MOLECULAR BASIS OF POTENTIAL RESISTANCE OF PLASMODIUM FALCIPARUM TO ARTEMISININ BASED COMBINATION THERAPY IN LAGOS AND OSUN STATES, OF NIGERIA

$\mathbf{B}\mathbf{Y}$

TOLA, MONDAY

B.Sc. (Hons) Biochemistry (University of Lagos) M.Sc. (Biochemistry) (University of Lagos)

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, UNIVERSITY OF LAGOS IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) IN CELL BIOLOGY AND GENETICS

DECLARATION

We hereby declare that this thesis titles "Molecular basis of potential resistance of *Plasmodium falciparum* to artemisinin based combination therapy in Lagos and Osun States, of Nigeria" is a record of original research work carried out by Tola, Monday in the Department of Cell Biology and Genetics of the University of Lagos, Nigeria.

α		- 1		- 4
	ווו	ın	er	١T
_	ιu	u	-	ıι

	Name: TOLA, Monday
	Signature:
Supervisors	
	Name: Prof. O. OMIDIJI (Principal Supervisor)
	Signature:
	Name: Dr. E.T. IDOWU (Co-Supervisor)
	Signature:
	Name: Dr. T.S. AWOLOLA (Co-Supervisor)
	Signature:

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that the Thesis:

MOLECULAR BASIS OF POTENTIAL RESISTANCE OF PLASMODIUM FALCIPARUM TO ARTEMISININ-BASED COMBINATION THERAPY IN LAGOS AND OSUN STATES OF NIGERIA

Submitted to the School of Postgraduate Studies University of Lagos

For the award of the degree of

DOCTOR OF PHILOSOPHY (Ph.D.)

is a record of original research carried out

By:

TOLA, MONDAY

In the Department of Cell Biology & Genetics Permoto 1/12/16 IOLA MONDAY **AUTHOR'S NAME** 1ST SUPERVISOR'S NAME DATE DOWY 2ND SUPERVISOR'S NAME DATE 3RD SUPERVISOR'S NAME DATE 1ST INTERNAL EXAMINER SIGNATURE Dr J.B. Minai 2ND INTERNAL EXAMINER SIGNATURE 01-12-2016 EXTERNAL EXAMINER **SIGNATURE** DATE

SPGS REPRESENTATIVE

SIGNATURE

DATE

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisors, Prof. O. Omidiji and Dr. E.T Idowu, for their continuous support of my Ph.D study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having better supervisors and mentors for my Ph.D study.

My sincere thanks also goes to Dr. T.S Awololafor the scholarship/studentship grant given to me for this Ph.D. This work started from his table and laboratory. He provided me an opportunity to join his team, gave me proper mentorship and excellent exposure to molecular biology tools and technology that were most useful in executing this project. My thanks also go to Dr. Alfred Amambua-Ngwa, who gave access to the laboratory and research facilities in Medical Research Council (MRC) The Gambia. Without their precious support it would not be possible to conduct this research. I will also like to acknowledge Emzor Pharmaceuticals Ltd, Nigeria, for supporting this study with free Artemisinin-based combination therapy (trade name, LOKMAL).

Besides my supervisors, I would like to thank both the academic and non-academic staff of Cell Biology and Genetics Department, of the University of Lagos, for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives.

I thank my fellow labmates in Nigerian Institute of Medical Research, for the stimulating discussions, for the sleepless nights (in order to meet deadlines), and for all the fun we have had in the last four years. Also I thank my friends in the aforementioned institution.

Last but not the least, I would like to thank my family: My wife, Tola OluwatomilayoAdejoke, my father, Mr Tola Patrick and my brother, Tola Gbenga and sisters, Akintola Mary and Tola Ruth for supporting me spiritually, financially, morally throughout my Ph.Dprogramm and my life in general.

DEDICATION

I dedicate this thesis to my beloved wife and father

Tola Oluwatomilayo Adejoke and Tola Patrick

And

To the loving memory of my mother

Tola Omojola Esther

Your life principles has successfully made me the person I am becoming

You will always be remembered

TABLE OF CONTENTS

	PAGE
TITLE PAGE	i
DECLERATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
DEDICATION	v
TABLE OF CONTENT	vi
LIST OF FIGURES	xii
LIST OF PLATES	xiii
LIST OF TABLES	xiv
LIST OF APPENDICES	xv
ABSTRACT	xvi
CHAPTER ONE	
1.0 General Introduction	1
1.2 Statement of Problem	5
1.3 Aims and Objectives	6
1.4 Significance of Study	7
1.5 Operational Definition of Terms	7
1.6 List of Abbreviations/Acronyms	8

CHAPTER TWO

2.0 Literature Review	10
2.1 Malaria epidemiology	10
2.2 Life cycle of human malaria	12
2.3 Malaria transmission	16
2.3.1 Host Factors	17
2.3.2 Mixed <i>Plasmodium</i> species	19
2.3.3 Types of Malaria	21
2.3.3.1 Uncomplicated malaria	21
2.3.3.2 Severe malaria	21
2.4 Pathogenesis and pathology of malaria	22
2.4.1 Factors influencing malaria outcome	26
2.4.1.1 Parasite density	27
2.4.1.2 Strain diversity	28
2.4.1.3 Merozoite Surface Protein (MSP)	28
2.4.1.4 Apical Membrane Antigen 1 (AMA 1)	29
2.4.1.5 Erythrocyte Binding Antigen 175 (EBA 175)	30
2.4.1.5 Virulence gene	30
2.4.2 Malaria complications	32
2.4.2.1 Cerebral malaria	32
2.4.2.2 Malaria in pregnancy	33
2.4.2.3 Placenta malaria	35

2.5 Diagnosis of malaria	36
2.5.1 Clinical diagnosis of malaria	36
2.5.2 Laboratory diagnosis of malaria	37
2.5.2.1 Microscopic diagnosis	37
2.5.2.2 Rapid Diagnostic Test	38
2.5.3 Serological tests	39
2.5.4 Molecular diagnostic methods	40
2.5.4.1 Polymerase Chain Reaction (PCR) technique	40
2.5.4.2 Loop-Mediated Isothermal Amplification (LAMP) technique	41
2.5.4.3 Microarray	41
2.6 Malaria Chemotherapy	42
2.6.1Chloroquine	43
2.6.2 Sulphadoxine-Pyrimethamine	44
2.6.3 Mefloquine	45
2.6.4 Artemisinin-based Combination Therapy (ACT)	46
2.6.5 Drug Preference and Utilization	47
2.6.3 Methodology for determination of antimalarial drug resistance	50
2.6.3.1 Molecular basis of drugresistance in malaria	50
2.6.3.1.1Chloroquine resistance	53
2.6.3.1.2 Sulphadoxine-Pyrimethamine resistance	54
2.6.3.1.3 Mefloquine resistance	55
2.6.3.1.4 Artemisinin resistance	55
2.6.1.4 Fitness of Drug Resistant Malaria Parasite	57

2.6.1.5 Transmission of Resistant Malaria Parasite	59
2.7 Strategies for Integrated Malaria Control	61
2.7.1 Mortality control	62
2.7.2 Transmission control	63
2.7.3 Malaria eradication	63
2.7.4 Malaria vaccines	64
CHAPTER THREE	
3.0 Materials and Methods	69
3.1 Study Areas	69
3.2 Study Participants/Collection of Samples	71
3.3 Knowledge, attitude and practice of antimalarial drugs	73
3.4 Parasitological Examination	73
3.5 Blood Analysis	74
3.5.1 Full Blood Count (FBC)	74
3.5.2 Liver Function Test (LFT)	74
3.6 Molecular Assays	75
3.6.1 Expression Studies	75
3.6.1.1 RNA Extraction	75
3.6.1.2 DNase Treatment	75
3.6.1.3 cDNA Synthesis	75
3.6.1.4 Gene Expression Quantification	75
3.6.2 Sequencing Assay	76

3.6.2.1 DNA Extraction	76
3.6.2.2 PCR Amplification	76
3.6.2.3 DNA Sequencing	77
3.7 Ethical Approval	78
3.8 Data Analysis	79
CHAPTER FOUR	
4.0 Result	80
4.1 Socio- demographic characteristics of respondents	80
4.2 Respondents' awareness of signs and symptoms of malaria	80
4.3 Drug acquisition by respondents	80
4.4 Drug use pattern of respondents	80
4.5Haematological parameters in malaria infected individuals	90
4.6 Changes in liver function biomarkers in malaria infected individuals	90
4.7 Amplifications curve of 18S rRNA, pfATPase 6 and K13 transcript in	
malaria parasite samples	90
4.8 Gene expression studies showing the mean fold change in expression	
of target genes	97
4.9 Species identification of 383 samples by multiplex PCR method at	
different time points	97
4:10 Distribution and prevalence of K13, pfATPase 6, pfmdr 1 and pfcrt	
polymorphism	106

CHAPTER FIVE

5.0 Discussion	115
CHAPTER SIX	
6.1 Summary of Findings	129
6.2 Conclusion	130
6.4 Contributions to Knowledge	131
6.3 Recommendation	132
References	135
Appendix	167

LIST OF FIGURES

1.	Geographical distribution of malaria in children 6-59 months		
	bymicroscopy in Nigeria		11
2.	Human malaria Plasmodium life cycle		13
3.	Map of study communities showing Lagos and Osun States		70
4.	Flow chart of sample collection		72
5.	Symptoms of malaria mentioned by the respondents		82
6.	Drug acquisition by respondents		83
7.	Standard curve of transcript in malaria parasite samples		94
8.	Allelic discrimination of wild and mutant genes in parasite samples		95
9.	Amplification plots of transcript in malaria parasite samples		96
10.	Gene expression profile of K13 and pfATPase 6 genes using $2^{-\Delta\Delta ct}$		98
11.	Spectrophotometric quantification of extracted DNA samples		99
12.	Aligned sequences of K13 gene with reference sequence		107
13.	Aligned sequences of pfATPase 6 gene with reference sequence		
	showing SNP		109
14.	Aligned sequences of pfmdr 1 gene with reference sequence showing		
	SNP N84K		111
15.	Aligned protein sequences of <i>pfcrt</i> gene with reference sequence	113	
16.	Distribution and prevalence of <i>pfcrt</i> polymorphism		114

LIST OF PLATES

1.	Multiplex nested PCR gel picture for Plasmodium species identification	100
2.	The PCR amplification of K13 genes of extracted gDNA (A-D)	102
3.	The PCR amplification of pfATPase 6 genes of extracted gDNA	103
4.	The PCR amplification of pfmdr 1 genes of extracted gDNA	104
5.	The PCR amplification of <i>pfcrt</i> genes of extracted gDNA	105

LIST OF TABLES

1.	Socio-demographic characteristics of respondents	81
2.	Drug use pattern of respondents	84
3.	Adverse reaction followingdrug usage and preference	86
4.	Factor influencing Artemisinin-based Combination Therapy usage	87
5.	Dosage completion amongst the respondents	88
6.	Drug preference among respondents	89
7.	Haematological parameters in malaria infected individuals	91
8.	Packed Cell Volume (PCV) in malaria infected individuals	92
9.	Changes in liver function enzymes in malaria infected individuals	93
10.	Species identification by multiplex polymerase chain reaction method	101
11.	Prevalence of K13-propeller polymorphisms	108
12.	Prevalence of <i>pfATPase</i> 6 polymorphisms	110
13.	Prevalence of <i>pfmdr</i> 1 polymorphisms	112

LIST OF APPENDICES

1.	Study questionnaire	167
2.	Informed consent form	170
3.	RNA Extraction using Invitrogen PureLink RNA Mini Kit	173
4.	cDNA Synthesis Using Invitrogen RNA Reverse Transcriptase kit	175
5.	DNA ExtractionusingJena Bioscience DNA extraction kit	177
6.	K-13 Propeller Domain Gene Amplification	178
7.	pfATPase 6 Gene Amplification	180
8.	Pfcrt (NESTED PCR)Gene Amplification	182
9.	Pfmdr 1 (NESTED PCR)Gene Amplification	185
10	. DNA sequencing protocol	188
11	. Amino acid single letter representation	193
12	. Ethical Approval	194

ABSTRACT

Malaria is a major public health concerndespite more than a century of efforts to eradicate or control it. There are already reports of resistance to almost all antimalarial (including ACT), but there is no such record in Nigeria. This work assessed biochemical and haematological response of malaria infected individuals treated with Artemisinin based Combination Therapy (ACT) and conducted genetic studies to determine molecular basis of resistance of Plasmodium falciparum to ACT in South West Nigeria. Haematological autoanalyzer and chemistry autoanalyzer were used to determine haematological parameters and liver function enzymes activities respectively. Conventional and real time Polymerase Chain Reaction (PCR) assays were used for molecular and expression typing and genes were sequenced using ABI 3730xl genetic analyzer. This study investigated the prevalence of K13-propeller, pfATPase 6, pfmdr 1 and pfcrt gene polymorphisms. Questionnaire which probe into drug use pattern, preference and adverse reaction to ACT was also administered. A total of 135 respondents were interviewed. The respondents had good knowledge of malaria and were of the opinion that, fever (78.6%), vomiting (64.3%), headache (69%) and loss of appetite (83.3%) were the most frequent signs/symptoms of malaria while paleness of the eyes (2.4%) and body weakness (2.4%) were the least mentioned. Of the 135 respondents, 50% use ACT for the treatment of malaria and dosage completion was high as (64.3%) while 60% expressed their willingness to take the drug again due to its effectiveness. The mean PCV were significantly lower (p>0.05) in patients with malaria parasite compared to the normal control ranges for both male and female groups. The mean platelet values decreased significantly (p<0.05) before treatment with no difference observed after treatment compared to control but Neutrophil values observed for the days of study were significantly (p<0.05)decreased compared to control. The WBC and lymphocyte had mean values that were not significantly different (p>0.05) from the control. Malaria positive patients had a significantly (p<0.05) higher mean activity values of the various liver function enzymes (Aspartate aminotransferase, Alanine aminotransferase and Alkaline phosphatase) compared to control mean values. From multiplex PCR method was carried out for species identification, the results showed a total Plasmodium falciparum parasite in the studied population. Different expression patterns of target genes (K13 and pfATPase) were observed in malaria parasite transcript. The wild strain of K13 gene was found in the parasite population while pfATPase 6 had very low expression generally; both the wild and mutant strains were expressed. The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resourceconsuming in vivo studies to monitor drug resistance. Eight (8) different mutations were detected in K13 gene (G497S, R539F, I543V, A557?, V566K, A578K, C580Y, and D584I) with A557 having the highest prevalence in the parasite study population. One (1) synonymous (S679S) and two (2) non-synonymous (M699V, S769M) mutations were detected in the pfATPase 6 gene. Two non-synonymous (N86K and Y184F) mutations were detected in pfmdr 1 while pfcrt haplotype 72-76 mutation for antimalarial drug resistance common in Africa (CVIET) had a prevalence of 45% in the parasite study population. Point mutations on K13, pfATPase 6 and other genes that are associated with ACT resistance indicating imminent ACT resistant parasite were observed.

Key words: Malaria, Antioxidant enzyme, Haematology, Drug resistance, Artemisinin