitude goes to Professor T. O. Ogundipe, I still do not understand how you saw through 

me back then but I truly believe it was God working through you. Thank you very much sir 

and yes I am glad I embarked on this journey.  

In a very special way, I am truly thankful to Emeritus Professor O. Abass, who took keen 

interest in my work and offered subtle advices which shaped this research work. I am grateful 

sir. 

The efforts and contributions of my teachers, Professor J. O. A. Ayeni, Dr. E. P. Fasina, Dr. B. 

A. Sawyerr, and Dr. O. B. Okunoye are truly appreciated. You were tough and disciplined 

teachers but you instilled a lot in me. I say thank you sirs, your efforts were worth it.    

Special thanks to Dr. A. P. Adewole, Dr. V.O. Odumuyiwa, Dr. A. O. Sennaike, Dr. (Mrs) 

C.O. Yinka-Banjo, Dr. N. A. Azeez and Dr. A. U. Rufai, you were always there; particular in 



Page | v  
 

those low moments, your advice and words of encouragement kept me going. I am really 

thankful. I appreciate my friends and colleagues, Mr. S.E. Edagbami, Mrs. R. A. Ajetunmobi, 

Ms. R. O. Isimeto, Mrs. C.P. Ojiako, Mr. L. O. Ikuvwerha, Mrs. D.T. Afolabi, Mr. O. Olaitan, 

Mr. A. S. Adewunmi, Mr. E. A. Okhueleigbe, Mrs. Idowu and Ms. Nonye you made every day 

in academia interesting and fulfilling. 

To my other colleagues, in the Department of Computer Sciences and the Faculty of Science, 

University of Lagos, I say thank you. 

To my friends, Ms. O. I. Ogungbe, Ms. I. U. Chukwbueze, Mr. O. O. Onibile, Mr. O. O. Ajayi, 

and Mr. O. O. Oredugba, you encouragement were immeasurable. Thank you.  

Finally, to Mr. Ayo Adefemi and Mrs. Adetutu Unuigboje, for your support and 

encouragement, I can only say thank you and God bless you.   



Page | vi  
 

TABLE OF CONTENTS 
CERTIFICATION .................................................................................................................................. ii 

DEDICATION ....................................................................................................................................... iii 

ACKNOWLEDGEMENTS ................................................................................................................... iv 

TABLE OF CONTENTS ....................................................................................................................... vi 

LIST OF FIGURES ............................................................................................................................... ix 

LIST OF TABLES .................................................................................................................................. x 

ABSTRACT ........................................................................................................................................... xi 

CHAPTER ONE ..................................................................................................................................... 1 

1.1 Background of the Study......................................................................................................... 1 

1.2 Statement of the Problem ........................................................................................................ 3 

1.3 Aim and Objectives ................................................................................................................. 3 

1.4 Scope and Delimitation of Study ............................................................................................ 4 

1.5 Significance of the Study ........................................................................................................ 4 

1.6 Definition of Terms ................................................................................................................. 5 

1.7 List of Abbreviations and Acronyms ...................................................................................... 6 

CHAPTER TWO .................................................................................................................................... 8 

2.1 Introduction ............................................................................................................................. 8 

2.2 Cloud Computing .................................................................................................................... 8 

2.2.1 Definition of Cloud Computing ...................................................................................... 8 

2.2.2 The Cloud Computing Architecture .............................................................................. 10 

2.3 Quality of Service (QoS)....................................................................................................... 11 

2.4 Resource Management in Cloud Computing ........................................................................ 14 

2.5 Resource Utilization .............................................................................................................. 14 

2.5.1 Virtualization ................................................................................................................ 14 

2.5.2 Virtual Machine Migration (VMM) .............................................................................. 15 

2.5.3 Load Balancing and Virtual Machine Consolidation .................................................... 16 

2.6 Energy Conservation ............................................................................................................. 19 

2.6.1 Dynamic Voltage-Frequency Scaling (DVFS) ............................................................. 20 

2.6.2 PM State Switching ....................................................................................................... 21 

2.7 Related Works on Load Balancing, Energy Conservation and Quality of Service ............... 22 

2.8 Cloud Simulation Frameworks ............................................................................................. 27 

2.9 Analysis of benchmark approaches ....................................................................................... 28 

2.9.1 Analysis of Power-Aware Best Fit Descending ............................................................ 28 

2.9.2 Analysis of Virtual Machine Consolidation with Usage Prediction (VMCUP) ........... 31 

2.9.3 Analysis of Virtual Machine Consolidation with Multiple Usage Prediction (VMCUP-

M) ....................................................................................................................................... 34 



Page | vii  
 

2.10 Summary ............................................................................................................................... 37 

CHAPTER THREE .............................................................................................................................. 38 

3.1 Introduction ........................................................................................................................... 38 

3.2 Definition of the MC-BAL Model ........................................................................................ 38 

3.2.1 The MC-BAL Model .................................................................................................... 39 

3.3 Maintaining End-to-End Pre-Set QoS Levels ....................................................................... 41 

3.3.1 Guaranteed End-To-End QoS ....................................................................................... 41 

3.3.2 Lowered Resource Allocation Time ............................................................................. 44 

3.4 Ensuring Effective Utilization of Cloud Resources .............................................................. 46 

3.4.1 Resource Auto-Scaling ................................................................................................. 46 

3.4.2 Determining Current PM Utilization Level .................................................................. 46 

3.4.3 Predicting Future PM Utilization Level ........................................................................ 48 

3.5 Improving Energy Conservation in Cloud Data Centres ...................................................... 48 

3.6 Objectives and Corresponding Policies of MC-BAL ............................................................ 49 

3.7 System Process Flow ............................................................................................................ 50 

3.8 The Metrics for Evaluation ................................................................................................... 52 

3.8.1 Evaluation Metrics ........................................................................................................ 52 

3.8.2 SLA Violation ............................................................................................................... 52 

3.8.3 Average Workload Delay .............................................................................................. 52 

3.8.4 Capacity Utilization ...................................................................................................... 53 

3.8.5 Energy Consumption..................................................................................................... 53 

3.8.6 Power State Changes per PM ........................................................................................ 53 

3.9 Experimental Framework ...................................................................................................... 54 

3.9.1 Experimental Framework .............................................................................................. 54 

3.9.2 The CloudSim Toolkit .................................................................................................. 54 

3.9.3 Experiment Setup and Data ........................................................................................... 55 

3.9.4 Implementation and Coding .......................................................................................... 56 

CHAPTER FOUR ................................................................................................................................. 57 

4.1 Introduction ........................................................................................................................... 57 

4.2 Tests using PlanetLab Datasets ............................................................................................. 57 

4.2.1 Adherence to End-to-end Pre-set QoS Constraints (PlanetLab Dataset) ...................... 57 

4.2.2 Efficient Resource Utilization (PlanetLab Dataset) ...................................................... 59 

4.2.3 Conservation of Energy (PlanetLab Dataset) ................................................................ 60 

4.3 Tests using Google Test Cluster Dataset (GTC) ................................................................... 61 

4.3.1 Adherence to End-to-end Pre-set QoS Constraints (GTC) ........................................... 61 

4.3.2 Efficient Resource Utilization (GTC Dataset) .............................................................. 63 



Page | viii  
 

4.3.3 Conservation of Energy (GTC Dataset) ........................................................................ 63 

4.4 Tests using Google Cluster Dataset (GCD) .......................................................................... 64 

4.4.1 Adherence to End-to-end Pre-set QoS Constraints (GCD) ........................................... 65 

4.4.2 Efficient Resource Utilization (GCD Dataset) .............................................................. 67 

4.4.3 Conservation of Energy (GCD Dataset) ....................................................................... 67 

4.5 Summary of Results .............................................................................................................. 68 

4.5.1 Using PlanetLab Dataset ............................................................................................... 69 

4.5.2 Using Google Test Cluster Dataset ............................................................................... 70 

4.5.3 Using Google Cluster Dataset ....................................................................................... 72 

CHAPTER FIVE .................................................................................................................................. 74 

5.1 Summary of Findings ............................................................................................................ 74 

5.2 Conclusions ........................................................................................................................... 75 

5.3 Significant Contributions to Knowledge ............................................................................... 75 

5.4 Further Work ......................................................................................................................... 76 

REFERENCES ..................................................................................................................................... 77 

APPENDIX I ........................................................................................................................................ 87 

APPENDIX II ..................................................................................................................................... 121 

APPENDIX III .................................................................................................................................... 122 

 

  



Page | ix  
 

LIST OF FIGURES 

Figure 1: Paradigm shift in Computing (Furht and Escalante, 2010) ..................................... 9 

Figure 2: A visual model of Cloud Computing (Mell and Grance, 2011) ............................ 10 

Figure 3: Cloud Computing Architecture (Calheiros et al., 2011) ....................................... 11 

Figure 4: Multiple VMs running on a single PM (Voorsluys et al., 2011) ........................... 15 

Figure 5:  Load balancing of workloads among Servers (PMs) ............................................. 16 

Figure 6:  Task Scheduling Based on Load balancing (Fang et al., 2010) ........................... 17 

Figure 7: Join Idle Queue model proposed by (Lu et al., 2011) ........................................... 18 

Figure 8: The Proposed MC-BAL Model (Ajayi, 2017)....................................................... 39 

Figure 9: PABFD Model (Beloglazov and Buyya, 2012, Hieu et al., 2017) ........................ 39 

Figure 10: The 2DHIS Model.............................................................................................. 44 

Figure 11: MC-BAL Policies .............................................................................................. 49 

Figure 12: MC-BAL System Flow chart ............................................................................. 50 

Figure 13: Class-Based VM Selection from Overloaded Physical Machines ..................... 51 

Figure 14: CloudSim architecture (Calheiros et al., 2011) ................................................. 54 

Figure 15: Average number of SLA Violation for all PlanetLab Dataset ........................... 57 

Figure 17: Comparison of Resource Utilization Levels using PlanetLab Dataset .............. 59 

Figure 18: Comparison of Total Energy Consumption for PlanetLab Dataset ................... 60 

Figure 19: Comparison of Power State Changes using PlanetLab Dataset ......................... 60 

Figure 20: Average number of SLA Violation for GTC dataset ......................................... 61 

Figure 21: Comparison of Average Workload Delay using GTC dataset ........................... 62 

Figure 22: Comparison of Resource Utilization Levels using GTC dataset ....................... 63 

Figure 23: Comparison of Total Energy Consumption for GTC dataset ............................ 63 

Figure 24: Comparison of Power State Changes using GTC dataset .................................. 64 

Figure 25: Average number of SLA Violation for GCD dataset ......................................... 65 

Figure 26: Comparison of Average Workload Delay using GCD dataset .......................... 66 

Figure 27: Comparison of Resource Utilization Levels using GCD dataset ....................... 67 

Figure 29: Comparison of Power State Changes using GCD dataset ................................. 68 

  



Page | x  
 

LIST OF TABLES 

 

Table 1: Comparison of Related Works................................................................................... 25 

Table 2: Classification of workload ......................................................................................... 41 

Table 3: Summary of Objectives and corresponding policies ................................................. 49 

Table 4: Specifications of the PMs used for simulation .......................................................... 56 

Table 5: Summary of Datasets ................................................................................................. 56 

Table 6: Average SLA Violation of each workload class in MC-BAL (PlanetLab Dataset) .. 58 

Table 7: Average SLA Violation of each workload class in MC-BAL (GTC Dataset) .......... 61 

Table 8: Average SLA Violation of each workload class in MC-BAL (GCD Dataset) .......... 65 

Table 9: Summary of results obtained using PlanetLab datasets ............................................. 69 

Table 10: Summary of results obtained using GTC datasets ................................................... 71 

Table 11: Summary of results obtained using GCD datasets .................................................. 72 

Table 12: Summary of Findings .............................................................................................. 74 

  



Page | xi  
 

ABSTRACT 

Cloud computing is a model in which computer resources are provided as paid services to users. 

It has enjoyed wide spread acceptance in recent times due to its numerous advantages, 

particularly in terms of cost savings. Despite its advantages, it still has some challenges, such 

as Quality of Service (QoS) adherence, efficient resource utilization, and energy conservation. 

From the Cloud users’ perspective, service provisioning and adherence to QoS are vital; while 

to the Cloud Service Providers (CSPs), efficient resource utilization and conservation of the 

energy consumed by Cloud data centres are key. Meeting these requirements collectively is a 

major Cloud computing challenge. Virtual Machine Consolidation (VMC) has become the de 

facto technique for addressing resource utilization and energy conservation, while efficient 

scheduling and migration techniques are used to address QoS. Power-Aware Best Fit 

Descending (PABFD) and Virtual Machine Consolidation with Multiple Usage Prediction 

(VMCUP-M) are examples of recent research works that used the combination of both 

approaches to address this challenge. However, in these works like many others, users were 

treated equally without regard to class of requirements. In a bid to address this shortcoming, 

this study proposed an approach that grouped workloads into classes, then used a class-based 

VMC scheme to ensure end-to-end adherence to QoS. It also improved on resource utilization 

and energy conservation by combining resource utilization prediction with a half-interval 

workload allocation scheme. The proposed approach is called Multi-Class Load Balancing 

(MC-BAL). MC-BAL was tested against PABFD and VMCUP-M, using three datasets and 

across static and dynamic PM threshold schemes. Obtained results show that MC-BAL met the 

set objectives by performing better than PABFD and VMCUP-M in terms of QoS adherence, 

by an average of 13 % and 26 % for both static and dynamic thresholds respectively. With 

respect to resource utilization, MC-BAL used at least 19 % less resources to accomplish the 

same tasks versus the other two approaches. In terms of energy conservation, MC-BAL 

consumed an average of 24.7 % less energy than both PABFD and VMCUP-M. MC-BAL is 

able to address critical requirements that are vital to Cloud stakeholders. For Cloud users, MC-

BAL ensures satisfactory (quality) service delivery. Using MC-BAL, CSPs can manage their 

resources better, creating room to take on new customers and increase profit margins. To the 

society at large, MC-BAL lowers energy consumption of data centres and by extension carbon 

emission, thereby addressing one of the major concerns in the world today. 

 

Keywords: Cloud Computing, Energy Conservation, Quality of Service, Resource 

Management, Virtual Machine Consolidation. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

 

Over the years, computers have evolved through computer generations from large mainframe 

systems that occupied entire rooms to small sized super-fast devices that are inter-networked 

and use multiple processors for simultaneous processing of programs. Today, computing is 

being offered and used as a commercial service, one in which users need not own physical 

infrastructure or software applications, but simply log into remote devices to store or use their 

data on a pay-as-you-use basis (Furht and Escalante, 2010). This is what is referred to as Cloud 

computing (CC).  

 

There are numerous definitions of CC, but the widely accepted definition is that of the National 

Institute of Science and Technology (NIST), defined by Mell and Grance (2011) as a model 

that enables convenient and ubiquitous access to a shared pool of configurable computing 

resources that can be rapidly setup or torn down on user demand with little or no service 

provider intervention. It is a model that offers computing to users as a paid service. Resources 

in CC could be at the hardware level: Infrastructure-As-A-Service (IAAS), at the software 

level: Software-As-A-Service (SAAS) or at a developer level: Platform-As-A-Service (PAAS) 

and deployed either as a private, public, community or hybrid model.  

 

As with most things in life, there is no perfect system and CC is one of such. CC is plagued 

with numerous challenges some of which include adherence to Quality of Service (QoS), 

resource management, energy conservation, security, data ownership, service availability and 

excess carbon emission. QoS adherence, efficient resource utilization and energy conservation 

are key to this study as they directly affect both the users and Cloud Service Providers (CSPs) 

alike. A lot of research work has been carried out in a bid to ensure an efficient way of 

managing these challenges while delivering services to users. The works of Fang et al. (2010), 

Lu et al. (2011), Beloglazov and Buyya (2012), Xu et al. (2014), Hieu et al. (2015), Mosa and 

Paton (2016), Bermejo et al. (2016) and Hieu et al. (2017) are notable examples which focus 

on the balancing Quality of Service (QoS), efficient resource utilization with energy 

conservation.  
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A number of researchers have proposed various scheduling algorithms to allocate user 

workloads onto Cloud resources in such a way that pre-signed Service Level Agreements 

(SLAs) are not violated. Though effective, scheduling algorithms focus on admission control 

and seek to reduce the delay experienced by users while waiting for a resource to become 

available to service their requests.  

 

Load balancing through the use of Virtual Machine Consolidation (VMC) is an approach that 

has been utilized to address the issue of resource utilization. It is a mechanism that attempts to 

distribute user workloads (on virtual machines) evenly across all the Cloud resources in a bid 

to avoid a situation where some resources are heavily overloaded while others are idle. It is a 

scheme that seeks to improve the overall performance and resource utilization of the system by 

consolidating workloads onto the fewest possible number of Physical Machines (PMs). 

 

Different schemes have also been proposed by researchers to address energy efficiency, with 

the two notable ones being Dynamic Voltage-Frequency Scaling (DVFS) (Holzle and Barroso, 

2007) and PM sleep-states (Meisner et al., 2009). DVFS manages energy by throttling the 

voltage consumption in proportion to Central Processing Unit (CPU) frequency.  PM sleep-

state on the other hand actively monitors CPU status of PMs and switches underutilized or idle 

PMs to sleep-mode. Most recent works employ the PM sleep-states approach considering it 

more effective than DVFS, as DVFS only focuses on CPU, ignoring other components such as 

memory, storage and peripheral devices present in the PM.  

 

A mix of effective admission control, load balancing (VMC) and/or energy conservation 

schemes has been the approach taken by most researchers when proffering solutions to the 

aforementioned challenge. A survey of some of these hybrid approaches has been done by 

Ajayi et al. (2015) and Ullrich et al. (2016). Two works of particular interest to this study are 

Power Aware Best Fit Descending (PABFD) (Beloglazov and Buyya, 2012) and Virtual 

Machine Consolidation with Multiple Usage Prediction (VMCUP-M) (Hieu et al., 2017). 

These works proposed models that addressed the three challenges of QoS adherence, resource 

utilization and energy conservation in CC. The latter (VMCUP-M) improved on the former 

(PABFD) by introducing resource utilization prediction. This addressed the shortcomings of 

the former by reducing the number of Virtual Machine (VM) migrations and resulted in better 

resource utilization and QoS adherence. This study improved on both of these works, by 

proposing and implementing an alternative QoS, resource and energy-aware scheme for 

resource management in CC.  
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1.2 Statement of the Problem 

 

Cloud Compuing has emerged as the next Information Technology (IT) revolution. It 

represents a paradigm shift from conventional personal computer (desktop or laptop) to remote 

computing, whereby data are stored in locations separate from their users. This enables Cloud 

users have access to their data from any device and from any location in the world as long as 

they can access the Internet. Apart from ubiquitous access to data, the burden of purchasing 

expensive IT infrastructure, maintaining high availability, flexibility and security of data are 

taken off the customer and borne by the Cloud provider. The advantages of the Cloud, have led 

to many individuals and companies the world over adapting it at a phenomenal rate. However, 

the same cannot be said about Africa and her developing countries. Developing countries are 

faced with an ever increasing energy challenges; thus situating state-of-the-art Cloud data 

centres in these countries is almost an inconceivable thought, as there would hardly be power 

to keep them running uninterrupted (Ani et al., 2012).  

 

On the other hand, irrespective of the location or challenges faced by the Cloud Service 

Providers (CSPs), the expectations of their customers remain the same - customers would 

continue to demand for service, and submit workloads with diverse requirements which the 

CSPs are expected to meet. In practice, Cloud resources do not grow in equal proportion to 

Cloud users; hence CSPs are faced with a challenge of how to efficiently utilize their limited 

resources in such a way as to continuously provide services to users in a profitable manner 

without violating SLAs.  

 

Balancing these challenges has therefore led to the problem of providing services to numerous 

Cloud users using limited Cloud resources without violating QoS requirements pre-agreed with 

the users; yet utilizing these limited CSPs’ resources efficiently and in a manner that consumes 

the least amount of energy. 

 

1.3 Aim and Objectives 

 

The aim of this study is to develop a resource management model that simultaneously adheres 

to pre-set QoS requirements, efficiently utilizes resources and conserves the total energy 

consumed in Cloud data centres.  
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The specific objectives of the study are to: 

1. develop a load balancing scheme that ensures adherence to end-to-end, pre-set QoS while 

providing services to Cloud users. 

2. develop a scheme that efficiently utilizes Cloud resources while providing services to 

Cloud users. 

3. improve the overall energy consumption of Cloud data centres. 

 

1.4 Scope and Delimitation of Study 

 

Classification of user workloads into classes is solely based on workload burst and response 

times. In this study, response times have been taken to be “Best Effort”, “Some Delay 

Permitted” or “No Delay Permitted” which correspond to the three classes of user workloads, 

viz. Bronze, Silver and Gold respectively. No further analysis was done in classifying user 

workloads into groups. 

VM reuse is not considered as this study assumes that a unique VM is created for each user’s 

workload; once completed, the associated VM is destroyed. 

The actual content or type of a user’s workload is not considered. This study simply focuses 

on the user specified requirements and concentrates on providing resources that can cater for 

these requirements.  

Though MC-BAL can use multiple resources, only CPU utilization is used in determining the 

status of a PM. This is because the CPU alone has been shown to account for up to 70 % of the 

overall power consumed by a computer system (Pennsylvania, 2013). 

 

1.5 Significance of the Study 

 

Three major Cloud computing challenges have been identified viz. QoS adherence, efficient 

resource utilization and energy conservation. To Cloud users, adherence to QoS is of upmost 

importance, while to the CSPs, efficient resource utilization and energy conservation are 

paramount. The significance of this study therefore was to develop a resource management 

scheme that ensured that requirements which are vital to both the Cloud users (QoS) and the 
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CSPs (efficient resource utilization and energy conservation) were met. In effect, the study 

developed a scheme that benefits both the users of the Cloud and the CSPs at the same time.  

1.6 Definition of Terms 

Adherence:  Compliance with pre-set terms and/or conditions. 

CloudSim: A toolkit for simulating Cloud infrastructure and services.  

Consolidation:  Process of combining or packing multiple entities into a single 

whole. 

Conservation:  Preservation and efficient management of resource(s).  

Data centre:  A building where a large number of inter-connected computer 

servers are operated. 

Data set: A log of users’ workloads submitted to a Cloud data centre. 

Delay: Time spent waiting (on queue) for service.  

Efficient:  Performing or functioning in a manner that minimizes wastage or 

effort.  

End-to-End:  Comprehensive and all encompassing.  

Energy:  Electrical power consumed per unit time in a data centre. 

Load Balancing:  Re-distribution of workloads among PMs to prevent a situation 

whereby certain PMs are over-worked while others are idle. 

Multi-tenancy: A CC model that allows numerous users share resource(s). 

Physical Machine:  A high-end computer system, usually a server. 

Quality of Service:  A users’ perception of the level of service being received from a 

service provider. 

Queue: A line of workloads awaiting PM allocation. 
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Service Level 

Agreement: 

A contract between a user and service provider, which documents the 

services and standards expected by the user from the provider 

alongside the expectations from the user.  

Service Provider:  An individual or organization that provides certain services to users, 

usually at a fee.  

Sleep-State: Power-saving or low activity mode.  

Utilization:  The act of making use of something. 

Users: Cloud customers or subscribers. 

Violation: Breaking or dishonouring an agreement. 

Virtualization: Process of creating a software-based replica of a physical device. 

Virtual Machine:  An emulated computer system. Multiple virtual machines run on a 

PM. 

Workload:  A user’s service or job, which is submitted to the service provider for 

execution.  

Workload Class: Category or group of workloads with similar service requirements. 

Workload- 

Migration:  
Moving workloads between PMs in a data centre. 

  

 

1.7 List of Abbreviations and Acronyms  

 

2DHIS: Double-Depth Half Interval Search 

CC:  Cloud Computing 

CPU:  Central Processing Unit 

CSP:  Cloud Service Provider 

DC:  Data Centre 
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DVFS:  Dynamic Voltage-Frequency Scaling 

FCFS:  First Come First Serve 

GCD:  Google Cluster Dataset 

GTC:  Google Test Cluster  

IAAS:  Infrastructure-As-A-Service 

IT:  Information Technology 

IQR:  Inter-Quartile Range 

LR:  Linear Regression 

MAD:  Mean Absolute Deviation 

MC-BAL: Multi-Class Load Balancing 

PAAS:  Platform-As-A-Service 

PABFD: Power-Aware Best Fit Descending 

PM:  Physical Machine 

PSC:  Power State Change 

QoS:  Quality of Service 

RBT:  Red-Black Tree 

SAAS:  Software-As-A-Service 

SLA:  Service Level Agreement 

THQ:  Static Threshold 

VM:  Virtual Machine  

VMC:  Virtual Machine Consolidation 

VMCUP: Virtual Machine Consolidation with Usage Prediction 

VMCUP-M Virtual Machine Consolidation with Multiple Usage Prediction 

VMM:  Virtual Machine Migration 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

There are numerous CC challenges, which include but not limited to data management, energy 

conservation, high availability, interoperability and standards, resource management, QoS, 

security, privacy and legal issues. Of particular interest to this study however are QoS, resource 

utilization and energy conservation as they relate to CC. There is therefore the need to elaborate 

on each of these concepts upon which this study is based. This chapter thus focuses on these 

and is organized as follows: an introduction to Cloud computing, its service delivery models 

and architecture is done in section 2.2. Quality of Service in CC is discussed in section 2.3, 

while a brief justification for the need of resource management in Cloud computing is done in 

section 2.4. Resource utilization and the various ways of achieving efficient utilization are 

discussed in section 2.5. Energy conservation as it relates to CC are discussed in section 2.6, 

while related works wherein these three challenges are considered are discussed in section 2.7. 

In section 2.8, a detailed analysis of works against which this study is benchmarked is done. 

The chapter is then concluded in section 2.9.  

2.2 Cloud Computing 

Computing and data processing have in recent times moved from personal or super computers 

located within homes or offices to large data centres geographically dispersed around the world 

(Furht and Escalante, 2010). There has been a paradigm shift in the way computers and 

computing resources are used. Today, computing is now being offered and used as a 

commercial resource whereby users pay the provider(s) on a pay-as-you-use model similar to 

other utilities such as electricity, water, gas etc. (Voorsluys et al., 2011).  

2.2.1 Definition of Cloud Computing 

A Cloud according to Buyya et al. (2009) is defined as a parallel and distributed computing 

system consisting of a pool of inter-connected and virtualized computers that are dynamically 

provisioned and presented as a single computing resource to the users based on pre-agreed 

SLAs. Sidhu and Kinger (2013), defines it as a framework for enabling a suitable on-demand 

network access to a shared pool of computing resources (such as networks, servers, storage, 

applications, services etc.) that can be provisioned and de-provisioned quickly with minimal 
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management effort or service provider interaction. It is defined in Shahzad (2014) as a 

disruptive technology that has the potential to enhance collaboration, agility, scaling, and 

availability, and provides the opportunities for cost reduction through optimized and efficient 

computing. CSA (2011) defines Cloud computing as a technology that has the potential to 

transform the world into one in which components can be rapidly provisioned, 

decommissioned, scaled up or down in a bid to provide an on-demand utility-like model of 

allocation and consumption of Computing resources. From a technological perspective Cloud 

Balancer (2015) classified CC as a technological evolution in computing. These evolutionary 

phases are depicted in Figure 1. Finally, Mell and Grance (2011) defines it as a model that 

enables convenient and ubiquitous access to a shared pool of configurable computing 

resources. Cloud computing can thus be defined as a transition from computers as a product to 

computing as service rendered to paying users. 

 

Figure 1: Paradigm shift in Computing (Furht and Escalante, 2010) 
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These pools of computing resources are offered to customers as a paid service. A generalized 

model for the Cloud as proposed by the NIST is depicted in Figure 2.  

 

 

Figure 2: A visual model of Cloud Computing (Mell and Grance, 2011) 

2.2.2 The Cloud Computing Architecture  

In Calheiros et al. (2011), CC is depicted as a layered structure as shown in Figure 3. The 

lowest (System) layer consists of a pool of physical resources, which are made available to 

users via virtualization. This is the layer offered to customers in the IAAS Cloud model. Above 

this layer is the Core Middleware layer and is concerned with the provision of services to users. 

It is split into two parts, a lower layer which interfaces with the System layer, providing services 

such as VM deployment and management; and an upper layer which interfaces with the User-

Level Middleware and providing services such as QoS and SLA maintenance, billing and usage 

monitoring. This Core Middleware layer is offered to users as a PAAS. Potential customers 

here are application developers requiring a plethora of tools and interfaces for application 

development. The User-Level Middleware sits above the Core Middleware Layer and is 

responsible for providing complete software solutions to customers. This is offered as the 

SAAS service model to Cloud users. 
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Figure 3: Cloud Computing Architecture (Calheiros et al., 2011) 

2.3 Quality of Service (QoS) 

Cloud computing offers users cheap and pay-as-you-use computing resources (Patel et al., 

2009). This has resulted in a tremendous user adoption rate with recent reports showing that 

there are over 140 million Cloud users (Cisco, 2016) with a growth rate of about 17.2 % per 

annum (Gartner, 2016). With more users adopting the Cloud, it becomes paramount for CSPs 

to be able to satisfactorily meet these users’ workload requirements. The term QoS describes 

the particular requirement of a user’s workload from a CSP during the time the required service 

is being provided to the user. Service Level Agreements (SLAs) are used to spell out QoS 

parameters required by users and expected from CSPs (Buyya et al., 2011). These parameters 

enable CSPs measure their delivery on expectations as perceived by their users and vice versa. 

Han et al. (2013) proposed an approach to workload scheduling based on QoS. The work 

introduced a hybrid of Suffrage and Min-Min allocation algorithms and split workloads into 

high and low groups based on their QoS requirements. Workloads with high QoS requirements 

were scheduled using the Suffrage algorithm while those with low QoS requirements were 

scheduled using Min-Min algorithm. The proposed approach ensured optimal QoS satisfaction 

with respect to the class of requirements. Simulation results showed that the proposed approach 

out performed each of the constituent algorithms in terms of Makespan, however, a comparison 
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of the Makespan of the high QoS workloads versus those of low QoS requirements was not 

done, hence the fairness of the approach cannot be ascertained.  

Banerjee and Adhikari (2013) proposed an approach to task scheduling in Cloud computing 

that improves the overall QoS. Using Best Fit Descending, VMs were placed in descending 

order of their capacities. Workloads were continually allocated to a given VM so long as the 

VM’s Remaining Load Capacity (RLC) was greater than the Maximum Load Capacity of other 

VMs in the system. Simulation were carried out using CloudSim and the proposed approach 

was compared with Round-Robin and Conductance algorithm (Chatterjee et al., 2014). 

Obtained results showed that the proposed approach reduced the overall Makespan and 

completion time of workloads. The work focused mainly on VMs, ignoring external factors 

especially those relating to the PM upon which the VMs ran. The work also relied heavily on 

VM re-use, and as at the time of writing the efficacy of reusing a VM versus spawning new 

ones is still an open research question.  

Patel et al. (2009) presented a mechanism for measuring the SLA between Cloud users and 

their CSPs. Observing the varied nature of QoS expectations, the authors drew an analogy 

between Cloud computing and Service Oriented Architecture used in web technologies and 

proposed a Web Service Level Agreement (WSLA) to manage these expectations. The 

proposed WSLA framework helped formalized SLA enforcement. The WSLA framework was 

made up of the following: management services, which measured the CSPs performances; 

condition evaluation services, which evaluated the CSP’s performances against a set of SLA 

metrics and the implementation services, which took action such as imposing penalties in cases 

of SLA violations. WSLA however becomes difficult to implement when there are multiple 

parties involved in the Cloud service provisioning. Also the lack of a unified set of standards 

and metrics makes it difficult to actually assess CSPs’ performances. 

A formal model for SLA negotiation was proposed by Baig et al. (2017). The authors presented 

an agent-based multiple round SLA negotiation model. Like the work of (Patel et al., 2009) 

this model was also based on Web Service Agreement but targeted at SLA management for 

Cloud services provided by multiple parties. The model incorporated multiple runs, multiple 

providers and multiple negotiation round. At each negotiation round a happiness factor was 

computed. The happiness function was used to represent the level of compromises each party 

(user agent and CSPs agents) could make and was used to determine the point at which 

satisfactory SLA could be made. The work assumed that QoS requirements of each party could 
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be prioritized and that these parties were willing to make compromises on certain QoS 

requirements.    

There is still a major lack of standards with respect to Cloud computing, but certain efforts are 

being put in place to achieve this. The Multi-Tier Cloud Security (MTCS) of the Singapore 

government is one such effort (MTCS, 2015). Though primarily aimed at Cloud Security, it is 

a certification that guides users in choosing CSPs based on the level of data, platform or 

infrastructural security they provide. It incorporates multiple guidelines which can be used to 

formulate SLAs between users and their CSPs. MCTS offers three certification levels and has 

been applied in numerous areas particularly in health care (Tao and Lee, 2017). 

Using Multi-tenancy (Le-Quoc et al., 2013), public Cloud providers are able to host workloads 

of numerous users on the same PM. Virtualization and VMs are used to segment different 

users’ jobs on these single PMs thereby giving an illusion of dedicated PMs to users. However, 

in reality this segmentation is not perfect as shared resources can sometimes be fiercely 

contented by users’ workloads requiring similar resources (Xu et al., 2014). Workloads are 

often widely dispersed with different (sometimes conflicting) resource requirements.  

Therefore, the one cap fits all approach applied by numerous authors wherein assumptions that 

all tasks require similar resources are made, might be inappropriate. To this end, a few research 

work have taken an alternative approach of differentiating user workloads into groups or 

classes for the purpose of ensuring QoS. A few of these work are now discussed. 

 

In Goudazi and Pedram (2011) user workloads were split into two groups – Gold and Bronze 

based on user required response times; while in the works of Karthick et al. (2014) and 

Rajeshram and Shabarran (2015) user tasks were grouped into three groups – Short, Medium 

and Long based on the user indicated burst time of each tasks. In Gouda et al. (2013) and Pawar 

and Wagh (2012) the authors used multiple user supplied criteria for classification of tasks into 

groups. Though these works focused on tasks pre-emption, they had to classify tasks to 

determine priority of pre-emption. You et al. (2014) proposed a resource based classification 

of servers using RAM, CPU and bandwidth, and allocated user tasks onto the server that offered 

these tasks the minimum completion time. In the works of Wu et al. (2011) and Macias and 

Guitart (2012) though multiple SLA parameters such as product type, account type, request 

type, and response time were considered, all tasks were eventually classified into three groups 

– Small, Medium and Max or Gold, Silver and Bronze respectively.  
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From literature it can be concluded that classification of user workloads into classes is mostly 

based on user specified requirements, the same approach is thus applied in this study.  

2.4 Resource Management in Cloud Computing 

Resource Management is a critical aspect of CC. Despite the appearance of unlimited resource 

perceived by Cloud users, the reality is that resources in the Cloud are not unlimited. The 

growth of pervasive computing, drop in prices of computing devices and a reduction in cost of 

Internet access has led to more users connecting to the Internet and by extension the Cloud. 

Managing these ever growing users with varied levels and types of demand is a major challenge 

in CC; as resources do not grow in equal proportion with demand. This therefore emphasizes 

the need for efficient resource management. In this study, the only resource considered are the 

Cloud servers (PMs). Managing these with respect to QoS adherence and minimizing their 

energy consumption are the crux of this study. A review of related literature is done in the 

subsequent sub-sections.  

2.5 Resource Utilization 

Resources in CC include but are not limited to processors, memory, storage and bandwidth 

(Membrey et al., 2012). These resources are aggregated as a pool and made available to 

numerous users on a pay per use basis. CSPs are concerned with efficient utilization of these 

resources and consequently reduction of PM sprawl. PM sprawl is a situation in which there 

are multiple underutilized PMs occupying DC space and accounting for more utility bill than 

can be justified by their performance (Bigelow, 2012). Through the use of VMs, and multi-

tenancy, CSPs are able to host multiple users’ workloads on the same PM, thus increasing 

throughput (Xu et al., 2014). Ultimately, efficient resource utilization, enables CSPs provide 

better services to customers while making higher profit. Discussed in the subsequent 

subsections are some of the underlining techniques for efficient resource utilization. 

2.5.1 Virtualization  

Virtualization is defined by Hashizume et al. (2013) as a technique used in CC which allows 

pools of resources to be made available to numerous users simultaneously through the use of 

Virtual Machines (VMs). Voorsluys et al. (2011) defines it as a means of sharing pools of 

resources among users by means of partitioning physical machine(s) into numerous 

independent virtual machines for each user. VMs are emulated computer systems that run 
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simultaneously on a single PM. These VMs are often customized with different specifications 

and offered to users as a paid service (Zhang et al., 2014). The ability to configure customized 

VMs to utilize different virtual partitions of resources on a single PM is one of the greatest 

benefits of virtualization in terms of resource utilization. This is as illustrated in Figure 4. VMs 

allocated to users are independent of each other and can thus be started and stopped 

dynamically by users without the CSPs’ intervention (Mell and Grance, 2011). This enables 

the Cloud meet the ever changing resource demand level (Buyya et al., 2011). Eucalyptus 

(Nurmi et al., 2009), OpenStack (OpenStack, 2010), Apache VCL (VCL, 2010), and Aneka 

(Buyya et al., 2011) are some examples of platforms currently being used for managing the 

utilization of Cloud resource pool; some of which have been reviewed by Sempolinski and 

Thain (2010). 

 

Figure 4: Multiple VMs running on a single PM (Voorsluys et al., 2011) 

2.5.2 Virtual Machine Migration (VMM) 

On one hand, it is almost impossible for users to know exactly how much resources their 

workloads would need during execution, while on the other hand CSPs need to be able to 

reallocate resources from less demanding VMs to more demanding ones. CC caters for these 

through a process known as dynamic scaling. Dynamic scaling is the ability to grow or shrink 

resource levels in response to demand. This is made possible through the use of VMM. VMM 

is defined as moving a VM from one PM to another for the sole purpose of meeting resource 

demand (Candler, 2014). In order to avoid SLA violations, these migrations have to be 

seamless with as little service interruption as possible (Galvin, 2009).  



Page | 16  
 

Akshat and Sanchita (2014) proposed a model for resource allocation and optimization using 

simulated annealing. The proposed model was one in which VMs were migrated based on pre-

set threshold value. Power consumptions levels were used as basis for VM migration. These 

migrations were from PMs that consumed above and below pre-set maximum utilization and 

minimum utilization thresholds respectively to other PMs. In this work, the cost and effect of 

VM migrations were not considered; also CPU utilization was the sole criteria used for 

measuring PM utilization. The authors assumed a purely linear relationship between CPU 

utilization and power consumption.  

 

Principled Technologies (2011) compared two virtualization platforms viz. vSphere (Setty, 

2011) and Hyper-V (Microsoft, 2009), based on live VMM times and application stability after 

migrations. It was concluded that migration on vSphere not only took less time to complete but 

active VMs also suffered minimal disruptions in service while VMM was taking place.  

 

Salfner et al. (2011) conducted experiments to calculate downtime and effect of live migrations 

on applications running on migrated virtual machines. It was concluded that the memory load 

and memory access pattern of the guest systems are the most important factors to be considered 

when performing VMM.  

 

2.5.3 Load Balancing and Virtual Machine Consolidation 

Load balancing is defined by Effatparvar and Garshasbi (2014) as the technique for spreading 

work between multiple computing resources for the purpose of optimizing resource utilization, 

improving throughput and response time. 

 

 

 

 

 

  

Figure 5:  Load balancing of workloads among Servers (PMs) 
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It is a mechanism that redistributes workloads evenly across all PMs in a DC in order to avoid 

situations whereby some PMs are heavily loaded while others are under loaded or idle. Over 

working of PMs results in SLA violations (Beloglazov and Buyya, 2012); thus, load balancing 

is needed. Load balancing in Cloud computing is largely achieved through Virtual Machine 

Consolidation (VMC). VMC is the aggregation of all user workloads (VMs) on to the fewest 

possible number of PMs in a DC. It has become the de facto standard technique used by 

researchers seeking to improve resource utilization and energy conservation.  

 

In the work of Fang et al. (2010) the authors proposed Task Scheduling Based on Load 

Balancing and this is as illustrated in Figure 6. User workloads were first allocated onto suitable 

VMs based on the user specified requirements. Subsequently, after each allocation a load 

balancing function (Equation 1) was computed and used to determine if the entire system was 

evenly balanced or not. Imbalances were resolved by migrating VMs off over-utilized PMs and 

consolidated on other PMs that could cater for them.  

 

Figure 6:  Task Scheduling Based on Load balancing (Fang et al., 2010) 
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Where V = VM load;  Hi = load on a PM i; avgl = DC load, which is average load of all PMs 

in the DC; n = number of VMs; m = number of PMs; B = Load balancing evaluation value, 

smaller values of B implies better load balancing and vice versa. 

 

Lu et al. (2012) proposed a novel load balancing algorithm called the Join Idle Queue (JIQ) 

and shown in Figure 7. The approach combined distributed dispatcher with Idle Queues (IQ). 

Each dispatcher had an IQ onto which idle PMs queued. On arrival of a task, the dispatchers 

checks if idle PM(s) are available on their IQ. If idle PMs were found, the task was dispatched 

to the first PM on the IQ otherwise, it was dispatched randomly to any PM. Idle PMs enqueued 

on dispatchers’ IQ either randomly or on the shortest IQ. Though effective, the approach did 

not take workload imbalanced between busy PMs into consideration. 

 

Figure 7: Join Idle Queue model proposed by (Lu et al., 2011) 
 

Mahajan et al. (2013) discussed on a variant of round-robin called Round-Robin with Server 

Affinity (RRSA), which allocated workloads to PMs with a view of keeping a balance amongst 

the PMs. It distributed workloads using the conventional round robin algorithm but introduced 

a hash map and a PM state list which respectively stored information about the last allocated 

PM and the current state of PMs. Experimental results showed that when compared to the 

classic Round Robin, the response time improved as the number of data centres increased 

however processing time was only marginally better. There was also the high possibility of 

performance dips during the process of searching the hash map, prior to each allocation.  

Dhinesh and Krishna (2014) proposed a nature inspired load balancing technique based on the 

behaviour of a colony of honeybees foraging for food. It was reported that this technique was 
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best suited for scenarios of heterogeneous service request types however the approach would 

lead to workload starvation as it is purely a priority based approach.  

Choudhary (2015) improved on JIQ proposed by Lu et al. (2011) and presented a hybrid 

approach which combined SLA aware decentralized load balancing with Join-Idle-Queue 

(SLA+JIQ). One of the shortcomings of the original JIQ was that it ignored workloads on busy 

servers. This work addressed this shortcoming by monitoring PM status and redistributing 

workloads (VMs) based on Minimum Response Time (MRT) and minimum PM queue length. 

Though the work recorded improvement versus the original JIQ, numerous other works have 

shown that Minimum Completion Time (MCT) is a better criteria to use for VMC.  

Bermejo et al. (2016) proposed a dual level approach to resource management. In their work, 

load balancing decisions were taken both within the PM and by a global controller. The PMs 

were autonomous and managed their local resource utilization levels independently. Each PM 

sent necessary load balancing information to the global controller. The global controller 

analysed all received status updates and made informed decisions for the global allocation or 

re-allocation of workloads with a view of stabilizing the entire system. A drawback of this 

work was that inter-nodal control messages contested with actual workload for network 

bandwidth. Also the need to get updates from all PMs prior to workload allocation and 

migration could have negative impact on QoS, especially if such updates arrived late.  

Farahnakian et al. (2016), presented an energy efficient VMC scheme based on utilization 

prediction. The authors used the PABFD algorithm proposed by Beloglazov and Buyya (2012) 

in allocating workloads to PMs and used Linear Regression (LR) and K-Nearest Neighbour 

(KNN) usage prediction models for VMC. Obtained results that the KNN approach performed 

better than the LR based approach. Compared to other heuristic approaches, the work reported 

improved energy conservation and resource utilization. 

Numerous other authors have proposed various load balancing approaches some of which have 

been surveyed in Ajayi and Oladeji (2015). 

2.6 Energy Conservation 

Energy saving is a major concern in Cloud computing. It affects the CSPs, the Cloud Users and 

the society at large. Energy conservation with respect to CC, is a direct concern of the IAAS 

service provider. Recent studies have estimated that though there are about fourteen (14) 
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million active Cloud servers in the world (SPEC, 2016). These servers are responsible for about 

seventy billion kilo-watt-hour (70 Billion KWh) of energy consumption annually and this 

figure is projected to keep growing at a rate of four (4 %) per annum. (Shehabi et al., 2016). 

Numerous approaches have been proposed to manage the energy consumption of DCs, with 

each focusing on various levels. A review of these techniques is done in the following 

subsection. 

2.6.1 Dynamic Voltage-Frequency Scaling (DVFS) 

Dynamic Voltage-Frequency Scaling is a form of dynamic performance scaling PM power 

management technique. It dynamically adjusts the power consumption in proportion to the 

frequency of the CPU. A theoretical analysis of DVFS was done in (Beloglazov, 2013). 

At the operating system level, Rajkumar et al. (2001) proposed four DVFS algorithms as 

options to managing energy consumption within PMs. The algorithms were SystemClock 

Frequency Assignment (Sys-Clock), Priority-Monotonic Clock Frequency Assignment (PM-

Clock), Optimal Clock Frequency Assignment (Opt-Clock) and Dynamic PMClock (DPM-

Clock). The operating system selected which to use based on application and overall system 

conditions. Simulation result showed a 50 % improvement in energy conservation when these 

algorithms are used within a DC.  

Pallipadi and Starikovskiy (2006) developed an in-Kernel real-time power manager called the 

on-demand governor for Linux systems. The model actively monitored CPU utilization and 

throttles the CPU frequency and voltage with respect to overall system performance. Though 

efficient for single core CPUs, performance bottlenecks began to appear when used in systems 

with multiple CPU cores. Due to this heavy demand, one of the CPU cores had to be used to 

managing the CPU manager itself.  

Vardhan et al. (2005), proposed a scheme that managed power consumption of a PM both at 

the CPU and network level. The scheme called the GRACE-2 project is an improvement on an 

earlier generation which focused only on CPU. GRACE-2 applied DVFS with respect to the 

applications running on the PM and managed energy at three levels - global, per-application 

basis and internal level. Experimental results showed that the per-application level 

management resulted in an average of 22 % improvement in energy versus the two other levels. 
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GRACE-2 however was only supported by few applications that had been built from ground-

up with energy management in mind. 

Though these DVFS schemes are effective in managing energy consumption, they primarily 

focus on scaling the power with respect to CPU alone. They ignored other components in a 

PM, such as memory, fan, disks etc. Of all the components within a PM, only the CPU is 

capable of multiple low power modes. This implies that when a PM is completely idle, and its 

CPU energy consumption throttled to almost zero using DVFS, other components within the 

PM are unaffected and would continue to run at full capacity. Using DVFS to manage energy 

would result in a completely idle PM still consumes about 70 % of its maximum power 

(Lefurgy et al., 2007, Rice et al., 2015). The use of the DVFS scheme was discouraged in the 

work of Fan et al. (2007), wherein the authors concluded that having idle or underworked PMs 

in a DC especially when DVFS schemes were used was highly undesirable. The authors then 

established a linear relationship between CPU utilization and power consumption. This 

relationship has since formed the basis upon which PM state switching schemes were built. A 

survey of approaches based on PM state switching are done in the next subsection. 

2.6.2 PM State Switching 

An approach to energy conservation in PM called Barely Alive was proposed by 

Anagnostopoulou et al. (2012). The authors in this work, focused on improving the time it 

takes to switch a PM from sleep-state to active state. They proposed five PM states Barely 

Alive 1 to 5. At each state various components of the PM were kept active, while others were 

turned off. The advantage of the model was that PMs were able to transition to and from states 

with little or no impact on energy. This is unlike other works, where transitioning between 

sleep-state and fully active states often times impact on energy. 

Shehabi et al. (2016), had attributed the reduction in energy consumption of PMs in recent 

times to improved cooling techniques such as the use of liquid cooling (Lamke, 2016) and 

virtualization. It was reported that though these approaches could lead to about 20 % 

improvement in energy conservation they immensely complicate system administration and 

management.  

In recent times, virtualization has been used to improve the overall energy consumption of data 

centres by consolidating PMs. In Beloglazov (2013), the author described a Virtual Machine 

Monitor (VMM) that actively monitored the performance of a PM hosting several VMs and 
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applied different power management techniques to adjust power with respect to performance. 

In the same work, a global resource manager was presented, which interacted with the local 

VMM on each PM, and decided when such PMs should be switched to sleep-state with respect 

to resource utilization. The combined use of local and global managers resulted a robust data 

centre power management scheme.  

In merging QoS, resource utilization and energy conservation together, Beloglazov and Buyya 

(2012) had shown that running a PM above its upper capacity threshold can result in QoS 

violations while on the contrary underutilized PMs imply poor resource utilization which 

translated to energy wastage. 

 

2.7 Related Works on Load Balancing, Energy Conservation and Quality of Service 

Beloglazov and Buyya (2012) proposed an energy-aware approach to task allocation and load 

balancing in Cloud DCs, with a focus on conservation of energy, while minimizing SLA 

violations. The authors pioneered work in this research area and introduced numerous PM 

utilization detection and VM selection schemes.  The scheme however required a probe of all 

PM state before workload allocations. It was also assumed that all users’ workload 

requirements were the same and belong to a single class, which is not the case in practice. In 

works that focus on PM consolidation and multi-tenancy such as those of Le-Quoc et al. (2013) 

and Xu et al. (2014), virtualization and VMs were used to consolidate workloads onto PMs in 

a bid to reduce the total number of active PMs. Though VMC can lead to stiff competition for 

resources (Xu et al., 2014), it is still the most used approach for efficient resource utilization 

and energy conservation.  

Batista et al. (2015) conducted performance evaluation on some resource management schemes 

in CC and used results obtained to develop a dynamic model called Resource Management 

Module (ReMM). The resulting model ReMM, was able to guarantee QoS, efficient resource 

utilization and fair pricing. ReMM passively monitored the status of all allocated workload 

with respect to agreed SLA and then dynamically scaled available resource levels to meet 

demand. Passive monitoring however could results in significant QoS violations during and 

between checks. Finally, the work identified CPU as the most influential system resource in 

terms of QoS adherence.   

The authors in (Hieu et al., 2015) improved on the work of Beloglazov and Buyya, (2012) by 

proposing a predictive approach to resource management in CC called VMCUP. Rather than 
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checking for CPU utilization after allocation, as in the former, the work predicted the short-

term future state of the PM and determined if such a PM would be over/under utilized. It was 

a preventive approach that sought to prevent over-utilization as against PABFD which was a 

corrective approach. The introduction of usage prediction however, slowed the allocation 

process and consequently impacted negatively on QoS.  

Hu et al. (2016) proposed a Service-Oriented Resource Management (SORM) mechanism for 

improving the utilization of Cloud resources. The authors clustered PMs into three groups 

based on resources and then allocated Cloud services onto respective groups based on requests 

and resource consumption. SORM then increased the number of service instances in the system 

in response to service demands. This approach required active monitoring of workload status 

and also assumed that the CSPs have full purview of user workload particularly how they 

changed within the system; this might not be possible in practice. 

Hieu et al. (2017), presented VMCUP-M, a multiple usage prediction approach to resource 

management that takes the historic CPU and memory usage levels into consideration when 

allocating workloads. The work was an improvement on authors’ initial VMCUP but with the 

introduction of memory utilization. Results of simulations carried out showed that the 

introduction of memory utilization prediction had minimal impact in QoS and resource 

utilization versus the initial VMCUP. 

The works reviewed up to this point, have been purely based on deterministic approaches. 

Researchers have also applied stochastic approaches to address the aforementioned challenges. 

Though this study is based on the deterministic approach, for completeness, some works 

wherein stochastic approaches were applied are reviewed next.  

Randles et al. (2009) proposed a load balancing technique that is inspired by nature. It is based 

on the behaviour of a colony of honeybees as they forage for food. Bees perform a waggle 

dance to update other bees on the status and location of a food source. The authors took PMs 

and User workloads to be analogous to the bees and food source respectively. Each PM 

performed a “waggle dance” by calculating profit based on workload serviced. This was then 

used to determine if more workload should be sent to that particular PM or to another. The 

approach concentrated on efficient workload scheduling and performed well under diverse user 

workloads, however it did not scale well in terms of throughput as the size of the DC grew.  
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In the work of Ferdaus et al. (2014), a modified ant colony optimization meta-heuristic was 

used to address resource utilization and energy conservation. Pheromone levels were associated 

with each VM-to-PM, and represented the attraction of VMs to a particular PM. The 

pheromone levels were computed based on the energy consumption and utilization level of an 

assignment of VMs to a PM.  

Dhingra and Sanchita (2014) proposed a model for resource allocation and optimization using 

simulated annealing. It was a two stage model, wherein VMs were only allocated to PMs that 

offered the least increase in power consumption. At the second stage, VMs were migrated to 

other host when a pre-set upper and lower threshold value was met. Power consumptions of 

the entire DC and PMs was used as basis for VM migration. The decision on when to perform 

such VM migration was governed by an annealing process, whereby temperature (DC power 

consumption) was gradually reduced with each iteration until the acceptable power level was 

reached. An acceptance probability was also calculated at each iteration and this served as a 

further guide to accepting each solution. The work required an optimal power level be known 

before hand for any set of workload being serviced - this might be impossible to know a priori. 

It was also reported by the authors that the proposed approach could result in violation of a few 

SLA agreements, this would certainly not be taken likely by potential customers. 

Al-maamari and Omara (2015) proposed the use of a modified particle swarm optimization to 

improve both the Makespan of user workloads and Cloud resource utilization levels. Mosa and 

Paton (2016) in their work presented a utility function based VM allocation approach to energy 

conservation, SLA adherence and profit maximization. The work identified optimal allocation 

of VMs to PMs as a NP-hard problem (Garey and Johnson, 1979) and thus used a meta-

heuristic genetic algorithm to achieve this goal in the most profitable way to the CSP. The 

authors employed a utility factor which was based on expected income less estimated energy, 

violation and performance degradation costs. The approach recorded improvements in terms 

of QoS adherence and energy conservation but did not pay attention to resource utilization.  

Lawanyashri et al. (2016) proposed the use of Fruitfly optimization algorithm to address load 

balancing, delay time and QoS in Cloud computing. Like most deterministic approach, this 

approach also monitored the state of VMs and iteratively performs workload migration from 

overloaded resources, albeit at the VM level rather than at the PM. Sleep-states were also used 

for energy conservation. The author used the Fruitfly algorithm to locate the destination for a 
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new workload or workloads being migrated. Experimental results showed improvement across 

all metrics however comparison were mostly with respect to other stochastic approaches. 

Daharwal and Sharma (2017), surveyed numerous Cloud load balancing schemes using various 

metrics and concluded that Generic Algorithm (GA) performed best across all metrics except 

for fault tolerance. They then proposed a GA scheme that encoded VMs as genes, PMs as 

chromosomes and fitness functions were calculated based on energy consumption. 

Experimental reports showed that the GA based approach was able to conserve energy better 

and reduced the number of VM migrations. However, the results were based on dataset and 

benchmarks randomly generated by the authors. 

This study is based on a deterministic approach and a summary of works that address the 

challenges of load balancing, QoS adherence and energy conservation using related approaches 

are summarized in Table 1. 

Table 1: Comparison of Related Works  

Authors Title Methodology Strengths Weaknesses 

Beloglazov 

and Buyya 

(2012) 

Optimal Online 

Deterministic 

Algorithms and 

Adaptive Heuristics for 

Energy and 

Performance Efficient 

Dynamic Consolidation 

of VMs in Cloud DCs. 

Developed the 

PABFD for 

resource allocation. 

Power-Aware-

VMC for energy 

conservation and 

QoS adherence. 

Fast resource 

allocation. 

Proposed various 

PM utilization 

metrics. 

Benchmark for 

recent research 

works.  

Focused on QoS 

and energy 

conservation only. 

Assumed all users 

workload 

requirements 

belong to a single 

class.  

Hieu et al. 

(2015) 

Virtual Machine 

Consolidation with 

Usage Prediction for 

Energy-Efficient Cloud 

Data Centres. 

(VMCUP) 

PABFD for 

resource allocation. 

Power-Aware-

VMC for energy 

conservation. 

Linear Regression 

(LR) for resource 

management.  

Used PABFD as a 

benchmark and 

recorded better 

resource 

utilization, QoS 

and energy 

conservation. 

Slow VM 

allocation and 

focused mainly on 

improving 

resource 

utilization. 

Assumed single 

class for all users’ 

workload 

requirements. 
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Farahnakian 

et al. (2016) 

Energy-aware VM 

Consolidation in Cloud 

Data Centres Using 

Utilization Prediction 

Model 

PABFD for 

resource allocation. 

LR + K-Nearest 

Neighbour based 

UP for VMC and 

QoS adherence. 

Improved 

resource 

utilization versus 

other VMC 

approaches 

compared. 

Focused on energy 

and resource 

usage. Assumed 

single class for all 

users’ workload 

requirements. 

Hu et al. 

(2016) 

Service-Oriented 

Resource Management 

of Cloud Platforms 

Workload 

Characterization + 

use of dynamic VM 

sizing for resource 

management. 

Grouped 

workloads into 

resource pools.  

Dynamically 

reallocated 

workloads to 

improve resource 

utilization during 

execution. 

Requires prior 

knowledge of the 

content of user’s 

workloads. 

Assumed 

workloads all 

followed a specific 

request pattern.  

Bermejo et 

al. (2016) 

Cloud Resource 

Management to 

Improve Energy 

Efficiency Based on 

Local Node 

Optimization 

Autonomous PMs 

with Euclidean 

distance for local 

resources 

management. 

Global controller 

for VMC.  

Reduced inter-

nodal 

communication. 

Improvements in 

energy 

conservation. 

Focused mainly on 

energy 

conservation. 

Assumed single 

class for all users’ 

workload 

requirements. 

Mosa and 

Paton 

(2016) 

Optimizing Virtual 

Machine Placement for 

Energy and SLA in 

Clouds using Utility 

Functions 

Genetic algorithm 

(utility functions) 

for VM placement 

and PM 

consolidation  

Benchmarked 

against PABFD 

and recorded 

improvement in 

QoS and energy 

conservation. 

Focus was on 

energy and QoS 

only. Assumed 

single class for all 

users’ workload 

requirements. 

Hieu et al. 

(2017) 

VMC with Usage 

Prediction for Energy-

Efficient Cloud Data 

Centres. (VMCUP-M) 

Modified VMCUP 

to use both CPU 

and memory to 

predict the future 

PM utilization. 

Slight 

improvement in 

QoS and resource 

utilization versus 

VMCUP. 

Memory 

utilization  had 

minimal influence 

on resource 

utilization and QoS  
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2.8 Cloud Simulation Frameworks 

Numerous simulators exist but most are targeted towards Grid environments (Foster and 

Kesselman, 2003) and are not able to cater for all the five essential characteristics of Cloud 

Computing (Mell and Grance, 2011) especially rapid elasticity and pay per use. GridSim 

(Buyya and Murshed, 2002), GangSim(Dumitrescu and Foster, 2005), SimGrid (Legrand et 

al., 2003) and GreenCloud (Kliazovich et al., 2012), CloudAnalyst (Wickremasinghe et al., 

2010) and CloudSim(Calheiros et al., 2011) are common examples of such simulators.  

GridSim for instance is geared towards simulating virtualized organizations with resources 

connected to a grid network. It is therefore only able to model grid computing entities and 

corresponding users. GangSim is a tool for studying various scheduling techniques in grid 

environments. SimGrid is more generic and focused at simulating distributed applications on 

Grid platforms. GreenCloud is built on NS2 and focuses on energy efficient packet routing 

within a Cloud DC. CloudAnalyst is essentially CloudSim but with the introduction of a 

graphical user interface. 

A major difference between Grid and Cloud environments is the use of virtualized 

infrastructure in the Cloud. These virtualized infrastructure are made available to users as 

platforms upon which workloads and applications can be executed or hosted environment. 

Apart from infrastructure, the Cloud also provides for programming (PAAS) and application 

services (SAAS) which are not present in the Grid. Therefore a unique simulation framework 

is needed for Cloud environments. The aforementioned simulators (except CloudAnalyst) 

though effective in their own respect are not suited for modelling the various entities and 

individual service models which the Cloud offers. This is the IAAS, PAAS and SAAS 

(Banerjee et al., 2015), hence the choice of CloudSim for this work. 

The CloudSim toolkit is thus used in this study to simulate, validate and benchmark the 

performance of MC-BAL against other approaches. It is chosen because of its ability to model 

virtualized environments, as well as its support for on-demand resource provisioning and 

dynamic workload allocation, which are key features of CC, lacking in other simulators.  
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2.9 Analysis of benchmark approaches 

Most of these works reviewed above use a two-phased approach to resource management. 

These phases are described as follows: 

In the first phase, the focus is on effectively allocating workloads to PMs with respect to certain 

criteria such as energy utilization and/or delay time. 

In the second phase, the workloads allocated in phase one, are re-allocated with a view of 

achieving a balanced distribution of workloads across PMs in the DC. The aim of this is to 

improve utilization of resources across the entire data centre and avoid a situation whereby 

some PMs are running idle to the detriment of others that are over worked. 

Of particular interest to this study are the pioneering work of Beloglazov and Buyya (2012), 

and a more recent work by Hieu et al. (2017), against which this work is benchmarked. These 

works are used as benchmarks for the following reasons: 

1. PABFD is a pioneer work and is often used as a benchmark for recent works. 

2. PABFD presented multiple VM selection schemes, hence making it a fair comparison 

for the class-based VM selection algorithm proposed in this study. 

3. VMCUP-M is selected because MC-BAL proposed in this work uses the same usage 

prediction model for resource utilization, but with the introduction of the 2DHIS which 

sped up the workload allocation process. 

4. Both PABFD and VMCUP-M use the same First Come First Serve (FCFS) workload 

allocation scheme used by MC-BAL. 

5. MC-BAL used a similar energy conservation scheme as both works. 

A comparative analysis of the approaches used in these work, their features and limitations are 

discussed in the following sub-sections.  

2.9.1 Analysis of Power-Aware Best Fit Descending 

2.9.1.1 The Power-Aware Best Fit Descending 
 

Beloglazov and Buyya (2012) had proposed an approach that focuses on energy conservation 

while ensuring adherence to QoS requirements. It is a two-phased approach, with phases 

described as follows: 
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In phase 1, user workloads (VMs) are admitted and allocated on to PMs using a modified Best 

Fit Descending algorithm called Power-Aware Best Fit Descending (PABFD). It is a First-

Come-First-Server workload allocation scheme with all PMs are sorted in descending order of 

their processing capabilities. PABFD, then performs a “power growth test” before allocating a 

VM to a PM. The power growth test, ensures that a VM is only allocated to a seemingly suitable 

PM, if and only if such allocation would not lead to the power consumption of the proposed 

PM becoming greater than a pre-set threshold value, otherwise a different PM is selected. 

In Phase 2, load balancing of the VM placements done in phase 1 is carried out. Here, the PMs’ 

CPU utilization level are compared against pre-set upper and lower threshold values to 

determine if such PMs are over/under worked. If the CPU utilization of a PM grows above the 

upper threshold, VMs are selected and migrated off that PM. Similarly, if its CPU utilization 

level is below the lower threshold, all VMs are migrated off it and the PM put to sleep to 

conserve energy. 

Two algorithms were proposed by the authors; the first is for tasks allocation, while the second 

is for load balancing of the allocated tasks. 

Algorithm 1: Allocation of Workloads 

1. Get the set of requests (VMs) V = {v1, v2, v3…. vm} 

2. Sort all VMs in descending order of CPU utilization  

3. Get the set of servers H, H = {h1, h2, h3….hn} 

4. For each vj in V 

a. Set minPower to MAXPowerAllowed 

b. Set allocatedServer to Null 

c. For each hi in H 

i. If hi has enough resource to cater for vj then 

1. Estimate h’s newPower 

2. If  hi’s newPower < minPower 

a. allocatedServer = hi 

b. minPower = newPower 

3. Else select next h that is (hi+1) 

ii. Else select next h (that is hi+1) 

d. If allocatedServer is not empty then 

e. Allocate vj to hi 



Page | 30  
 

5. Return allocation 

Algorithm 2: Load Balancing of Workloads 

Select a VM to migrate 

1. For each hi in the list of servers H 

i. Get set of all VMs allocated to hi (that is allocatedVMs) 

ii. Sort the VMs in descending order 

iii. hUtil = current utilization level of hi 

iv. bestUtil = MAX 

v. While hUtil > UpperThreshold //that is, hi is overloaded  

1. For each vj in allocatedVMs 

1. if vUtil >  (hUtil – upperThreshold) then 

i. tempUtil = vUtil − hUtil + upperThreshold  

ii. if tempUtil < bestUtil then 

1 bestUtil = temp 

2 Set vmWithHighestUtilImpact = vj  

2. Else 

i. if bestUtil = MAX then 

ii. Set vmWithHighestUtilImpact = vj 

iii. break 

2. hUtil = hUtil – vmWithHighestUtilImpact 

3. Add vj to VMsToBeMigratedList 

4. Remove vj from hi’s allocatedVMs 

vi.  If hUtil < LowerThreshold then 

1. Add all allocatedVMs of hj to VMsToBeMigratedList 

2. Remove all vi from hi’s allocatedVMs 

2. return VMsToBeMigratedList 

Listing 1: PABFD Algorithms 

2.9.1.2 Description of Algorithms 

Algorithm 1 focuses on the allocation of workload (VMs) to suitable PMs in such a way that 

such allocation does not lead to a growth in power consumption of the PM above a pre-set 

upper threshold. 
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In Algorithm 2, the resource (CPU) utilization of each PM is monitored against static upper 

and lower thresholds to ensure that such PM is not over/under utilized. If there exists such a 

PM, the algorithm iteratively migrates VMs off it until its utilization level is within the 

thresholds. 

2.9.1.3 Analysis of Algorithms 

1. The allocation process in Algorithm 1 is an offline process that requires all workloads 

(VMs) be available before allocation begins. (Algorithm 1, step 1) 

2. The requirements of all VMs must also be known beforehand. (Algorithm 1, step 2) 

3. Status probes of all PMs must be done prior to VMs allocation. (Step 3) 

4. A power growth test is also performed prior to allocation of VMs. (Algorithm 1, step 

4ci1) 

5. At the worst case, Algorithm 1 needs to run through all PMs in order to allocate all 

VMs. 

6. Algorithm 2 also relies on PM and VM status probes. (Algorithm 2, step 1-4, 6 & 7) 

7. The need for probes and growth test before allocation implies increased response 

time. 

8. The migration process of algorithm 2 is based on current CPU utilization levels.  

In determining PM power utilization level in Algorithm 1, step 4c1, Equation 4 is used. 

𝑃(𝑢) = 𝐾 ∗ 𝑃𝑚𝑎𝑥 + (1 + 𝐾) ∗ 𝑃𝑚𝑎𝑥 ∗ 𝑢      4 

Where: K is fraction of power consumed when system is idle; K = 0.7. Pmax = Max power 

consumed by a fully utilized server. u = CPU utilization.  

 

2.9.2 Analysis of Virtual Machine Consolidation with Usage Prediction (VMCUP) 

2.9.2.1 Virtual Machine Consolidation with Usage Prediction  
 

Hieu et al. (2015) improved on the work done by Beloglazov and Buyya (2012) with the 

introduction of resource usage prediction. VMCUP is also a two-phased approach to Cloud 

resource management but with focus on efficient resource utilization, QoS adherence and 

energy conservation.  
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In phase one, the authors applied the same PABFD algorithm used in (Beloglazov and Buyya 

2012) for initial allocation of tasks. While in phase two, load balancing was done using the 

current and future resource utilizations. The authors believe that this approach gives a more 

robust characterization of server status rather than just using a simple threshold based approach. 

To predict the short-term future resource utilization, a number of past utilization levels were 

passed into a linear regression model (Equation 5). The resultant values are then checked 

against a “hot threshold” value to determine whether or not a server is currently over / under 

utilized or will be in the shortest future. 

 U𝑡+1(𝑝)  = β0 + ∑ β𝑖 ∗ U𝑖(p)𝑚
𝑖=1       5 

 

𝑈𝑡(𝑝) =
𝑢𝑡(𝑝)+𝑤(𝑝)

𝑟′(𝑝)
       6 

 

𝑢𝑡(𝑝) = ∑ 𝑟(𝑣)𝑣∈𝑣𝑚       7 

Where Ut(p) = CPU Utilization of a PM (p) at a given time (t). p = Physical Machine (PM). m 

= total number of p in the DC. ut(p) = Total CPU utilization of all VMs running on p. w(p) = 

inherent CPU utilization level; that is, resources used to manage p itself. r’ = Total capacity of 

PM (p). r(v) = resource required by a VM (v). β0 and βi are regression co-efficient 

The VMCUP algorithms are detailed below:  

VMCUP uses the same workload allocation algorithm as PABFD (algorithm 1) discussed in 

section 2.8.1.1 

Algorithm 3: Load Balancing of Workloads 

A. MigationProcesses() 

//overloaded Servers 

1. Get set of PMs H 

2. Set m ← 1; 

3. for each hj in H do 

a. While OverloadDetection (hj, m) = true do 

i. v = getVMwithLeastMigTime from hj  
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ii. hs = PABFD(H, v); //use PABDF to get PM with least power-growth 

iii. If a suitable hs is found in H, then place v on hs, update U(hs); 

iv. Else if no suitable hs is found, 

1. Wake an idle hidle and allocate v to it. 

2. Place v on hidle, update U(hidle);  

3. H += hidle //update set of PMs (H) to include hidle  

v. Else break 

//underloaded Servers 

4. Set h = h0; //select first PM in H 

5. For each hj in H do 

a. If U(h) > U(hj) then h = hj; //get h with smallest utilization level 

6. If UnderloadDetection (h, m) = true then //migrate all VMs in h and switch h to idle 

a. Set status = true, suitablePMs = null; 

b. For each vi in h do 

i. hs = PABFD(H, vi); //use PABFD to get PM with least power-growth 

ii. If hs = null then status = false; break; 

iii. Else suitablePMs += hs //add hs to list of suitable PMs to migrate VMs to 

c. If status = true then  

i. For each vi in h do //migrate VMs off underloaded PM (h) to hs 

1. Remove server hs from suitablePMs in FIFO order; 

2. Place vi on hs, update U(hs); 

ii. Switch h to a low-power mode; 

iii. H -= h // Update H i.e. remove h from H  

 

B. OverloadDetection(h,m)  

1. FutureUtil(h) = PredictionModule(h,m); 

2. If CurrentUtil(h) & FutureUtil(h) > thresh then return true; 

3. Else return false; 

 

C. UnderloadDetection(h,m) 

1. FutureUtil(h) = PredictionModule(h,m); 

2. If FutureUtil(h) ≤ CurrentUtil(h) then return true; 

3. Else return false; 
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D. PredictionModule(h,m) 

1. Set x, y and β = null 

2. For t = 0 to n – m  

a. Xt0 = 1; //Set initial that xt to 1, that is at time t = 0 

b. For i = 0 to m do 

i. Xt(i+1) = Ui(h);  

ii. X += Xt(i+1) //update X to include Xt(i+1) 

c. Yt = Ui(h); Y += Yt; //update Y to include Yt 

3. β = (𝑥𝑇 ∗ 𝑥)−1 ∗  𝑥𝑇 ∗ 𝑦; 

4. Ut+1(h) = U(h) + β  // next utilization level at time t = t + 1  

5. Return Ut+1(h) 

 

Listing 2: Load Balancing of Workloads using VMCUP 

 

2.9.2.2 Description of Algorithms 

 

In Algorithm 3, the current and short-term future CPU utilization levels of PMs are monitored 

against upper and lower thresholds to ensure that such PM is/will not be over/under utilized.  

If an over/under-utilization is detected, the algorithm iteratively migrates VMs off the PM until 

its utilization returns to a level within the thresholds. 

2.9.2.3 Analysis of Algorithms 

1. Same as those of algorithm 1 and 2, discussed in section 2.8.1.3. 

2. The introduction of a future resource utilization model helps better compliance with 

SLA/QoS by preventing a future server overload from occurring rather than correcting after 

it has occurred which is the case with other approaches. 

 

2.9.3 Analysis of Virtual Machine Consolidation with Multiple Usage Prediction 

(VMCUP-M) 

2.9.3.1 Virtual Machine Consolidation with Multiple Usage Prediction  

 

In numerous works the utilization level of a single resource, often times the CPU alone is used 

as criteria for determining when a PM is over / under utilized and when VMC should be done. 
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However, in Hieu et al. (2017) an approach that takes multiple resources into consideration for 

VMC was presented. The approach uses the current and future utilization of the CPU, memory 

and bandwidth to determine the status of PMs and when VMC should be done. It was argued 

that the use of multiple resources led to better characterization of PMs thus reducing the number 

of VMC. The approach is similar to VMCUP but with the inclusion of a multi-iterative multiple 

resources prediction model. The analysis of the algorithms presented are discussed in the next 

subsections. 

 

Algorithm 4: Allocation of Workloads using PABFD-MUP 

1. P =0 and minPower = MAX 

2. Get set of PMs H = {h1, h2, h3 … hm} 

3. Get set of VMs V = {v1, v2, v3 … vn} 

4. For each h in H  

5. For each resource type r in H 

a. If v + ur(hi) + baseliner(hi) <= capr(hi) 

i. oldPower = getPower(hi) 

ii. Allocate v to hi and update utilization of r on hi 

iii. newPower = getPower(hi) 

iv. if (newPower – oldPower)< minPower and OHD-MUP = false 

1. minPower = newPower – oldPower 

v. else De-allocate v from hi, and update utilization of r on hi 

6. Return hi 

 

Algorithm 5: Load Balancing of Workloads 

A. MigationProcesses() 

//overloaded Servers 

1. Get set of PMs H 

2. for each hj in H do 

a. While OHD-MUP (hj, D, m, K) = true do 

i. v = getVM_MRT(hj)  

ii. hs = PABFD-MUP(H, v, D, m, K);  

iii. If a suitable hs is found in H, then place v on hs, update Ur(hs); 

iv. Else if no suitable hs is found, 

1. Wake an idle hidle and allocate v to it. 
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2. Place v on hidle, update U(hidle);  

3. H += hidle //update set of active PMs (H) to include hidle  

v. Else break 

//underloaded Servers 

3. Set h = h0; //select first PM in H 

4. For each hj in H do 

a. If Ur(h) > U(hj) then h = hj; //get h with smallest utilization level 

5. If UHD-MUP (h, D, m, K) = true then //migrate all VMs in h and switch h to idle 

a. Set status = true, suitablePMs = null; 

b. For each vi in h do 

i. hs = PABFD-MUP(H, vi);  

ii. If hs = null then status = false; break; 

iii. Else suitablePMs += hs //add hs to list of suitable H to migrate VMs to 

c. If status = true then  

i. For each vi in h do //migrate VMs off underloaded PM (h) to hs 

1. Remove hs from suitablePMs in FIFO order; 

2. Place vi on hs, update Ur(hs); 

ii. Switch h to a low-power mode; 

iii. H -= h // Update H ie remove h from H  

B. OHD-MUP(h, D, m, K)  

1. For all resource r in D 

2. For time k = current to short-term future (K) 

a. If Ur, t+k (h) = PredictionModule(h, r, m + (k -1)) 

b. If Ur, t+k (h) < thresh then return false; 

3. Else return true 

C. UHD-MUP(h,D,m,K) 

1. For all resource r in D 

2. For time k = current to short-term future (K) 

a. If Ur, t+k (h) = PredictionModule(h, r, m + (k -1)) 

b. If Ur, t+k (h) > Ur, t (h) then return false; 

D. PredictionModule(h,r,m) 

Same as algorithm 3, but repeated for multiple resources 

 

Listing 3: VMCUP-M workload allocation and load balancing algorithms  
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2.9.3.2 Description of Algorithms 
 

Similar to algorithm 1, in algorithm 4 workloads are also allocation onto suitable PMs in such 

a way that minimizes growth in power consumption. PABFD-MUP however also takes the 

multiple resources (CPU, memory and bandwidth) within PMs into consideration when 

allocating workloads. The effect of allocating a workload (demanding a certain resource from 

a potential PM) might have on the power level of such PM is also considered prior to final 

allocation. Algorithm 5, is an extension of algorithm 3 and considers multiple resource when 

determine the utilization level of PMs.  

2.9.3.3 Analysis of Algorithms 

 

1. In algorithm 4, a power-growth test (Step 5a,iv) needs to be conducted D number of times, 

where D is the number of resources within the PM being considered. These tests can 

potentially slow down the allocation phase. 

2. The authors did not provide a generalized function that encompassed the power growths 

obtained from each of the individual resource. This can lead to a situation whereby an 

increase in power for one resource has an inverse effect when considering a different 

resource. 

3. In both algorithms 4 and 5, apart from the CPU, other resources within a PM do not have 

varied power states and are either ON or OFF (Lefurgy et al., 2007, Rice et al., 2015). This 

implies that once ON these resources would consume the same amount of power 

irrespective of the amount of workload being serviced. Thus limiting their suitability as PM 

utilization thresholds.    

 

2.10 Summary  

In all the literature reviewed, a common assumption made was that all user workload 

requirements were similar and thus could be characterized and grouped together. This is not 

the case in reality, as users generally vary either as a result of socio-economic factors, 

purchasing power or simply requirements.  

Furthermore, most of the works in literature only considered one or two of these challenges, 

ignoring the other(s). For those that considered all three, energy conservation was inferred to 

be a by-product of efficient resource utilization, or vice versa. This work therefore aims to 

simultaneously address these three challenges by using the class of users’ workloads.   
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CHAPTER THREE  

RESEARCH METHODOLOGY 

3.1 Introduction 
 

This chapter discusses the research approaches used to achieve the objectives as stated in 

section 1.3. In meeting these objectives, this study proposed MC-BAL and a summarized 

description of the MC-BAL model is done in section 3.2. In meeting the first objective of 

designing a scheme that ensures adherence to end-to-end, pre-set QoS levels while providing 

services to users, MC-BAL used a combination of class-based workload allocation and a 

modified half interval searching technique called 2DHIS for allocation of PMs to VMs. This 

combination is discussed in section 3.3. MC-BAL used class-based VMC, PM auto-scaling and 

usage prediction to meet the second objective of efficiently utilizing Cloud resources while 

providing services to users; this is discussed in section 3.4. The third objective of improving 

the overall energy consumption of Cloud DCs, was addressed by MC-BAL through monitoring 

CPU utilization and PM sleep-states. This objective is discussed in section 3.5. The policies 

implemented by MC-BAL at various phases with respect to the research objectives are 

presented in section 3.6. The entire system process flow is presented in section 3.7, while 

metrics for evaluating MC-BAL are discussed in section 3.8. Finally, the experimental 

framework used in this study is discussed in section 3.9. 

3.2 Definition of the MC-BAL Model 

 

This study proposes Multi-Class Load Balancing (MC-BAL) for resource management in CC. 

It focuses on utilizing Cloud resources (PMs) efficiently and in a manner that consumes the 

least amount of energy, yet adhering to users’ QoS requirements. 
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3.2.1 The MC-BAL Model 

 
Figure 8: The Proposed MC-BAL Model (Ajayi, 2017) 

 

 
Figure 9: PABFD Model (Beloglazov and Buyya, 2012, Hieu et al., 2017) 

 

The MC-BAL model is shown in Figure 8, while the PABFD model is shown in Figure 9. 

Though the MC-BAL model is an adaptation of the PABFD model, there are significant 

differences between the two models. A description of these components and how they differ 

across both models is as follows: 

1. Users / Cloudlets: In both models users submit workload to the system for processing. 

These workloads are assigned to distinct VMs, and viewed as VMs within the DC. MC-

BAL however makes distinctions between the classes of users’ requirements, which 

PABFD does not.  
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2. Global Manager (GM): This acts as a mediator between the users and the Cloud DC. In 

both models, the GM is made up of a broker and a scheduler but their functionalities 

differ.  

a. The broker: In PABFD, users submit requests to the broker, the broker then 

converts this requests to VMs and forwards the request to the scheduler. In MC-

BAL, the broker does an additional job of classifying the user requests into 

appropriate queues of the scheduler based on user specified burst times. 

b. The Global Scheduler: In both models the global scheduler allocates submitted 

tasks (VMs) onto PMs via a scheduling policy.  

i. In PABFD, the Global Scheduler, allocates workloads to PMs, using 

linear search, while in MC-BAL, the allocation is done using 2DHIS (a 

modified binary search algorithm).  

ii. In PABFD, there is only one queue and a simple FCFS allocation policy 

is used. In MC-BAL however, there are four queues viz. Gold, Silver, 

Bronze and the M-Queue. The Gold, Silver and Bronze represent classes 

of user requirements with Gold given the highest priority and Bronze 

the least. Classification of workloads into appropriate queues by MC-

BAL ensures that user requirements are taken into consideration right 

from the allocation phase and not just at the load balancing phase as is 

the case with PABFD. 

3. Physical Nodes / PMs: In both models, these represent the physical server machines 

within a Cloud DC and serve as hosts for user workloads (VMs). 

4. Local Resource Monitor / Local Manager: The Local Resource Manager (LRM) is 

present in both models and serve the same functions. The LRM is installed on all PMs 

and is concerned with monitoring the resource utilization levels of its PM as well as 

reporting this to the Global Scheduler for load balancing.  

5. VMM: This is only available in the PABFD model and it collaborates with the Global 

Scheduler to perform VM Migration (load balancing). This function has been 

incorporated into the LRM in MC-BAL. 

6. M-Queue: The Migration-Queue (M-Queue) is a virtual queue used by the Global 

Scheduler for load balancing. It is a queue onto which VMs to be migrated off a PM 

are enqueued. It has a higher priority than any of the other queues; this is done in order 

to prevent SLA violations (from queuing delay), as workloads enqueued on it had 

previously been allocated and were being serviced prior to being selected for migration.  
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3.3 Maintaining End-to-End Pre-Set QoS Levels  

MC-BAL addressed adherence to pre-set QoS levels from two perspectives –guaranteed end-

to-end QoS adherence and lowered resource allocation time (workload delay). 

3.3.1 Guaranteed End-To-End QoS  

MC-BAL is a class-based workload allocation and migration scheme, which ensures adherence 

to end-to-end QoS levels both at the allocation and at the load balancing phases. Given that 

there are three classes of workloads, all submitted workloads must belong to one of these three 

classes. At the allocation phase, MC-BAL ensured that workloads with higher priority were 

given preference, thus a Gold class workload would be admitted before a Silver, and then a 

Bronze. Therefore, right from the admission phase, QoS was being adhered to. MC-BAL relied 

on user specified burst time as the only criterion for classifying workloads. This was because 

all other criteria could be inferred from the burst time. The relationship between burst time, 

payment band, response time and users’ classes is shown in Table 2. 

Table 2: Classification of workload 

CLASS REQUIRED 

RESPONSE TIME 

PAYMENT 

CLASS 

BURST TIME 

Gold No delay allowed Premium 20 % of all submitted jobs 

Silver Some delay allowed Standard 40 % of all submitted jobs 

Bronze Best Effort Basic 40 % of all submitted jobs 

 

In practice, users would specify the requirements from their CSP. In this work, these 

requirements were represented as the burst times; and they specified how much of the PM’s 

processor the users’ workload required. Considering that this study was based on logs of 

workloads previously submitted and processed in various DCs, it was impossible to ask users 

to specify their respective burst times. To this end, twenty percent (20 %) of all workloads in 

the log were classified as Gold, 40 % as Silver and the last 40 % as Bronze class. This is as 

shown in Table 2. 

During the load balancing phase workload classes were also considered; this prevented 

indiscriminate migration which was a major shortcoming of most other approaches in literature 

and a major cause of SLA violations. MC-BAL prevented workloads with higher priority from 
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being selected for migration, when workloads with lower priority were present within the PM. 

It achieved this by selecting workloads for migration based on priority levels; such that: 

Gold > Silver > Bronze      8 

This implies that the Gold class was given highest preference and guaranteed uninterrupted 

service (Ajayi et al., 2017). The Silver class was considered next and lastly the Bronze class. 

Workloads selected for migration were enqueued on the virtual migration queue (M-Queue). 

This Class-based VM selection process is described and modelled below:  

All workloads (VMs) allocated to PM must belong to one of the three classes (Gold, Silver or 

Bronze). Once a PM has been identified as overworked, the VM migration process was 

activated and a VM had to be selected from it for migration. This selection is modelled as 

follows:  

Let B, S and G represent Bronze, Silver and Gold workload classes respectively. Let N, BT, ST 

and GT respectively represent the total number of user workloads in the entire system, total 

number of B, total number of S and total number of G with N being the summation shown in 

Equation 9. 

N = (BT + ST + GT)       9 

Let PT represent the total number of VMs allocated to a given PM p, such that PB, PS and PG 

are the numbers of B, S and G in p.  

Let X be a VM selected for migration (without replacement), the probability of it being B is 

given by the hyper-geometric distribution (Weisstein, 2003) shown in Equation 10. 

𝑃(𝑋 = 𝐵) =  
(

𝐵𝑇
𝑃𝐵

)∗(
𝑁−𝐵𝑇

𝑃𝑇−𝑃𝐵
)

( 𝑁
𝑃𝑇

)
      10  

The probability of a Silver being selected, that is P(X = S), is a conditional probability which 

could only occur if and only if all Bs had previously been selected. This meant that the 

probability of selecting S was dependent on the previous selection(s) being B or another S (if 

all Bs had previously been selected). This is modelled using the Bayesian model of two 

elements (Ghahramani, 2013) but with an added condition and described in Equation 11. 



Page | 43  
 

𝑃(𝑋 = 𝑆) =  {
𝑃(𝑆 |𝐵) =

𝑃(𝐵 ∩𝑆)

𝑃(𝐵)
 , 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑃(𝐵) > 0

𝑃(𝑆), 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑃(𝐵) = 0
    11 

The probability of the selection being a G can also be modelled using the Bayesian model but 

for three elements and described in Equation 12. 

P(X = G) =  {
P(G|B ∩ S) =

P(B ∩ S ∩ G)

P(B) ∗ P(S|B)
, 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑃(𝐵)𝑎𝑛𝑑 𝑃(𝑆) > 0 

         𝑃(𝐺),                       𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑃(𝐵)𝑎𝑛𝑑 𝑃(𝑆) = 0

   

12 

In Equation 11, the probability of any S being selected is dependent on all previous selections 

being Bs or another Ss (if no more Bs were present). While in Equation 12, the probability of 

the selected workload being a G is dependent on the probability of all previous selections being 

S or G (given that only Gs are left in the PM). 

The Class-based VM selection algorithm is shown in listing 4, algorithm 6 

Algorithm 6: The Class-Based VMC 

1. Foreach PM (p) check status    //that is CPU utilization level 

2. If p is UNDERUTILIZED (Algorithm 8)  //current_utilization > threshold 

a. Perform VMM (p, all VMs in p)   //migrate ALL vms 

b. If step b is successfully completed put p to sleep 

3. If p is OVERUTILIZED (Algorithm 9) 

a. For all VMs in p check VM_types 

b. If any VM_type = BRONZE 

Select it for migration  //bronze should be selected first  

Else if any VM_type = SILVER 

Select it for migration  //select silver in the absence of bronze 

Else if any VM_type = GOLD 

Select it for migration.   //select gold is silver & bronze are absent 

c. Perform VMM(p, selected VM in p) 

4. VMM (p, v) 

a. Enqueue all VMs in v on M-Queue 

b. Reallocate all vm other PMs (except p) using 2DHIS (Algorithm 7) 
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Listing 4: Class-Based VMC for MC-BAL 

3.3.2 Lowered Resource Allocation Time  

In order to ensure minimal compromises on QoS requirements as a result of resource allocation 

delay, MC-BAL used the Double-Depth Half-Interval Search (2DHIS) algorithm (Ajayi et al., 

2016) to find suitable PMs for user workloads. 2DHIS is a modified Red-Black Tree (RBT) 

(Hanke, 1999) with the introduction of two-dimensional nodes. A RBT was built from all the 

PMs in the DC based on their available CPU. Each node of the tree was made up of an array 

of PMs having equal CPU utilization levels, instead of a two-dimensional structure like a 

normal RBT, 2DHIS is a three-dimensional data structure, with thickness equal to the size of 

the PM array. The 2DHIS is shown in Figure 10 with A to G representing the available 

processing capabilities (CPU utilization levels) of PMs within the DC. 

 

Figure 10: The 2DHIS Model 

Being a Red Black Tree (RBT), 2DHIS has an average, best and worst case search time 

complexity of O(log2n) (Hanke, 1999). For large number of PMs (a common phenomenon in 

Cloud DCs), 2DHIS was much faster in finding suitable hosts than the average and worst cases 

of the linear array search used in other works in literature.  
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2DHIS ensured that only the PMs which best matched the stipulated requirements (burst time) 

of the workloads were selected. It achieved this by recursively searching the tree for a node 

such that the difference between the available CPU and workload requirement is almost zero 

as shown in Equation 13. 

𝑃𝑐 − ∑ 𝑊𝑖
𝑛
𝑖  → 0      13 

 

 

Where Pc is PM’s available CPU, n is number of workloads, W is workload requirement. 

 

If such a node was found, 2DHIS then iterated through the node’s PM array searching through 

the potential PMs for the most suitable. This process further ensured that only the PM which 

perfectly matched the workload requirement was selected. The 2DHIS algorithm is shown in 

listing 5.  

Algorithm 7: The 2DHIS Algorithm 

1. Arrange all PMs in ascending order of their available processing capacity (LcP)  

2. Build a Red-BlackTree (BT_LcP) of available processing capacity from LcP  

3. Accept VMs to be allocated (VM_Set) //VMs = workloads 

4. Foreach vm in VM_Set  

 a. Get vm’s requirement (wR) //CPU requirements of the workload/VM 

 b. SuitablePM = getHost(wR, BT_LcP)  

5. getHost(wR, BT_LcP)  //recursive search for the best match PM  

a. Search BT_LcP for a node n, such that n.AvailableMIPS - wR is almost zero 

b. If found,  

i. Search through n (potential ps) for a suitable p  

ii. Return p //step i is required if other resource are to be considered  

c. Else  

i. Remove p from BT_LcP and update BT_LcP 

ii. Return getHost(wR, BT_LcP)  

6. If SuitablePM = null 

a. Get updated PM list 

b. Rebuild BT_LcP //a rebuild is required because auto-scaling adds new PM often 

c. Goto step 4 

 

Listing 5: The 2DHIS algorithm 
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3.4 Ensuring Effective Utilization of Cloud Resources 

In ensuring efficient utilization of Cloud Resources, MC-BAL used a combination of VMM, 

Usage Prediction and Auto-Scaling at both the allocation and load balancing phases. At the 

allocation phase, the 2DHIS algorithm was used to find the best PM-VM match, thus ensuring 

that from the allocation phase, resource wastage as a result of ill-proportioned distribution was 

mitigated.  

3.4.1 Resource Auto-Scaling  
 

MC-BAL applied auto-scaling at the allocation phase. Auto-scaling is a direct implementation 

of the rapid provisioning characteristics of CC as defined by the NIST (Mell and Grance, 2011). 

Conventionally, CSPs cannot know the exact number of PMs or resources to earmark for users’ 

workloads a priori. Hence, they either guess, use historic data or rely on the user specified 

requirements, which in most cases lead to over provisioning. Most works in literature such as 

those of (Islam et al., 2010, Wu et al., 2011 and Batista et al. 2015) tackled auto-scaling from 

the perspective of the users’ application type or requirement, and then scaled the Cloud 

resources in response to application demands. This study however is not concerned with the 

exact content or type of users’ workloads, hence such approaches cannot be used. MC-BAL 

thus auto-scaled by monitoring resource levels against workload volume. It then gradually 

released more resources into the system if it detected an imbalance between the resource levels 

and workload volume. This process ultimately allowed MC-BAL to use only the barest 

minimum resources to cater for all users’ workloads.   

3.4.2 Determining Current PM Utilization Level 

 

MC-BAL ensured that workloads were distributed evenly across PMs in order to avoid 

situations where certain PMs were underworked at the detriment of others. In order to 

determine when load balancing (workload migration) was needed, MC-BAL checked the 

current and short-term future CPU utilization levels (𝑃𝑖 and 𝑃𝑖+1) of the PM. To determine the 

current CPU utilization level, MC-BAL used any of four indicators. These four indicators are 

of two types - static and dynamic. For the static, upper and lower CPU utilization threshold 

values of 80 % and 20 % respectively were used. While for the dynamic threshold schemes, 

the Median Absolute Deviation (MAD) and Inter-Quartile Range (IQR) were used. The 

dynamic schemes provided adaptive upper CPU thresholds which varied constantly with the 

PM utilization.  These four indicators are described as follows:  
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1. Static Upper Threshold:  

A static upper CPU utilization threshold value of 80 % was set; above which a PM was 

considered overloaded and VMs had to be selected from it for migration and consolidation 

on different PMs. 
 

2. Dynamic Upper Threshold:  Median Absolute Deviation (MAD)  

This is a statistical measure of the deviation of a PM’s CPU’s utilization level from the 

median of all other PMs’ CPU’s levels in the DC. It was adopted from Beloglazov and 

Buyya (2012) and shown in Equations 14 and 15. A sentinel value s was used to control 

the rate of VM consolidation with respect to QoS and energy conservation. 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖  (|𝑋𝑖 −  𝑚𝑒𝑑𝑖𝑎𝑛𝑗  (𝑋𝑗)|)    14 

 

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1 –  𝑠. 𝑀𝐴𝐷     15 

 

Where Xi is CPU utilization level, Xj is median utilization level, and s is consolidation factor. 

 

3. Dynamic Threshold: Inter-Quartile Range (IQR) 

This is a statistical measure of the mid-spread and is defined as the difference between the 

third and the first quarter. It was adopted from Beloglazov and Buyya (2012) and shown in 

Equation 16 

 

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1 –  𝑠. (𝑄3 − 𝑄1)    16 

 

4. In determining if a PM was underutilized, MC-BAL used a static lower threshold value of 

20 % below which the PM was marked as underutilized and all VMs on it were migrated 

off and consolidated on different PMs.   

The VM selection algorithms for over-utilization and under-utilized PMs are shown in listing 

6 and 7 respectively. 

Algorithm 8: Over-utilized PM Detection Algorithm 

1. Set upper threshold = UTH (Static or dynamic) //UTH = upper utilization threshold 

2. Foreach p in set of PMs 

a. Ut+1(p) ← UP(p, m)  

b. If Ut(p) > UTH and Ut+1(p) > UTH  
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Return true //returns true if the PM is underutilized and would remain so 

in the future 

c. Else Return false 
 

Listing 6: PM over-utilization detection algorithm used in MC-BAL 

Algorithm 9: Under-utilized PM Detection Algorithm 

1. Set lower threshold = LTH //LTH = lower CPU utilization threshold 

2. Foreach p in set of PMs 

a. Ut+1(p) ← UP(p, m)  //m = an array of previous CPU utilization levels 

b. If Ut+1(p) ≤ LTH  //returns true PM would still be underutilized in the future  

Return true 

c. Else    //returns false if the PM would be over-utilized in the future 

Return false 

 

Listing 7: PM under-utilization detection algorithm used in MC-BAL 

3.4.3 Predicting Future PM Utilization Level 
 

In order to determine the short-term future CPU utilization of a PM, MC-BAL used the CPU 

utilization prediction model proposed by Hieu et al. (2015). The model was able to predict the 

short-term future utilization of PMs using their historic CPU utilization levels. This model has 

been discussed in section 2.8.2.  

 

Using a combination of the current and future CPU utilization levels, MC-BAL was able to 

manage the resource utilization. If a PM was determined to be over-utilized, both in the current 

and short-term future, VMs were selected from it for migration and consolidated onto different 

less worked PMs using the class-based migration policy described in section 3.3.1.  

3.5 Improving Energy Conservation in Cloud Data Centres  

In a bid to conserve the overall energy consumed, MC-BAL like other similar works, actively 

monitored the status of all PMs. Once a PM’s CPU utilization fell below the lower threshold 

value, all VMs allocated to the PM were migrated off it and the PM was switched to sleep-

state. Unlike in other works however, MC-BAL introduced an additional step to the energy 

conservation process. In this step, though a PM might not have been considered under-utilized, 
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if all workloads on such PM belong to the Bronze class, MC-BAL attempted to migrate these 

workloads onto other PMs. If successful, the PM was switched to sleep-state.  

This additional process further improved MC-BAL’s energy conservation. By switching PMs 

to sleep-state, an energy saving of up to 90 % could be obtained; as Pennsylvania (2013) has 

shown that a PM in sleep-state consumes less than 10 % of its maximum usable power.  

3.6 Objectives and Corresponding Policies of MC-BAL 

 

 

 

 

 

 

 

 

Figure 11: MC-BAL Policies 

 

Table 3: Summary of Objectives and corresponding policies 

OBJECTIVES POLICIES 

Objective 1 1: Classification of workloads  

2: Allocation of VMs to PMs using 2DHIS 

Objective 2 3: Class-based VMC for selecting VMs from over-utilized PMs 

4: PM auto-scaling is used to manage number of active PMs.  

Objective 3 5: CPU utilization levels and PM sleep-states 

 

Figure 11 and Table 3, show where the various MC-BAL policies described in sections 3.3 to 

3.5 were used with respect to achieving the objectives of this study. Figures 12 and 13 show 

the MC-BAL system flowchart.  
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3.7 System Process Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: MC-BAL System Flow chart 
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Figure 13: Class-Based VM Selection from Overloaded Physical Machines   
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3.8 The Metrics for Evaluation  

3.8.1 Evaluation Metrics 

In order to benchmark MC-BAL and validate its performance against other state of the art 

approaches, evaluation metrics were required. To measure compliance with user stipulated QoS 

requirements, percentage of SLA violation and average workload delay were used. Lower SLA 

violation percentage and delay values were desired.  

In determining effectiveness of MC-BAL in terms of resource utilization, capacity utilization 

was used. While for energy conservation, energy consumption levels and number of Power 

State Changes (PSC) per PM were measured. Lower values were also desirable for these 

metrics. All five metrics are discussed in the following sub sections. 

3.8.2 SLA Violation 

This metric is adopted from (Beloglazov, 2013) and is the percentage of time during which a 

PM hosting VMs experiences utilization greater than the upper threshold, hence unable to 

provide service at agreed levels to the user. It is defined in Equation 17. 

𝑆𝐿𝐴𝑉 =
1

𝑛
∗  ∑

𝑇𝑜𝑣𝑒𝑟𝑗

𝑇𝑡𝑜𝑡𝑎𝑙

𝑛
𝑗= 1       17 

Where n is number of PMs. Tover is the period during which the PM is operating above its 

upper threshold. Ttotal is the total time during which the PM is actively serving VMs. 

3.8.3 Average Workload Delay 

The average time spent by workloads waiting to be allocated to PMs. It is defined in Equation 

18.  

   𝛿𝑎𝑣𝑔  =
1

𝑛
∗ ∑ [𝑇𝑑

𝑘(𝑖) − 𝑇𝑎
𝑘(𝑖) ]𝑛

𝑖=0     18 

Where n is number of jobs on the queue. 𝑇𝑑
𝑘 (i) and 𝑇𝑎

𝑘 (i) are respectively job departure and 

arrival times on any given queue k.  
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3.8.4 Capacity Utilization 

A percentage ratio of the number of PMs in use in a data centre to the total number of PMs in 

the data centre. It is adopted from the works of Kang and Kim (2015) and Johansen (1968) and 

given by: 

    𝐶𝑢 =
𝑇−𝑇𝑢

𝑇
∗ 100 %     19 

Where Cu is capacity utilization. T is total number of PMs. Tu is total number of unused PMs  

3.8.5 Energy Consumption 

The total energy consumed by all the active PMs in the DC. This is adopted from the work of 

Beloglazov (2013) and given in Equation 20. 

 

𝑃𝑡𝑜𝑡 = ∑ 𝑘 ∗ 𝑃𝑚𝑎𝑥 + (1 − 𝑘) ∗ 𝑃𝑚𝑎𝑥 ∗ 𝑢𝑗
𝑛
𝑗=1     20 

 

Where Pmax = 250W. Ptot = Total energy of the DC. k = 0.7, fraction of power used by an idle 

PM. n = number of active PMs in the DC, 𝑢𝑗  is current utilization level of a PM j. 

3.8.6 Power State Changes per PM 

This is a ratio of PMs switched to sleep-state to total number of PMs in the DC and is defined 

in Equation 21. 

 

𝑃𝑆𝐶 =  ∑ 𝑇𝑠 ∶ ∑ 𝑇      21 

 

Where PSC= Power State Change ratio. Ts= PMs in sleep-state. T= Total of PMs in the DC. 
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3.9 Experimental Framework 

3.9.1 Experimental Framework 

Evaluating the performance of MC-BAL under varying system conditions and user 

requirements is almost impossible to achieve in a live environment, hence a simulation toolkit 

was used. In this study, the CloudSim Cloud simulator was used. It was chosen because of its 

ability to model virtualized environments, as well as its support for on-demand resource 

provisioning and dynamic workload allocation, which are key features of CC, lacking in other 

simulators. A review of related simulators was done in section 2.8. 

3.9.2 The CloudSim Toolkit 

The CloudSim toolkit is a Java-based Cloud simulator developed by Calheiros et al. (2011) as 

a robust tool for performing repeatable experiments to test proposed algorithms and research 

works relating to CC. It is built to model the IAAS deployment model of CC. The CloudSim 

architectural framework is as depicted in Figure 14. 

 

Figure 14: CloudSim architecture (Calheiros et al., 2011) 
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The components of the CloudSim framework are discussed below: 

The top layer is the User Code layer and is where user interaction with the system occurs. At 

this layer, users submit workloads to the broker, which in turn allocates these workloads to host 

PMs based on specified scheduling policy. The number of PMs required and their respective 

configurations as desired by the user are also configured at this layer.  

The next layer is the CloudSim layer and it is where the actual Cloud is modelled. At its lowest 

level is the network, which is an abstraction of actual network components. This layer is 

abstracted as CloudSim does not actually include network entities but rather simulates delays 

experienced while sending messages between entities. 

Above this level is the Cloud Resources and it is made up of the DC. PMs are stored within the 

DC and have the following specifications: processing capacity in Millions of Instructions Per 

Second (MIPS), number of CPU cores (processing elements), memory, storage capacities and 

allocation policies. The sensor is responsible for monitoring and dynamically collecting 

relevant information about performance of various entities. All collected information are 

forwarded to the Cloud Coordinator for the purpose of improving resource utilization and load 

balancing.  

Above this level is the Cloud Services layer, which handles allocation of workload 

requirements onto the Cloud Resources. It includes the VM provisioning, CPU, Memory, 

Storage and allocation policies. The process of allocating VMs to corresponding PMs is done 

by the VM provisioning module. Though CloudSim supports two types of VM provisioning 

which are allocation of VMs to PMs and allocation of applications to VMs; in this work 

however, only the former is considered. This allocation of VMs to PMs is done using the FCFS 

policy by default. On top of this level is the VM services, which handles managing, monitoring 

and performance isolation between VMs. Above this is the User Interface level and it handles 

accepted user workloads called cloudlets. Below the CloudSim layer is the actual CloudSim 

simulation engine (Calheiros et al., 2009). 

 

3.9.3 Experiment Setup and Data  

In this study, a DC similar to that used in (Beloglazov and Buyya, 2012 and Hieu et al., 2017) 

was used and consisted of at most 1200 heterogeneous PMs. These PMs were of two categories, 

the first ran on Intel Xeon 3040 dual core processors clocked at 1.86 GHz, while the second 
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ran on Intel Xeon 3075 dual core processors clocked at 2.6GHz. It is assumed that PMs in the 

second category can run more workloads per unit time than those in the first category. This is 

shown in Table 4. The power consumption models of these PMs are based on SpecPower 

(2010) real servers benchmarked data. Three different datasets were used in this study - 

PlanetLab day 3 dataset with 1,078 jobs (Park and Pai, 2006); Google Test Cluster cell with 

168 jobs; and Google Clusters data with 1,600 jobs (Wilkes and Reiss, 2011). Though these 

datasets were reportedly logged for CPU intensive workloads; however, for compatibility with 

VMCUP-M, a fixed minimal memory value of 0.001 was used. These datasets are made up of 

independent workloads, which run as a whole on their allocated PM. This implies that a 

workload cannot simultaneously run on multiple PMs.   

 

Table 4: Specifications of the PMs used for simulation 

Category Make CPU Cores Memory 

1 HP ProLiant ML110 G4 1,860 MHz Intel Xeon 3040, 2 cores 4GB 

2 HP ProLiant ML110 G5 2,600 MHz Intel Xeon 3075, 2 cores 4GB 

 

Table 5: Summary of Datasets  

Source Period Number of VM logged 

PlanetLab Day 3 1078 

Google Test Cluster Data 7 hours 168 

Google Dataset 30 days 1600 

 

3.9.4 Implementation and Coding 

Implementation was done using CloudSim and Eclipse IDE. Code listings and snapshots of 

some results are shown in Appendix I and II respectively.  
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CHAPTER FOUR  

DISCUSSION OF RESULTS 

4.1 Introduction 

For comparison purposes with the other approaches which categorized all user workloads into 

a single class, this study focuses primarily on the Gold class of workloads. However, for 

completeness purposes, results obtained for QoS adherence of the Silver and Bronze classes 

are also reported, albeit in a concise manner. 

4.2 Tests using PlanetLab Datasets 

The results obtained using PlanetLab dataset are detailed in the following subsections:  

4.2.1 Adherence to End-to-end Pre-set QoS Constraints (PlanetLab Dataset) 

4.2.1.1 Average SLA Violation (PlanetLab Dataset) 

In measuring the degree of adherence to QoS constraint, the SLA violation metric discussed in 

section 3.8.2 was used. MC-BAL was tested against PABFD and VMCUP-M and the result 

obtained is represented in Figure 14. 

 

Figure 15: Average number of SLA Violation for all PlanetLab Dataset 
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Table 6: Average SLA Violation of each workload class in MC-BAL (PlanetLab Dataset) 

METRIC THQ MAD IQR 

Average SLA violation for Gold Class (%) 9.35 9.2 9.36 

Average SLA violation for Silver Class (%) 10.01 9.24 9.55 

Average SLA violation for Bronze Class (%) 11.33 10.54 11.33 

 

In Figure 15, MC-BAL resulted in the lowest average SLA violation of all three approaches 

and across all three threshold schemes tested. Using the static threshold (THQ), MC-BAL (9.48 

%) was better than both PABFD (10.13 %) and VMCUP-M (9.83 %). The same trend was 

observed for the dynamic thresholds; with Median Absolute Deviation (MAD), MC-BAL (9.27 

%) was better than PABFD (10.58 %) and VMCUP-M (9.86 %); while for Inter-Quartile Range 

(IQR), MC-BAL (9.53 %) resulted in a lower SLA violation than both PABFD (10.44 %) and 

VMCUP-M (9.91 %).  

In Table 6, a comparison of the SLA violation experienced by workloads in each of the three 

MC-BAL queues is shown for the PlanetLab dataset. As expected the Gold class workloads 

experienced the least SLA violation, across all threshold schemes. This was followed by the 

Silver and then the Bronze class workloads. Across all classes, the dynamic threshold schemes 

(MAD and IQR) resulted in better SLA adherence versus the static scheme (THQ). 

4.2.1.2 Average Workload Delay (PlanetLab Dataset) 

 

Figure 16: Comparison of Average Workload Delay using PlanetLab Dataset 

THQ: Static Threshold. MAD: Median Absolute Deviation. IQR: Inter Quartile Range. MC-BAL: Multi-Class Load Balancing. 

PABFD: Power-Aware Best Fit Descending. VMCUP-M: Virtual Machine Consolidation with Multiple Usage Prediction 
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For static threshold (THQ), Figure 16 shows that PABFD with an average delay of 0.0029s 

performed better than both MC-BAL (0.0040s) and VMCUP-M (0.0153s). With respect to the 

dynamic thresholds, PABFD recorded 0.0052s for MAD and 0.0047s for IQR respectively as 

against MC-BAL’s 0.0047s for MAD and 0.0043s for IQR and VMCUP-M’s 0.0129s for MAD 

and 0.0139s IQR.  

PABFD was reportedly faster than both other approaches using static threshold, because it only 

checks the status of potential PMs for power growth prior to allocation. VMCUP-M and MC-

BAL on the other hand performed an additional linear regression based CPU utilization test 

prior to workload allocations. This process slowed them down with respect to PABFD. 

However, the 2DHIS used by MC-BAL to search for suitable PMs sped it up and accounted 

for the significant reductions in delay time when compared to VMCUP-M.  

4.2.2 Efficient Resource Utilization (PlanetLab Dataset) 

 

Figure 17: Comparison of Resource Utilization Levels using PlanetLab Dataset 

Figure 17 shows that both PABDF and VMCUP-M used 99% of all the PMs in the DC to 

provide service to all submitted workloads, while MC-BAL used 81 % to achieve same. This 

implies that MC-BAL managed PM utilization better than both PABFD and VMCUP-M.  
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4.2.3 Conservation of Energy (PlanetLab Dataset) 

4.2.3.1  Total Energy Consumption (PlanetLab Dataset) 

 

Figure 18: Comparison of Total Energy Consumption for PlanetLab Dataset 

 

In Figure 18, MC-BAL was benchmarked with the other two approaches and performed better 

than both with respect to conservation of energy. With the static threshold, MC-BAL recorded 

112.2 KWh as against 174.9 KWh and 155 KWh for PABDF and VMCUP-M. With respect to 

MAD, MC-BAL at 114.8 KWh used less energy as compared to PABFD (173.1 KWh) and 

VMCUP-M (160.6 KWh). Finally, when IQR was used, MC-BAL (115.6 KWh) was better 

than the other approaches at 176.4 KWh and 167.3 KWh, respectively. 

4.2.3.2  Host Power State Change PSC (PlanetLab Dataset) 

 

Figure 19: Comparison of Power State Changes using PlanetLab Dataset 
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Host PSC is the switching on and off (vice versa) of a PM with respect to load balancing. 

Results depicted in Figure 19, showed that PMs experienced equal number of average PSC 

with both MC-BAL and VMCUP-M. PABFD, however, gave the worst result of the three 

techniques, with a significantly higher number of PSCs per PMs. 

4.3 Tests using Google Test Cluster Dataset (GTC) 

The GTC dataset is a log of workloads submitted over a period of seven hours to a single cell 

cluster in one of Google’s DC. User workloads are independent and run as a single entity on a 

PM. Results obtained using GTC dataset are discussed in the following subsections: 

4.3.1 Adherence to End-to-end Pre-set QoS Constraints (GTC) 

4.3.1.1  Average SLA Violation (GTC Dataset) 

 

Figure 20: Average number of SLA Violation for GTC dataset 

 

Table 7: Average SLA Violation of each workload class in MC-BAL (GTC Dataset) 

METRIC THQ MAD IQR 

Average SLA violation for Gold Class (%) 8.09 6.61 6.89 

Average SLA violation for Silver Class (%) 12.35 6.99 7.12 

Average SLA violation for Bronze Class (%) 10.89 8.59 9.21 

 

Figure 20 shows that for static threshold (THQ), workloads experienced the least SLA violation 

with MC-BAL at 8.09 % as against 9.97 % and 10 % with PABFD and VMCUP-M 

respectively. When dynamic thresholds were used; MC-BAL was better than the other 
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approaches with 6.61 % for MAD and 6.89 % for IQR, as against PABFD’s 9.08 % (MAD) 

and 9.29 % (IQR) and VMCUP-M’s 7.29 % (MAD) and 8.1 % (IQR). MC-BAL therefore 

resulted in the lowest average SLA violation of all three approaches and across all three 

threshold schemes tested. 

Table 7 shows a comparison of SLA violations experienced by workloads enqueued onto the 

three classes when using the GTC dataset. Similar to the result obtained with the PlanetLab 

dataset, of the three classes, the Gold class workloads experience the least SLA violation across 

all threshold schemes. Similarly, the dynamic threshold schemes particularly MAD resulted in 

the least SLA violation versus the other threshold schemes. 

4.3.1.2  Average Workload Delay (GTC Dataset) 

 

Figure 21: Comparison of Average Workload Delay using GTC dataset 

 

For static threshold (THQ), Figure 21 shows that PABFD with an average delay of 0.0003s 

was faster than both MC-BAL (0.0008s) and VMCUP-M (0.004s). The same trend was 

repeated for both MAD and IQR, with PABFD recording 0.0011s for MAD and 0.0004s for 

IQR respectively as against MC-BAL’s 0.0025s for MAD and 0.00084s for IQR. VMCUP-M 

on the other hand was the slowest at 0.0035s for MAD and 0.0027s for IQR respectively. Once 

again, the 2DHIS used by MC-BAL accounts for the decrease in workload allocation delay 

versus VMCUP-M. 
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4.3.2 Efficient Resource Utilization (GTC Dataset) 

 

Figure 22: Comparison of Resource Utilization Levels using GTC dataset 

 

Figure 22 shows that MC-BAL uses only 33 % of all PMs in the DC to provide services to all 

user workloads, as against 84 % used by both PABDF and VMCUP-M. This represents about 

40 % improvement in resource utilization for MC-BAL as compared to the two other 

approaches.  

4.3.3 Conservation of Energy (GTC Dataset) 

4.3.3.1 Total Energy Consumption (GTC Dataset) 

 

Figure 23: Comparison of Total Energy Consumption for GTC dataset 
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In Figure 23, MC-BAL is compared with PABFD and VMCUP-M; and as observed with the 

PlanetLab dataset, MC-BAL conserved energy better than the other approaches. With the static 

threshold, MC-BAL recorded 5.89 KWh as against 10.33 KWh and 8.91 KWh for PABDF and 

VMCUP-M respectively. Using MAD as threshold, MC-BAL utilized 5.73 KWh of energy 

which is less than that used by PABFD (10.37 KWh) and VMCUP-M (8.52 KWh). Finally, 

when IQR was used as threshold, MC-BAL consumed only 5.8 KWh of energy which is better 

than PABFD and VMCUP-M which both consume 9.77 KWh and 8.86 KWh respectively.  

4.3.3.2 Host Power State Change PSC (GTC Dataset) 

 

Figure 24: Comparison of Power State Changes using GTC dataset 

In terms of average PM PSCs, Figure 24 shows that MC-BAL matched VMCUP-M with an 

average number of 1.03 PSCs across all thresholds (THQ, MAD and IQR) and both were better 

than PABFD with 2.18 (THQ), 2.3 (MAD) and 2.1 (IQR).  

4.4 Tests using Google Cluster Dataset (GCD) 

The GCD is a log of workloads submitted to a cluster within a Google DC, consisting of 12,500 

PMs and logged over a period of 30 days. The results obtained using this dataset are detailed 

below:  
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4.4.1 Adherence to End-to-end Pre-set QoS Constraints (GCD) 

4.4.1.1 Average SLA Violation (GCD Dataset)  

 

Figure 25: Average number of SLA Violation for GCD dataset 

 

Table 8: Average SLA Violation of each workload class in MC-BAL (GCD Dataset) 

METRIC THQ MAD IQR 

Average SLA violation for Gold Class (%) 8.45 4.16 4.37 

Average SLA violation for Silver Class (%) 10.06 4.84 6.22 

Average SLA violation for Bronze Class (%) 10.83 14.98 17.60 

 

Figure 25 shows that workloads experienced the least SLA violation when MC-BAL was used 

as compared to the two other approaches. Using the static threshold (THQ), workloads 

experienced 8.45 % violation with MC-BAL, 10 % with PABFD and 9.92 % with VMCUP-

M. Using MAD dynamic threshold, MC-BAL resulted in 4.16 % violation as against the 6.95 

% of PABFD and 8.78 % of VMCUP-M. Using IQR, workloads experienced only 4.37 % SLA 

violation with MC-BAL as against the 7.67 % and 9.32 % of PABFD and VMCUP-M 

respectively.  

In Table 8, a comparison of the average SLA violations for each MC-BAL workload class is 

shown. As with the other datasets, of the three classes, the Gold class experienced the least 

SLA violation. Similarly, the MAD dynamic threshold scheme gave the best SLA adherence 

of all three PM utilization threshold schemes. 
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4.4.1.2 Average Workload Delay (GCD Dataset) 

 

Figure 26: Comparison of Average Workload Delay using GCD dataset 

 

Results of average workload delay using the GCD dataset are depicted in Figure 26. For the 

static threshold (THQ), MC-BAL at 0.0063s was faster than both PABFD (0.0075s) and 

VMCUP-M (0.0454s). The same trend was repeated for MAD and IQR thresholds, with MC-

BAL having 0.0099s for MAD and 0.0085s for IQR as against PABDF’s 0.0167s for MAD 

and 0.0124s for IQR. VMCUP-M however resulted in the greatest workload allocation delays 

with 0.0413s for both MAD and IQR.  

The advantage of 2DHIS is vividly shown here, as it resulted in workloads experiencing the 

least delay with MC-BAL versus the other two approaches. This was because a larger number 

of PMs (1200) was needed for the GCD dataset as against the 200 and 569 PMs used for GTC 

and PlanetLab datasets respectively. With the larger number of PMs, the speed of 2DHIS at 

O(log2𝑛) versus that of linear search (O(n)) used by both PABFD and VMCUP-M became 

apparent.  
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4.4.2 Efficient Resource Utilization (GCD Dataset) 

 

Figure 27: Comparison of Resource Utilization Levels using GCD dataset 

 

Figure 27 shows that MC-BAL used an average of 75 % of all PMs in the DC as against the 

100 % used by both PABDF and VMCUP-M. This implied an improvement of 25 % in resource 

utilization for MC-BAL versus the two other approaches. 

4.4.3 Conservation of Energy (GCD Dataset) 

4.4.3.1 Total Energy Consumption (GCD Dataset) 

 

Figure 28: Comparison of Total Energy Consumption for GCD dataset 

 

0

20

40

60

80

100

120

THQ MAD IQR THQ MAD IQR THQ MAD IQR

P
e

rc
e

n
ta

ge
 (

%
)

MC-BAL PABFD VMCUP-M

THQ: Static Threshold. MAD: Median Absolute Deviation. IQR: Inter Quartile Range. MC-BAL: Multi-Class Load Balancing. 

PABFD: Power-Aware Best Fit Descending. VMCUP-M:  Virtual Machine Consolidation with Multiple Usage Prediction 

THQ: Static Threshold. MAD: Median Absolute Deviation. IQR: Inter Quartile Range. MC-BAL: Multi-Class Load Balancing. 

PABFD: Power-Aware Best Fit Descending. VMCUP-M:  Virtual Machine Consolidation with Multiple Usage Prediction 



Page | 68  
 

In Figure 28, MC-BAL is compared with PABFD and VMCUP-M, and as observed with the 

two other datasets, MC-BAL conserved energy better than the other two approaches. When the 

static threshold (THQ) was used MC-BAL consumes 436.3 KWh of energy as against 490.4 

KWh and 591.3 KWh consumed by PABDF and VMCUP-M respectively. Using the MAD 

dynamic threshold, MC-BAL consumed 441.8 KWh which was less than those consumed by 

PABFD (471.6 KWh) and VMCUP-M (579.7 KWh). Finally, when IQR was used as threshold, 

MC-BAL was better than the others with 440.3 KWh of energy versus the 480.4 KWh and 

589.3 KWh of PABFD and VMCUP-M respectively. 

4.4.3.2 Host Power State Changes (GCD Dataset) 

 

 

Figure 29: Comparison of Power State Changes using GCD dataset 

 

In Figure 29, the number of PSCs for all three approaches were compared. Though PABFD 

showed an improvement in the number of state changes when the MAD dynamic threshold was 

used (6.06), it was clearly outclassed by both VMCUP-M and MC-BAL. MC-BAL slightly 

edges out VMCUP-M with an average value of 0.93 across all thresholds versus VMCUP-M’s 

average of 1.01. 

4.5 Summary of Results 

The results obtained for simulations carried out using the three datasets are discussed in the 

subsequent subsections and in tables 9 to tables 11. 
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4.5.1 Using PlanetLab Dataset 

Using PlanetLab dataset, the performance of MC-BAL with respect to PABFD and VMCUP-

M is summarized as follows: 

1. With respect to adherence to QoS, MC-BAL was better than PABFD by an average of 9 % 

for both static and dynamic thresholds. It was also better than VMCUP-M by an average 

4.5 % for both the static and dynamic thresholds.  

2. In terms of average delay, PABFD was faster than VMCUP-M by 81 % and 64 % for static 

and dynamic thresholds respectively. Compared to PABFD, MC-BAL was slower by 26 % 

with the static threshold but faster by an average of 5 % with the dynamic thresholds. This 

implied that workloads experienced the least allocation delays when MC-BAL was 

combined with the dynamic thresholds schemes. 

3. Resource utilization was improved by approximately 19 % when MC-BAL was used 

compared to when the two other approaches were used. 

4. In terms of improving energy consumption, MC-BAL conserved an average of 27 % and 

30 % more energy than VMCUP-M and PABFD respectively.  

5. For number of PSCs, MC-BAL performed better than PABFD with an 89 % improvement 

for both static and dynamic thresholds; and was at par with VMCUP-M. 

Table 9: Summary of results obtained using PlanetLab datasets 

PLANETLAB DATASET 

 MC-BAL PABFD VMCUP-M 

 THQ MAD IQR THQ MAD IQR THQ MAD IQR 

Number of 

PMs 
569 569 569 569 569 569 569 569 569 

Number of 

VMs 
1078 1078 1078 1078 1078 1078 1078 1078 1078 

Energy 

Consumption 

(KWh) 

112.16 114.75 115.59 174.85 173.14 176.36 155.02 160.62 167.29 

Avg. SLA 

Violation 

(%) 

9.48 9.27 9.53 10.13 10.58 10.44 9.83 9.86 9.91 



Page | 70  
 

No. of PM 

Shutdowns 
539 541 610.5 521 522 515 517 515 511 

Unused PMs 191 193 204 2 2 2 2 2 2 

Avg. No of 

Migrations / 

VM 

5.7 5.07 6.38 23.27 30.47 22.6 1.78 1.85 1.82 

No. of PM 

PSCs 
1.02 1.02 1.03 9.34 9.99 9.66 1.01 1.01 0.99 

PM 

Selection 

Time (s) 

0.0040 0.0047 0.0045 0.0029 0.0052 0.0045 0.0153 0.0129 0.0139 

Resource 

Utilization 

(%) 

81 81 81 99 99 99 99 99 99 

 

4.5.2 Using Google Test Cluster Dataset 

Results obtained from simulations carried out using dataset from GTC are summarized as 

follows:  

1. In terms of adherence to QoS, MC-BAL was 19 % better than both PABFD and VMCUP-

M when the static threshold was used. For the dynamic thresholds, when MAD was used, 

MC-BAL was 27 % and 9 % better than PABFD and VMCUP-M respectively. When IQR 

was used, MC-BAL was 25 % and 15 % better than PABFD and VMCUP-M respectively. 

2. For average workload delay, MC-BAL was slower than PABFD and this is as a result of 

the small number of PMs (200) used by the GTC dataset. Compared with VMCUP-M 

however, MC-BAL was faster for both static and dynamic thresholds.  

3. For resource utilization, compared to PABFD and VMCUP-M, MC-BAL used 40 % less 

resources to accomplish the same amount of work.  

4. In terms of improving energy consumption, when MC-BAL was used, 42 % less energy 

was consumed in the DC versus PABFD across both thresholds schemes. Similarly, versus 

VMCUP-M, MC-BAL consumed an average of 32 % less energy across both thresholds 

schemes. 
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5. For number of PSCs, MC-BAL switched PMs states half the number of times PABFD did, 

thus representing a 50 % improvement across all thresholds schemes. With respect to 

VMCUP-M, MC-BAL was at par.  

Table 10: Summary of results obtained using GTC datasets 

GOOGLE TEST CLUSTER DATASET 

 MC-BAL PABFD VMCUP-M 

 THQ MAD IQR THQ MAD IQR THQ MAD IQR 

Number of 

PMs 
200 200 200 200 200 200 200 200 200 

Number of 

VMs 
168 168 168 168 168 168 168 168 168 

Energy 

Consumption 

(KWh) 

5.89 5.73 5.8 10.33 10.37 9.77 8.91 8.52 8.86 

Avg. SLA 

Violation (%) 
8.09 6.61 6.885 9.97 9.08 9.29 10 7.29 8.1 

No. of PM 

Shutdowns 
191 193 192 181 169 168 175 181 180 

Unused PMs 133 133 133 32 32 32 32 32 32 

Avg. No of 

Migrations / 

VM 

3.08 2.32 3.12 10.45 13.19 11.60 2.98 3.39 3.58 

No. of PM 

PSCs 
1.03 1.03 1.03 2.18 2.25 2.11 1.03 1.03 1.04 

PM Selection 

Time (s) 
0.0008 0.0025 0.0008 0.0004 0.0011 0.0004 0.0040 0.0035 0.0027 

Resource 

Utilization 

(%) 

33 33 33 84 84 84 84 84 84 
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4.5.3 Using Google Cluster Dataset 

Results obtained from tests carried out using dataset from GCD are summarized as follows:  

1. In terms of adherence to QoS, workloads experienced 15 % less SLA violation with 

MC-BAL versus PABFD and VMCUP-M when the static threshold was used. For the 

dynamic thresholds, with MAD, MC-BAL was 40 % and 52 % better than PABFD and 

VMCUP-M respectively. When IQR was used, MC-BAL was 43 % and 53 % better 

than PABFD and VMCUP-M respectively. 

2. For average workload delay, MC-BAL was 19 % and 36 % faster than PABFD for the 

static and dynamic threshold schemes respectively. Compared with VMCUP-M, MC-

BAL was significantly faster at 86 % and 77 % for both static and dynamic thresholds 

respectively. MC-BAL using its 2DHIS, was able to take advantage of the large number 

of PMs (1200) in the DC, hence the bolstered speed.  

3. For resource utilization, MC-BAL used at least 25 % less resources than both PABFD 

and VMCUP-M to accomplish the same amount of work.  

4. In terms of improving energy consumption, when MC-BAL was used, an energy saving 

of 11 % and 7 % were recorded for the static and dynamic thresholds respectively versus 

PABFD. Compared with VMCUP-M, MC-BAL results in an average of 25 % energy 

saving across all threshold schemes. 

5. For number of PSCs, MC-BAL was on the average 87 % better than PABFD across all 

thresholds schemes. Compared with VMCUP-M, MC-BAL was better by an average 

of 7 % across all threshold schemes. 

Table 11: Summary of results obtained using GCD datasets 

GOOGLE CLUSTER DATASET 

 MC-BAL PABFD VMCUP-M 

 THQ MAD IQR THQ MAD IQR THQ MAD IQR 

Number of 

PMs 
1200 1200 1200 1200 1200 1200 1200 1200 1200 

Number of 

VMs 
1600 1600 1600 1600 1600 1600 1600 1600 1600 

Energy 

Consumption 

(KWh) 

436.34 441.79 440.32 490.39 471.63 480.36 591.27 579.7 589.28 
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Avg. SLA 

Violation (%) 
8.45 4.16 4.37 10 6.95 7.67 9.92 8.78 9.32 

No. of PM 

Shutdowns 
845 860 914 1062 1086 1079 951 997 989 

Unused PMs 306 334 322 0 0 0 0 0 0 

Avg. No of 

Migrations / 

VM 

4.26 3.15 3.64 41.37 38.49 48.14 2.41 2.34 2.35 

No. of PM 

PSCs 
0.93 0.92 0.93 9.83 6.06 7.64 1.01 1.02 1.01 

PM Selection 

Time (s) 
0.0063 0.0099 0.0085 0.0078 0.0167 0.0124 0.0454 0.0413 0.0414 

Resource 

Utilization 

(%) 

75 75 75 100 100 100 100 100 100 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND CONTRIBUTIONS TO KNOWLEDGE 

5.1 Summary of Findings 

Based on results presented and discussed in chapter four, Table 12 summarizes the findings of 

this study. 

Table 12: Summary of Findings 

Objectives Findings 

1 To design a load balancing scheme 

that ensures adherence to end-to-end, 

pre-set Quality of Service (QoS) while 

providing services to Cloud users. 

Multi-Class Balancing Scheme (MC-BAL) was 

developed to ensure QoS adherence. From findings, it 

is the only approach that guarantees adherence to QoS 

both at the allocation and load balancing phases using 

workload classes; and does so with the least average 

SLA violation (13 %) when compared to other state 

of the art schemes. 

2 To develop a scheme that efficiently 

utilizes Cloud resources while 

providing services to Cloud users. 

The findings show that MC-BAL and its combined 

use of resource usage prediction, class-based virtual 

machine consolidation and auto-scaling manages 

resources better. It is able to use at least 19 % less data 

centre resources to achieve the same amount of work 

as the other comparative approaches. 

3 To improve the overall energy 

consumption of Cloud Data centres. 

The findings, show that when compared to the other 

approaches, MC-BAL conserves 24 % more energy. 

This translates to lower carbon emission and cleaner 

(green) environment; which is one of the major 

concerns in the world today. 
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5.2 Conclusions 

In this study, two Cloud stakeholders were identified – the Cloud users and the Cloud Service 

Providers (CSPs); and these stakeholders have varied requirements. To the users, adherence to 

pre-agreed service level agreements is vital; while to the CSPs, efficient resource utilization 

and energy conservation are key. These requirements are often contrasting as an attempt to 

improve one, results in a reduction or violation of the other(s). The aim of this study therefore, 

was to develop a resource management scheme for Cloud data centres that simultaneously 

satisfied these stakeholders’ requirements. This was achieved using Multi-Class Load 

Balancing (MC-BAL), a class-based Cloud workload allocation and load balancing scheme.  

MC-BAL addressed the user requirement of quality service provisioning, by combining a class-

based workload management scheme with a half interval searching technique for allocation of 

workloads to PMs. This combination improved user satisfaction as MC-BAL was able to 

guarantee end-to-end adherence to pre-agreed QoS requirements. On the other hand, MC-BAL 

was also able to satisfy the CSPs’ requirements by combining a class-based virtual machine 

consolidation scheme with resource usage prediction and auto-scaling. This combination 

enabled MC-BAL ensure efficient utilization of Cloud resources, while providing services to 

users. Using MC-BAL, CSPs can thus consolidate their resources better, creating room to take 

on new customers and increase profitability. MC-BAL, using PM sleep states was able to 

reduce the energy consumption of Cloud data centres. This makes MC-BAL environmentally 

friendly, as reductions in energy consumption translates to lower carbon emission, 

consequently addressing one of the global concerns in the world today.   

5.3 Significant Contributions to Knowledge 

The study made the following contributions to knowledge: 

1. The study developed a resource management model for Cloud computing that guarantees 

end-to-end pre-set quality of service adherence while providing service to users.  

 

2. A class-based resource management scheme for Cloud computing was developed to 

address three major challenges of adherence to quality of service requirements, efficient 

resource utilization and energy conservation using the class of users’ workloads.  
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3. A workload allocation scheme, called Double-Depth Half Interval Search (2DHIS) was 

developed. The scheme, which is an adaptation of the binary search, is faster than the linear 

search approach used by other works. This makes 2DHIS particularly advantageous in data 

centres with large number of physical machines. 

5.4 Further Work 

A Class based workload allocation and load balancing scheme for Cloud Computing was 

presented in this work.  However, classification of user workloads was done using only the 

user specified burst time. It is has been argued that users often over-estimate their workload 

requirements and this might lead to over provisioning and resource wastage. In the future an 

alternative workload classification scheme can be considered. 

This work paid more emphasis on the Gold (premium) users and thus favoured them to the 

detriment of the other classes of users. Future research work could be in the direction of 

improving MC-BAL in view of improving fairness to the other workload classes. 

Furthermore, in this study, CPU utilization was the sole criterion used in determining the work 

load status of PMs. Other resources such as Memory, Bandwidth and Storage could be 

considered in future works.  
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APPENDIX I 

CODE LISTING 

MC-BAL 

package org.cloudbus.cloudsim.examples.power.planetlab; 

import java.io.FileWriter; 

import java.io.IOException; 

import org.cloudbus.cloudsim.examples.power.planetlab.NonPowerAware; 

import org.cloudbus.cloudsim.examples.power.planetlab.PlanetLabRunner; 

import org.cloudbus.cloudsim.examples.power.planetlab.MqBalRunner; 

//Actual entry point of the application 

public class MQBAL_Entry { 

 public static void main(String[] args) throws IOException { 

  boolean enableOutput = true; 

  boolean outputToFile = false; 

String inputFolder = 

NonPowerAware.class.getClassLoader().getResource("examples/workload/planetlab").getPat

h(); 

String outputFolder = "output"; 

        //DATASETS   

  String workload = "20110325"; // PlanetLab workload         -1078  

  //String workload = "GCDWorkload"; //Google Cluster Data 1 - 168 

  //String workload = "GCD"; //same specs as PL (1301) 

  //String workload = "gcd/GCD_VMs"; //hieu cleaned(1600) 

String vmSelectionPolicy = "classMQ";  

  //thr_MQ, 0.8; mad, 2.5; iqr, 1.5 

  String vmAllocationPolicy = "thr_MQ"; //"mad";//"iqr"; 

  String parameter = "0.8"; 

  System.out.println(workload + ": Running " + vmAllocationPolicy + "-" + 

vmSelectionPolicy); 

        System.out.println("Running MQ_BAL"); 

        new MqBalRunner(enableOutput, outputToFile, inputFolder, outputFolder, workload, 

vmAllocationPolicy, vmSelectionPolicy, parameter); } } 
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MC-BAL RUNNER CLASS 

public class MqBalRunner extends RunnerAbstract_MQ { 

 

public MqBalRunner( boolean enableOutput, boolean outputToFile, String inputFolder, 

String outputFolder,String workload, String vmAllocationPolicy, String vmSelectionPolicy, 

String parameter) { 

super(enableOutput, outputToFile,inputFolder,  outputFolder, workload, vmAllocationPolicy, 

vmSelectionPolicy, parameter);   } 

 

@Override 

protected void init(String inputFolder) { 

try { 

 CloudSim.init(1, Calendar.getInstance(), false); 

 //1. create new instance of broker (gBroker) 

 gBroker = Helper.createBroker(); 

 int brokerId = gBroker.getId(); 

 //create and populate VM list 

gCloudletList = MqBalHelper.createCloudletListMqBal(brokerId, inputFolder);//sBrokerId, 

bBrokerId, inputFolderName) 

//allCloudlets r now a list of lists 

//create vm for all cloudlets 

gVmList = Helper.createVmList(brokerId, gCloudletList.size()); 

//create the hosts to run the VMs 

hostList = Helper.createHostList(NUMBER_OF_HOSTS); 

}  

catch (Exception e) { 

e.printStackTrace(); 

System.exit(0); 

}   

}  } 
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MC-BAL RUNNER ABSTRACT CLASS - EXRTACT 

package org.cloudbus.cloudsim.examples.power; 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.util.List; 

import org.cloudbus.cloudsim.Cloudlet; 

import org.cloudbus.cloudsim.DatacenterBroker; 

import org.cloudbus.cloudsim.VmAllocationPolicy; 

import org.cloudbus.cloudsim.core.CloudSim; 

import org.cloudbus.cloudsim.power.PowerDatacenter; 

import org.cloudbus.cloudsim.power.PowerHost; 

import org.cloudbus.cloudsim.power.PowerVmAllocationPolicyMigrationAbstract; 

import 

org.cloudbus.cloudsim.power.PowerVmAllocationPolicyMigrationInterQuartileRange; 

import org.cloudbus.cloudsim.power.PowerVmAllocationPolicyMigrationLocalRegression; 

import 

org.cloudbus.cloudsim.power.PowerVmAllocationPolicyMigrationLocalRegressionRobust; 

import 

org.cloudbus.cloudsim.power.PowerVmAllocationPolicyMigrationMedianAbsoluteDeviation

; 

import org.cloudbus.cloudsim.power.PowerVmAllocationPolicyMigrationStaticThreshold; 

import org.cloudbus.cloudsim.power.PowerVmAllocationPolicySimple; 

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicy; 

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicyMaximumCorrelation; 

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicyMinimumMigrationTime; 

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicyMinimumUtilization; 

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicyRandomSelection; 

 

public abstract class RunnerAbstract { 

 private static boolean enableOutput;   /** The enable output. */ 
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 protected static DatacenterBroker broker;  /** The broker. */ 

 protected static List<Cloudlet> cloudletList;  /** The cloudlet list. */ 

 protected static List<Vm> vmList;   /** The vm list. */ 

 protected static List<PowerHost> hostList;  /** The host list. */ 

public RunnerAbstract(boolean enableOutput, boolean outputToFile, String inputFolder, 

String outputFolder, String workload, String vmAllocationPolicy, String vmSelectionPolicy, 

String parameter) { 

 try { 

initLogOutput(enableOutput, outputToFile, outputFolder, workload, 

vmAllocationPolicy, vmSelectionPolicy, parameter); 

 } catch (Exception e) { 

  e.printStackTrace(); 

  System.exit(0); 

 } 

 init(inputFolder + "/" + workload); 

start(getExperimentName(workload, vmAllocationPolicy, vmSelectionPolicy, 

parameter), 

 outputFolder, 

 getVmAllocationPolicy(vmAllocationPolicy, vmSelectionPolicy, parameter)); 

 } 

 /** 

  * Starts the simulation. 

  */ 

protected void start(String experimentName, String outputFolder, VmAllocationPolicy 

vmAllocationPolicy) { 

  try { 

  PowerDatacenter datacenter = (PowerDatacenter) Helper.createDatacenter( 

  "Datacenter", PowerDatacenter.class, hostList, vmAllocationPolicy); 

datacenter.setDisableMigrations(false); 

broker.submitVmList(vmList); 

  broker.submitCloudletList(cloudletList); 

CloudSim.terminateSimulation(Constants.SIMULATION_LIMIT); 
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  double lastClock = CloudSim.startSimulation(); 

List<Cloudlet> newList = broker.getCloudletReceivedList(); 

  CloudSim.stopSimulation(); 

 

Helper.printResults(datacenter, vmList, lastClock, experimentName,  

Constants.OUTPUT_CSV, outputFolder); 

    

Helper.getThroughput(vmList); //added 4 thruput - supoAjayi, 09.02.2017 

 } catch (Exception e) { 

 Log.printLine("The simulation has been terminated due to an unexpected error"); 

   System.exit(0);    }  } 

protected VmAllocationPolicy getVmAllocationPolicy(String vmAllocationPolicyName, 

String vmSelectionPolicyName, String parameterName) { 

  VmAllocationPolicy vmAllocationPolicy = null; 

  PowerVmSelectionPolicy vmSelectionPolicy = null; 

  if (!vmSelectionPolicyName.isEmpty()) { 

       vmSelectionPolicy = getVmSelectionPolicy(vmSelectionPolicyName); } 

          double parameter = 0; 

  if (!parameterName.isEmpty()) { 

   parameter = Double.valueOf(parameterName); 

  } 

  if (vmAllocationPolicyName.equals("iqr")) { 

PowerVmAllocationPolicyMigrationAbstract fallbackVmSelectionPolicy = new 

PowerVmAllocationPolicyMigrationStaticThreshold(hostList, vmSelectionPolicy, 0.7); 

vmAllocationPolicy = new PowerVmAllocationPolicyMigrationInterQuartileRange( 

hostList, vmSelectionPolicy, parameter, fallbackVmSelectionPolicy);  }  

else if (vmAllocationPolicyName.equals("mad")) { 

PowerVmAllocationPolicyMigrationAbstract fallbackVmSelectionPolicy = new 

PowerVmAllocationPolicyMigrationStaticThreshold(hostList, vmSelectionPolicy, 0.7); 

vmAllocationPolicy = new PowerVmAllocationPolicyMigrationMedianAbsoluteDeviation( 

hostList, vmSelectionPolicy, parameter, fallbackVmSelectionPolicy);  }  
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else if (vmAllocationPolicyName.equals("lr")) { 

PowerVmAllocationPolicyMigrationAbstract fallbackVmSelectionPolicy = new 

PowerVmAllocationPolicyMigrationStaticThreshold(hostList, vmSelectionPolicy, 0.7); 

vmAllocationPolicy = new PowerVmAllocationPolicyMigrationLocalRegression( 

hostList, vmSelectionPolicy, parameter, Constants.SCHEDULING_INTERVAL, 

fallbackVmSelectionPolicy);  }  

else if (vmAllocationPolicyName.equals("lrr")) 

{PowerVmAllocationPolicyMigrationAbstract fallbackVmSelectionPolicy = new 

PowerVmAllocationPolicyMigrationStaticThreshold(hostList, vmSelectionPolicy,0.7); 

   vmAllocationPolicy = new 

PowerVmAllocationPolicyMigrationLocalRegressionRobust(hostList, vmSelectionPolicy, 

parameter, Constants.SCHEDULING_INTERVAL, fallbackVmSelectionPolicy);  } 

else if (vmAllocationPolicyName.equals("thr")) { 

vmAllocationPolicy = new PowerVmAllocationPolicyMigrationStaticThreshold( 

hostList, vmSelectionPolicy, parameter);} 

else if (vmAllocationPolicyName.equals("dvfs")) { 

vmAllocationPolicy = new PowerVmAllocationPolicySimple(hostList);} 

else {   System.out.println("Unknown VM allocation policy: " + 

vmAllocationPolicyName); 

   System.exit(0); 

  } 

  return vmAllocationPolicy; 

 } 

 

protected PowerVmSelectionPolicy getVmSelectionPolicy(String vmSelectionPolicyName) { 

  PowerVmSelectionPolicy vmSelectionPolicy = null; 

  if (vmSelectionPolicyName.equals("mc")) { 

   vmSelectionPolicy = new 

PowerVmSelectionPolicyMaximumCorrelation( 

     new 

PowerVmSelectionPolicyMinimumMigrationTime()); 

  } else if (vmSelectionPolicyName.equals("mmt")) { 

   vmSelectionPolicy = new 

PowerVmSelectionPolicyMinimumMigrationTime(); 
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  } else if (vmSelectionPolicyName.equals("mu")) { 

   vmSelectionPolicy = new 

PowerVmSelectionPolicyMinimumUtilization(); 

  } else if (vmSelectionPolicyName.equals("rs")) { 

   vmSelectionPolicy = new 

PowerVmSelectionPolicyRandomSelection(); 

  } else { 

   System.out.println("Unknown VM selection policy: " + 

vmSelectionPolicyName); 

   System.exit(0); 

  } 

  return vmSelectionPolicy; 

 } 

 

 

}  
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CLASS-BASED VM SELECTION POLICY 

package org.cloudbus.cloudsim.power; 

import java.util.List; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.core.CloudSim; 

import org.cloudbus.cloudsim.power.PowerHost; 

import org.cloudbus.cloudsim.power.PowerVm; 

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicy; 

import org.cloudbus.cloudsim.examples.power.Constants_MQ; 

 

/** 

 * The ClassBased VM selection policy. 

 *  

 * This selects the next VM to migrate based on workload class 

 * Available classes are  

 * Gold (highest priority), Silver and Bronze (Least Priority) 

 *  

 * Selected VM & PM from which there r selected r placed on the M-Queue 

 * @author olasupoAjayi 

 * @since 28.01.2016 

 */ 

 

public class VmSelectionPolicyClassBased extends PowerVmSelectionPolicy { 

 public VmSelectionPolicyClassBased (int wkldLen) 

 { 

  this.gVmId = (int)(wkldLen * 0.2);    

  this.sVmId = (int)(wkldLen * 0.6); 

  this.bVmId = (int)(wkldLen);    

 } 
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 int gVmId;  

 int sVmId; 

int bVmId;     

@Override 

public Vm getVmToMigrate(PowerHost host) { 

 Vm vmToMigrate = null; 

  //get VMs allocated to PM (host) 

List<PowerVm> migratableVms = getMigratableVms(host); 

  if (!migratableVms.isEmpty()) { 

   vmToMigrate = checkBronze(migratableVms); 

  if (vmToMigrate == null) { //no bronze, check 4 silver 

   vmToMigrate = checkSilver(migratableVms);   } 

  if (vmToMigrate == null) {//no silver, check 4 gold 

   vmToMigrate = checkGold(migratableVms);   } 

  } 

  return vmToMigrate; 

 } 

  

private Vm checkBronze(List<PowerVm> ListofMigratableVms) { 

  Vm v = null; 

//run thru list, test and pick bronze first 

 for (Vm vm : ListofMigratableVms) { 

  if (vm.isInMigration())  

    continue; 

  if (vm.getId() > sVmId) //test and pick bronze first 

    v = vm; 

  } 

  return v; 

 }  
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private Vm checkSilver(List<PowerVm> ListofMigratableVms) { 

  Vm v = null; 

  //if not bronze found, run thru list, test and pick silver next 

 for (Vm vm : ListofMigratableVms) { 

  if (vm.isInMigration())  

   continue; 

  if (vm.getId() > gVmId & vm.getId() <= sVmId) //test and pick silver next 

   v = vm; 

  } 

  return v; 

 } 

  

private Vm checkGold(List<PowerVm> ListofMigratableVms) { 

  Vm v = null; 

  ////finally pick Gold in d absence of others 

 for (Vm vm : ListofMigratableVms) { 

  if (vm.isInMigration())  

   continue; 

  if  (vm.getId() <= gVmId) 

    v = vm; 

  } 

  return v; 

  //perform MIPS test as tie breaker 

 } 

} 
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DOUBLE-DEPTH HALF INTERVAL SCHEDULING  

package org.cloudbus.cloudsim.power; 

import java.util.Collection; 

import java.util.Iterator; 

import java.util.List; 

import java.util.NavigableSet; 

import java.util.Set; 

import org.cloudbus.cloudsim.Host; 

import org.cloudbus.cloudsim.Vm; 

import com.google.common.collect.Multimap; 

import com.google.common.collect.Ordering; 

import com.google.common.collect.TreeMultimap; 

/** 

 * This class binarySearch replaces the conventional LinearSearch  

 * with Binary Search (Red-black). In a bid to reduce VM allocation  

 * Time in DCs with large number of PM. IE from O(n) to O(log(n)) 

 * If an exact matching host is not found, the next closest match (greater than it) 

 * is returned 

  * @author ooAjayi  

 * @since 24.05.2016 

 * */ 

 

class  binarySearchBF    {   

  double reqdMIPS; 

  PowerHost selectedHost = null; 

  List <PowerHost> hosts = null; 

  private  Multimap<Double, PowerHost> BTree; 

   

binarySearchBF(List <PowerHost> p ) { 

   this.hosts = p;    



Page | 98  
 

   BTree = createHostListofAvailableMIPS(); 

} 

//called occasionally to update the BTree 

public void updateBT(List <PowerHost> p)  { 

   this.hosts = p; 

   BTree = createHostListofAvailableMIPS(); 

} 

    

  /** 

   *  

   * @return a Multimap of AvailableMIPS and PowerHost 

   * Its a balanced red-black Tree hence with log (n) speed 

   * Uses Guava's Multimap and 

   * Returns the best fit PM for the required MIPS  

   * @author olasupoAjayi 

   * @since 15.12.2016 

   */ 

Multimap<Double, PowerHost> createHostListofAvailableMIPS()  { 

 List<PowerHost> tempList = hosts; 

 Multimap<Double, PowerHost> listOfAvailableMIPS = 

TreeMultimap.create(Ordering.natural(), Ordering.arbitrary()); 

           

 for (PowerHost p : tempList)  {    

//build tree 

  listOfAvailableMIPS.put(p.getAvailableMips(), p); 

   } 

  return listOfAvailableMIPS; 

  } 

public Multimap<Double, PowerHost> getBTree() { 

   return BTree; 

} 
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/** 

* This method searches for the best matching PM for a required vm's MIPS 

* getHost also checks if the selected PM has a utilization of zero. getHostOnly does not do 

this  

* @param vm 

* @return PowerHost 

*/ 

PowerHost getHost (Vm vm)   { 

 this.reqdMIPS = vm.getMips(); 

 Multimap<Double, PowerHost> sortedPHs = getBTree(); 

 PowerHost selectedHost = null;      

   //gets mips that are >= reqdMIPS ie best matches 

 NavigableSet<Double> ns =  (NavigableSet<Double>) sortedPHs.keySet(); 

 Double x = ns.ceiling(reqdMIPS); 

 //get all PMs that can provide reqdMIPS 

 Collection<PowerHost> selectedHost1 = sortedPHs.get(x); 

 Iterator<PowerHost> i = selectedHost1.iterator();       

 while (i.hasNext())    { 

   PowerHost s = i.next();  

   if (!s.isSuitableForVm(vm))  { 

     continue;  } 

   else      { 

   if (getUtilizationOfCpuMips(s) == 0)     

   return  selectedHost = s; 

   else 

    continue;   }     

   }  

   //if best match isnt found, return FIRST match 

  if (selectedHost == null) 

   selectedHost = adjuster(vm, selectedHost1, sortedPHs, null); 
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   return selectedHost;     

  }  

   

  /** 

   * This method recursively searches for a suitable PM 

   * It is called by all getHost methods as a last resort to finding  

   * a suitable PM. It returns the next first fit 

   * @param vm 

   * @param possibleHosts 

   * @param tree 

   * @return 

   */ 

PowerHost adjuster (Vm vm, Collection<PowerHost> possibleHosts, Multimap<Double, 

PowerHost> tree, Set<? extends Host> excludedHosts)  { //remove 

unsuitable hosts ie previously tested collections 

 Iterator keyItr = tree.keySet().iterator(); 

 keyItr.next(); 

 keyItr.remove(); 

 //get next matching PMs 

 NavigableSet<Double> ns =  (NavigableSet<Double>) tree.keySet(); 

 Double x = ns.ceiling(vm.getMips()); 

 PowerHost sHost = null; 

 Collection<PowerHost> nextKeySet = tree.get(x); 

 Iterator<PowerHost> i = nextKeySet.iterator(); 

 while (i.hasNext()) { 

  PowerHost s = i.next(); 

  if (excludedHosts.contains(s)) { continue;   } 

 if (s.isSuitableForVm(vm)) { 

   if (getUtilizationOfCpuMips(s) != 0) {  

      continue;  } 

     sHost = s; 
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    }         

   }    

 if (sHost == null)     

  sHost = adjuster(vm, nextKeySet, tree, excludedHosts); 

  return sHost; 

 } 

   

  /** 

   * Used in the initialization / allocation stage by some classes 

   * PowerVmAllocation  

   * @param vm 

   * @return 

   */ 

PowerHost getHostOnly (Vm vm)  { 

 this.reqdMIPS = vm.getMips(); 

 Multimap<Double, PowerHost> sortedPHs = getBTree(); 

//get next matching PMs 

 NavigableSet<Double> ns =  (NavigableSet<Double>) sortedPHs.keySet(); 

 Double x = ns.ceiling(reqdMIPS); 

 PowerHost sHost = null; 

 Collection<PowerHost> nextKeySet = sortedPHs.get(x); 

 Iterator<PowerHost> i = nextKeySet.iterator(); 

 while (i.hasNext())   { 

   PowerHost s = i.next();  

 if (s.isSuitableForVm(vm))  {  return sHost = s;  } 

 else   continue;        } 

 if (sHost == null)  { 

 try { 

  sHost = adjusterOnly(vm, nextKeySet, sortedPHs); 

  } 
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 catch (Exception e)  { 

  sHost = null; 

  } 

  } 

  return sHost; 

 } 

   

PowerHost adjusterOnly (Vm vm, Collection<PowerHost> possibleHosts, 

Multimap<Double, PowerHost> tree) 

{    

 Iterator keyItr = tree.keySet().iterator(); 

 keyItr.next(); 

 keyItr.remove(); 

      

//get next matching PMs 

 NavigableSet<Double> ns =  (NavigableSet<Double>) tree.keySet(); 

 Double x = ns.ceiling(vm.getMips()); 

 PowerHost sHost = null; 

 Collection<PowerHost> nextKeySet = tree.get(x); 

 Iterator<PowerHost> i = nextKeySet.iterator(); 

  while (i.hasNext())  { 

   PowerHost s = i.next();  

   if (!s.isSuitableForVm(vm)) 

     continue; 

    else 

     return  sHost = s;  

} 

 if (sHost == null)     

  sHost = adjusterOnly(vm, nextKeySet, tree); 

  return sHost; 

 } 
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PowerHost getHost (Vm vm, Set<? extends Host> excludedHosts)  { 

  this.reqdMIPS = vm.getMips(); 

  Multimap<Double, PowerHost> sortedPHs = getBTree(); 

  PowerHost sHost = null; 

  //get next matching PMs 

  NavigableSet<Double> ns = (NavigableSet<Double>) sortedPHs.keySet(); 

   Double x = ns.ceiling(reqdMIPS); 

Collection<PowerHost> nextKeySet = sortedPHs.get(x); 

   Iterator<PowerHost> vItr = nextKeySet.iterator(); 

    while (vItr.hasNext()) { 

    PowerHost s = vItr.next(); 

    if (excludedHosts.contains(s))  { 

     continue;  

    } 

    if (s.isSuitableForVm(vm)) 

    { 

    if (getUtilizationOfCpuMips(s) != 0) {  

      continue;   } 

     sHost = s;    }  

       

   }   

    

   if (sHost == null) 

   { 

  try { 

  sHost = adjuster(vm, nextKeySet, sortedPHs, excludedHosts); 

  } 

  catch (Exception e) {  sHost = null;   } 

   } 

   return sHost;   
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     } 

   

   

  /** 

   * Gets utilization of CPU in MIPS 4d current potentially allocated VMs. 

    * @param host the host 

   * @return the utilization of the CPU in MIPS 

   */ 

  double getUtilizationOfCpuMips(PowerHost host) { 

   double hostUtilizationMips = 0; 

   for (Vm vm2 : host.getVmList()) { 

    if (host.getVmsMigratingIn().contains(vm2)) { 

 hostUtilizationMips += host.getTotalAllocatedMipsForVm(vm2) * 0.9 / 0.1; 

    } 

 hostUtilizationMips += host.getTotalAllocatedMipsForVm(vm2); 

   } 

   return hostUtilizationMips; 

  }  

   

 

 }  
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VM ALLOCATION POLICY - EXRTACT 

 

public abstract class PowerVmAllocationPolicyAbstract_MC extends VmAllocationPolicy 

{ 

private final Map<String, Host> vmTable = new HashMap<String, Host>(); 

private binarySearchBF bsbfx; 

private int oldHostListSize = 0; 

public PowerVmAllocationPolicyAbstract_MQ(List<? extends Host> list) { super(list); 

bsbfx = new binarySearchBF(this.<PowerHost> getHostList()); oldHostListSize = 

getHostList().size(); } 

@Override 

public boolean allocateHostForVm(Vm vm) { 

return allocateHostForVm(vm, findHostForVm2(vm,1)); 

//type 0 = firstFit or original / MC-BAL/PABFD, 1 = binary (MQ-BAL (BSBF), 2 = BestFit, 

3 = WorstFit, 4 = RandomFit  } 

@Override 

public boolean allocateHostForVm(Vm vm, Host host) { 

if (host == null)  { return false;  } 

if (host.vmCreate(vm)) { getVmTable().put(vm.getUid(), host); return true;   } 

return false;  } 

public PowerHost findHostForVm2(Vm vm, int type) {  PowerHost ph = null;   

switch (type) { 

case 0: 

FirstFit ff = new FirstFit(this.<PowerHost> getHostList()); ph = ff.getHost(vm); break; 

case 1: if (getHostList().size() > oldHostListSize) { bsbfx.updateBT(this.<PowerHost> 

getHostList()); ph = bsbfx.getHostOnly(vm);   } 

else ph = bsbfx.getHostOnly(vm);  oldHostListSize = getHostList().size(); break;  } 

public PowerHost findHostForVm(Vm vm) { 

for (PowerHost host : this.<PowerHost> getHostList()) {  if (host.isSuitableForVm(vm)) { 

 return host;   } } return null; } 

public PowerHost findHostForVm_BSBF(Vm vm)  {  return bsbf.getHostOnly(vm);  } } 
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MEDIAN ABSOLUTE DEVIATION - EXRTACT 

package org.cloudbus.cloudsim.power; 

import java.util.List; 

import org.cloudbus.cloudsim.Host; 

import org.cloudbus.cloudsim.Log; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.examples.power.planetlab.UP; 

import org.cloudbus.cloudsim.util.MathUtil; 

public class PowerVmAllocationPolicyMigrationMedianAbsoluteDeviation_MQ extends 

PowerVmAllocationPolicyMigrationAbstract_MQ { 

private double safetyParameter = 0; 

private PowerVmAllocationPolicyMigrationAbstract fallbackVmAllocationPolicy; 

public PowerVmAllocationPolicyMigrationMedianAbsoluteDeviation_MQ( 

List<? extends Host> hostList, PowerVmSelectionPolicy vmSelectionPolicy, 

double safetyParameter, PowerVmAllocationPolicyMigrationAbstract 

fallbackVmAllocationPolicy, double utilizationThreshold) { 

super(hostList, vmSelectionPolicy); 

  setSafetyParameter(safetyParameter); 

  setFallbackVmAllocationPolicy(fallbackVmAllocationPolicy); 

 } 

public PowerVmAllocationPolicyMigrationMedianAbsoluteDeviation_MQ( 

List<? extends Host> hostList, PowerVmSelectionPolicy vmSelectionPolicy, 

double safetyParameter, PowerVmAllocationPolicyMigrationAbstract 

fallbackVmAllocationPolicy) { 

 super(hostList, vmSelectionPolicy); 

  setSafetyParameter(safetyParameter); 

  setFallbackVmAllocationPolicy(fallbackVmAllocationPolicy); 

 } 

 

@Override 

protected boolean isHostOverUtilized_UP(PowerHost host) { 

PowerHostUtilizationHistory _host = (PowerHostUtilizationHistory) host; 

 double upperThreshold = 0; 

 try { 

 upperThreshold = 1 - getSafetyParameter() * getHostUtilizationMad(_host); 

  } catch (IllegalArgumentException e) { 

return getFallbackVmAllocationPolicy().isHostOverUtilized(host); 

  } 

  addHistoryEntry(host, upperThreshold); 

  double totalRequestedMips = 0; 

  for (Vm vm : host.getVmList()) { 

   totalRequestedMips += vm.getCurrentRequestedTotalMips(); 

  } 

 double utilization = totalRequestedMips / host.getTotalMips(); 

 double[] data = _host.getUtilizationHistory(); 

           double predictedValue = 0; 

                if(data.length >= 12) 

                { 
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                    UP up = new UP(); 

                    predictedValue = up.UsagePrediction(data, 1); 

                    

                    if(utilization > upperThreshold && predictedValue > upperThreshold) 

                    { 

                        return true;    

                    } 

                    else 
                        return false; 

                } 

                else 
                    return utilization > upperThreshold; 

 } 

 

protected double getHostUtilizationMad(PowerHostUtilizationHistory host) throws 

IllegalArgumentException { 

 double[] data = host.getUtilizationHistory(); 

 if (MathUtil.countNonZeroBeginning(data) >= 12) {  

   return MathUtil.mad(data); 

  } 

  throw new IllegalArgumentException(); 

 } 

 

public void setFallbackVmAllocationPolicy( 

 PowerVmAllocationPolicyMigrationAbstract fallbackVmAllocationPolicy) { 

  this.fallbackVmAllocationPolicy = fallbackVmAllocationPolicy; 

 } 

 

public PowerVmAllocationPolicyMigrationAbstract getFallbackVmAllocationPolicy() { 

 return fallbackVmAllocationPolicy; 

 } 

 

} 
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STATIC THRESHOLD WITHOUT USAGE PREDICTION 

public class PowerVmAllocationPolicyMigrationStaticThreshold extends  

 

PowerVmAllocationPolicyMigrationAbstract { 

private double utilizationThreshold = 0.8; 

 

public PowerVmAllocationPolicyMigrationStaticThreshold(List<? extends Host> hostList, 

PowerVmSelectionPolicy vmSelectionPolicy, double utilizationThreshold)  

{ 

super(hostList, vmSelectionPolicy); setUtilizationThreshold(utilizationThreshold);   

} 

 

@Override 

protected boolean isHostOverUtilized(PowerHost host) { 

addHistoryEntry(host, getUtilizationThreshold()); 

double totalRequestedMips = 0; 

for (Vm vm : host.getVmList()) { 

totalRequestedMips += vm.getCurrentRequestedTotalMips();   

} 

double utilization = totalRequestedMips / host.getTotalMips(); 

return utilization > getUtilizationThreshold();   

} 

 

protected void setUtilizationThreshold(double utilizationThreshold) { 

this.utilizationThreshold = utilizationThreshold;   

} 

 

protected double getUtilizationThreshold() {  

return utilizationThreshold; }  

} 

 

MINIMUM MIGRATION TIME VM SELECTION POLICY  

 

public class PowerVmSelectionPolicyMinimumMigrationTime extends 

PowerVmSelectionPolicy { 

 

@Override 

public Vm getVmToMigrate(PowerHost host) { 

List<PowerVm> migratableVms = getMigratableVms(host); 

if (migratableVms.isEmpty()) {    

return null;   

} 

 

Vm vmToMigrate = null; 

double minMetric = Double.MAX_VALUE; 

for (Vm vm : migratableVms) { 

if (vm.isInMigration()) {   

continue;      

} 
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double metric = vm.getRam(); 

if (metric < minMetric) { 

minMetric = metric; 

vmToMigrate = vm;    

}    

} 

return vmToMigrate;   

}    

} 

 

PABFD - EXRTACT 

public class VMCUP_PlanetLab { 

public static void main(String[] args) throws IOException { 

boolean enableOutput = true; 

boolean outputToFile = false; 

String inputFolder = 

NonPowerAware.class.getClassLoader().getResource("examples/workload/planetlab").getPat

h(); 

String outputFolder = "output"; 

String workload = "20110325"; // PlanetLab workload 

//String workload = "gcd/GCD_VMs"; //new gcd 

String vmSelectionPolicy = "mmt"; // Minimum Migration Time (MMT) VM selection 

policy 

//1. THR threshold 

String vmAllocationPolicy = "thr"; // Static Threshold (THR) VM allocation policy 

String parameter = "0.8"; // the static utilization threshold 

new PlanetLabRunner(enableOutput, outputToFile, inputFolder, outputFolder, 

workload, vmAllocationPolicy, vmSelectionPolicy, parameter); 

 

//2. IQR threshold 

vmAllocationPolicy = "iqr"; // Inter Quartile Range (IQR) VM allocation policy 

parameter = "1.5"; // the safety parameter of the IQR policy 

new PlanetLabRunner(enableOutput, outputToFile, inputFolder, outputFolder, workload, 

vmAllocationPolicy, vmSelectionPolicy, parameter); 
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//3. MAD threshold 

vmAllocationPolicy = "mad"; // Median Absolute Deviation (MAD) VM allocation policy 

parameter = "2.5"; // the safety parameter of the MAD policy 

new PlanetLabRunner(enableOutput, outputToFile, inputFolder, outputFolder, workload, 

vmAllocationPolicy, vmSelectionPolicy, parameter); 

} 

 

VMCUP-M   - EXRTACT 

public class VMCUP_M { 

public static void main(String[] args) throws IOException { 

boolean enableOutput = true; boolean outputToFile = false; 

String inputFolder = 

NonPowerAware.class.getClassLoader().getResource("examples/workload/planetlab").getPat

h(); 

String outputFolder = "output2";  

String workload = "20110325";  

//1. STATIC THR 

String vmAllocationPolicy = "thr"; // Static Threshold (THR) VM allocation policy 

String vmSelectionPolicy = "mmt"; // Minimum Migration Time (MMT) VM selection 

policy 

String parameter = "0.8"; // the static utilization threshold 

new PlanetLabRunner_MUP(enableOutput, outputToFile, inputFolder, outputFolder, 

workload, vmAllocationPolicy, vmSelectionPolicy, parameter); 

 

//2. MAD threshold 

vmAllocationPolicy = "mad"; // Median Absolute Deviation (MAD) VM allocation policy 

parameter = "2.5"; // the safety parameter of the MAD policy 

new PlanetLabRunner_MUP(enableOutput, outputToFile, inputFolder, outputFolder, 

workload, vmAllocationPolicy, vmSelectionPolicy, parameter); 

 

//3. IQR threshold 

vmAllocationPolicy = "iqr"; // Inter Quartile Range (IQR) VM allocation policy 

parameter = "1.5"; // the safety parameter of the IQR policy 
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new PlanetLabRunner_MUP(enableOutput, outputToFile, inputFolder, outputFolder, 

workload, vmAllocationPolicy, vmSelectionPolicy, parameter); 

                

} 

} 

 

USAGE PREDICTION 

public class UP { 

public double UsagePrediction(double[] testSetInput, int numberOfInput)     { 

double predictedValue = 0; double[] testSet = new double[testSetInput.length]; 

for (int i = 0; i < testSetInput.length; i++) { testSet[i] = testSetInput[testSetInput.length - i - 

1];        } 

 

double[][] x = new double[testSet.length-numberOfInput][numberOfInput + 1]; 

double[] y = new double[testSet.length-numberOfInput]; 

for(int i=0; i<testSet.length-numberOfInput; i++)         {             x[i][0] = 1.0; 

 int j=0; 

 for(j=0; j<numberOfInput; j++) {  

x[i][j+1] = testSet[i+j]; y[i] = testSet[i+j]; } 

 

Matrix X = new Matrix(x); 

Matrix Y = new Matrix(y, testSet.length-numberOfInput); 

Matrix beta; 

try        { 

QRDecomposition qr = new QRDecomposition(X); beta = qr.solve(Y); 

predictedValue = beta.get(0, 0);   

for(int k=0; k<numberOfInput; k++) 

predictedValue = predictedValue + beta.get(k+1, 0) * testSet[testSet.length - 

numberOfInput + k]; 

return predictedValue;  

} 

catch(Exception e) { 
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return testSet[0]; 

}  

}  

} 

 

HELPER CLASS FOR MC-BAL, PABFD AND VMCUP-M - EXRTACT 

public class Helper { 

 

//create VMs 

public static List<Vm> createVmList(int brokerId, int vmsNumber) { 

List<Vm> vms = new ArrayList<Vm>(); 

for (int i = 0; i < vmsNumber; i++) {  

int vmType = i / (int) Math.ceil((double) vmsNumber / Constants.VM_TYPES); 

 

vms.add(new PowerVm(i, brokerId, Constants.VM_MIPS[vmType], 

Constants.VM_PES[vmType], Constants.VM_RAM[vmType], Constants.VM_BW, 

Constants.VM_SIZE, 1, "Xen", new 

CloudletSchedulerDynamicWorkload(Constants.VM_MIPS[vmType], 

Constants.VM_PES[vmType]), Constants.SCHEDULING_INTERVAL));  

} 

return vms;   

} 

 

//create Hosts 

public static List<PowerHost> createHostList(int hostsNumber) { 

List<PowerHost> hostList = new ArrayList<PowerHost>(); 

for (int i = 0; i < hostsNumber; i++) { 

int hostType = i % Constants.HOST_TYPES; 

 

List<Pe> peList = new ArrayList<Pe>(); 

for (int j = 0; j < Constants.HOST_PES[hostType]; j++)  

{  

peList.add(new Pe(j, new 

PeProvisionerSimple(Constants.HOST_MIPS[hostType])));    

} 

 

hostList.add(new PowerHostUtilizationHistory(i, new 

RamProvisionerSimple(Constants.HOST_RAM[hostType]), new 

BwProvisionerSimple(Constants.HOST_BW), Constants.HOST_STORAGE, peList, 

new VmSchedulerTimeSharedOverSubscription(peList), 

Constants.HOST_POWER[hostType]));    

} 

return hostList;      

} 

 

//create Broker 
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public static DatacenterBroker createBroker() { 

DatacenterBroker broker = null; 

try  
{ 

   broker = new PowerDatacenterBroker("Broker");  

} 

catch (Exception e)  

{  

e.printStackTrace();   

System.exit(0);  

} 

return broker;  

} 

 

//create DC 

public static Datacenter createDatacenter(String name, Class<? extends Datacenter> 

datacenterClass, List<PowerHost> hostList, VmAllocationPolicy vmAllocationPolicy) 

throws Exception { 

String arch = "x86";  

String os = "Linux";  

String vmm = "Xen";  

double time_zone = 1.0;  

double cost = 3.0;  

double costPerMem = 0.0001;   

double costPerStorage = 0.0;  

double costPerBw = 0.0;  

DatacenterCharacteristics characteristics = new DatacenterCharacteristics( 

arch, os, vmm, hostList, time_zone, cost, costPerMem, costPerStorage, costPerBw); 

 

Datacenter datacenter = null; 

try  
{ 

datacenter = datacenterClass.getConstructor(String.class,  

DatacenterCharacteristics.class, VmAllocationPolicy.class, List.class, 

Double.TYPE).newInstance(name, characteristics, vmAllocationPolicy, new 

LinkedList<Storage>(), Constants.SCHEDULING_INTERVAL); 

}  

catch (Exception e) { 

e.printStackTrace();  

System.exit(0); 

} 

return datacenter;  

} 

 

public static List<Cloudlet> createCloudletListFromSWF(int brokerId, String 

inputFolderName) throws NumberFormatException, IOException 

{ 

 List<Cloudlet> allTypes = new ArrayList<Cloudlet>(); 

 long fileSize = 300;  //y 300?? 

 long outputSize = 300; 
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 UtilizationModel utilizationModelNull = new UtilizationModelNull(); 

  

 WorkloadModel r; 

 try { 

  r = new WorkloadFileReader("src" + File.separator + "examples" + 

File.separator +"workload"+ File.separator +"planetlab"+ File.separator + "UniLu-Gaia-

2014-1.swf.gz", 1); 

  r.generateWorkload();       

 for(Cloudlet c : allTypes) 

 {     

  c.setUserId(brokerId); 

  c.setVmId(allTypes.indexOf(c));  

  c.setCloudletLength((int)(Constants_MQ.CLOUDLET_LENGTH)); 

  c.setNumberOfPes(Constants_MQ.CLOUDLET_PES); 

}      

 } catch (FileNotFoundException e) { e.printStackTrace();   } 

 

 

CONSTANTS 

package org.cloudbus.cloudsim.examples.power; 

 

import org.cloudbus.cloudsim.power.models.PowerModel; 

import 

org.cloudbus.cloudsim.power.models.PowerModelSpecPowerHpProLiantMl110G4Xeon304

0; 

import 

org.cloudbus.cloudsim.power.models.PowerModelSpecPowerHpProLiantMl110G5Xeon307

5; 

 

/** 

 * If you are using any algorithms, policies or workload included in the power package, 

please cite 

 * the following paper: 

 * 

 * Anton Beloglazov, and Rajkumar Buyya, "Optimal Online Deterministic Algorithms and 

Adaptive 

 * Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual 

Machines in 

 * Cloud Data Centers", Concurrency and Computation: Practice and Experience (CCPE), 

Volume 24, 
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 * Issue 13, Pages: 1397-1420, John Wiley & Sons, Ltd, New York, USA, 2012 

 * 

 * @author Anton Beloglazov 

 * @since Jan 6, 2012 

 */ 

 

//Constants class for MQ-BAL - modification of the original constants class by Anton 

 

public class Constants_MQ { 

  

 //no of Hosts in the DC value set to 800 

 public static int maxNUMBER_OF_HOSTS = 1200; 

 public static int NUMBER_OF_HOSTS = 500; //800; 

  

 public final static boolean ENABLE_OUTPUT = true; 

 public final static boolean OUTPUT_CSV    = false; 

 

        //For PlatnetLab VMs (for 24 hours), so the SIMULATION_LIMIT is set to 24*60*60 

        //Experiment time = 24 hours 

 public final static double SCHEDULING_INTERVAL = 300; 

 public final static double SIMULATION_LIMIT = 24 * 60 * 60; 

 

        //For Google Cluster Data (for 6 hours), so the SIMULATION_LIMIT is set to 6*60*60 

       //Experiment time = 6 hours 

 public final static double SCHEDULING_INTERVAL = 300; 

 public final static double SIMULATION_LIMIT = 6 * 60 * 60; 

  

//For Google Cluster Data 2 (3 days), so the SIMULATION_LIMIT is set to 3*24*60*60 

//    //Experiment time = 3 * 24 hours 

public final static double SCHEDULING_INTERVAL = 300; 
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public final static double SIMULATION_LIMIT = 24 * 60 * 60; 

public final static int CLOUDLET_LENGTH = 2500 * (int) SIMULATION_LIMIT; 

 public final static int CLOUDLET_PES = 1; 

 

 /* 

  * VM instance types: 

  *   High-Memory Extra Large Instance: 3.25 EC2 Compute Units, 8.55 GB // too 

much MIPS 

  *   High-CPU Medium Instance: 2.5 EC2 Compute Units, 0.85 GB 

  *   Extra Large Instance: 2 EC2 Compute Units, 3.75 GB 

  *   Small Instance: 1 EC2 Compute Unit, 1.7 GB 

  *   Micro Instance: 0.5 EC2 Compute Unit, 0.633 GB 

  *   We decrease the memory size two times to enable oversubscription 

  * 

  */ 

 public final static int VM_TYPES = 4; 

 public final static int[] VM_MIPS = { 2500, 2000, 1000, 500 }; 

 public final static int[] VM_PES = { 1, 1, 1, 1 }; 

 public final static int[] VM_RAM = { 870,  1740, 1740, 613 }; 

 public final static int VM_BW  = 100000; // 100 Mbit/s 

 public final static int VM_SIZE  = 2500; // 2.5 GB 

 

 /* 

  * Host types: 

  *   HP ProLiant ML110 G4 (1 x [Xeon 3040 1860 MHz, 2 cores], 4GB) 

  *   HP ProLiant ML110 G5 (1 x [Xeon 3075 2660 MHz, 2 cores], 4GB) 

  *   We increase the memory size to enable over-subscription (x4) 

  */ 

 public final static int HOST_TYPES  = 2; 

 public final static int[] HOST_MIPS  = { 1860, 2660 }; 

 public final static int[] HOST_PES  = { 2, 2 }; 
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 public final static int[] HOST_RAM  = { 4096, 4096 }; 

 public final static int HOST_BW   = 1000000; // 1 Gbit/s 

 public final static int HOST_STORAGE = 1000000; // 1 GB 

 

 public final static PowerModel[] HOST_POWER = { 

  new PowerModelSpecPowerHpProLiantMl110G4Xeon3040(), 

  new PowerModelSpecPowerHpProLiantMl110G5Xeon3075() 

 }; 

 

} 

 

PM UTILIZATION MODEL 

 

package org.cloudbus.cloudsim; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

 

/** 

 * The Class UtilizationModelPlanetLab. 

 */ 

public class UtilizationModelPlanetLabInMemory implements UtilizationModel { 

/** The scheduling interval. */ 

 private double schedulingInterval; 

 /** The data (5 min * 288 = 24 hours). */ 

 private final double[] data;  

     

   //For PlanetLab VMs workload (24 hours). The resource utilization of VM is measured 

//every 5 minutes. Therefore, the total value in each PlanetLab VM file is 288 values. 

 //So, the data variable is set to 289 

public UtilizationModelPlanetLabInMemory(String inputPath, double schedulingInterval) 
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   throws NumberFormatException, 

   IOException { 

  data = new double[289]; 

  setSchedulingInterval(schedulingInterval); 

  BufferedReader input = new BufferedReader(new FileReader(inputPath)); 

  int n = data.length; 

  for (int i = 0; i < n - 1; i++) { 

   data[i] = Double.valueOf(input.readLine())/100.0; 

  } 

  data[n - 1] = data[n - 2]; 

  input.close(); 

 } 

//For Google Cluster Data VMs workload (6 hours). The resource utilization of VM is 

measured every 5 minutes. 

//Therefore, the total value in each PlanetLab VM file is 72 values. 

//So, the data variable is set to 72 

 

public UtilizationModelPlanetLabInMemory(String inputPath, double schedulingInterval) 

throws NumberFormatException, IOException { 

 data = new double[73]; 

 setSchedulingInterval(schedulingInterval); 

 BufferedReader input = new BufferedReader(new FileReader(inputPath)); 

 int n = data.length; 

 String x =  input.readLine(); 

 for (int i = 0; i < n - 1; i++) {    

  if (x == null) 

   data[i] = 0.0; 

data[i] = Double.valueOf(x)/1000.0; 

data[i] = Integer.valueOf(input.readLine()) / 100.0; 

} 

data[n - 1] = data[n - 2]; 
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input.close(); 

} 

      

 /** 

  * FOR NEW GCD = 1600 VMs added 18.04.2017  to compare with Hieu2017  

  */ 

  //For Google Cluster Data jobs workload with 2 resources [0] is CPU and [1] is MEM 

    public UtilizationModelPlanetLabInMemory(String inputPath, double schedulingInterval) 

 throws NumberFormatException, IOException { 

             data = new double[289]; 

 setSchedulingInterval(schedulingInterval); 

 BufferedReader input = new BufferedReader(new FileReader(inputPath)); 

 int n = data.length; 

 for (int i = 0; i < n - 1; i++) { 

                String line = input.readLine(); 

                String[] arrLine = line.split(" "); 

                //data[i] = Integer.valueOf(arrLine[0]) / 100.0; 

                data[i] = Double.valueOf(arrLine[0]) / 100.0;   

 } 

 data[n - 1] = data[n - 2]; 

 input.close(); 

} 

 

 @Override 

 public double getUtilization(double time) { 

  if (time % getSchedulingInterval() == 0) { 

   return data[(int) time / (int) getSchedulingInterval()]; 

  } 

  int time1 = (int) Math.floor(time / getSchedulingInterval()); 

  int time2 = (int) Math.ceil(time / getSchedulingInterval()); 
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  double utilization1 = data[time1]; 

  double utilization2 = data[time2]; 

  double delta = (utilization2 - utilization1) / ((time2 - time1) * 

getSchedulingInterval()); 

  double utilization = utilization1 + delta * (time - time1 * 

getSchedulingInterval()); 

  return utilization; 

 

 } 

 

 /** 

  * Sets the scheduling interval. 

  *  

  * @param schedulingInterval the new scheduling interval 

  */ 

 public void setSchedulingInterval(double schedulingInterval) { 

  this.schedulingInterval = schedulingInterval; 

 } 

 

 /** 

  * Gets the scheduling interval. 

  *  

  * @return the scheduling interval 

  */ 

 public double getSchedulingInterval() { 

  return schedulingInterval; 

 } 

}  
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